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The variational method and the stochastic-Liouville 
equation. II. ESR spectral simulation via finite elementsa> 
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A Galerkin finite element (FE) method, closely related to the variational FE method of Zientara and 
Freed, is developed for the solution of the stochastic Liouville equation (SLE). The particular illustrative 
application considered is the ESR spectral simulation of the simple axially symmetric g-tensor problem. 
Both linear and quadratic interpolating functions are considered. It is found for this simple case that the 
Galerkin FE is almost, but not quite, as efficient as eigenfunction expansions (EE). However, the 
potential advantages of the Galerkin FE in more complex problems are discussed. 

I. INTRODUCTION 

Past numerical solutions of the stochastic-Liouville 
equation (SLE) have relied mainly upon eigenfunction ex­
pansion1 (EE) or finite-difference2 (FD) methods. Re­
cently, Zientara and Freed3 have introduced the use of 
variational methods for solving the SLE. They have dem­
onstrated the applicability and computational convenience 
of the variational finite element (FE) method in the cal­
culation of chemically induced dynamic nuclear (and 
electronic) polarizations [CIDN(E )P ]. The advantages 
of the FE method are due to the retention of the differ­
ential form of the operators and the continuous spatial 
representation of the spin-density matrix elements. In 
the FE formalism, one can choose a trial solution to the 
partial differential equation (or in our case the SLE) for 
each geometric region. This allows one maximum flex­
ibility in the choice of functional forms and elemental 
spin and diffusion properties. 4 

EE solutions have proved very useful for slow-motion­
al electron spin resonance (ESR) spectral simulations, 1 

although simulations for spin probes with numerous spin 
levels5• 6 or complex ordering potentials6 present formi­
dable computing problems despite tailored algorithms. 
Because of their conceptual simplicity, FD methods 
were also used at an early stage in ESR simulations. 7 

However, the undesirable features of the spatial discret­
ization and averaging that takes place in a FD treatment 
are overcome by the basic FE approach. 

We must distinguish which of several schemes we 
shall apply to generate FE solutions for calculating ESR 
spectra. The variational method, which involves inte­
grating a functional3 and minimizing variations in that 
functional integral, is theoretically the most appealing 
but is often cumbersome in application. 8 Also, functionals 
for complicated rotational diffusion are not easily derived. 8 

The second scheme is the minimization of weighted 
residuals (MWR), 3•

4
•

8 where a trial solu~ion is inserted 
into the governing operator equation which is subse­
quently weighted by some function; then its integral over 
the space is equated to zero. 9 Many types of MWR meth­
ods exist, each identified by the choice of weighting 
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functions. One popular MWR scheme is the Galerkin4
•
8

•
10 

method imposed globally (i.e. , over the entire space in 
question). Zientara and Freed have noted3 thattheglobal 
Galerkin approach is just the EE method, albeit formu­
lated from a different viewpoint. This study shall in­
troduce the MWR Galerkin-FE method. 8 It differs from 
the global-Galerkin method because of the segmentation 
(with no FD-like averaging) of space into elements. It 
also retains the advantage of Galerkin methods which 
can implicitly satisfy a variational principle provided 
the respective functional exists. 8 

The Galerkin-FE method has a major advantage in its 
quite simple implementation compared to functional 
based methods. Thus in this work we extend the gener­
al use of finite elements to solutions of the SLE when the 
use of functionals becomes unwieldy or when the func­
tionals cannot be found. 

In this work we will compare the use of the EE, FD, 
and Galerkin-FE numerical methods in the solution of 
the SLE applied to a relatively simple ESR example. It 
is hoped that this will aid in our understanding of the 
theoretical and computational utility of each method. 
Since variational and MWR-type FE methods can assume 
the advantages of both numerical and analytic solutions, 
they should ultimately prove useful when complicated in­
teractions and/or geometries occur in magnetic reso­
nance studies. In Sec. II, the general formalism of the 
Galerkin-FE method is discussed and then applied in a 
solution of the SLE. The simple example chosen is the 
simulation of an ESR spectrum of an electron-spin S = ½ 
radical with an axially symmetric g tensor, which is 
undergoing isotropic Brownian rotational diffusion. Re -
sults and computational considerations of this method 
are then compared in Sec. III to those obtained from the 
EE and FD methods. 

