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Theoretical predictions for chemically induced dynamic spin polarization (CIDN(E)Pl and Heisenberg spin 
exchange in two dimensional fluid systems are developed. An idealized model, which yields simple limiting 
results is first discussed in order to illustrate the importance of the geometrical aspects of this problem 
upon the CIDN(E)P observables. Pedersen-Freed theory, which employs numerical solutions of the 
stochastic-Liouville equation is then applied. This approach is appropriately modified in its use and 
analysis in order to fully exhibit the details of two dimensional kinetic and polarization processes. 
Specifically, the Laplace transformed results are calculated and related to the finite time results (rather 
than the t-->ro asymptotes) due to logarithmic divergences in time which characterize two dimensional 
processes. Approximate empirical formulas are developed to describe our exact numerical results and they 
illustrate the profound effects of a change of dimensionality on the CIDN(E)P observables. These results 
are related to experimental observables by considering the role of processes which limit the time scale for 
the polarization (e.g., radical scavenging and T1) and by a consideration of the role of two dimensional 
bimolecular encounter theory on random initial encounters. Other aspects of two dimensional effects (e.g., 
time-dependent diffusion coefficients and concentration effects) are briefly noted. 

I. INTRODUCTION 

Chemically induced dynamic spin polarization can be 
described as the non-Boltzmann population of nuclear 
and electronic spin states of radicals and their products 
resulting from chemical reactions carried out in mag­
netic fields. Experimentally, this method is a useful 
tool in the elucidation of organic reaction mechanisms 
and other reaction processes where radicals are in­
volved. 1 The theory of chemically induced dynamic nu­
clear (and electronic) polarization [CIDN(E)PJ in three­
dimensional (i.e., normal) solutions has now been well 
explained, especially by the use of numerical solutions 
by the stochastic-Liouville approach. 2 The CIDNP 
problem in the absence of spin exchange [i.e., J(r)=O) 
also can be treated analytically, sa in terms of a model 
which allows a mathematical separation of the diffusive 
encounter phenomenon and the time evolution of the quan­
tum spin states. When spin exchange with finite spatial 
extent is included, as is required in the CIDEP prob­
lem, typically numerical solutions of the stochastic­
Liouville equation (SLE) are needed for useful results,3b 

These numerical results have been obtained either by 
finite-difference (FD) techniques2 or by variational 
methods (e.g., the finite element method4). Because 
of the generality of the stochastic-Liouville approach 
and the broad applicability of numerical solutions, com­
plex models and chemical systems yielding CIDN(E)P 
effects can be studied where analytic mathematical treat­
ments become difficult. These include CIDEP (as al­
ready noted), as well as studies of CIDNP for J(r) ¢0, 
CIDN(E)P in low magnetic fields, 5 and when orientation 
dependent effects of spin exchange and reaction dynam­
ics are included in the analysis. 6 

The present study attempts to extend the understanding 
of CIDN(E)P to reactions and interactions between radi­
cal species constrained to planar surfaces, micellar 
surfaces, membranes and, in general, any physical 
circumstance where two-dimensional diffusion of the 
radicals would take place. The use of the term two di-

mensional thus only signifies the diffusive characteris­
tics and not necessarily the physical surroundings in our 
treatment. We do restrict this present study to radical 
motion that can be described by Brownian diffusion 
(i.e. , as in a fluid layer). It is important to note that 
the numerical methods do aUow the study of, for exam­
ple, diffusion of adsorbed atoms on solid surfaces7 by 
jumps that traverse potential barriers. 

This study of CIDN(E)P in two-dimensional systems 
also employs numerical solutions of the SLE, although 
approximate forms for some aspects of CIDNP linked 
with recombination kinetics can be developed. 8 How­
ever, because of the unusual feature that the probability 
is unity for two diffusing (i.e., randomly moving) par­
ticles to undergo a future collision in dimensions lower 
than three, 9 an entirely different analysis of the time 
dependence is required compared to that for the three­
dimensional studies. We shall first consider a simple 
"idealized" two-dimensional model that readily yields 
CIDN(E)P results clearly illustrating the implications 
of this unusual feature. This idealized model is that of 
two-dimensional relative diffusion of a radical pair on 
an infinite surface (i.e., an unbounded sheet or slab) 
with magnetic and exchange interactions and geminate 
recombination reactions, but without any spin relaxa­
tion, radical scavenging reactions, or escape from the 
surface. Deutch10 previously attempted to explain nu­
clear polarization for such an idealized state. 

Recombination kinetics in "realistic" two-dimensional 
systems will be considered using the appropriate modifi­
cation of the three-dimensional formalism, 2 in which 
the complexities involved in the reduction of dimension­
ality become apparent. This analysis clearly points out 
that the time-dependent forms of all CIDN(E)P quanti­
ties (or their Laplace-transformed analogues) are es­
sential for understanding two-dimensional magnetic and 
kinetic effects. This is unlike the three -dimensional 
results for which the long-time asymptotic results were 
sufficient. Approximate empirical formulas for these 
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quantities may be determined from the numerical re­
sults. It is then convenient to use these results to ana­
lyze possible experiments in real systems of finite 
physical extent or where scavenging reactions are pres­
ent, etc. Preliminary results of the numerical study 
have already been reported. lb,ll 

CIDN(E)P polarizations for two-dimensional systems 
could be observed in situations where two-dimensional 
reaction dynamics is believed to occur. The advantages 
for chemical kinetics of a reduction in the dimensional­
ity have been discussed previously by Adam and Del­
brUck9

b and others. 12
•

13 NMR and ESR studies14•
15 of 

spin relaxation and dipolar interactions in two dimen­
sions have also been performed theoretically and exper­
imentally. These studies illustrate the complexities 
found in treating time-dependent processes in a two­
dimensional fluid. 

We discuss in Sec. II the limiting results appropriate 
for the "idealized model." The SLE and its solution in 
two dimensions is outlined in Sec. III. The realistic 
time-dependent results (actually their Laplace trans­
forms) appear in Secs. IV (CIDNP), V (CIDEP), and VI 
(Heisenberg spin exchange, HE). We then illustrate 
how these time-dependent results would lead to mean­
ingful physical observables in real experiments in Secs. 
VII and VIII. In particular, Sec. VII deals mainly with 
initial polarization processes, while Sec. VITI deals with 
polarization processes initiated by random bimolecular 
collisions. Further discussion and summary appear in 
Sec. IX. 

II. AN IDEALIZED MODEL 

Consider an idealized model which contains two radi­
cals diffusing within a slab of fluid of finite thickness 
(chosen to be the particle diameter, d) but where the 
movement of the particle centers is constrained to a 
plane. These radicals are only allowed to move within 
the slab with no chance of escape. The relative diffu­
sion of the radicals is assumed to be described by a 
single relative diffusion coefficient equal to the sum of 
the individual radical diffusion coefficients. Thus, in 
this work we are ignoring interesting effects from time­
dependent diffusion coefficients which are another mani­
festation of the two dimensionality. 16 Each radical con­
tains one unpaired electron (S=½) and nuclei with known 
spin and hyperfine coupling constants. Upon placing 
such a "sample" in a static, large magnetic field of 
known magnitude the radicals experience Zeeman inter­
actions as well as the hyperfine and spin exchange in­
teractions. The large magnetic field splits the ms=± 1 
triplet energy levels of the radical pair from the ms= 0 
levels sufficiently to allow their omission from the fol­
lowing analysis. [The T,,_ states do enter into discus­
sions of CIDN(E)P from reactions carried out in low 
magnetic fields or in very viscous systems. 5J The 
exchange interaction, J(r) is realistically assumed 
to be of finite extent with an exponential dependence 
upon distance similar to that used earlier. 2• 

4
-

9 

When the two radicals come into contact (or more pre­
cisely are within a given distance Ar~ of each other) a 
pseudo-first-order spin-selective reaction occurs with 

a specific rate constant k. Radical reactions will usu­
ally be restricted to contact collisions involving radicals 
existing in the singlet (bonding) electronic state. No ex­
ternal boundaries, scavenging reactions, or sink factors 
will be included in our idealized model. 

If we were to follow the precedent of the three-dimen­
sional CIDN(E)P treatment, 2 we would be interested in 
calculating only the long-time asymptotic values of all 
CIDN(E)P quantities as functions of the different kinetic 
and magnetic parameters entering our model. This may 
be attributed to the fact that any two particles diffusing 
in a three-dimensional liquid have a very small proba­
bility(< 1) of coming in contact in the future after 
achieving a large enough separation. This means that 
two particles encountering each other in a liquid may 
separate and then undergo several re-encounters before 
finally diffusing apart, never to re-encounter again. 
Noyes11 first calculated that particles diffusing in nor­
mal liquids have about a 50% chance of re-encountering 
at least once again after having initially participated in 
an encounter and separated to a distance twice their 
contact diameter. Thus, after a sufficient period of 
time, the two radicals (if they have not combined) will 
separate permanently and the chemical and spin proper­
ties dependent on their encounters will approach their 
asymptotic (i.e., long-time) values. 

