
Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Dynamic effects of pair correlation functions on spin 
relaxation by translational diffusion in liquids. II. Finite 
jumps and independent T1 processes 
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Hwang and Freed have previously given solutions for the relative diffusion of molecules that include the 
proper boundary condition (i.e., an excluded volume due to a distance of minimum approach) which has 
usually been neglected in spin relaxation theories. In this work their results are extended to include effects 
of (1) one type of spin that is rapidly relaxing, (2) diffusion by jumps of finite size, and (3) frequency
dependent diffusion coefficients in the theory of spin relaxation by intermolecular dipolar interactions. 
These results are mathematically simpler and sounder than those commonly employed. 

Hwang and Freed (HF) have shown in 11 how to correct 
the time correlation functions and spectral densities 
needed for spin relaxation by translational diffusion by 
including the effects of the equilibrium pair-correlation 
function {pcf) between the spin- bearing molecules as an 
effective force in the relative diffusion equation. They 
showed that even a simple hard sphere model {applied to 
liquid ethane) could lead to an enhanced Ti1 and to agree
ment with the Harmon-Muller (HM) experiment2 without 
the need to introduce the Torrey3 theory for finite jumps. 
Also, much larger corrections were found by HF for 
J(w) (the spectral density) at high frequencies w, and 
even for J(O) in the cases where the molecules can in
teract ( e. g. , shielded ionic interactions). These re
sults, which include various pcf's, were obtained by 
numerical finite-difference methods described by HF. 

It was also pointed out by HF that the approach pre
viously used by other workers2

-
5 has neglected the 

boundary value problem which arises from a distance 
of closest approach d in the solution of the relative dif
fusion equation. [Only at a later stage in computing J(w) 
are the contributions from r <d ignored.] We call this 
the ID (independent diffusion) model. HF consider this 
problem both analytically and numerically. The proper 
boundary condition is trivially included in the finite dif
ference method. The force free (FF) diffusion model, 
which just includes the excluded volume effect as a re
flecting boundary at r=d [i.e. g(r)=O for r<d andg(r) 
= 1 for r > d, where g(r) is the pcf], may also be solved 
analytically by a modification of the earlier treatments. 
This is given by HF, who show that there is a small cor
rection for J(O), but the frequency dependences of the 
J(w) at higher frequencies are considerably different for 
the two cases. 

We wish, in the present work, to extend the analytic 
results of HF for the FF model, in which the boundary 
value condition arising from the excluded volume is 
treated correctly, to the cases where (1) one spin is 
rapidly relaxing due to a short T/ and Tff (we let S rep-
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resent the independently relaxing spin and I the spin that 
is being studied); (2) the diffusion is described by Tor
rey-like3 finite jumps; and (3) the diffusion coefficient 
is allowed to be frequency dependent. Case (1) was 
treated by Pfeiffer6 for the ID model, while case (2) is 
given by Torrey3 for the ID model. Case (3) is based on 
a recent theory of Hwang and Freed. 7 We discuss the 
results for the FF model. 

I. FINITE n and T{ 

The correlation function G(t) for the FF model is given 
by Eq. (A9) of I. The spectral density is defined as 8 

The results in I are given for (T~)" 1 = €- o•. However, 
by letting € - T;" 1 in the Fourier transformation we ob
tain the J(w) needed for spin relaxation between the un
like spins Sand I. One finds [cf. Eqs. (All)-(A13) ofl] 
that8 

k=l,2, (2) 

where r= d 2/ D, and D= D0 +Db, the sum of the diffu
sion coefficients of molecules a and b bearing spins I 
and S, respectively. Also, T/b is the number density of 
b molecules. As we have pointed out in I, the use of the 
correct boundary condition leads to much simpler ex
pressions than the ID case (cf. the results of Hubbard 5 

in the absence of T1 effects and the results of Pfeiffer6 

including them, both of which involve transcendental 
functions). In the limit I w T ! I « 1 one has 

J(w) ~ J(O) =J!.. ~ 
27 dD 

[ 
l+¼(r/Tff) 112 

]T/T;»1 ~~Ts 
X 1 + (r/Tg) 112 +t (r/Tf) +½ (r!T:)312 - 3 d 3 

k. 