II. THE GALERKIN-FINITE ELEMENT METHOD 

A. Outline of the method 

We first consider an ordinary differential equation in 
the spatial variable(s)11 of the form 

.C(x) /{x) -c = 0 . (2.1) 

Here .C(x) is some differential operator, J(x) is the exact 
solution, and c is a constant. [When the spin aspects of 
the SLE are imposed we shall obtain a coupled set of 
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equations of the form of Eq. (2.1), but here we limit our 
discussion to illustrate the major points.] One chooses 
a trial solution, g(x) for which the residual (error) is 
defined as 

R(x)= oC(x) g(x) -c (2. 2) 

and which may be expanded in some convenient finite 
basis set {<1>1(x)} as 

M 

g(x)"'Lg1<I>1(x), (2. 3) 
l•l 

where the g1 shall be considered unknown coefficients 
while the <1>1 (x) satisfy the global boundary conditions. 
In a Galerkin-type MWR method one first weights the 
corresponding residual by one of the basis functions 
integrates and sets this weighted residual to zero, i'.e., 

M 

Lgil <1>h).£(x)<1>,(x)dx-c ( <I>1(x)dx=cO for all i 
J•l a.llx Ja11x 

(2. 4) 
(Here we have assumed a unit Jacobian, which may be 
altered if necessary without loss of generality.) Equa­

tion (2. 4) thus generates an MXM set of equations, 
M 

LA IJ g 1 "'/1 for all i "' 1 to M , (2. 5a) 
J•l 

with 

f, "'Cl <I>1(x)dx. 
all X 

(2.5b) 

This completes the global Galerkin formulation. How­
ever, in the Galerkin-FE method one segments space 
and proceeds in a fashion similar to the variational-FE 
approach. • 

In the Galerkin-FE formalism one distinguishes be­
tween global (i.e., all space) or local (i.e. , inside an 
element) functions and indices. These }?ookkeeping fea­
tures, although cumbersome initially, provide one much 
ease in the actual creation of the final matrix equation. 

The notation for the global region now involves re­
placement of the M unknown g/s of Eq. (2. 3) by Mun­
known values of the functiong[X(i)]l===i===M, where the 
M positions X(i) are called the global nodes in x space. 
The X(i) are chosen at boundaries between elements 
and/or at points in the interior of an element. To con­
form to the usual notation we let g(i) = g[X(i)]. 

Next, one can discuss the function g(x) in the local 
sense, i.e. , within one element. Zientara and Freed 
made exclusive use of locally determined quantities. 3 

When higher-order local interpolating functions are 
chosen (as in this study) a combination of both global and 
local functions is useful. Local functions will carry a 
superscript, (e.g., frn). Local nodes will be defined 
at the same spatial positions as global nodes, but they 
will carry a local index which varies from 1 to say, 2 
(or 3) within each consecutive element, corresponding to 
2 (or 3) nodes per element. This indexing is exhibited 
in Fig. 1. The transcription relation linking global to 
local quantities is illustrated by the use in Eq. (2.4) of 
the substitution 

L K 

<I>h); L )' <I>ll>(y) Al:> 
M t"t 

(2. 6) 

a) 

Global node 
index, i + 1 

,.,,.. __ -+------------1---~-.,. 