In the discussion above, we have used the terminology 
of Pedersen and Freed, 2 which differs somewhat from 
that of Noyes. 17 The term "encounter" applies when two 
particles come into close enough proximity in a liquid 
such that exchange or other interactions between the 
radical pair are not negligible. During such an en­
counter the radicals could actually come in contact. In 
three dimensions Pedersen and Freed referred to the 
initial encounter and subsequent re-encounters before 
the radicals finally separate as the "collision." (This 
differs from Noyes usage of the term collision as the 
event when two particles actually come in contact, so 
there can be many such collisions during each encounter. 
We will refer to this type of event simply as a radical­
pair contact.) 

A pair of radicals, or particles, diffusing in a two­
dimensional system always has unit probability9 of re­
encountering (as well as of coming into contact) regard­
less of the extent of their initial separation (as long as 
there is no interference to their relative diffusion; this 
is the case for our idealized state). Using the defini­
tions above, we see that in our idealized model two par­
ticles can always be strictly considered as a collision 
pair, since the particles will continue to experience re­
encounters for all time. The period during which the 
particles have been experiencing encounters, then, is 
just equal to the real elapsed time after their formation. 
Also, this will continue as time progresses until some 
reaction (or absorbing) process intercedes. Again we 
note, in our idealized model, all intervening chemical 
and physical processes have been excluded. We thus 
have a model where a radical pair will come into con­
tact repeatedly and thus ultimately react to form a gemi­
nate recombination product provided only that the reac­
tion probability is greater than zero, 
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Because we wish to emphasize CIDN(E)P, we will con­
cern ourselves with the case of a single radical pair 
formed in a well-defined quantum state on some sur­
face. The prediction of CIDN(E)P observables fort- 00 

in this case is straightforward. As long as a recombina­
tion reaction is allowed (Le., there exists a nonzero 
pseudo-first-order rate constant for reactions upon con­
tact) there will always be a sufficient number of contacts 
to drive the reaction to completion. 10 Thus we may 
write 

A <21 = lim A <2> (t) = 1 , 
t- .. 

(1) 

where the superscript notes the dimensionality. Here 
A <2> (t) is the time-dependent probability that a radical 
pair has reacted. Equation (1) implies then that Ti, the 
effective lifetime of the radical-pair collision, 2 is 

(2) 

Other important CIDNP quantities for this model attain 
limiting values by analogous (i.e., infinite re-encounter) 
arguments. The probability rr:*(t) that the radical pair, 
if initially in a triplet state, will later react in the sin­
glet state reaches its maximum (asymptotic) value due to 
repeated collisions. For nonzero magnetic interactions, 

rr:*<2>=1im3'* 12 '(t)=l. (3) 
t• .. 

Nuclear-spin polarizations then follow from 

ff'*=limff'(T0); 
A• 1 

thus from Eqs, (3) and (4a) 

g:-(2) = g:-*<2) = 1 ' 

(4a) 

(4b) 

where the To in parentheses refers to a triplet initial 
condition. Equation (4b) is a significant result since it 
specifies that all nuclear spin configurations will be 
populated equally provided there is a nonzero spin-de­
pendent reaction rate and finite Q mixing of spin states. 
But it is well known that CIDNP enhancements are ob­
served from geminate recombination products only when 
there is a net preferential effect on the rate of recom­
bination for selected (and not all) nuclear spin states 
[cf. Ref. 2 and Chap. III of Ref, 2(a) ]. Thus we con­
clude that for our idealized model there can be no CIDNP 
signal enhancements in two dimensions. 

By similar argument we can determine the CIDEP for 
the two interacting radicals. During each encounter be­
tween these two radicals, i.e., when they are close 
enough that a spin exchange interaction exists, there 
will be finite probabilities for (1) the generation of elec­
tron spin polarization by a two step procedure2 which 
involves consecutive Q mixing (of PToTo and Imp8 T0 ) and 
exchange modulation effects (involving ImpsTo and 
Rep8 T0), as well as (2) spin depolarization by the re­
verse process which randomizes any initial polarization 
due to the random life time of each encounter pair. One 
finds in three dimensions, that (1) goes linearly with 
J0 TJ and (2) goes as (J0rJ)2 for IJ0rJ I «l where TJ 

represents an effective encounter lifetime for the whole 
collision summed over all the encounters, and J0 is a 
measure of the strength of the exchange interaction, 
By analogy to Eq. (la), we can write for our idealized 
two-dimensional model that [we later recognize TJ as 
T1(X) of Ref. 2] 

rJ=limTJ(t)=ao. (5) 
t•oo 

We note that the actual mechanism of mixing of the spin 
states of the encounter radical pair due to J(r) should 
be independent of dimension (except for the meaning of 
r J), so that the same power law on J0 (or I J0T J I) is to 
be expected in two dimensions vs three dimensions. We 
would then conclude that the electron-spin polarization 
on each radical will be completely randomized (except 
for the residual Boltzmann polarization due to the large 
magnetic field). 

If we label our two interacting radicals a and b, then 
the selective polarization of the radicals is 

P!21(ao)=limP!2
' (t)=0 

t- .. 
(6) 

and 

P?1(ao)=limPi21 (t) =0. (7) 
t•oo 

These results, Eqs. (6) and (7), show that in the absence 
of radical scavenging or escape in the fluid system, etc., 
one would obtain no selective electronic polarization via 
CIDEP. This is not the result for three-dimensional 
cases where P?'(ao) has some finite value, yielding ob­
servable ESR signals, though P!31 (ao) = -P?>(ao) in high 
fields. 2 

Obviously, the discussion of two-dimensional CIDN(E)P 
in terms of the variables used in the analysis of three­
dimensional fluids does not lead to any observable spin 
polarization effects. One would note, though, that any 
chemical scavenging reaction (i.e., where the interact­
ing radicals are forced to react with other chemical 
species), escape rate (e.g., from the surface of a mi­
celle into the surrounding solution), or boundary effects 
can terminate the interaction of the two radicals. This 
would reduce the number of particle encounters to some 
finite value and alter the above results. The frequency 
of scavenging reactions will be a function of the surface 
concentration of scavenging "sinks"18 or the distance to 
a boundary which interrupts particle diffusion in some 
manner. The CIDNP quantities A 121 and 3'*121 found in 
the idealized state will then obviously form the upper 
limit to their actual value in a real chemical system. 
Similarly, observed electronic polarizations will always 
be (equal to or) greater than those of the idealized state 
since complete spin randomization need not take place. 

One must then solve for the time dependence of 
CIDN(E)P quantities for a realistic and useful analysis. 
Because of the computational ease associated with the 
Laplace transformed CIDN(E)P problem we will obtain 
our results in Secs. IV, V, and VI as a function of the 
Laplace transform variable, s. From these results we 
will be able to obtain values of the CIDN(E)P quantities 
needed for the realistic cases in Secs. VII and Vlll, 

Ill. THE STOCHASTIC LIOUVILLE APPROACH FOR 
TWO DIMENSIONS 

Since the basics of the numerical solution of the SLE 
are given elsewhere, 2 we need only point out those as­
pects of importance to our two-dimensional analysis. 
A typical solution requires the calculation of the ele­
ments of the spin density matrix p(r, t), which include all 
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of the quantum mechanical and classical diffusive infor­
mation. The time evolution of these processes is gov­
erned by the SLE, 

ap(r t) . ( 
~=-zJC"(r)p r,t)+Dr.,.p(r,t)+:JC.,.p(r,t), (8) 

where we use the superoperator notation A" B =[A, BJ. 
JC (r) is the spatially dependent Hamiltonian operator, 
r r is the diffusion operator for the relative motion of 

the radical pair which becomes rr, i.e., radial diffu­
sion, if only isotropic diffusion is assumed, as is the 
case in this work. The distance of closest approach 
(the contact distance) is signified by d. Radical reac­
tions during contacts are contained in the spin-selective 
reaction operator, Xr• We will consider the diffusion of 
the particle centers to lie on a plane (at z = O). Then, 
we can simplify Eq. (7) by using cylindrical coordinates, 
so 

J
~ r2r 

p(r,t)=(l/21T) ~ ri(z)dz lo d8p(r,t), (9) 

then r.,. simplifies to the radial diffusion operator, 

r =-- r- +--[F(r)~ 1 a ( a-) 1 a J 
r r ar ar kBT ar , 

(10) 

where we have included an r-dependent force of interac -
tion between the radical pair, F(r), which is taken as 
spin independent for simplicity. 2 Also 

J~ ITo) 

(
-2J(r) oQ) ' JC(r)= 

Q 
(11) 

where S and To are indices denoting the singlet or triplet 
(m, = O) states, respectively. In Eq. (11 ), Q is one-half 
the difference in the ESR frequencies of the radicals 
(employed here for reaction in high magnetic fields) and 
J(r) is chosen to follow: 

(12) 

with.\= (5 lnlO)/re:u using ru: as a measure of the ex­
change region (r,x::::d). The form of Xr (now only radial­
ly dependent) is taken as2 

(13) 

where one usually employs k(r) =kri(r -d). The term 
P,ir, t) represents the ijth element of the density ma­

trix, (i /p(r, t) /j). The advantage of a numerical ap­
proach is that J (r) and k(r) may be represented by func -
tions of finite extent without affecting the ease of solu­

tion. 