(3) 
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Another convenient limit is I w T: I» 1, which yields 

J(w)- .!_ ..2k_[ 1+(5/4./2)(wr)
112

+¼{wr) ] 
• - 27 dD 1+ ✓2(wr) 172 +(wr)+(2/3"'2)(wr) 3 f 2 +(8/81,12)(wr) 57 2 +(wr) 3/81 

w1«1 .!_ ..2k..[1- ~( 2wd2) 112] 
27 dD 8 D 

(4) 

~ 617bD/(wd 2) 2 

and are just the results of I [cf. Eq. (A13) of I]. These results are both simpler as well as sounder mathematically 
than those previously given. 

II. JUMP DIFFUSION 

One now may introduce isotropic molecular jumps for each molecular species (e" g., the b molecules) according 
to the exponential distribution 

Ab(r) = (41rDb Ti,,;r)·1 exp[- r/(DbTbJ) 112 ], (5a) 

where Ab(r) is the probability of a jump of magnitude r in a single step, while TbJ is the mean time between jumps, 
and Db TbJ = (d)/6, where (d) is the mean square jump distance. Its Fourier transform is 

Ab( p) = 1/(1 + Db r bj p2). (5b) 

This is the distribution used by Torrey, 3 which reduces to Brownian diffusion in the limit Db rb1 - 0. The correct 
conditional probability distribution for the FF model involving relative diffusion of a and b molecules may now be 
written as1

•
3 

(6) 

where the F L+<tt 2>( pr) are the correct modified Bessel Functions for a reflecting-wall boundary at r= d and are 
given in I. Here we again have D= D0 +Db, but we have set (r~)=(r~)= 6DT; for the simple form of the exponen
tial in Eq. (6). One then has the following for G{t): 

[ 
A B B* ] 

x x2 + a + x2 + b + x2 + b* 

by the methods of I. Here a= 3. 1800, b = - 2. 5900 + i4. 3318, and b * is the complex conjugate of b. 9 Also 2B 
=i[(a- b) Imb]·1 and A =-B-B*=- 2 ReB, where again T= d2/D an-1 X=p2/d. G(t) is obtained explicitly in I for 
the limit Dri- 0. Here it is better to first take the Fourier transform of Eq. (1), and then to perform the inte
gration over x. This is straightforward, and one obtains 

Jk(w) =J~(w) +J:(w) 

where 

(7) 

(8) 

(9a) 

and 

(9b) 

where the definitions a!= sk r/(1 + sk Ti) and sk=iw + T ff·1 with k= 1 or 2 have been introduced. Note r/r 
=(r 2)/6d2, so in the Brownian limit r/r-0, J"(w)-0, and J'(w) gives the result Eq. (4) [or Eq. (A13) of I] for 
Tf·1 ==0, or of Eq. (2) for finite Tf, k==l or 2. Note also in the limit s-0 (i.e., zero frequencies and no T1 or 
T2 effects) one obtains 

8 ..2k_( 3 (r
2
)) J(O) = 27 Dd l + 8 (d2) • (10) 

This result may be compared with the Torrey result for ID as given by HM, 2 but in the present notation 

(11) 
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Also, it is easy to obtain the frequency-dependent J(w) which are affected by the finite jump correction. Thus, to 

lowest orders in w, and neglecting Tk, one obtains 11 

J(w)=_! _!]_&_[1+ ~ (r2)_ ~(2wd2)1;2 .!(.! .1._ (r2>)(2wd2)3/2] 2 
27 Dd 8 7 8 D + 2 9 + 32 7 D + O (w ) • (12) 

The case for W=O and s=(T:t1 is easily obtained from Eqs. (8) and (9), and in the limit (T:)·1-o one has 

(The case where (r ~ * (d) is more complex, but could 
be treated by properly generalizing the above analysis. ) 
The fact that J(O) is sensitive to the model of jump dif
fusion is probably due to the mixing in of many diffu
sional eigenvalues 12: Dp 2 /(1 + Dr1 p 2] of Eq. ( 6). This 
is in marked contrast to the rotational diffusion prob
lem. 13 We may also note that in the limit: w- 00, Eqs. 
(8) and (9) yield an asymptotic dependence of Jk(w) 

ex 1/w2 just as was obtained in Eq. (4); while for T ! 
- 0, these equations yield J,.(w) a: r: as in Eq. (3). How
ever, the coefficients are considerably modified by the 
jump diffusion. 