Local node 
index , 2 

~ 

the i 1h element 

b) 

Global node 
index, 2i-1 2i 2i+1 

,.,,..,_, --+-------1------1--~N' 

Locol node 
index, 2 

the i th element 

3 

FIG. 1. Global and local nodal indexing for (a) linear inter­
polating functions with no internal modes, or (b) quadratic inter­
polating functions with one internal node. 

so that 
M L K 

g(x)=cL LL <I>1l)(y)A1P g(i), (2. 7) 
l•l la! •1 

where <1>~1> (y) is the kth locally defined interpolation 
function in the lth element expressed in the local coordi­
nate y defined only in that element. There are K func­
tions {<I>kll} per element and there are L elements. Also, 

A lJ> "'1 if the kth local node 
coincides with the ith global node 
somewhere in the lth element, 

A~~>"' O otherwise. 

(2. 8) 

This just "picks out" the correct spatial "pieces" for the 
piecewise-smooth <I>1(x). 

What remains is the recalculation of Eq. (2. 4) using 
Eqs. (2.6) and (2. 7). The quantities in Eq. (2.5) now 
become 

L K 

A ; ""' ""' A(I) A (I) A(l) I J L.J L.J Inn kl ml 
(2. 9) 

l•l m,•1 

and 
L K 

f, "'L)' fl 11 A~P , (2.10) 
l•l t'f 

so only the equations for a block of dimension KXK of A 
need be explicitly written together with the K elements 
of 1. These are then added (usually on the computer) 
by the prescription of Eqs. (2. 9) and (2.10). Moreover, 
when one expresses these matrix or vector elements, 
the integrations may be shifted to local variables over 
the elemental "length" rather than over the entire do­
main of x. The summations in Eqs. (2. 9) and (2.10) 
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yield the equations noted by Eq. (2. 5), but with the g1 
now replaced by the nodal values g(j), and Eq. (2. 5) be­
comes an NXN set of simultaneous linear equations 
where (M-N): 

Nac(K-l)L+l, (2.11) 

N being the total number of global nodes, K the number 
of interpolating functions per element [polynomials of 
order (K -1)], and L the total number of elements. 
Equation (2. 5), which usually produces a matrix of 
banded form, then permits the calculation of the nodal 
values, g(j), from which the final form of the solution 
g(x) is constructed from Eq. (2. 7). 

B. Application to the solution of the SLE 

We write the SLE as 

ap(O, t) "'-i [:ic(o), p(O, t)l -r0 p(O, t) +<Rp(O, t) , 
at (2.12) 

where p(O, t) is the spin density matrix, 0 are the spatial 
variables (e.g. , Euler angles) which are assumed to be 
stochastic variables, JC (0) is the spin Hamiltonian, r 0 
is the stochastic diffusion operator, and <R represents all 
other contributions to spin relaxation. Upon Fourier 
transforming Eq. (2. 12) and utilizing the appropriate 
forms of JC(O) and r 0 for the present simulation prob­
lem, 1 one obtains for the off-diagonal spin density ma­
trix element, which is related to the absorption, 

[ a(B,w )+i siB a~ (sinB a~)]zl(B)-bacO, (2.13a) 

where 

(2.13b) 

and 

(2.13c) 

All parameters have been defined elsewhere, 1 so only 
those pertinent to the present discussion will be noted 
here: w is the angular frequency, 8 is the angle between 
the symmetry axis- of the radical and the laboratory 
frame, T;1 is an orientation independent contribution to 
the spectral linewidth. 3' is a measure of the asymmetry 
of the g tensor and R is the rotational diffusion coeffi­
cient. R/ 13' I is a convenient measure of the diffusion 
rate of the radical on the ESR time scale. Thus, RI 13' I 
» 1 represents the motionally narrowed limit. Equation 
(2.13) must be solved for the unknown function Z/8). 
The ESR absorption line s}lape is then proportional to1 

s(w) aclm 1a• dB sin8 P 0(8) Zl(B) 

r•'2 
ac2Im Jo dB sin8P0(8)Zl(8) . (2 .14) 

P 0(8) (ac 1/2 for isotropic liquids) is the orientational dis­
tribution function at thermal equilibrium. 

