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A variational formulation is developed for the stochastic-Liouville equation (SLE). It is shown how this 
formulation may be used as a general basis for the study of numerical and approximate methods of 
solution of the SLE. The finite element method is developed for the approximate solution of the 
spin-density matrix elements using the variational formulation. The method is illustrated by employing it 
to obtain a compact computer-oriented solution to the (high-field) chemically-induced spin polarization 
problem. This solution is both more efficient as well as more accurate than the previous treatment by 
Pedersen and Freed using finite difference methods. Various features of finite element and finite difference 
methods are compared from the viewpoint of this solution. The great flexibility of finite element methods 
for solution of the SLE is discussed. 

I. INTRODUCTION 

In this work, we wish to show that the calculus of 
variations is an important tool in the numerical solution 
of the stochastic-Liouville equation (SLE) when analytic 
solutions are not readily obtainable. Variational meth­
ods have been extensively utilized in approximate treat­
ments of quantum mechanical eigenvalue problems. 
Here we develop the variational method solution of the 
SLE and then illustrate its applicability by treating in 
detail the chemically induced dynamic nuclear (and elec­
tronic) polarization [CIDN(E)P] problem by the varia­
tional finite element1 (FE) method. 

Past numerical solutions of the SLE have employed 
either the eigenfunction-expansion2 or finite difference 
(FD )3 methods. In this study, the calculus of variations, 
through the Ritz (or Galerkin) method and the minimiza­
tion of weighted residuals, is shown to lead to an approx­
imate solution of the SLE equivalent to the eigenfunction­
expansion approach. Also, the FE method is shown to 
yield an approximate formulation somewhat related to 
that which results from a FD treatment, but with signifi­
cant and useful differences. Thus, the variational meth­
od helps to unify the subject of approximate solutions to 
the SLE. But, more importantly, it suggests entirely 
new approaches for potentially more effective numerical 
solutions. 

Problems which arise in the field of CIDN(E)P3 and 
magnetic-field modulated radical ion-pair recombina­
tion4 may be analyzed by means of the numerical solu­
tion of the SLE. In each case, the numerical analysis 
of the diffusion part of the SLE has been performed using 
well-known FD techniques, 5 and the quantum mechanical 
terms of the SLE are then inserted to form an overall 
supermatrix construction. Numerical procedures have 
been of considerable value, since one can easily employ 
physically realistic models and boundary conditions. 
The new approach discussed below employs a FE ap-
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proach to the SLE for the spatial variable, while the 
time derivative can be treated as before by FD methods4 

or else by Laplace transforms. 3 

Although this work introduces the FE method to prob­
lems involving the SLE, this method has had extensive 
applications in many fields of engineering. 1 Thus, there 
are extensive applications and techniques which could be 
usefully adaptable to problems in chemical physics as 
exemplified by this study on the SLE. 

We first develop in Sec. II a variational principle for 
the SLE and then develop the FE method utilizing a very 
simple, but useful, variational function. In Sec. III, the 
CIDN(E)P problem appropriate for high fields is formu­
lated using this FE method, and the computational de­
tails and results are given. Conclusions appear in Sec. 
IV. 

II. THEORETICAL APPROACH 

A. SLE and the calculus of variations 

We start with a fairly general form for the stochastic­
Liouville equation 

ap(r, t) . x( ) ( ) ( ) --8t-=-iX rpr,t +V,.· D· V,.pr,t 

1 
+ kT V,. • D • {p(r, t)[V,.U(r, t)]} 

+ JC(r)p(r, t) + <Rp(r, t), (2. 1) 

where p(r, t) is the spin-density matrix, and JCX(r) is the 
Liouville operator associated with the spin Hamiltonian 
JC(r) (i.e., for any two operators A and B, AxB =[A,B]). 
The term 

r,.=Vr· D· { v,.+ k~[V,.U(r)]} (2. 2) 

represents the diffusion operator in the presence of a 
potential U(r) and the tensorial properties of the diffu­
sion tensor D are explicitly displayed. The operator 
JC(r) is introduced phenomenologically, when needed, to 
represent reactivities, and may or may not be spin de-
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pendent. The <R operator includes all relaxation contri­
butions to the relaxation times T 1 and T2 which are in­
dependent of r. We now take the matrix elements of the 
operator (1), and adopt the notation that the p1J- Pa and 
JC(r)iJ,kl-JC"(rla,a, such that p defines a column vector 
whose elements Pa are all the matrix elements of p(r, t) 
needed in the problem, while JC"(r)<>,B defines the ele­
ments of a square matrix. 

It is known that, since JC is Hermitian, then JC" is 
Hermitian in this basis.3 Furthermore, we will always 
choose that basis of spin states that renders JC• real so 
that it becomes a real symmetric matrix.3 Also, JC(r) 
can generally be written as a real symmetric matrix by 
appropriate choice of spin states. The relaxation oper­
ator <R will have a real part that is symmetric and leads 
to the T1 and T2 effects, while it willalsohaveacomplex 
part which leads to dynamic frequency shifts. In all ex­
amples of interest, <R generates a complex-symmetric 
matrix in spin space. 

Now we will find it useful for variational applications 
to render rr as a Hermitian matrix (in r space) by the 
similarity transformation defined by3 

(2. 3a) 

and 

p(r, t) = [P0 (r)J- 112 p(r, t), (2. 3b) 

where P 0(r) is the unique equilibrium distribution in r 
for which 

rrP0(r)=0. (2. 4) 

Then, Eq. (2. 4) becomes 

~= ~ [- i(JC")a,8 + (I'r)iia,8 + (JC)a ,8 + (<R)a,s]Pa, (2. 5) 

where 

which may be simply written as 

f'r=Vr· D· Vr+f(r). 

Note that 

F(r) = - VrU(r), 

(2. 6a) 

(2. 6b) 

(2. 6c) 

which is the force resulting from the potential U(r), and 
f (r) is given by the last two terms in Eq. (2. 6a). The 
form of Eq. (2. 5) results when we recognize that JC!, 8 
and JC

01
, 8 are simple functions of rand <Ra.a is indepen­

dent of r. Thus, we may rewrite Eq. (2. 5) as *= V,.. • D • VrPa + ~ a(r),,, 8 ,08 , for all Cl, (2. 7) 

where a(r) is a complex-symmetric matrix and where 
the a(r)

01
,,, term also contains f(r) from Eq. (2. 6b). 

Often one is interested in the Laplace transform of Eq. 
(2. 7) with respect to the time variable. One then has 

L [(s1 - Vr • D • VrH>01 , 8 -a(r) .. ,s] p8(r, s) = p .. (r, 0), (2. 8) 
a 

where 

'iie(r, s) = fa~ e-s%(r, t)dt (2. 9) 

and where Pa (r, 0) is the initial value of Pa (r, t). For 
example, one is often interested in the limit 

lim.oa (r, t) = limspa (r, s) (2. 10) 
t-oo s•O 

in the analysis of CIDN(E)P. Also, the Fourier­
Laplace transform, which is obtained from Eqs. (2. 9) 
and (2. 10) by letting s - - iw, is often of ·interest. This 
is the form which appears in line shape problems such 
as the ESR slow-tumbling problem [although here the 
first term on the right in Eq. (2. 7) is replaced by the 
appropriate rotational diffusion operator2]. 