By Laplace transforming Eq. (8) we can eventually use 
inversion methods of solution rather than having to treat 
the time derivative explicitly. Thus we will employ 

(14) 

We will utilize the dimensionless quantities: y =rid, 
cr=sd 2/D, K=kd 2/D, q=Qd 2/D, j 0 =Jo<J 2/D, andf(y) 
=dF(r)/kBT, so we can now write Eq. (8) transformed 
according to Eq. (14), as 

up,, 1(y,cr)-p,,,(y,0)= L {-i(JC111fJJ1-fJ,,,JC11) 
all I and J 

(
Fl- 1 a af(y) a) 

+r,,,,r,JI e:7+y ay +~ +f(y) ay 

-K fJ 111 fJJI Flu fJ.-s} p,i(y, a-) , (15) 

where the matrix element Xu= (i IJC(r) Ii} d 2 /D and fJu is 
the Kronecker delta (ri 11 = 1 for i = j, 0 for i ¢j). Equa­
tion (15) is then solved by the use of a finite difference 
approximation of the r r operator. This involves the 
specification of p only at selected radial points (i.e., 
nodes) so, for example, at the mth node we will calcu­
late plJ(y,,., a-). Construction of the matrix equation fol­
lows usual procedures2

•
5 yielding 

[cr1 -K' -W' +iO)p(cr)=p(O). (16) 

The matrices K' and O contain elements formed from 
the first and last terms of the RHS of Eq. (15). The 
components of the vector p(o-) are the spin density ma­

trix elements at each node. For two-dimensional dif­
fusion the "transition" matrix W' may be created by the 
multiplication of each element of the basic matrix W by 
a 4 x 4 unit matrix. The elements of W for planar radial 
diffusion are 

W. =-_!_(l+~)+ (l+Ay)f(l) 
o,o Ay Ay Ay ' 

(17a) 

Wo 1 = _!.. (1 + ~)+f{O) 
• Ay Ay Ay ' 

(17b) 

1 ( 1 1 ) / (j) w,,,.1 = Ay Ay ± 2y, ± 2Ay , (17c) 

W,,, = - (A~)2 + 2~y [¾:-1 f(j + 1)-~ f(j -1)] , 

(17d) 

where 0< j < Nand Ay =y 1• 1 -y1 (equal) for all i, but 

(17e) 

and 

(17f) 

These "transition probabilities" obey the condition of 
conservation of total probability: 

N 

I: V(i) W,,, =O for j =O, 1, ... , N 
l=O 

(18) 

as required. Here V(i) is a dimensionless "volume fac­

tor" given by 

V(i) = Yi Ay for O < i < N, 

V(O) = Ay/2, 

v(N) = Y N Ay /2 . 

(19a) 

(19b) 

(19c) 

The transition matrix elements of Eqs. (17a) and ( 17b) 
are for an inner reflecting wall while those for Eqs. 
(17e) and (17f) are for an outer absorbing boundary at 

YN• As we have already pointed out, the value of YN al­
ways plays an important role (for s "'0) in two dimen­
sions. However, if we look at short-time effects or al-

J. Chem. Phys., Vol. 71, No. 9, 1 November 1979 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

G. P. Zientara and J. H. Freed: CIDNP in two dimensions 3865 

ternatively s » 0, then y N may be chosen large enough 
so as not to interfere with the diffusive effects. One 
significant computational observation2

b was that all finite 
differences ti.y must be chosen equal in order not to 
create artificial reflections toward the origin. Thus the 
nodal distances (with y 0 = 1) are simply 

y 1 = 1 + j ti.y for O < j < N . (20) 

The solution of Eq. (16 ), developed from Eqs. (17)­
(20), is obtained by employing Gaussian elimination with 
partial pivoting since Eq. (16) is ill conditioned. The 
calculations were carried out on an IBM 370/168 com­
puter and PDP 11/34 minicomputer. 

After the calculation of the LHS vector, p(a), of Eq. 
(16) the quantities <Y(cr) (a Laplace transform of the total 
probability that the radicals have not reacted for given 
value of a) and P4 (a), (a Laplace transform of the elec­
tron spin polarization of radical "a") can be found from 
the FD equations2a 

N 

<P(a)=a6'(a)=aL V(i)[Pss<Yi,<T)+PToTo<Y1,a)], (21) 
i:O 

N 

1\(a)=aP4 {a)=-2a L V(i)Re[PsT/Y 1,<T)]. (22) 
1:0 

CIDNP results are also based on Eq. (21) but in the form 

tr(a) = 1 -<P(a) , (23) 

from which we can find for singlet initial condition (S): 

A(a)=lim3'(a,s)=g:0(a,S), (24) 
,rO 

and for a triplet initiation condition (T0 ): 

&*(a)= lim S'(a, T0 ) • __ ,. (25) 

All of the above quantities relate to general CIDN(E)P 
results so we shall use a superscript, as seen in Eqs. 
(1 )-(7), to denote the dimensionality. Below we will 

A A* A 

examine the results for A <2>(0-), ff <2>(a), and P!2>(a), 
and illustrate how they may be related to observables. 

The important effects of forces between the radical 
pair for three-dimensional pair distribution functions 
has already been demonstrated. aa In particular for two 
dimensions one may represent the radially symmetric 
potential of mean force U(r) between the radical pair 
by the expression 

f(y)er=(d/kT)VU(r)=(d/kT)[aU(r)/ar]er, (26) 

where er is a unit vector in the x-y plane. If the radi­
cals are charged, the U(r) would represent the 
(shielded)-Coulombic interactions; if the diffusion is in 
a dense medium (e. g,, a membrane interior or a mono­
layer of gas adsorbed on a solid surface) then one should 
employ the equilibrium pair correlation function g (r), 
from which we can obtain the U(r) by the expression 
U(r)/kT = - lng (r). 

One could also represent the effects of periodic bind­
ing sites characterizing a crystalline surface on the rel­
ative diffusion by means of a periodic g(r) characteristic 
of the surface. (For strong potential wells the use of 
jump diffusion models would be convenient. Methods 
for including jump models in the SLE are discussed by 

Freed and Pedersen2a for three dimensions and an anal­
ogous approach would apply for two dimensions.) In the 
final analysis, however, the periodic properties are 
probably important in CIDN(E)P problems only for val­
ues of r- d, so a modified g (r) in which the periodic po­
tentials for r~ d (or y - 1) are reasonably well included 
should be sufficient. 

In the following sections we discuss results for which 
U(r) =O except for the hard-sphere repulsive barrier at 
r=d (y =1) which is well represented by the reflecting 
wall. 

IV. CIDNP ARISING FROM REACTIONS ON A 
SURFACE 

We have noted in the above discussion that at least 
two types of termination processes may exist in a two­
dimensional system. Either a radical sink or some type 
of absorbing boundary may interfere with normal diffu­
sion and produce CIDNP results different from the ideal­
ized case. The effects of both termination processes 
may easily be decoupled. That is, in our numerical cal­
culations we can choose <T"' 0 and obtain results depen­
dent on y N, the absorbing (or more exactly, collecting) 
outer boundary, cf. Eqs. (17e) and (17f). Similarly, 
we can choose y N > 103

, so that the CID NP process is not 
affected by the outer boundary during rather long time 
periods -r- a- 1

• More precisely the a dependence of the 
solutions (i.e., the Laplace transforms) may be inter­
preted as the CIDN(E)P values obtained for those "radi­
cal pairs" that are scavenged by a (pseudo)-first-order 
rate process with rate constant (in dimensionless units) 
K =a (see below). Since this is an inverse half-life, we 
may, alternatively, crudely relate a time as -r- a-1 • 

The more rigorous use of the Laplace transformed vari­
ables [cf. Eqs. (21)-(25)] is discussed in Secs. VII and 
VIII. 

A study of both types of calculations leads to a rela­
tion between values of y N in the first type of calculation 
and values of a in the second type such that both methods 
yield CIDN(E)P results that are equal (or comparable). 
This relation was given previously, 2b,U and is 

(27a) 

or in dimensionless units 

(27b) 

Here -r represents the time needed for a particle that is 
initially located very near the center of a large circular 
slab (y N » 1) to reach the outer boundary. This is the 
situation that is simulated in our calculations. Once we 
have this relation we need only obtain CIDN(E)P results 
as a function of a (with y N » 1), and then, whenever 
needed, Eq. (27) may be used to obtain the result as a 
functionofyN (or rN)• However, we shall see that the 
a-dependent results will usually be the more useful. 