We shall now apply the general method discussed at 
the beginning of this section making the proper choices 
of interpolating functions, element numbers, and ele­
ment lengths. By the choice of Eq. (2. 7) we will attempt 
to approximate zl(B) by some trial global solution, Z(B ), 

having nodal values Z(i) for i"' 1 to N, which must be de­
termined. We can treat our problem globally, at first, 
and write the specific form of Eq. (2.4) [with Eq. (2.1) 
becoming Eq. (2.13)]: 

fo' d8sin8c1>1(8) { [&(B,w)+i s!e a~(sinB a~)] 

x t cl>/B)Z(j)-b} a=Q. (2.15) 
J-1 

We then integrate the diffusion term of Eq. (2.15) by 
parts12 giving the term 

'Rl'de • e(ac1>1(B))(ac1>/B)) -z srn 88 BB • 
0 

It is conventient at this point to perform the change of 
variable x accos8 and rewrite Eq. (2.15) (with the sim­
plified integral) as 

J>x c1> 1Cx) {[w -w~ +3' /2 -¾3' (J; cJ>,.(x)X(k) )-iT?] 

x t cJ>1(x) Z(j) -b}-iR f 1 dx [1 -(L c1>,.(x)X(k))
2

] 
J•l -1 1' 

N 

x ac1>,Cx) L Bc1>1Cx> Z(j) "'o' (2.16) 
ax J=l ax 

where Z(j) is now a nodal value of the trial function z(x) 
and x2 was replaced with its global nodal value repre­
sentation, i.e., X(k) "'x at the kth global node. Equa­
tion (2.16) represents a set of linear simultaneous equa­
tions in terms of the unknowns Z(j) of the same form as 
Eq. (2. 5). We impose the FE format on our Galerkin 
scheme by writing our interpolation functions as in Eq. 
(2.6). Then writing Eq. (2.16) as 

LA11Z(j)acf1 1 (2.17) 
J 

we can complete the first stage of our solution by em­
ploying Eqs. (2. 9) and (2.10). What remains then is the 
writing of the several necessary A and l elements which 
come from an appropriate choice of local interpolating 
functions inserted in Eq. (2.6). 

We shall obtain A and f, or subsequently A and f for 
this problem, by using linear local interpolation func -
tions in one example and quadratic functions in another. 
As mentioned above, for a (K - 0th order polynomial in­
terpolation function there will result K local interpola­
tion functions requiring K local nodes. Thus, a linear 
local approximation (K"' 2) is associated with8 these 
functions in the Zth element: 

c1>ll)(y)a=l-y/h<1>' 

cl>~ll(y)acy/hrn, 

(2. 18a) 

(2.18b) 

where ho> is the length of the Zth element, and all func­
tions follow Os c1>ln s 1 setting the limits of the integra­
tions over the local coordinate y. The local coordinate 
y is related to x by the equation y "'X -x(l) in the Zth ele­
ment when a linear approximation is used. One then has 

AW acah<I) /3 

-¾3' h(I) [x(Z)2/5 +x(l)x(l +1)/lO+X(l + 1)2 /30] 

-~ [1 -½{x(Z)2 +X(l)X(l + 1) +X(l + 1)2}] , (2. 19a) h••• . 
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=ah< 1> /6 

-f 3' hm[X(l)2/20 +X(l)X(l + 1)/15 +X(l + 1)2/20) 

iR 
+JiITf [1-½{X(l)2+X(l)X(l+l)+X(l+1)2}], (2.19b) 

Ag>= ah<n /3 

-½ 3'h< 1> [X(l)2 /30 +X(l)X(l + 1)/10 +X(l + 1)2 /5) 

"R 
- ;<,> [1 -½{x(z)2 +x(l)x(z + 1) +x(z + 1)2

} J , 

with 

U= [w -W;1, +3'/2 -iT21] 

and 

(2.19c) 

(2.19d) 

(2. 20) 

The transcription relations discussed in Sec. II A readily 
permit the creation of the A matrix. From Eq. (2. 9) we 
have 

and 

A" =A~rl) +AH' , 

A -A -,4_<1>" lk- kl - 12 vl,k+l , 

(2. 21a) 