We now may formally include the (- s) term in the 
a(rla,a matrix element without affecting the symmetry 
of a(r). Then, in Cartesian coordinates, the expanded 
form of Eq. (2. 8) can be written 

'"' a [ apg (r, s)] '"' ( ) _ ( ) _ ( O) -~--;;:- D;J "' -~ara,aPar,s =Par, , 
i,i oX; uXJ a 

for all ci, (2. 11) 

with x 1=x, y, or z [since r=r(x,y,z)]. For practical 
purposes, other coordinate systems may be more advan­
tageous for solution since they may simplify the diffu­
sive or quantum effects involved in Eq. (2. 8). Trans­
forming (r-q) yields the analogous form of Eq. (2.11) 
for any orthogonal coordinate system 

1 '"' a [ r!!..u Bp9 (q,s)] '"' () _, ) --;- ~ - vg -~aqa,aPs,q,s 
vg1,J,kaq1 gn aqJ a 

= Pa (q, 0), for all Cl , (2. 12) 

where we have used the conventional metric coeffi­
cients6

• 
7 g 1J and the Jacobian of the transformation 

,✓g= v'g11gzzg33. 

The basis of the variational method8 is to employ a 
functional 

F q p- 1q s) p- 1q s) • • • .:..&. ::E.L • • A :EA • • • (2 13a) [ 
a- a- a- a- ] 

•a~• • 8~' aq/aq1 Bq/Bq1 • 

such that the associated integral (also a functional): 

qz, [ a- ] l= t F q,pa(q,s)· .. f:;·" dq (2. 13b) 

(with dq = dq1dq2dq3) is stationary with respect to varia­
tions in Pa(q,s) and apa(q,s)/8qi, for all Cl and i. We 
have implied in Eq. (2. 13) that the functional F is spe­
cifically defined for each instant of time. This leaves 
the q1 as the only independent variables in F and I. The 
implications of ignoring the functional variations with 
respect to t (or s) are discussed further below. Once 
the form of F is known, one could try tentative forms 
for all the Pa (q, s) which then determine a trial func­
tional. 

The functional transforms as a scalar density9 {and 
thus, by convention, contains the Jacobian of transfor­
mation [i.e., F(q • • •) of Eq. (2. 13) may be written also 
as /gF(q • • • )8]}. The value of the integral I is a scalar 
and invariant with respect to any transformation. It 
will, however, be a function of any variational param-
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eters that one includes in the trial F via the p"' (q, s ). By 
infinitesimal variations of the p"' (q, s), . . . (represented 
by op"', ... ), one may obtain the first variation in /, 
signified as o/: 

oI:=. f qb[ L :: opj+ L :! f (opJ)]dq, (2.14). 
'la J•C<,B, ..• PJ 1,J PJ qi 

where we have used p~ ~ ap/aq1 and the fact that op1 
= (a/aq1)(op1). The stationary condition can be restated 
as 

o1 = J. qb oF dq = o . 
'la 

(2. 15) 

When this stationary condition is satisfied, the varia­
tional method then leads to the partial differential equa-
tions 

(2. 16) 

and 

aF _ ]qb 
a-i op"' =0, 

p"' qa 

for all a and i , (2. 17) 

which, if F is suitably chosen, will yield Eq. (2. 8). 
Equation (2. 16), the governing differential equation, is 
invariant under coordinate transformation8•

9 and is 
known as the Euler-Lagrange equation for the problem. 
Equation (2.17) gives either "natural" boundary condi­
tions aF/8p~]:i;:=o or the "geometric" boundary condi­
tions op"' (q.) = op"' (qb) = o. 

We now require a suitable F which through Eq. (2. 16) 
leads to Eq. (2. 8), the SLE. This will be given here for 
several cases. In Cartesian coordinates, 

F=½ L [ L DIJp~ P~ - L a", 8 (r)p"' p8 - 2p"'(r, 0)p .. ], 
o, l,J B 

(2. 18) 
where the symmetric-tensor property of D has been 
used. In an orthogonal coordinate system where D is 
diagonal, we have 

F=!i°"["Du(P~)2"' ')- - r' o)-J 2 L..- L..- L..-
8 

a"', B 1q Pc, Ps - P"' 14, P"' • 
o, I gll 

(2. 19) 
One can easily show that the functionals given by Eqs. 
(2. 18) or (2. 19) inserted into the Euler-Lagrange equa­
tions (2. 16) will produce the correct form of the SLE if 
one uses the symmetry of a(q). For example, from Eq. 
(2. 18), 

:: =-½['Ea.8 (r}p8 + L a"'~(r)p"'+2i'i.(r,o)] 
P. B "' 

(2. 20) 

for any 11· 

It is also necessary to show that the functional F [cf. 
Eqs. (2. 18)-(2. 19)] is invariant to the particular choice 
of spin basis functions u1 used to calculate the density 
matrix elements p"' = p11• This is easily done by recog­
nizing that, for an M-dirnensional spin space (i,j 
= 1, 2, ... , M), there are M2 dimensional matrix ele­
ments p"', each of which can be thought of as a compo-

neut of the vector p in an M2-dimensional vector space 
or Hilbert space of which the eigenstate products u1uj 
constitute one set of base vectors. (This is also called 
the Liouville representation in which the M 2 unit base 
vectors are themselves operators; if the base operators 
are Hermitian, then the coefficients p"' become re~l. to<a>) 
Now, a unitary transformation U which transforms the 
spin basis functions u1 into the new set u~ may be repre­
sented in this M2-dimensional Liouville space by a 
Liouville type of unitary operator whose matrix ele-

- - + tO(bl 
ments Uc,,B= UIJ,kl = u,Ju kl• 

Since for convenience we are con~idering only real 
values of p"', then we can let U and U be orthogonal 
operators in their respective subspaces. Thus, we have 

(2. 21a) 
a 

so that 

(2. 21b) 

where 

(2. 21c) 

is just the a matrix in the new representation. This 
demonstrates the invariance of the La, 8a"'8p"' p8 term. 
Now, 

I:!!&.!!&._ I: u u ~~- I:~~ 
"' aq1 aq, - "',Y, 6 Y"' 

6
"' aq1 aq1 - y aq1 aq, 

(2. 22} 

(since '2',"' Uy"' U6"' = Oy, 6). Finally, by an identical argu­
ment to Eq. (2. 22), we can show that 

(2. 23) 

so that Eqs. (2. 18) and (2. 19) remain invariant to trans­
formation of the spin basis states. 