Ill. FREQUENCY-DEPENDENT DIFFUSION 
COEFFICIENT 

Hwang and Freed have introduced a non-Brownian 
correction to the simple diffusion model. 7 It corrects 
for the finite lifetime of the fluctuating forces generating 
the diffusion compared to r = D2 /d, and is appropriate in 
the limit of long-enough times (or short-enough,frequen
cies) that inertial effects on the motion are unimportant. 
H the correlation function of the fluctuating forces is 
assumed to have a simple exponential decay with decay 
constant TM, then one has 7 

(14) 

which yields a conditional probability similar to (but not 
identical to) Eq. (6). The two forms are compared by 
Hwang and Freed, u and one easily shows that the result 
for this case is given by 

J(w) =J'(w), (15) 

where J'(w) is again given by Eq. (9a) but with r 1 - r M, 

and D- D0, where D0 is the conventional zero-frequency 
spectral density. Thus it yields the result of Eq. (3) 
for w = T;1 = 0, and in general will yield new correc
tions to J(w) *J{O) in terms of powers of rMw and rM/Tk. 

(Note the Brownian motion limit is r M - 0.) 

IV. SUMMARY 

We found that a correct analysis of the excluded-vol
ume effect allows for relatively simple expressions for 
the jump diffusion mechanism as well as for effects of 
finite T % . Also, while Hwang and Freed noted the for
mal similarities between jump diffusion and a frequen
cy- dependent diffusion coefficient, they do lead to dif
ferent detailed predictions. However, it was shown in 
I that effects of equilibrium pcf's on the diffusive motion 
can indeed lead to significant corrections to J(w) and 
J(O): hard sphere or attractive intermolecular poten
tials will lead to an increase in J(O) [while repulsive 

(13) 

potentials will decrease J(O)]. Also, dynamic flow pro
cesses, which can lead to an apparent position-depen
dent diffusion coefficient such that the relative motion 
slows as molecules approach [and which has been treated 
for CIDE(N)P15 ], would be expected to enhance J(O). We 
note that only for frequencies w such that J(w) * J(O) can 
model effects from a frequency-dependent diffusion co
efficient be observed; (alternatively, one can replace 
a finite w by a finite (T % )"1

, k = 1, 2 to achieve this same 
qualitative conclusion). 

The combined effects of finite pcf, dynamic diffusive 
processes, jump diffusion, and finite (T!t 1 can be 
treated by finite difference methods as given in I and at 
considerable length in the review by Pedersen and 
Freed. 18 
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48,r .o A 48,r ( ) 
jl(o)A -""15J1{0); ,r(w1 -ws) - 15 J2 wr -ws ; 
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(2) )A 32,r ) 
J (w1+ Ws -15 J2(w1+ Ws ' 

where the superscript A indicates Abragram's notation 
[ cf. L. P. Hwang, C. V. Krishnan, and H. L. Friedman, 
Chem. Phys. Lett. 20, 391 (1973)]. 

9In I a sign for bis misprinted. Note also from I that a I bl 2 

=81, a+b+b*=-2, and 2aReb+ lb 12 =9. 
10J. G .. Hexem, U. Edlund, and G. C. Leyy, J. Chem. Phys. 

64, 936 (1976). 
11Note a factor of /2 missing in Eq. {A15) of I. 
12P. A. Egglestaff, An Introduction to the Liquid State (Aca

demic, New York, 1967). 
~t is well known that in the somewhat analogous problem of 

rotational diffusion by finite jumps [E. N. Ivanov, Sov. Phys. 
JETP 18, 1041 (1964)] a spin relaxation observable in the 

J. Chem. Phys., Vol. 68, No. 9, 1 May 1978 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Jack H. Freed: Spin relaxation in liquids. II 4037 

motional narrowing region will just yield the rotational dif
fusion coefficient D8 , the definition of which is in terms of 
the rms jump angle. 

14Reference 7, Eqs. (5.17) and (5.18). 
15J. B. Pedersen and J. H. Freed, J. Chem. Phys. 62, 1790 

(1975). 
16J. H. Freed and J. B. Pedersen, Adv. Magn. Reson. 8, 1 

(1976). This review includes explicit finite difference ex
pressions for the jump diffusion model, including the re
flecting-wall boundary at r = d. 

J. Chem. Phys., Vol. 68, No. 9, 1 May 1978 