(2.21b) 

(2.21c) 

all for l * 1 or L + 1 (i.e. , not pertaining to the nodes at 
the edges of the global region) for which we have 

and 

Au =At:>, 
- A(L) 

AL+l,L+I-A22 , 

f1 =bh(I) /2 , 

f L+I = bh(L) /2 , 

(2. 22a) 

(2. 22b) 

(2. 22c) 

(2. 22d) 

noting again from Eq. (2.11) that N (the total number of 
nodes) =L + 1 for this linear approximation. Once the 
matrices are constructed one may solve for the z(j) 
from z = A" 1 f by standard elimination procedures. 

The application of higher order local interpolating 
functions in the Galerkin-FE solution of the SLE follows 
in a straightforward manner from the above format. 
For a quadratic approximation applied within each ele­
ment (K = 3) three local nodes will be required. Thus 
we introduce the use of an interior node. This interior 
node is usually set at the midpoint of the element. The 
local interpolation functions then are8 

(I) ( ) - y ( 2y 1) <1>1 y - hw ,;rrr- , 

<1>~1> (y) = 1 - (2y /hm)2 , 

and 

<I>(l)(y)= y ( 2y +1) 
3 ii,ITf "'fiITT , 

(2. 23a) 

(2. 23b) 

(2. 23c) 

where we have again chosen the functions such that 
0 :s <I>l" :s 1, but now -h< 1> /2 :s y :s hu> /2 forming the in­
tegration limits with y =x -X(2l) in the lth element. 
One can then generate the equations analogous to Eqs. 

(2.19), but now the nine matrix elements A1, for i, j = 1, 
2, and 3 must be formulated. It is clear from the form 
of Eqs. (2.19) that the matrix elements for the quadratic 
case will contain more terms, yet still involving simple 
integrals over powers of x. After the nodal values Z(i) 
are computed, one obtains the trial solution to the over­
all SLE as in Eq. (2. 7): 

(2. 24) 

and then the spectral line shape is found from Eq. (2. 14) 
which we now rewrite as 

I 

g(w)=Im½ J dxl:(x) . 
·1 

(2. 25) 

Clearly the use of trial solutions which better approxi­
mate the true solution should reduce computational ef­
fort. The improvement in the simulated spectral re­
sults coming from the quadratic approximation will be 
discussed be low. 

While the example given above is really the simplest 
slow-tumbling case, which we are using for purposes of 
illustration, the more difficult examples involving the 
coupling df different spin-density matrix elements can 
be handled by straightforward generalization of the above 
approach along the lines we have previously discussed 
for the CIDN(E)P problem. 3 This fact is important in 
considering the potential utility of the Galerkin-FE 
method. 

We have also analyzed other MWR methods based on 
the good results obtained with the Galerkin-FE scheme. 
In particular, a collocation method4

•
8 was also used for 

the above example. In the collocation method one 
chooses Dirac delta functions as the weighting functions 
in an MWR formalism. So, in general, using Eqs. (2.2) 
and (2. 3) we can write 

which we may expand as 
M 

Lg, [.e(x) <I>,Cx)1, -c =0 
J•I 

(2. 26) 

for all i (i = 1 to Imax with Imax 2': M) , (2. 27) 

with [.C(x)<1>1(x)]x1 denoting theresultofthe operation of 
.e(x) on <1>,Cx) evaluated at x 1 • Here one is setting the 
residual equal to zero only at certain points in space. 
Although this represents a mathematically less rigorous 
condition on the trial solution, we have found that the 
collocation method does reproduce the EE (or FE)results 
with negligible error. This method is advantageous for 
complicated problems [i.e., difficult .C(x) forms] since 
no integrations are necessary [cf. Eq. (2. 27)]. 