All of the above discussion could be repeated dealing 
with the original form p(q, t), where the term ap,. (q, t)/at 
would be treated as a constant, Thus, in essence, we 
are applying the variational principle here to the "time­
independent" form of the SLE. Such an approach has been 
referred to as a "quasivariational" method, and is in­
troduced partly because it leads to more tractable nu­
merical methods of solution and also because it eases 
the difficulty in obtaining the appropriate functional. 
SUch a quasivariational method only allows us to opti­
mize any trial functional forms for the p" (q, t) indepen­
dently for each instant in time (or value of s) rather than 
over the complete time span of interest (or for ·s ranging 
from o- 00 ).

11 One may then use standard methods (e.g., 
finite differences in time) to develop the time evolution 
of the problem. 

It is of some interest to note that the functionals 
shown above may be properly included in a variational 
process where the Laplace transform variable s is 
treated as an independent variable and the functional is 
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allowed to vary with s. Then, the functionals given 
above are observed to satisfy the more general set of 
Euler-Lagrange equations [cf. Eq. (2.16)] 

(2. 24) 

where now P! =8pa(q,s)/as, i.e., Eq. (2.24) with, for 
example, Eq. (2. 18) yields a form of the SLE in Laplace 
space given by Eq. (2. 11). We thus conclude that the 
fu_nctionals above are proper for the variation of Pa(q, s) 
with respect to independent variables q and s, and fur­
thermore they automatically include the initial conditions 
Pa (q, 0). This more general applicability of the function­
als (2. 18) and (2. 19) is due to their chosen form, from 
which we note aF /ap~ = 0. {Since functionals are not 
unique, we may construct other equivalent forms, i.e., 
some F'(q,s,pa, ... ,p:,, ... ,P!, ... ) where the term 
(a/as)(aF'/ap!) is not zero, but yet where F' inserted 
in the Euler-Lagrange equation (for independent vari­
ables q ands) [Eq. (2. 24)] still leads to the appropriate 
form of the SLE. However, functionals of more com -
plex form, although easily constructed, usually compli­
cate the resulting numerical solution.} Thus, we recog­
nize that in Laplace space the analysis above is a useful 
and complete variational formulation of the SLE, while 
in t space it is only convenient to obtain a quasivaria­
tional formulation. 

Once the functional is known, then it follows that we 
can attempt trial solutions P,, (q, t, cf) or Pa (q, s, cf) by 
use of functional forms dependent on the set of varia­
tional parameters cf (i.e., the ith variational param­
eter for Pa). This is known as a "direct" method of 
solution in which the integral of Eq. (2. 15) becomes 
I =l(cl, d, ... , cf, ... ). The condition that this integral 
be stationary then leads to the equations 

a1/acf = 0, for all a and i. (2. 25) 

Solutions of these equations yield the best possible values 
of the cf and thus the best possible trial function, e.g., 
Pa (q, s, cf), of th.e assumed form. After the cf have 
been calculated, the quality of the variational solution 
can be determined by computing the residual resulting 
from the trial function applied in the SLE, i.e., if we 
rewrite the SLE [Eq. (2. 8)] in the form 

(2. 26) 

then the residual (for the ath density matrix element) is 
defined as 

(2. 27) 

where Ra =Ra (q, s, c1) and clearly is a function of all the 
trial p(q, s, c1). Here, to be concise, we have used A 
as a matrix containing all terms on the LHS of Eq. (2. 8). 
The magnitude of Ra may be used as a general indica­
tion of how close the trial function Pa (q, s, cf) is to the 
exact solution. This can be seen by writing the differ­
ence between Eqs. (2. 26) and (2. 27): 

(2. 28) 

where p8 (q, s) is the exact solution for the /3th density 
matrix element. 12 The criterion for an acceptable solu­
tion would then be related to the smallness of the size 
of its residual. 

One can also employ another direct method1• 13 of solu­
tion called the Ritz method whereby we write the trial 
form of p(q, t) or p(q, s) as a linear combination of known 
functions with variable coefficients. In particular, let 
us use the complete orthonormal set of eigenfunctions 
of the diffusion operator, e.g., Dv'i, for isotropic dif­
fusion G1m(k, r) = ✓ 2/irj 1 (kr)Y7(fl)Y7* (fl'), where j 1(kr) 
is the spherical Bessel function of order land Yf(n) is 
the spherical harmonic of order l and rank m, while n 
and n' represent the polar angles defining the orienta­
tion of r and k, respectively. Assuming a spherical 
outer boundary at r = r N such that the allowed wave vec­
tor k can take on the discrete values I k I = (2irn/ r N), 
n= 1, 2, ... , we may formulate our trial solution 

p,,(r,Cfmk)= L CfmkGlm(k,r), for all a. (2. 29) 
l,m,k 

This is a solution for a given value of s (i.e., invariant 
ins), which is a quasivariational treatment. To put 
our solution in the form applicable to line shape prob­
lems, let us assume a Fourier-Laplace transformation 
s - - iw. A simple Ritz-method solution could then be 
obtained by inserting the trial Pa (r, C~mk) in the proper 
functional [Eq. (2. 18)] and minimizing the variation of 
the integral [Eq. (2, 13b)] by use of Eq. (2. 25). This 
leads to a set of linear simultaneous equations in the 
coefficients C~mk· 

By another formulation, known as the minimization of 
weighted residuals (MWR), 14 we can obtain a similar re­
sult. First, the residuals Ra are calculated from Eq. 
(2. 27). Then, let us weight these residuals by multipli­
cation by the function G1,m,(k', r), integrate, and set the 
result equal to zero. This procedure fixes the mean value 
of the residual at zero in the system volume, and is 
given by 

where the volume V has been previously specified. 
Equation (2. 30) can be more explicitly written as 

(2. 30) 

x{Gf•m•(k',r)G 1m(k,r)dr]=o, foralla, (2.31a) 

where the known initial condition is 

Pa (r, C~mkHt= 0) = L qmk(t= 0)G1m (k, r)' for all Cl'. 
l,m,k 

(2. 31b) 

The choice of the G1,m,(k', r) as weighting functions 
formally constitutes the use of the Galerkin method, 1 
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which is a special case of the MWR method. In the 
cases where the functional is not known, or cannot be 
developed, the MWR method may be used directly and 
is most valuable. When the functional is known, the 
Galerkin and Ritz methods yield equivalent results. 

If one is able to expand the spin Hamiltonian matrix 
elements in terms of the G,m(k, r) the above method 
yields a set of simultaneous linear equations in the un­
known coefficients C~mk for all a, l, m, and k. This 
preceding variational solution is equivalent to the well­
known eigenfunction-expansion method2• 3• 8 and presents 
an alternate formulation of this widely used approxima­
tion method. 