In the study of three-dimensional CIDE(N)P by Peder­
sen and Freed, general relations exactly obeyed by the 
quantities A, g:, and P; [=P4 {oo) in this work] were estab­
lished2

a (for r1 =d). We have studied the extension of 
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these relations to the two-dimensional problem, and we 
have confirmed their applicability in a space. Thus we 
may write 

- [& 12> (s, a) - &J21 (s, a)] 

= - [1F121(S, a) -A 121 (0-)] = [1 -A 121(0-)] d: 12>(r0, a) (28) 

and 

(ffl2l (RI, o-) -fr~21 (RI, a)]/ 1F~21 (RI, a) =li121 (T0, o-) , (29) 

where 

!fJ2l (RI, o-) = ½ A (2) (o-) 

and RI stands for random initial condition. 

The quantity §<2>*(0-) appears in the exact relation 

&<2>(To, o-) = A <2> (o-) &<2> *(o-)[1 + &<2> *(a-) (1 -A 121 (a)) jl • 

{30) 

(31) 
It is thus seen from Eqs, (21), (28), and (30) that all the 
relevant two-dimensional CIDNP results (cf. Sec. VII) 
follow immediately from a knowledge of A 121 {a) and 
;f<2>*(0-). (Note that the equivalent o- dependent expres­
sions apply in 3D even though they have previously only 
been give for o-= O.) 

We have found that our numerical results for A121 (o-) 
may be approximated by 

A<2>(o-) °"' KTr .C(a) (32) 
- 1 +KT1 .C(a) ' 

where .C(o-) is defined by 

.C(a) =dn (1 +i-a-112 ] , (33) 

so liIDa.o .C(o-)- oo, and where Tr= .6.y /2 is the dimension­
less lifetime of a colliding pair of particles [in the nota­
tion of Ref. 2(a), Tr= r 1 D/d2]. 

The mathematical derivation of A <2>(t) has recently 
been considered by Kofman and Burshtein, Ba although no 
exact analytic forms could be obtained19 (cf. Sec. IV of 
their work). Our exact numerical results for A 121 (a) 
and the values calculated from Eq. (32) are shown in 
Table I. These results confirm that the form of Eq. 
(32) is correct to within 5% for o-SO.O16, but is less 
accurate for short times (i.e., o-~1). Equation (32) 
also has the required property that as a- 0 (i.e., very 

TABLE I. A2(u) for several values of K.a,b 

u/1. 6 K=0,016 1. 6 160. 

0.005 0. 0013(0. 0014) 0.11(0.12) o. 93(0. 93) 

0.01 o. 0011(0. 0012) 0.10(0, 11) o. 92(0. 92) 

0.05 o. 00077(0. 00087) o. 072(0. 080) o. 89(0. 90) 

0.1 o. 00064(0. 00073) o. 060(0. 068) o. 86(0. 88) 
0,5 o. 00038(0. 00046) o. 037(0. 044) o. 79(0. 82) 

1.0 o. 00029(0. 00036) o. 028(0. 035) 0. 75(0. 78) 

a Finite difference results found using d2 ID= I. 6 x 10-10 

sec, Ay = 0. 0625, q= j 0 = 0 and a singlet initial condition. 
A value of JN=26 was used in these computations so that 
the outer boundary would not affect the number of pos­
sible re-encounters allowed for the value of u employed. 

'The numerical result is listed first with the approxi­
mate result calculated from Eq. (32) following it in 
parentheses. 

long times) one obtains the asymptotic result character­
istic of the idealized state, i.e., A(a- 0) = 1. We wish 
to note that our analysis of the numerical calculations to 
yield expressions like that of Eq. (32) was significantly 
aided by the asymptotic results of Eqs. {1)-(7). 

It is also possible to express A 121 [cf. Eq. (1)] for 
finite y N in the limit a- 0, 11 in terms of a fairly simple 
and accurate expression that is very similar to the form 
for I\. <3>. That is, we may write 

(34) 

where ,;3> = Tr but ,}21 ~ Tr lny N and Tr is given above. 
This result suggests that rj2>, the effective lifetime of 
the reacting pair, increases asymptotically as lnyN, be­
coming infinite as y N- oo consistent with Eq. (2) for the 
idealized model. This result may perhaps be better 
understood by examining the probability (t1) that radicals 
initially separated by distance Yr will re-encounter for 
finite y N; 

t,(Yr,YN)=l-ln(yr)/ln(yN). (35) 

So as y N- oo, t1 - 1 also consistent with the idealized 
model. Thus, as y N- oo re-encounters will continue for­
ever regardless of the initial separation, thus yielding 
an infinite r}21 • In the case of Eq. (32) we can think of an 
effective rj21 (o-) ~ r1 .C(a) which becomes infinite as a- O. 
Also consistent with our above result, Eq. (35), we have 
found20 

~ ( ) lnyr 
t, Yr, a- "'1 - .C(o-) (36) 

valid for .C(u) > lny1 • The fact that relations for A 121 (y N) 
appear simple and accurate compared to those for 
A <2> (o-) is probably connected with the (transcendental) 
nature of Eq. (27) which links the two types of expres­
sion. [Note that one can relate any result such as 
&:m(o-) evaluated at Yr= 1 with ;r*<2>(0-, rI =d) =t ,(Yr, a) 
x g:* 121 (u, rr> for arbitrary Yr• That is, t1(Yr, o-) plays the 
role of a 'transfer factor. " 2] 

In the case of g:* 121 (yN) and &*<2>(0-) the former can 
again be described more easily by an approximate for­
mula. 11 However, we are presently more interested in 
the latter, which we may approximate as 

A*(2) ½c;•1.7 q2 
ff' (c;)"' l+½o--1.1q27~,, (37) 

where 
A .C(o-) q6·2 

(}' I = -,----=->"--;,--,,...,,. 
- 1 + .C(o-) qU,z • 

(38) 

Thus for q/o-» 1 (i.e., long times and/or large hyper­
fine interactions) one has 

§* 12> ( i « 1) ""ff' . (39) 

In the limit a-- O one therefore obtains §•<2> (o-)- 1 in 
accordance with Eq. (3). The predictions of Eq. (37) 
are compared with some exact numerical results in Ta­
ble II. The functional dependence on q is seen to be dif­
ferent than the q112 dependence for &*<3>(0-:,:0) [which is 
reasonably well approximated by the expression ½q112 

/ 

(1 +½q11z)]. 2,1, The functional dependence of ll'*<2>(y N) on 
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TABLE II. 1•<2l (a) versus q. a,b 

~1.6= 
a/1.6 10-4 10-3 10-2 10-1 1 

0.005 
5.1 X 10-5 4. 9 X 10-3 0.15(0. 25) 0. 45(0. 65) o. 74(0. 75) 

(4.7X10-5) (4.6x10-3> 

0.01 
1. 9 X 10-5 1. 9 X 10-3 9. 2 X 10-2(0. 11) 0. 40(0. 60) 0. 72(0. 73) 

(1. 3 X 10-5) (1. 4 X 10-3) 

1.2x10-6 1. 2 X 10-4 1.1 X 10-2 o. 23(0. 35) 0. 61(0. 65) 
0.05 

(9. 4 X 10-7) (9. 4 xio-5) (9.2Xl0-3) 

0.1 
3.3x10-1 3. 3 X 10-5 3.3X10-3 0.14(0.18) 0.54(0.60) 

(2. 9x10-7) (2. 9Xl0-5) (2. 9X10-3) 

1. 8 X 10-a 1. 8 x10-6 1. 8 X 10-4 1. 7 X 10-2 o. 32(0. 39) 
0.5 (1. 9x10-8) (1. 9X10-6) (1. 9 X 10-4) (1. 8 X 10-2) 

4. 9x10-9 4.9x10-7 4. 9x10-5 4.Sx10-3 o. 20(0. 25) 
1.0 

(5. sxio-~ (5.8X10-7) (5. 8 X 10-5) (5. 7 X 10-3) 

a Finite difference results found using Ay = 0. 0625, N= 400, J 0 = 0, K = 1020 (A"" 1) and a trip­
let initial condition. 

bActual numerical results are listed first followed by the value obtained from the approxi­
mate formula, Eq. (37), in parentheses. 

q is the same as that for &*<2> (o-), i, e., 

I 4 2 
5'*<2l(y )~ RJYNq (40) 

N ~ l+J,-ytq2/W' 

with 
qo.2 ln(y ) 

5' 1 =- N (41) 
- l+qO.Zln(yN) • 

The q112 dependence in three dimensions has been ade­
quately explained in terms of the re-encounter mecha­
nism, i.e., one knows that the first re-encounter prob­
ability in three dimensions goes asymptotically for large 
r (or small O') as r-312 which for small q yields the q112 
result. tb,2,21 

In an early attempt to extend this result to two dimen­
sions, Deutch10 found that the first re-encounter prob­
ability goes asymptotically for large r as r-1(lnr)2 and 
for small q this would yield a CIDNP dependence 
on q of [ln(q-112

) 1-1, which in the small q range is roughly 

0.4 

0.3 

0.2 

0.1 

similar to the q°·2 that we estimate for small (J (but 
large q unless o- is very close to zero) in which case if' 
is very close to unity anyway; in fact Deutch was ana­
lyzing what we have called the idealized model, for which 
it is incorrect to consider only the first re-encounter 
and for which rigorously 1r<2>* -1. On the other hand, 
for q/o-Sl, Eq. (37) shows a quadratic dependence upon 
q, which is known to be characteristic of the CIDNP ef­
fects due solely to the initial encounter2•22 and therefore 
should not be dependent upon the dimensionality. Our 
result of Eq. (37) [or alternatively Eq. (40)J is there-
fore consistent with the model in which the effects of the 
initial encounter dominate for finite o- (or finite y N), while 
the re-encounter mechanism becomes relevant as O'- O 
(or YN-ao), in which case &<2>*(0') [or 5' 12 l(yN)] is al­
ready approaching its asymptotic value of unity. Typical 
differences between ff<21 *((J) and ~ 131 *(0') are illustrated 
in Fig. 1, where for o- ~1 the two results are compar­
able, but they become markedly different for O'< 0.1. 