Ill. COMPARISON OF NUMERICAL APPROACHES 

We have found in studying this simple example that, 
as a general rule (over a wide range of RI I g:- I values) 
the minimum order of the matrix equation to be solved 
obeys EE< FE< FD (cf. Table I). Quadratic FE inter­
polating functions did prove more efficient computational­
ly compared to linear functions in the incipient slow mo-
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TABLE I. Minimum order of secular g-tensor matrices. a 

R/1 ~I EE FE1,e b FE2,s C FE1,% d FD%e 

O. 001 r 12 16 21 37 80 
0. 01r 6 14 11 18 40 
0. lg 3 10 7 10 20 
1. oh 3 10 3 10 20 

aA ll calculations were performed with parameters B O= 3300 G, 
g 11 = 2. 00235, and g1 = 2. 0031. The calculation was considered 
to have converged when no further spectral changes were 
noted upon increasing the number of equations to be solved. 
By symmetry the FE and FD methods only require o:se :sir/2. 

l>I.,inear FE with an equally spaced grid in 6. 
"Quadratic FE with an equally spaced grid in 6. Note that the 
matrix is pentadiagonal in this method. 

'2:Linear FE with an equally spaced grid in x = cos() . 
8 FD with an equally spaced grid in x. 
r T21 = 0. 01 G, 2. 0 G sweep width. 
8 T;;1 = 0. 005 G, 1. 0 G sweep width. 
hT21 = 0. 005 G, 0. 5 G sweep width. 

tional region (R/ 1:1' I$ O while the opposite is true for 
the near rigid limit rotational spectral simulation. 

In order to better understand these results, ,it is in­
structive to more closely examine the behavior of the 
solutions obtained by these numerical methods. 

A. The eigenfunction expansion and the Galerkin-FE 
methods 

The general EE (or global Galerkin) solution of the 
secular g-tensor problem is of the form 

N 

Z (x) = L C2n P2n(x) 
,..o 

(3. la) 

or equivalently 

N N 

Z (9) = ~ C2nP2n(cos9) = ~ D2n cos(2rnr9) , (3.lb) 

where z(x or 9) remains an approximate result due to 
the truncation (at N) of the otherwise infinite expansion. 
Here the c,. are coefficients of the Legendre polynomial 
basis and the D,. are the corresponding equivalent Fourier 
cosine series coefficients. The motionally narrowed 
limit is well represented by only the n = 0 and 1 terms; 

[ ah<l-l>/6 _1. 5n<I-I) (x(l-1)2 x(l- l)X(l) x(l)2)~ Z(l-1) 
2 20 + 15 + 20 ~ 

that is, a quadratic function of x. Thus, we would ex­
pect, and indeed have found, a single element in the 
quadratic Galerkin-FE approximation is sufficient in 
the motionally narrowed case. To simulate this quadrat­
ic solution by continuous linear segments one expects, 
and finds, that a number of smaller elements are re­
quired. Also, as the rotational motion slows and the 
first two terms of Eq. (3.1) still dominate, one might 
expect quadratic interpolation functions to be superior. 

Near the rigid limit larger values of Nin Eq. (3.1) 
are required for a good spectral fit by EE. Since the 
cos9 and cos2 9 functions we have employed in the Galer­
kin-FE method oscillate relatively slowly, more spatial 
segmentation (i.e., more elements) is necessary to im­
prove the trial solution. Once many elements are neces­
sary, the quadratic interpolation functions become less 
convenient than linear functions, because of the greater 
number of nodes per element in the former case. 

B. Finite differences and the Galerkin-FE methods 

Some early spectral simulations of slow motional ESR 
spectra were based upon FD methods. 7 This approach 
differs from FE in two respects: in FD one assumes the 
function is constant in the neighborhood of each node. 13 

Moreover, in FD continuous diffusion is approximated 
by finite jumps. This latter feature implies that con­
vergence not only requires enough nodal points that the 
calculated solution is approximately smooth, but also 
enough so that continuous diffusion is well represented. 
Thus, it is to be expected (and Table I confirms) that 
FE should converge more rapidly than FD methods. 