Problems involving the solution of the SLE in non­
orthogonal coordinate systems may also be handled by 
the methods mentioned above. For example, if we 
choose the case where D = D1 in Eq. (2. 8), then the SLE 
becomes 

-~ L _aa [-lgg'J ap"a(q,s)]- La(q),.aPa(q,s) 
Yg 1,J qi qi B 

==p,.(q, 0), for all a, (2. 32a) 

with the corresponding functional 

D-/g"'"'[" lJ-1 -J " l )- - - l Q)-J F=7LJ L.Jg PaPa-L.Ja,.,a,4PaPa-2p,.,q, Pa , 
a l,J B 

(2. 32b) 

where now vg = I det(g11) 1
112 and g11 and glJ are the co­

variant and contravariant components6• 7 of the metric 
tensor, respectively. (We note that the slow-tumbling 
problen12 usually utilizes the Euler angles which consti­
tute a nonorthogonal coordinate system. 6) For cases 
where the functional is not available, the MWR tech­
niques12 (i.e. , Galerkin method, method of moments, 
collocation method, least squares method) are readily 
applicable. 

B. The finite element method 

The FE method is a particular example of a varia­
tional method that emphasizes the subdivision of a re­
gion of, e.g., space, into small "elements" and allows 
one to choose trial solutions, including variational pa­
rameters, within each element. The FE method guaran­
tees a numerical solution to the partial differential equa­
tion in question (i.e., the SLE) that may be a higher or 
lower bound to the exact solution. This is not, in gen­
eral, true for the FD result. In our development, the 
FE method will be used only for variations in spatial 
variables, i.e., an approximate solution of Eq. (2. 8) 
will be sought where s is fixed. 

Guymon15 first applied the variational FE method to 
the solution of the one and two dimensional diffusion­
convection equations, and it is his FE analysis which 
serves as a basis for our study. However, additional 
attention must be given to a treatment of the SLE, since 
we must account for the more complicated spin-matrix 
properties in our solutions, the complex variables en­
tering into the variational treatment, and new boundary 
conditions not encountered in the engineering applica­
tions. Also, we must consider the interpretation of the 

solutions, which are continuous in space (although this 
space has been segmented). This last point is the main 
difference between the FE and FD methods, as FD meth­
ods only yield a solution with known values at specific 
nodal points (however, the usual interpretation is that 
the FD nodal value represents a mean value of the solu­
tion throughout the small region of space). Many tests 
of the relative numerical accuracy of the FE versus FD 
methods exist [cf. Refs. l(d), 13) for various engineer­
ing problems, but the usefulness of the FE method in 
dealing with problems in chemical physics has not pre­
viously been explored. 

In our treatment of the case of three dimensional iso­
tropic diffusion within a finite volume of space, we will 
segment the total ("global") region into N - 1 volume 
elements connecting N nodes (by analogy to what was 
done in the FD solution3). An element consists of a 
well-defined region of space whose boundaries constitute 
nodes, which are usually chosen to be simply defined in 
the coordinate system used. For the case of isotropic 
diffusion, one solves the radial diffusion equation for 
which a node in r space is the spherical surface at a 
particular distance from the origin. Each volume ele­
ment is, for this case, a spherical shell centered at the 
origin. [The relative diffusion of two particles may be 
treated as the diffusion of the second relative to the first 
fixed at the origin, but where the appropriate diffusion 
coefficient is the sum of those for both particles. 3] Let 
us define the distance of closest approach of two spheri­
cal particles as d; then, the appropriate substitutions6 

into Eq. (2.12) yield 

1 a [ 2 ap111 (y, a)] '°' ~( ) _ ( ) - ( ) 
-_;;ray y ay -"ta y aBPB y, a ==P,. y,a' 

for all a , (2. 33) 

where the dimensionless quantities y=r/d, a==sd2/D, 
and a(y),., 8 ==a(y) 01 , 8 d2/D have been introduced. Also, 

1 r· r2• 
Pa (y, a)== 41T Jo d0 sin0 Jo d<f)p,. (r, a). (2. 34) 

The "local" specifications, i.e., those within an ele­
ment, depend directly on the two boundary nodes, i.e., 
the mth element is bounded by the mth and (m + l)th 
nodes with 1 ,;; m ,;; N - 1. Following normal convention, 
nodal indices follow a quantity in parentheses, so the 
mth and (m + l)th nodes are found at a distance y(m) and 
y(m + 1), respectively, from the origin. We can there­
fore define the (dimensionless) elemental length as 

h<ml = y(m + 1)-y(m), (2. 35) 

where the bracketed superscripts now refer to locally 
defined functions or quantities. The simplest trial vari­
ational function for each local problem is a linear func­
tion in y, and we employ this commonly used form in 
the succeeding discussion (although more complex trial 
functions may be employed1 to better represent p~m> at the 
expense of a more complex subsequent analysis). Thus, 
we may write 

p~ml = (1 - z)p,.(m) + ZPa (m + 1). (2. 36) 

Here we have introduced the local distance variable 
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z = [y - y(m)]/h<m>, for y(m) ,s y ,s y(m + 1), (2. 37) 

so O ,s z ,s 1 in each element. Also, p:,m > is the local 
trial function chosen to approximate p°' (y, a) in the re­
gion y(m) ""y ,s y(m + 1), and Pa (m) and P01. (m + 1) desig­
nate a nodal value of the trial function. Our global or 
overall solution to Pa (y, o-) is then formed as 

N-1 

POI. (y, o-) ~ L P:m) , 
m=l 

while the total spatial extent of our problem is 

N-1 

y(N) = 1+ L h<m> . 
m=1 

(2. 38a) 

(2. 38b) 

Thus, 1,s y<y(N) since y(l)= 1. The global solution to 
our problem [Eq. (2. 38a)] is required to be continuous 
for all values of y, the important condition being con­
tinuity across the boundaries between the elements 
(i.e., at each node). We require the first derivative 
ap"' (y, a)/ay to be continuous only within each element 
in the present simple treatment, so it could be discon­
tinuous at the nodes. These conditions are satisfied by 
our choice of ~m>, given by Eq. (2. 36). 

The functional which is associated with the SLE [Eq. 
(2. 33)] is given by the appropriate form of Eq. (2.19). 
In each element, though, we adopt a different trial solu­
tion given by Eq. (2. 36), and this leads to a local func­
tional F<m> such that 

N-1 

F=L F{m), 

m=l 

where 

for y(m) ,s y ,s y(m + 1). 