FIG. 1. 1*1n>(a) versus a for 
two-dimensional (n = 2) and 
three-dimensional (n = 3) dif­
fusion. Results were obtained 
using the additional input N 
= 400, Ay = 1/16, k = 1020 (A 

""1), YN= 25. 9, io= 0, q 
= 0. 064, and a triplet initial 
condition. The asymptotic 
(a-0) results for the given 
input are 11* 12> = 1 and 11• 13> 

= 0. 132. 

0-t----t----t--t-,1-+--H-+-t---+--t-~-t---t-1-t-1~--+=:::::::i'-t--1 
0.001 0.01 0.1 

(T 
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TABLE III. ~*<2>(a)/~*C2> (a,jo = 0). a 

Yex=0.5b Yax= 1 Yex= 2 

jo/1.6 a= O. 064 0.64 0.064 0.64 0,064 0,64 

10·1 1.0 1.0 1.0 1.0 1.0 1.0 
1 0.97 0.99 0.91 0.97 0.76 0,90 

10 0.59 0.63 0.53 0.47 0.48 0.33 
102 0.53 0.40 0.50 0.34 0.41 0.20 
103 0.51 0,36 0.45 0.25 0.33 0.10 
104 o. 49 0.31 0.41 0.18 0.27 0,055 
105 0.46 0.26 0.37 0.13 0.22 0.029 

aFinite difference results found using d2/D' 2> = 1. 6 x 10·10 sec, 
6y = 0. 0625, q = O. 016, and a triplet initial condition. A 
value of YN= 26 was used so the outer boundary would not in­
fluence the above results [cf. Eq. (27)] which then become a 
dependent. 

bHere we have introduced the dimensionless exchange distance 
Yex=rex/d. 

These features for two dimensions may be related to 
what we have called an "inward diffusion" effect in two 
dimensions, which is a purely geometric effect. That 
is, from Eq. (17), we have Wi!~.1/w,!}-1 = (1 + ~Y /2y 1)/ 
(1 - ~Y /2y 1) > 1, while for three dimensions Wi!~.i/ 
W,~~1 = 1. Here we note that WiJ denotes the "transition 
probability" from the region of space surrounding the 
jth node to the space about the ith node. Thus for two di­
mensions the rate of "transition" from larger to smaller 
values of y is greater than the reverse rate, but it is 
equal in three dimensions. This argument reveals the 
finite difference basis for Eq. (2), such that T;2> - oo as 
.C(a-)- oo due to a unit re-encounter probability. 

Table III illustrates the effect of a finite exchange in­
teraction on w*<2>(a-) for several values of a- and varying 
exchange interactions. Here it can be observed that the 
excluded volume2a effect due to a J (r) of large magnitude 
can be overcome by repeated radical collisions if a long 
enough time period (i.e., small a-) is considered. The 
limit of fr*<2>(0-- 0) seen in Eq. (3) is then valid for any 
value of J(r), provided q ctO. 

Our treatment so far has neglected any contributions 
from the T * states by analogy to the high field CIDN(E)P 
analysis for three dimensions. Such contributions are 
known to be important in low fields and we have recently 
shown them to be important for very viscous systems in 
three dimensions. 5•23 Since the nature of the CIDNP pro­
cess in two dimensions seems to be significantly altered, 
one might question whether the T* states might not be of 
some importance for two dimensions. We have studied 
this problem by including all the triplet states in a two 
dimensional high-field analysis that is analogous to our 
recent three-dimensional study. 5 We could find no sig­
nificant contributions from the T._ states over the same 
range that gives negligible contributions for three di­
mensions. This implies that there is still rapid relative 
diffusion of the radicals through the region of space 
where the Sand T,. levels may cross, 24 and one may 
neglect the T * levels. 

We shall see in Secs. VII and VIII that the forms given 
by Eqs. (32) and (37) and the interrelationships Eqs. 

(28)-(31) will be needed in actual experimental situations 
where source and sink terms are explicitly included. 
These terms will lead to a precise definition of time 
scales in experimental situations, and we shall see that 
quantities like w<2>(a-) are indeed needed but with a pre­
cise value of a- based upon the experimental time scale. 

V. CIDEP ON A SURFACE 

Many of the observations we have made with respect to 
CIDNP in two dimensions extend to the case of CIDEP. 

We again note that certain expressions, which were 
found to be exact in three dimensions, carry over, when 
properly generalized, to two dimensions. They are 

f,<2 >((J RI)/i<2> (a- RI)= _f,<2> (a- S) =fa<2> (~ T ) (42) a , , a,1,::zO, a,Ja:aov, 0 

which becomes, with the use of Eqs. (28)-(30), 

f,!2> (a- RI)= 1. A <2> ((J) [1 + i<2>(T a-)] f,<2> (a- T ) (43) , 2 O, a, !PO , 0 • 

Also, 

p~2>(a-, To)= [1 +§<2>*(o-)] 

x [1 + (1 -A <2>(a-) §m*(o-)J"1.P!~l., 0 (o-, T0) , (44) 

and 

(45) 

Thus all CIDEP polarizations may be obtained from 
P!~l..o(a-, T0) [as well as A <2>(0-) and §:-< 2>*(0-)]. 

We first consider a "contact exchange" model in which 
exchange only occurs for radicals in contact (where T 1D/ 
tf- - Tr). 2a The results for this case may be reasonably 
well fit to the expression 

_p<2>( ):::: ( Hq/a-) )( 2joT1 ) 
• O' 1 +ba-"1q• 1 +.C(o-)(2joTr)2 ' 

(46) 

where 

bz5/2, E:::::1.2for J2j0 T1 J«l, and(J~0.1; 

b::::1, E:""0.85 for l2j0 Trl > 1, and/or o-«1, 

and Tr is defined after Eq. (33). We show in Table IV a 
comparison between the results of Eq. (46) and the ex­
act numerical results. When we compare Eq. (46) with 
the three-dimensional results, 

2· 
p<3>(oo)::::ql/2 'Jo Tr forq<l 

a 1 + (2jo Tr )2 ' 
(47) 

we see that in two dimensions the dependence on j 0 Tr 
is similar except for the term in .C((J) such that: (1) as 
<1- 0 and .C(o-) goe logarithmically to infinity, f,~2> (a-)- 0 
which is consistent with Eq. (6) for the idealized model 
due to the predominance of the depolarizing mechanism 
and (2) as a-- co so .C(a-)- 0 and the importance of the 
(2j0 Tr )2 term in the denominator is suppressed [i.e., in 
very short times the polarizing effects occur but there 
is insufficient time for the depolarizing effects due to 
spin exchange]. 

The linear q dependence in Eq. (46) is quite different 
from the q112 result for P,!3>(oo). We note that a linear 
q dependence is characteristic of an initial encounter 
mechanism1•2•22 (which dominates in three dimensions 
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TABLE IV . .P~2'(a)X103 from a contact exchange 
model."-

(Part I) 

q/1. 6 io = 0. 016b,c 1600. b,d 

10"5 2. 1 X 10"4 (2. 1 X 10"4) 0. 77 X 10"3 (1. 1 X 10" 3) 

10"4 2.1 X 10"3 (2.1 X 10"3) 0. 77 X 10"2 (1.1 X 10"2) 

0.001 0. 021(0. 020) 0. 077(0.106) 
0.01 0.19(0.16) 0. 73(0. 77) 
0.1 0.45(0.39) 2. 9(2. 6) 
1.0 0. 28(0. 30) 4. 5(4. 7) 

(Part II) 

o-/1.6 j 0 = 0. 016c,e 1600. d,e 

0.005 0. 59(0. 52) 1. 2(1. 3) 
0.01 0.49(0.40) 1. 2(1. 2) 
0.05 o. 15(0.14) 0. 65(0. 70) 
0.1 0. 011(0. 016) 0.19(0.18) 
1.0 o. 0045(0. 0082) 0. 13(0.11) 

a Finite difference numerical results for .P~2>(a) x 103 are 
listed first followed by the value obtained from Eq. (46) 
in parentheses. All results assume a contact exchange 
model using T 1 = Ay/2 = 0. 03125. 

bFoundusingyex=O, a=0.064, Ay=0.0625, YN=26. 
cHere b = 5/2 and € = 1. 2 were used in Eq. (46). 
dHere b = 1 and€= O. 85 were used in Eq. (46). 
•A value of q = 0. 016 was employed to obtain these re­
sults. 

only for r; < q /3). 2 In two dimensions one also requires 
(I«q in order that Eq. (46) will show a weak dependence 
on q (e.g., q°·2

) which would resemble the logarithmic 
q dependence expected for re-encounters in two dimen­
sions. [Because the value of r; affects both the q depen­
dence as well as the j 0 dependence we note that in Eq. 
(46) there is some ambiguity to assigning it properly.] 