In spite of the greater apparent complexity of the FE 
formulation of the SLE, the incorporation of boundary 
conditions is often more straightforward than in FD. 
This has in fact been found to be the case for our simple 
secular g-tensor example. Also, FE and FD methods 
differ in the undesirable feature that the sweep variable 
appears in the full bandwidth of the FE matrix equations. 
In EE and FD methods the sweep variable appears only 
along the diagonal. Best numerical economy may then 
be achieved by use of diagonalization techniques. 1• 7 The 
FE equations may be rendered approximately diagonal 
in the sweep variable by performing a FD-like average 
for the quantum terms. That is, we let 

(3. 2) 

where a from Eq. (2.19d) includes the sweep variable. 14 As might be expected, this ad hoc modification of the FE 
equation decreases the convergence efficiency. However, one still finds a reduction in the size of the numerical 
problem compared with that encountered in FD. 
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IV. CONCLUDING REMARKS 

We have considered in this work the simplest of slow­
tumbling problems as a basis for and test of FE methods, 
in particular those based upon the MWR techniques, 
which are simpler to employ than the variational proce­
dures. These techniques are quite general, so one can 
readily employ them to cases involving non-Brownian or 
more complex diffusion as well as to problems involving 
more complex spin Hamiltonians. In these latter cases 
one may employ spherical triangular elements to max­
imize the efficiepcy of solution. 15 It is our belief that 
FE methods could prove a useful alternative to EE meth­
ods in some of the more complex slow-tumbling prob­
lems. Thus, for example, in problems in which there 
are ordering potentials with complex functional depen­
dences (or alternatively when they are only known nu­
merically) then EE methods become less efficient, while 
FE methods are relatively unaffected. 16 Such complex 
potentials may be needed to deal realistically with or­
dered phases of physical or biological interest. 17 

There is another class of possible applications, which 
depends upon the continuous nature of the functional rep­
resentations in FE vs the discontinuous forms of FD. 
These include the study of the simplication of cases in­
volving more complex spin Hamiltonians (e.g., nitrox­
ides or vanadyl) which can be expressed in diagonal 
form as a function of orientation, but are in nondiagonal 
form in terms of EE. The extent to which nonadiabatic 
transitions, in which a nuclear spin flips (when referred 
to its local axis of quantization) as the molecule rotates, 
may be neglected as the rotational motion slows, could 
perhaps be carefully studied to yield conditions for ap­
proximately decoupling the allowed ESR transitions. 
This would greatly simplify the calculation of such cases 
in the very slow motional region. 

Another possibility for the very slow motional region 
is based upon the analogy to the well-known exchange 
problem between different but discrete sites. 18 Thus, 
for example, in the two site case, when the jump rate 
between the two sites is slow compared to the spectral 
frequency difference associated with the sites, then one 
can decouple the rate equations and instead treat the 
resonance signal from each site independently but broad­
ened by the uncertainty in lifetime broadening due to the 
jump process. In the present case of very slow tumbling 
there is a continuum of sites (i.e., orientations), so it 
is more difficult to develop a formal analogy (although 
computed results of the theory are consistent with such 
an analogy19

). We have, in fact, studied in some detail 
the problem of using FE and of decoupling the elements 
by ignoring matching conditions between each element 
at the boundaries. This approach becomes rigorously 
sound in the rigid limit, but we find it breaks down even 
for very slow motions (R/ I SC I < 10-3) when Fourier series 
expansions are used to achieve convergence within each 
element. It is our belief that the possibility of decou­
pling each element, which could then be described by a 
small subset of local functions, still requires that an 
associated boundary-value problem be solved before the 
mathematical analogy with the jump problem between 

discrete sites might be realized. Problems of this sort 
are related to techniques in FE theory known as boundary 
solution procedures, 4 and it is our hope to study such ap­
proaches in an effort to simplify the analysis of spectra 
for slow tumbling. 
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