(2. 39a) 

(2. 39b) 

The variational method then requires the integral of 
Eq. (2.13) to be stationary with respect to changes in 
the variational parameters of our problem, which are 
taken as the nodal values p"'(m) given in Eq. (2. 36). 
The integral (2. 13) may now be written explicitly for 
the present case as 

(2. 40) 

This integral may now be separated, as were the trial 
function and functional, as 

(2.41) 

where, using Eq. (2. 39b), we find in terms of local 
variables 

(2. 42) 

in which the substitution y = (a<ml + z)h<m> has been used, 
where a<m> =y(m)/h<m>, and where c(,, 8 =a(y).,, 8 =a(a<m> 
+ z)a,B• To complete the variational process, we now 
may insert our trial solution, for Pa(Y, s), into I and 
then minimize I with respect to the variational param­
eters. This has been simplified by the FE method to 
merely require the insertion of Eq. (2. 36) into (2. 42), 
at which point all integrations may be done analytically 
lfor well-behaved a(y)a,s] and a set of coupled simulta­
neous equations in the unknown nodal values p., (m) result. 
Boundary conditions follow from Eq. (2. 17) and will be 
discussed in the context of our example calculation. 
One may analytically minimize the variation of the global 
integral with respect to a particular nodal value (which 
serves as a variational parameter) to obtain from Eq. 
(2. 41): 

8[ N-1 BJ (m) 

apa (i) = ~ ap., (i) = 0, for all a and i, (2. 43) 

where Eq. (2. 43) refers to the ith nodal value of the ath 
spin-density matrix element. One typical term [e.g., 
a1<m>;ap.,(i)] of Eq. (2.43) may be shown to be 

(2.44) 

for all a and i , 

where we have made use of Eq. (2. 23), and the fact that 

aa ajj<m) 
~( _....:..!:.JL_( -0, for all a, /3, i, andm. 
ap., i)- ap., i)-

(2. 45) 

Now we can write Eq. (2. 44) in terms of nodal values 
by using 

ap'm) =t;:= Pa (m + 1) - Pa (m), 

which follows from Eq. (2. 36). Then, 

and 

l 
+ 1, 

a ap<m) 
-- ..:..!:..II.- - -1 ap.,(i/ az )- ' 

for i=m + 1, 

for i=m, 

0' for i * m or m + 1 , 

for i=m, 

for i=m+ 1, 

for i * m or m + 1 . 

(2. 46a) 

(2. 46b) 

(2. 46c) 

We may then rewrite Eq. (2.44) such that a,., 8 contains 
purely quantum terms entering from the SLE. [This 
means extracting a term from ii,.,. of (- a).] Then, 
choosing, for example, i = m + 1, we find 
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(2. 47) 

Here, in Eq. (2. 47), the factor of a, the nodal quantities, and integrations appear explicitly. This equation may be 
converted to the similar equation for a1<m>;ap"'(m) by noting from Eqs. (2.46) that only two factors need be changed 
[i.e., (+ 1)- (- 1) in the first term and (z)- (1 - z) multiplying the last two bracketed terms]. We can now write the 
equations for the variation in the local integral for the mth element with respect to the O!th spin density matrix ele­
ment in matrix form 

( 

a1<m> ) 
ap"'(m) 

a[ (m) 

+ 1) 

X <m> ( 1 
h<~>2 - 1 ( 

'ii°'(m) ) 

p°'(m + 1) 

{ ( 
Pa(m) ) ( Pa(m) )} 

a Pa(m+ 1) - Pa(m+ 1) 

where the integrals have been defined as 

X ~m > = h <m )3 f I z"(a <m) + z )2 dz 
0 

and 

(2. 48b) 

X ~m)(O!, /3) = h(m)
3 Io I aa,8 z"(a<m> + z)2 dz' (2. 48c) 

noting again that the a<>,B may be a function of distance 
inside each element. From Eq. (2. 48b), we see that 
X ~m > is the exact volume of the mth shell divided by 411. 
This quantity enters the above discussion naturally 
while the analogous discrete volume factor3 V(i) arises 
in a FD discussion of the conservation of pr9bability. 
Also, from Eq. (2. 48c), we see that the continuous spa­
tial variation of the quantum terms a<>,B has been re­
tained unlike an FD treatment. However, Eq. (2. 48) 
shows that a specifically weighted mean value of the 
quantum terms enters into the present "simple" FE 
treatment. The inherent advantages of Eqs. (2. 48) 
(written for all spin density matrix elements) come from 
their specific application to a single finite element. Only 
the physical properties of that element appear in Eq. 
(2. 48), i.e., the element "length" h<m> and the diffusion 
properties of the element which comprise the scaling 
factor d2/D. The flexibility of the FE method lies in the 
allowed variability of these factors from element to ele­
ment, and this will be seen in the next section as a com­
putational advantage in treating the CIDN(E)P problems. 

After one creates the N-1 sets of Eqs. (2. 48) for each 
spin density matrix element O!, one may complete the 
variational procedure (the Rayleigh-Ritz method) by the 
minimization condition of Eq. (2. 43), which simplifies, 
since only two elements have any one node in common. 

(2. 48a) 

For example, 

a[ a[<m-l> a/m> 
---=---+---=0 for all O!, 
ap°'(m) ap"'(m) ap"'(m) ' 

(2. 49a) 

for 2 .; m .; N - 1, with the remaining boundaries giving 

a/t> a/N-t> 
ap°' (l) = ap" (N) = o, for all O! • (2. 49b) 

Equations (2. 49) imply that, for a typical node, two 
equations need be summed, one from Eq, (2. 48) written 
for the mth element and one from Eq. (2. 48) written 
as pertaining to the (m - l)th element. This summation, 
Eq. (2. 49) completed for each node, creates a set of N 
coupled equations for each O! (which bears an analogy to 
the FD method). When this minimization and summation 
is done for each spin density matrix element, a "super­
matrix" equation results, similar in basic form (but not 
content) to those found in past FD solutions.3 This ma­
trix equation may be written as 

(2. 50) 

and it is assumed that the equations have been assem­
bled in a coherent nodal-oriented fashion that leads to 
the matrix on the LHS of Eq. (2. 50) being banded. Also, 
Po contains the nodal values for the initial condition, 
with p(a) the required solution. Typically, Po has only 
one (or at most a few) nonzero elements so that the 
product x' Po can be found trivially. x ', 0, and W' are 
supermatrices resulting from Eqs. (2. 43), (2. 48), and 
(2. 49). The x' or W' are formed from the more basic 
x and W matrices by multiplication of each element by 
a L x L unit matrix, where L is the total number of spin 
density matrix elements (1 ,;; O! ,;; L, L = M 2). The ele­
ments of .these matrices are more clearly discussed in 
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terms of specific cases, so this will be deferred till the 
discussion of the CIDN(E)P example. The O matrix 
differs significantly in comparison with its FD counter­
part, and is basically due to the integration in Eq. 
(2. 48c). From Eqs. (2. 48) and (2. 49), we see that the 
matrix elements of O are complex-valued quantum me­
chanical "source and sink" terms added into a general 
diffusion framework. Thus, this application is consid­
erably different from past FE works, 15 and demonstrates 
its usefulness for problems in chemical physics where 
the aa.a need not be real valued such as is the case with 
a broad range of quantum-mechanically related prob­
lems. 