When we consider a finite range of exchange, the ef­
fects become more complex and are therefore less 
amenable to be fit by simple approximate forms. We 
therefore have separated the approximate forms to cor­
respond to cases of small and large j 0 • Thus, for the 
former we have 

P~(2)( )~( q/r; )< . ) 
a a ~ 1 + }q1.2s7 r; 2J0 T x 

J2j 0 TxJ «1 and a;i::0,1, 

where [cf. Eq. (5), recognizing the identification T1 
- Ti(.~_)) we define 

TA=T1(X)D/d2~ X~(l+ z~), 
with X = 5 lnlO/ru = 5 lnl0/dyex• 

(48) 

(49) 

This result is quite similar to that for contact ex­
change; the primary difference is the replacement of 
'1'1 by TA which represents the (dimensionless) lifetime 
of the exchanging radical pair in the region of finite ex­
tent in which the exchange interaction is appreciable. 
The generally good agreement between Eq. (48) and the 
exact numerical results is shown in Table V. 

The results for large I j 0 Tx I are characterized pri-

30 

P,(n)(O-) 
0 
X 103 

20 

10 

0+----+-+--+--+-+--+-+-++---+--+-+--+-++++t-----+--1-----< 
0.001 0.01 0.1 

FIG. 2. P~">(a) x 103 versus a for two- (n = 2) and three-dimen­
sional (n = 3) diffusion. Additional input is N= 400, Ay = 1/16, 
k = 0, q= 0. 064, j 0 = 1600., y81 = 1, YN= 25. 9, and triplet initial 
condition. The asymptotic (a- 0) results for the given input 
are P~2> = O and f,~3> x 103 = 25. 5. 

marily by their lack of any appreciable dependence upon 
j 0 Tx• This is also characteristic of p!3> (00) for which 
values asymptotic inj0 are obtained as j 0 TA becomes 
large. These asymptotic results are most easily ex­
pressed by the several forms 

G 

fa121 (r;):::: 9.!.1,_ for q/fa-< 1, /joTA/ »1, 
a Jo- (50) 

with 

0~1/2 foras;o.1 

~o forr;>0.1, 

and 

fa?>(r;)::::q•~/£(r;) q/tt>l, lioTAj »1, (51) 

with €:::: 0.1 to 0. 2 and o:::: 1. Table VI contains the ex-

TABLE V. .P~2>(a)Xl03 for finite Yex and l2j0 T1 I« 1.a,b 

(Part I)c 

q/1. 6 Yex=0. 5 1.0 

10·5 3. 5Xl0"4 (3, 5Xl0"4) 6,5X10"4 (7.3Xl0"4) 

10"4 3. 5 X 10"3 (3, 5 X 10"3) 6.5Xl0"3 (7.2Xl0"3) 

0.001 o. 035(0. 035) 0. 065(0. 072) 
0.01 0.32(0.29) 0. 59(0. 59) 
0.1 o. 76(0. 68) 1. 4(1. 4) 
1.0 0.46(0.47) o. 84(0. 95) 

(Part II)d 

a/1. 6 y .. =0.5 1.0 

0.005 o. 98(0. 98) 1.8(2.0) 
0.01 o. 81(0. 73) 1. 5(1. 5) 
0.05 o. 26(0. 24) 0.48(0.49) 
0.1 0.12(0.13) o. 23(0. 26) 
0.5 o. 018(0. 028) o. 033(0. 057) 
1.0 o. 0075(0. 014) o. 014(0. 029) 

aActual numerical results found using YN= 26, Ay 
= 0. 0625, j 0 = 0. 016, N= 400, and a triplet initial con­
dition. 

17he numerical result is listed first followed in paren­
theses by the value calculated from Eq. (48). 

CA value of a= 0. 064 was used in Part I. 
dA value of q = O. 016 was used in Part II. 
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TABLE VI. .P~21 (o-)X103 for finite Yex and 12j0 T~I >1.a 

(Part I)b 

y .. = 1 Yax= 1. 5 Yex = 2 

q/1.6 0-= 0. 0812 0.8 0.0812 0.8 0.0812 0.8 

10"5 0.0077 0.0023 0.010 0.0028 0.013 0.0028 
10·4 0.077 0.023 0.10 0.028 0.13 0.028 

0.001 0.77 0.23 1.0 o. 28 1. 3 0.28 
0.01 7.6 2.3 10.4 2.8 12.6 2.8 
0.1 41. 6 22.9 61. 6 27.9 81. 3 28.0 

(Part II)c 

q=0.016 q= o. 064 q= 0.16 

T~ Yu jo = 1. 6 X 103 1.6Xl05 1.6X103 1. 6 X 105 1.6X103 1. 5x 105 

0.044 0.5 9.1 8.7 11. 4 11.0 13.3 12.7 
0.091 1.0 17.2 16.1 21. 7 20.4 25.1 23.4 
0. 139 1. 5 24.6 22.9 31. 1 29.2 35.7 33.2 
0.189 2.0 31. 4 29.2 39.9 37.8 45.6 42.4 

aNumerical results found using Ll.y = 0. 0625. 
~esults for q/,f a-< 1 found using j 0 = 1600. 

0Results for g/,f a-> 1 found using a-= 0. 008. 

act numerical results for f,~2> (er) which illustrate clearly 
the functional dependences seen in Eqs. (50) and (51). 
Note that Eq. (50) for shorter times is characterized by 
the linear dependence upon q for the initial encounter 
process, while Eq. (51) for longer times shows the weak 
dependence upon q that may be associated with re-en­
counters. In this latter case the main variation in 
faJ2> (er) is due to Yax, the finite range of j(y ), and to a 
lesser extent the logarithmic dependence upon a. One 
sees that as a-0, f,~ 2> (er) approaches zero as [£(er)]" 1 con­
sistent with the idealized model result of Eqs. (6) and 
(7). A comparison between P!2> (er) and fi~3

> (er) is shown 
in Fig. 2 for the case of lj0 r~ I » 1. It is seen how for 
erii:;0.1 they are both very similar, due to the initial en­
counter, but for er< 0.1 they deviate significantly. The 
importance of choosing the correct er (or time scale) on 
the value of fo?>(er) is clear from Fig. 2 as well as from 
Figs. 3 and 4, in which more extensive numerical re­
sults than those of Table VI are presented. 

40 

30 

1'62)(0") 

X 103 

20 2 

10 

0 
0.001 0.01 0.1 

0-

FIG. 3. f,~2> (o-) versus o- for Yox = l. Results were found using 
also io = 1600., Ll.y = 1/16, and either q= 0.16 (curve 1), q 
=0.064 (curve 2), or q=0.016 (curve 3). 

The results of this section [Eqs. (42)-(46) and (48)­
(51)] will be seen to be important for the realistic situa­
tions discussed in Secs. VII and VIII, where the precise 
values of er to be used will be clarified. 

VI. HEISENBERG SPIN EXCHANGE 

A. Idealized case 

The result for Heisenberg spin exchange in the ideal­
ized case follows immediately from Eq. (5), so that for 
finite J0, limt~., I J0 rJ(t) I =oo. This means that the radi­
cal pair will continue to re-encounter until they have suc­
cessfully randomized all spins and destroyed any polar­
ization, provided only Q « J0 so there is no suppression 
of the exchange process. 

8. Real cases 

One may calculate the effects of spin exchange by se­
lecting as the initial case P.(t = 0) = -1 and with initial 
radial separation at r 1 (or y 1 = rr/d), i.e., 

80 
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a so 
xl03 
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FIG. 4. P~21 ( o-) versus o- for Yax= 2. Results were obtained 
using j 0 = 1600., Ll.y = 1/16, and either q = 0.16 (curve 1), q 
= 0. 064 (curve 2), or q = 0. 016 (curve 3). 
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(Part I) Contact exchange modelb 

YN 

26,0 0.298(0.298) 
19. 7 o. 262(0. 262) 
13. 4 o. 213(0. 213) 

(Part II) For finite Yax• 
io<io (max)c 

YN 

25. 9 0. 00094(0. 00086) 
19.7 0.00077(0.00072) 
16. 6 o. 00070(0. 00064) 
13. 4 0. 00057(0. 00055) 
10.3 0.00045(0.00044) 

7. 2 o. 00032(0. 00032) 

(Part Ill) For finite Yax• io >jo (max)d (Part IV)0 

YN io/1.6 

25.9 1. 67(1. 71) 10 1.13(1.17) 
19.7 1. 78(1. 84) 102 1. 27(1. 30) 
16.6 1. 87(1. 95) 103 1. 41(1. 43) 
13.4 2. 01(2.11) 104 1. 54(1. 57) 
10.3 2. 27(2. 38) 105 1. 67(1. 71) 
7.2 2. 95(2. 93) 

aThe numerical result is presented first With the value calcu­
lated from the respective approximate formula from Sec. VI 
[Eqs. (55)-(57)] in parentheses. 

~esults found using ~y= 0.0625, q= 0, j 0 = 3.2, and T 1 =3.125 
X 10•2. 

cResults found using ~y = 0. 0625, Yax= 2. 9, j 0 = 0. 016, q= 0, 
r1 » d. 

~esults found using ~y=0.0625, Yax=2. 9, q=0, and r1»d, 
j 0 =1.6Xl05

. 

"The j 0 variation for the same case as Part III using YN= 25. 9, 
Yax=2.9, r1»d, ~y=0.0625, andq=0. 

(52) 

while Pss=PTaTa=Imp5 ,T0 =0 for -r=O. Then ~(y1 ,r), 
the change in polarization at time t after having started 
with the initial conditions expressed by Eq. (52), is 
given by2 

~(Y1, -r) = 1 -P/Y1, -r) , 

or by the Laplace transform 

t:.P(yr, o-) = 1 -P4 (y1, o-) , 

(53) 

(54) 

with Pa(y1 , o-) defined by Eq. (22). Equations (52)-(54) 
can refer to either two or three dimensions and results 
will be further qualified by the usual superscripts. 

Our results for finite y N and o-- 0 are most readily fit 
by simple analytical forms which appear to be exact for 
contact exchange and nearly so for finite Yax• Thus we 
have for contact exchange 

(55) 

where we have let r1 =d. The results for arbitrary r1 

are readily obtained by use of the transfer factor of Eq. 
(35) in the usual w_ay. 2a The exact agreement of Eq. (55) 
with the computed results is illustrated in Table VII. 

The results for finite Yex are again best given separate 
ly for i 2j0 -rAI «1 and 0-2: 1 and for lj0 -rAI »1. Thus we 
have 

~<2
> (dt, Y N):::: (lny N)2(2jo 'TA)

2 [1 - f (q) J 

for I 2j 0 'TA I « 1 and 0-2: 1 , (56) 

wheref(q)o::q11 3, and is a small correction, and 

~<2>(d y ):::: 1 + ½ ln(l +jo) (57) 
I, N (lnyN)2M 

The good agreement between Eqs. (56) and (57) and the 
computed results are illustrated in Table VII. One may 
obtain expressions for ~<2> (d1, o-) by means of Eq. (27b) 
[cf. Ref. 2(b)]. 

One sees from both Eqs. (55) and (57) that in the limit 
y N- co the idealized result 

lim ~<21 (d1,yN)=l (58) 
YN .. ao 

is obtained provided q « j 0• 

It is interesting to note that Eqs. (55)-(57) become the 
correct results for three dimensions if we let lny N-1. 
In the case of Eq. (55), this has a simple interpretation 
and is seen by letting -r}21 = r1 lny N [by analogy to our dis­
cussion of Eq. (34) ], where again -r;2> is the effective 
lifetime of the interacting pair. Similarly, the form of 
Eq. (56) suggests that we may let -rt2> = TA lny N• The form 
of Eq. (57) showing the significant dependence upon Yex 
(or A-1) is not as transparent in the interpretation of the 
role of lny N• The analysis as a function of o- similarly 
is characterized by a T}2 1 (o-) = T1 £(0-) and a T?> = T~ £(0-). 

VII. INITIAL POLARIZATION PROCESSES AND 
OBSERVABLES 

We have seen in the previous sections how in two di­
mensions, unlike three dimensions, the relevant 
CIDN(E)P parameters do not achieve their asymptotic 
values after relatively short times (or large s) due to 
the additional logarithmic dependence on t. Thus, the 
two-time scale approach, which was found by Pedersen 
and Freed to be useful for 3D, is no longer applicable 
in the present case. 

We now wish to consider how the results for A(s ), 
ft*(s), P4 (s) may be used to describe actual experimen­
tal situations. We start by introducing additional terms 
into the SLE given by Eq. (8). In order to adequately 
consider the time scales we need two types of terms: 
(1) radical initiation processes, and (2) radical and/or 
polarization termination reactions. In the former cate­
gory we can consider such processes as photolytically 
created radical pairs or a process whereby a molecule 
reaches a catalytic site on the surface, at which point 
it may decompose into a radical pair. We shall simply 
represent such an initiation process by a quasi-first­
order process 

(59) 

where Pp is the density matrix of the diamagnetic precur­
sor, and k0(t) is the first order rate constant which may 
be time dependent (e.g., finite only while a light source 
is on) or time independent representing, for example, 
the rate at which the precursor reaches the surface. 
Since that radical pair will typically form at a particular 
interradical separation and in a particular spin state, 
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we must add to the right-hand side of Eq. (8) a term 
such as 

+ko(r, t)[ IT) P,. (TI J , 
where for definiteness we are assuming the radical pair 
forms in the pure triplet state. We also have 

ko(t)= f~ k0(r,t)r
2dr, 

4 

with 

ko(r,t)=k0(t)l5(r-r1 )lr: for r 1 ?:d. 

(60) 

(61) 

We shall represent radical decay processes of type 
(2) (where k 1 =k1a +k1b the sum of the rates of radicals 
A and B, respectively) by a spin-independent first order 
decay rate: -k1p (where k 1 =k10 +k1b the sum of the de­
cay rates of radicals A and B, respectively) to be added 
to the right-hand side of Eq. (8). This decay could be 
due to a radical scavenging process and/or the rate of 
loss of radical from the surface and into one of the bulk 
phases. Also, we wish to include radical T 1 and T2 

processes which can destroy polarizations. We follow 
Freed and Pedersen in using a simple case, i.e., we let 
T1,a =T1,b=T2,a =T2,b and P;q=Pgq~p•q(T=oo), so that 
the relaxation matrix R relevant for this problem is2• 25 

[R(p-p.q)JsT0
=-2Ti1 PsTo, 

[R(p-p.q)Jss = [R(p-p.q)JToTo = -2Tj 1
(PT0To -¼) . 

Thus, Eq. (8) becomes 

(62) 

(63) 

ap(r t) . 
~ = -zJC"(r) p(r, t) +Drr p(r, t)t R[p(r, t) -p.q(r, t)] 

-k1p(r,t)+k0(r,t)p,,(t))T)(T\ +Xrp(r,t). (64) 

With Laplace transform 

[(s +k1 +2Tj1) +iJC"(r)-Drr -xr}p(r, s) 

=p(t=O)+k0(r,s)*p,,(s)IT)(TI +Rp9q(r,s), (65) 

where the asterisk implies a Laplace inverse convolu­
tion, 26 and 

(66) 

The time dependence of P,q(r, t), the equilibrium density 
matrix, is due to the radical formative and decay pro­
cesses while its r dependence is due to diffusion. That 
is, let us define 

o{r, t) = Trp(r, t) = Trp./r, t) . (67) 

Thus u(r, t) gives the probability that the species of in­
terest is a radical pair and separated by r at time t. 
Then from Eqs. (64) and (13) we have 

BC1(r, t) =Dr a(r t) -k a( t) 
at r ' 1 r, 

+k0(r,t)p,,(t)-k(r)p 55(r,t), 

and its Laplace transform is 

[(s +k1)-Drr]a(r, s) 

(68) 

= u(t = 0) +k0(r, s) * p"(s) -k(r) p55 (r, s) . (69) 

Now the appropriate form of Peq(r, t) for Eqs. (64) [and 
(65)1 is given by 

P./r,t)=pna(r,t), 

Peq ( r, s) = Peq a( r, s) , 

with 

(70) 

(71) 

(72) 

in the high temperature approximation where N equals 
the number of spin eigenfunctions. [Equations (62) and 
(63) are based upon letting T- oo in Eq. (72). J Thus, 
Eqs. (68) and (69) may be transformed to equations in 
Pn by multiplying through by Pu . 