Ill. THE CIDN(E)P PROBLEM SOLVED BY THE 
METHOD OF FINITE ELEMENTS 

A. Theory 

In the previous section, the FE analysis for isotropic 
three dimensional diffusion was discussed. Equations 
(2. 48) and (2. 50) thus provide a viable framework for 
the numerical solution of CIDN(E)P type problems, and 
what remains is the specification of the quantum mechan­
ical behavior (in the ao:,a) of the spin systems. The 
three dimensional high-field CIDN(E)P problem is a good 
test of the variational FE method. It has been treated 
theoretically and numerically3 in the past by FD meth­
ods, and certain aspects of CIDNP have been formulated 
analytically, 16 allowing for comparison of results. 

For two diffusing radicals, each of which contains an 
unpaired electron, we can write :JCX, the Hamiltonian 
superoperator from Eq. (2. 1), as3 

ss ST
0 

T
0

S ToTo 

(-i 
-Q Q 0 

:icx(y)= 
2J(y) 0 Q 

(3. 1) 
0 - 2J(y) -Q 

Q -Q 0 

where 2Q is the difference in the ESR frequencies of the 
two radicals, J(y) is the spatially varying spin exchange 
operator, and the Sand T

0 

indices denote the singlet and 
(m.=0) triplet electron spin states, respectively. 
Therefore, one has to consider matrix elements ao:,B 
for a or f3=SS, ST

0

, T
0

S, and T
0

T
0

• Also, the exchange 
operator is usually assumed to be of the form 3 J(y) 
= (J0 d2/D)exp[- ;\(y -1)] with;\= 5 lnlO/y.x. Yex repre­
sents a dimensionless exchange distance (usually Yex""d). 

Because of the form of Eqs. (2. 7) and (2. 33), we find, 
for all a and {3, 

Cla,8= -i(:!Cx)o:,8d2/D 

except for 

ass, ss = - (kd2 /D)o(y - 1) 

(3. 2a) 

(3. 2b) 

and we note from Eq. (3.1) that aa.,B=ao:,B(y). Also, in 
Eq. (3. 2b), the (pseudo)first order reaction rate con­
stant k is introduced for a reaction of radicals in con­
tact in the singlet state. Inserting Eqs. (3. 2) into Eq. 
(2. 48c), we find that a limited number of integrals need 
to be solved. For example, 

.x~m>(sS,SS)= (kd2/D)h11 >on,oom,t, 

_x~m>(STo, STo)= -i(2J0 d2/D)h<m>3 (a<m>
2
E~m> 

(3. 3a) 

(3. 3b) 

+ 2a<m>E~7/ + E~7/) exp{-;\[ y(m) - 1]}, 

(3. 3c) 

with 

(3. 3d) 

Thus, the only integrations needed are x~m> for n= 0 to 
2 and E~m> for n= 0 to 4. These may easily be solved 
analytically giving polynomials in a <m > which are trivi­
ally handled in the computation. Because the spatial 
dependence of the .x~m> and x~m> enters the calculation 
via simple powers of a<m>[=y(m)/h<m>J, the FE method 
has retained its flexibility in the choice of element spe­
cifications even after accounting for the terms of a(y ). 

The matrix O may then be constructed with knowledge 
of the _x~m\a, {3) and Eq. (2. 48a). It involves terms 
which couple all the spin density matrix elements at one 
node with those at the nearest neighbor nodes. This 
feature is unlike that of the quantum mechanical super­
matrix of a FD treatment and, in comparison, only in­
creases the bandwidth of O relative to the FD case. 

Prior to the calculation of the individual matrix ele­
ments needed to solve the diffusive aspect of Eq. (2. 50), 
we must set down the proper boundary conditions that 
will lead to physically realistic results. These have 
been discussed previously3 and can be summarized by 
noting the need for a reflecting inner boundary and a 
nonreflecting outer boundary that must have no effect on 
final results. At the inner boundary y = 1, the natural 
boundary condition [cf. Eq. (2. 17)] associated with the 
variational approach is 

ap<u] 
~ = 0 , for all a . 

uy >=I 
(3. 4) 

This mathematically models a pair of hard sphere nu­
clei. Since we wish a nonreflecting outer boundary (so 
as not to induce artificial re-encounters), we may cre­
ate a "collecting" element3

"' 
17 

[ the (N - l)th element J 
where this FE relation exists: 

ap<N-1) 
..::.r::.ll-= - pa. (N - 1 ) . 

az 
(3. 5) 

This condition does not enter naturally into the solution 
as does Eq. (3. 4), and thus it must be explicitly applied 
when one writes Eq. (2. 47) for the variations in /N-t>. 

Equation (3. 5) is the local flux equation (2. 46a) of the 
(N - l)th element where dependence on the final nodal 
value has been removed. This allows a flux into the 
element regardless of any concentration gradient so col­
lection can occur. 

With these boundary conditions we can now appropri­
ately define the elements of the fundamental matrices. 
All elements of X, W, and O are formed by the proce­
dure outlined in the last section, i.e., Eq. (2. 49) re­
quires the addition of two equations coming from two 

J. Chem. Phys., Vol. 70, No. 6, 15 March 1979 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

G. P. Zientara and J. H. Freed: Chemically induced dynamic polarization 2595 

specific cases of Eq. (2. 48a). These are summed to 
form one row of the overall supermatrix equation (Eq. 
(2. 50)]. This procedure is repeated for all L spin den­
sity matrix elements at each node and then repeated for 
all N nodes. W is defined in terms of the integrals 
x~m> and the element size h<m>: 

W X <t>/h<t>2 1,1=-W1,2=- o , 

W - x<1-1 >;h<1-t >2 1,1-1- 0 , 

w --(x<1-1>;h<1-1>2 +x<1>;h<1>2) 1,1 - 0 0 ' 

for i = 2 to N except for the elements 

WN-t,N=WN,N=O. 

(3. 6a) 

(3. 6b) 

(3. 6c) 

(3. 6d) 

(3. 6e) 

The conservation of probability condition in our FE 
treatment 

(3. 6f) 

is then satisfied. These FE transition matrix elements 
for variable nodal separation are similar in form to 
their discrete FD analogs, 18 except we see in Eq. (3. 6) 
the elemental volume factor appearing. 

The x' supermatrix is formed from the more basic x 
in the same fashion as W' is created from W. x is de­
fined by 

x1,2=xi0 -2XJ0 +x?>, 

x1,2 =Xln -x~0
, 

X1,1-1 =XJi-t> -x?-t>' 

x1,1 =XJ1-1> +xin- 2Xln +x~n, 

x1,1.1 =xln -x? >, 

for N ;oe i ;oe 2 except for 

XN,N=x?- 1>. 

(3. 7a) 

(3. 7b) 

(3. 7c) 

(3. 7d) 

(3. 7e) 

(3. 7f) 

The initial condition is usually chosen to be unit prob­
ability that the radical pair is in contact and in some 
well defined spin state. This implies, for our FE anal­
ysis, that 

3 ft 
l==h<t> Jo p~1>(a 11 >+z)2dz (3. 8) 

if the radicals start in the ath spin matrix state. (This 
expression may easily be generalized for any particle 
separation or mixture of initial spin matrix states.) It 
follows from Eq. (2. 36) that 

l==h<t>
3 f ((1-z)pa(l)+zp"(2)](a< 0 +z)2dz. (3.9) 

We can then choose Pa (2) == 0 so as to initially constrain 
the probability to the first element, giving finally 

Pa(l)==[X~1>-xj0 J-1, (3.10a) 

e.g., for random initial spin states, we set 

- ( l - ( ) I [ <t> <1>]-1 Pss 1 =Proro 1 == 1 2 X 0 -X0 (3. 10b) 

and all other 

Pa (i) == o. (3. 10c) 

These Pa (i) can be assembled in increasing value of the 
nodal index, thus forming Po, the RHS vector of Eq. 
(2. 50). 

This completes the information needed to create Eq. 
(2. 50), which may then be solved to find the Pa (m) from 

P== (ax'+ 0- W't 1 X'Po • (3.11) 

Then, since the density matrix elements vary linearly 
with distance through each element (in our present 
treatment), we may calculate the desired quantities 
O'(a) and P0 (a). Using the definitions of Freed and Ped­
ersen,3<a> we have 

f y(N) 

O'(a)= J
1 

[Pss(y,a)+Pr0r 0(y,a)]y2dy (3. lla) 

and 

e<N) 

P 0 (a)=-2Re Ji Psr0(y,a)y2dy, (3. llb) 

where CP (a) represents the total probability of (separated) 
radical pairs which remain for given value of a, while 
P.(a) is the electron spin polarization of the radical "a" 
chosen as the fixed origin of our coordinate system. 
Using Eq. (2. 36), the FE forms can be written 

N=I t 

O'(a)=L h<m>
3 

( {(1-z)[Pss(m)+pr r (m)] 
m.t Jo · O O 

+ z[ Pss(m + 1) + Pr0r 0 (m + l)]}(a<m> + z)2 dz (3.12a) 

and 

N-1 J t 
P 0 (a)==-2L h<m>

3 
((1-z)Rei>sr

0
(m) 

m=t 0 

+ z Repsr0(m + l)](a<m> + z)2 dz, (3.12b) 

where all the nodal quantities Pa (m) will enter from the 
solution p of Eq. (3. 11). The important long-time limit­
ing values of Eqs. (3. 12) (CP and P;) are found by noting 
that, in the Laplace transformed case, one uses a~ O 
and Eq. (2. 10). 

B. Computational details and results 

In the CIDN(E)P problem, we often wish to use as an 
initial condition 

POI, (y, O) == constantx/i(y - 1), (3. 13) 

i.e., the particles are initially in contact. The results 
for other initial particle separations can then be made 
by previously discussed relations. 3<a>,ts<a> Thus, be­
cause of the form of Eq. (3.10a), we shall require 
x~0 -xjt> « 1 to simulate Eq. (3.13) with a negligible 
error. Since 

x~0 -xJt>==fh10 +ih(t)
2
+Jh(1)

3
, (3.14) 

we shall select hw ~ 10-5 to satisfy Eq. (3. 13) for prac­
tical purposes. This means that the probability that the 
two radicals will never encounter16<a> is~ 10-6, or that 
the probability that the two will at least encounter each 
other once is sufficiently close to unity (the value for two 
particles actually in contact). 

As discussed above, the features of each individual 
element enter the matrix equations explicitly and rigor-
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ously through the mathematical derivation. Thus, it is 
easy to make use of the varying element size entering 
the equations and administer special treatment (in the 
form of small size elements) in those regions of space 
where the CIDN(E)P effects are most sensitive to the 
diffusion, i.e., where J(y)~Q. In the FD studies, 3 it 
was also found that y(N) must be chosen large enough so 
as to allow all natural re-encounters. Unfortunately, in 
those FD studies,3 the necessity of satisfying these re­
quirements led to immense matrix inversions requiring 
the use of high-speed, large-core computers. Recent 
FD calculations18 using more general transition ma­
trices have allowed us to largely surmount these prob­
lems. We note however that such generality is inherent 
in the FE approach. 

The independence of each hw in Eqs. (3. 3), (3. 6), 
and (3. 7) allows us to easily choose, for example, a 
geometrically increasing element size as one strategy 
in reducing the number of finite elements needed. One 
then has a fine-grained inner region where important 
effects occur via J(y) and Q, while the outer elements 
are large enough that only a small number are required 
to fulfill the conditions on the outer boundary. By 
choosing the ratio h(m+t>;h(m> to always be less than 2, 

this scheme also leads to numerical stability which 
would not necessarily be guaranteed were this ratio to 
be larger. 19 [Since Eqs. (3. 3), (3. 6), (3. 7), and (3.10) 
are general enough, one may easily employ a variety of 
schemes for the magnitudes of the h <n. However, our 
choice most simply satisfies the constraints placed on 
the numerical solution.] We shall then define the spatial 
properties of our system with fixed h0 

> = 10-5, as dis­
cussed earlier and 

(3. 15a) 

also, 

h(m> =~~-2h<2> (3.15b) 

for N - 1 :;a. m :;a. 2. The nodal distances then follow from 
Eq. (2. 38b) as 

y(l)= 1, (3.16a) 

(3. 16b) 

and 

(3. 16c) 

forN3-i3-3. 

This choice of successively increasing element size 
leads to significant reduction in the number of elements 
needed as compared to the FD calculations,3 while al­
lowing the spatial extent of the problem to increase by 
more than one order of magnitude. (In general, about 
50 elements are needed by this scheme compared to the 
400 required in past studies.3) Hence, the CIDN(E)P 
problem may be handled by employing relatively small 
matrices which are ideal for inversion on a small-core 
minicomputer. Our results were obtained on a PDP 
11/34 minlcomputer with a 64 Kbyte core. A Gaussian 
elimination algorithm utilizing partial pivoting was used 
for the matrix inversion, with run times averaging 
about 1 min for one result. 

The effect of the outer boundary may be studied by 
observing the CIDNP quantity 5'* (the probability of con­
version of triplets to singlets per total collision) for 
small values of Qd2 /D, which is a case very sensitive 
to reencounters after long diffusive "walks." It is re­
quired to select the outer boundary y (N) such that any 

calculated results are independent of N. [Also, it must 
act as a collector for radicals that have diffused so far 
apart that the re-encounter probability is virtually zero; 
compare Eq. (3. 5).] Added insight is found by compari­
son to the analytic result16 <a> ,(for J 0= 0) of Pedersen for 
if*. One sees from Table I that a y (N) ~ 1. 5 x 104 in a 
FE calculation reproduces the analytic result to within 
1 %. Tests performed by calculating both ;J* and A 

(i.e. , the probability of reaction for two singlets in con­
tact) reveal that a value of ~1 ~ 0. 1875 (i.e., if d = 4 A, 
then ~rd= 3/ 4 A) and at least 40 elements are necessary 
to reproduce analytic results to within 2%. Table II ex­
hibits the FE calculated values of if* versus Qd2 / D in 
comparison with the analytic results. Excellent agree­
ment is found not only here, but in the results of the 
calculations of the property A. Although these specific 
CIDNP comparisons give no new information, they con­
firm the accuracy of the numerical FE treatment and 
point out the computational advantages of our nodal 
spacing scheme [Eqs. (3. 15) and (3. 16)]. The major 
quality of numerical methods is that they allow solutions 
of CIDEP problems where no rigorous analytic solutions 
exist. 

CIDEP effects are given by the P;, which are directly 
affected by the exchange interaction. Since the exchange 
interaction varies dramatically in magnitude through a 
relatively small region of space (i.e., when 1 ,s: y ,s: Yex), 
particle diffusion must be simulated in a more precise 
manner in order to avoid unwanted artificial effects. 
This implies that different values of Ar and A0 must be 
tested till suitable sizes are found. The convergence of 
P; with varying ~rand ~o (and thus y(N)] is shown in 
Table III for several values of Qd2 /D. One might note 
that the results by Pedersen and Freed20 are most close­
ly reproduced by ours where y(N) = 47. 7 [as expected, 

TABLE I. Convergence of ~* calcula­
tions. 

y(N) Ao ~*X 103 a,b 

1223 1.10 1. 589 
3472 1.12 1. 862 
9 918 1.14 1. 959 

16 764 1.15 1. 980 
47 776 1.17 2.000 
80488 1.18 2.004 

"FE numerical results found using 
Qd2/D=l.6x10-•, Jo=O, N=70, ~I 

= 0.1875, kd2 /D = 1020 (A= 1), a= 10-15 , 

triplet initial. 
bExact analytic result of Pedersen 
[Ref. 16(a)J is 5"*x103 =2.004 for 
p = O. 9999 (the probability of at least 
one radical-radical encounter). 
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TABLE II. it*: 

{Qd2/D)/l.6 

10-6 
10-5 

10-4 

0.001 
0.004 
0.01 
0.04 
0.1 
0.4. 

1.0 
4.0 
10.0 
102 

2c 106 

Analytic, FE and FD results. 

3' * a ;r* b 

6. 33 X 10-4 6.29x10-4 
0.00200 0.00199 
0,00636 0.00633 
0,0203 0.0202 
0.0412 0.0410 
0.0657 0.0654 
0.132 0.131 
0.205 0.204 
0.366 0,365 
0.497 0.495 
0.685 0.684 
0.783 0.782 
0.924 0.925 
1. 00 1.00 

0.0199 

0.0680 

0.201 

0.496 

0.784 
0.936 
1. 00 

aAnalytic results for continuous diffusion from Pedersen 
[Ref. 16(a)l using p = O. 9999, J 0 = 0. 

~E numerical results found using Ar= 0. 03125, Ao= 1. 25, 
N=70, y(N)~4xl06, J 0 =0, ki/D=l020 (A=l), a=l0-15 , trip­
let initial. 

cFD results published elsewhere [Ref. 3(a)]. 

since, in Ref. 19, y(N) 9e' 53 was used]. However, since 
the FE approach readily allows the use of much larger 
y(N) values, we have found that small variations in the 
results for P; persist till y(N)<>:J 103• This shows that 
the FE method readily enables one to obtain more accu­
rate values of P;. 

As observed from Table III, a value of the inner nodal 
spacing parameter Ar of 0. 03125 (i.e., for d = 4 A, 
Ard= 1/4 A) is sufficient for numerical convergence to 
within 1 % of the asymptotic polarization. Our studies 

TABLE III. Convergence of P; calculations. a 

Qi/D Ar y(N) =27. 7 47.7 100.7 

0.1875 16. 0(1. 02) 15. 7(1. 033) 15. 5(1. 05) 

0.016 
0.125 15.5(1.03) 15. 1(1. 042) 14. 9(1. 058) 
0.0625 15. 5(1. 045) 15. 2(1.057) 14. 9(1. 072) 
0.03125 .15.5(1.06) 15. 2(1. 071) 14. 9(1. 086) 

0.1875 21.3 20.9 20.6 

0.032 
0.125 20.6 20.1 19.8 
0.0625 20.6 20.2 19.9 
0.03125 20.6 20.2 19.9 

0.1875 35.7 35.0 34.5 

0.128 
0.125 34.3 33.6 33.1 
0.0625 34.5 33.8 33.2 
0.03125 34.5 33.8 33.2 

show that the minimum number of elements needed is 
about 40 elements in order to obtain results satisfying 
this error criterion. Thus, the combined tests for 
CIDNP and CIDEP are consistent with the use of t:.r 
= 0. 03125, t:. 0 ~ 1. 295, and N -;:s 50 f so v(N) -;:s 3 x 104] in 
order to yield accurate results. These choices yield 
matrices of a small enough size to permit calculations 
with minicomputer (small-core) devices. 

IV. CONCLUSION 

In this work, we have developed and discussed a vari­
ational formulation of the SLE. We have then shown 
how the finite element method may be employed to de­
velop useful trial variational functions in which local 
properties of the density matrix elements in each region 
of space can be represented in as fine detail as required 
for highly accurate solutions. The FE method asap­
plied to the high-field CIDN(E)P problem is found to 
yield very accurate numerical results, while its flexi­
bility permits compact matrix solutions which can easily 
be handled by minicomputers. Some flexible features 
include variability in size (and shape) of the elements 
as well as continuous representations of the density­
matrix elements, features which do not naturally appear 
in the corresponding FD analysis. However, we believe 
that another feature, viz., the great freedom of choice 
available for trial functions to represent the density­
matrix elements in each spatial element, will prove to 
be of great significance in developing the applications of 
this approach. Our analysis in this work was charac­
terized by only the simplest choice of trial function 
(i.e., linear interpolation functions). We have also 
seen how the variational formulation allows for a general 
framework for the analysis of the different numerical 
solutions of the SLE, and this could prove useful, in the 
future, in the development of new numerical methods. 

340.3 1223 

15. 4(1. 075) 15. 4(1. 1) 
14. 7(1. 083) 14. 7(1. 108) 
14. 8(1. 096) 14. 8(1. 121) 
14. 8{1.11) 14. 8(1. 134) 

20.5 20.5 
19.6 19.6 
19.7 19.7 
19.7 19.7 

34.3 34.3 
32.8 32.7 
32.9 32.9 
32.9 32.8 

"Values of P; (A= 0) are listed first with the value of Ao, needed to yield the y(N), following in 
parentheses. (The A0 values are independent of Qi/D.) All results were obtained using N =70, 
Jott2 /D = 1. 6X 103

, kd2 /D = 0, Yex= 1, a= 10-15 • 
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