We shall now assume that at t=0, pi,,(0)=1 while p(O) 
=a(O)=O. Then we may rewrite Eq. (65) as 

[(s +k1 +2T?) +i'JC'(r)-Drr 

+k(r)( I 5; ( sj )P5 + B(r, s) P 5 }p(r, s) 

=k0(r,s)*p,,(s)!T)(Tj +A(r,s), (73) 

where P 5 is a projection operator on p(r, s) such that 
P 5 p(r,s)=p55 (r,s) and 

A(r,s) 

= 2~1 (s +k/-nrJ (ko(r, s) * P,.(s)) (IS; (Si + I To) (Toi) 

(74) 

and 

B(r,s)= 2~
1
(s+k

1

1
_nrJk(r)(js)(sj +jT0)(T0 /). (75) 

The first term on the right hand side of Eq. (73) is the 
normal source term, while A(r, s) is an "effective" 
source term arising from radical pairs first generated 
in the triplet state at r1 , then being relaxed by T 1 = T2 

processes to the random state while diffusing away from 
r 1 • In dimensionless units this additional source term 
is of order (Tj1 d 2/D)/(C1+k 1 d 2/D-ri-r' compared to the 
normal source term. As long as Tj1 d 2 /D is small com­
pared to unity (note that for n~ 10·5 cm2 /sec, d~ 4 x 10"8 

sec, T 1 ~ 10"6 sec, it is~ 1. 6 x 10"4
) then we would expect 

radicals to have diffused away a significant distance be­
fore they relax, so this "source" of radicals (requiring 
re-encounters) should be small compared to the primary 
source term, and we shall neglect it in our further dis­
cussion. 27 

The term B(r, s) on the left-hand side is an effective 
recombination process added to the primary recombina­
tion process, which arises from the way in which Peq is 
affected by the recombination process. This additional 
term is again of order (Tj 1 d 2 /D)/(a+k1 d 2 /D-r,)"' com­
pared to the primary recombination term, and we shall 
also neglect it for reasons similar to those given. 

The resulting Eq. (73) is then equivalent to the Laplace 
transform of Eq. (8) provided only in the latter s-s +k1 

+ 2T~1 = s', and p(O) is replaced by k0(r, s) * p"(s) IT) (TI 
(or any other choice of initial spin state). Suppose, now, 
the initiation process is a constant light source turned 
on at t = 0 so k0 (t) = k0 U(O) where U is the unit step func -
tion. Then Pp (s) "'[s + k0]"

1 while k0(s) * p,,(s) = [s +k0 1" 1
• 

[We would get the same result for a surface-catalyzed 
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process with constant k0 provided we could choose a 
t=0 such that p,(t=O)=l.] Also, the important CIDN(E)P 
terms given in Eqs, (21)-(25) are determined from 
<1p(y, o-). Thus in the present case we have 

p(y, o-)~ ~ p(y, O'+K1 +2d 2 /T1D, T) 
<T+Ko 

(76) 

where p on the RHS is for triplet initial formed at Yr as 
calculated in the previous sections with K0 ,,,k0 d 2/D and 
K 1=k1d 2/D, while p(y,u) is the density matrix based 
upon Eq. (73). Now for 3D one usually solves for, e.g., 
lim0 • 0&(0-) =lim1.,.<P(t). In the present case we shall as­
sume Ko is very small, so that there is negligible deple­
tion of species relative to other processes. Thus it is 
meaningful to take the limit o--0 but with o-»K0 • [In 
the true limit of (o-- 0) < Ko, P1> - 0, and no new radicals 
forms, while the original radical has either reacted or 
relaxed its polarization. 27

] This is, 

lim dp(y, a)~ Ko p(y, K1 +2d 2 /T1 D, T) , (77) 
a•O 
o>•o 

and it follows that, e.g., 

~~iP(T) ~(Ki+ 2~ 2/TiD )3>(a=K1 + Zd
2 
/T1D) , 

<icjj1 

(78) 

which is a well-defined quantity with c$(o·) == 1 -i(a) given, 
for example, by Eq, (37). The actual time evolution of 
<P(T) is given by the Laplace inverse transform of 

~[&(a+K1 +2d
2 
IT1D)] =iv(u) (79) 

a+K0 a+K1 +2d2/T1 D) ' 

for which the formulas of Sec. IV may be used for <P(o-). 

It immediately follows from the relation ff"(t) == 1 - <P(t) 
that we can obtain g,*<2>(00) from Eq. (78) while ~(o-) 
== (1/a) -ci'i(a) and Eq. (79) may used for <P(a). Thus, for 
example, we get using Eqs, (37) and (79) 

(80) 

A .C(K') q0,2 
if' - 1 

- 1 +J!(KDqo.2 (81) 

and with K; = K1 +2d 2/T 1D. 

One may calculate P0(00) [and P0 (t)] merely by replac­
ing <P by P4 in Eqs. (78) and (79) [compare Eqs. (21) and 
(22)]. Thus, for example, from Eq. (46) we get 

p<2>(oo)""(Ko) ~(q/KD ( 2jo'Tr ) (82 ) 
a - K~ l+bq'fK~ l+.C(K')(2jo'Tr)2 ' 

Thus we see in all these examples that the term .C(a) 
- -½ lna as u- 0 will now have the finite value -½ lnK~ 
which is not very sensitive to the actual value of K;. 
Equation (82) may be compared with previous results on 
steady-state polarizations in three dimensions. In par­
ticular (when we ignore finite Peq as we have above for 
simplicity), then it was found for 3D from the two-time 
scale approach that the observed intensity for the pres­
ent model is just 

(83) 

which is very similar in form to Eq. (78} except that 
fi?> (K1 +2d 2/T1D) replaces P!31 (oo), This, then, clarifies 
the way in which the present a-dependent results may be 
used to predict steady-state polarizations, for example. 

Another way of obtaining an expression like Eq. (78) 
but for P!21 (oo} is to express the z component of magnet­
ization due to the CIDEP by 

M...,(t) ==M..,(0) + 1' exp[-k1(t -t')]P0 (t-t')k0(t')dt' . (84) 

That is, we assume the radical-generating mechanism 
is turned on at t ==0, the amount of radical formation for 
the time between t' and t' +dt' is k0(t')dt'; while P0 (t -t') 
gives the polarization generated at t from a unit proba­
bility of radical pair at time t', and exp[-k1(t-t')] gives 
the fractional probability that a radical pair which exists 
at time t' will not yet be scavenged at time t. [The full 
Ti, T2 problem, as we have already seen, is more com­
plex and we do not consider it here other than to note 
that by analogy with the simplest version yielding Eqs. 
(76)-(82) we may let k1 -k1 +2/T1.] 

The Laplace transform of Eq. (84) is then 

(85) 

and if k0(t') is taken as the unit step function at t == 0 (i.e. , 
no appreciable depletion of precursor) we obtain 

) ( ) P
9
(s+k1) 

sM,.,,(s ==k0 P0 s +k1 =k0 (s + ki) , (86) 

where we have set M •• (o) ==0 [which is of the same form 
as Eq. (79) with o-> Ko as is being assumed here]. Then, 
we have 

Um sM •• (s) == k0 P0 (k 1

) == kko P
0

(k
1

) , (87) 
s-o 1 

which is of the same form as Eq. (78). 

In previous work on 3D, it was shown that a two-time 
scale approach could be used to generate rate equations 
with time-independent rate coefficients. In order to il­
lustrate the generalization required in the present work 
we differentiate Eq. (84) with k 1 =Oto obtain 

(88) 

where P0 , 0(t) = aP0 (t)/at and we have taken P
0
(t =0) =Oto 

obtain Eq. (88); i.e., there is a time lapse (which need 
only be infinitesimal) between radical-pair formation and 
the development of polarization. This is physically rea­
sonable (since it is nothing more than a statement of 
causality) and it is also consistent with our results on 
P0 (t) in Sec. V. 

We also note that Eq. (88) when Laplace transformed 
just yields Eq. (85) with k1 =Oas it should. When k 1 ;1,0, 
we replace P0 , 0 (t-t') in Eq. (88) by exp[-k1(t-t')] 
x [P0 0(t-t')-k1 P0 (t-t')], and the Laplace transform is 
just Eq. (85). 

Equation (88) is also consistent with general proper­
ties of response functions. 28 We can regard P

0
, 0(t) as 

the polarization at time t resulting from a delta function 
input pulse at t == 0. Then dM.,. (t) / dt is the observed rate 
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for an input rate of k0,/t). The expression P0 , 0 (t) 
=dP0 (t)/dt is indeed the relation between the response 
to a delta function and the response to a unit step func -
tion at t = 0. 28 In the 3D theory, we regarded P0 (t) as 
going very rapidly from zero to its asymptotic value 
P; as soon as the radical pair is formed. In this case 
Pg(t)-P; U(t) where U(t) is the unit step function. ThenP;, 0 {t) 

=P;o(t)andfrom Eq. (76) [dM./t)/dt]llO =P; k0, 4 (t) as it 
should. [More precisely we should use U(t + E:) and 
B(t + E:) where E: is an infinitesimal time delay in order 
to be consistent with our above choice of Pa (t = 0) = 0. ] 
This point of view will be adopted in our discussion of 
bimolecular encounters. 

VIII. RANDOM BIMOLECULAR COLLISIONS AND 
OBSERVABLES 

We now consider the problem of bimolecular collisions 
in 2D, although it is useful to keep the conventional 3D 
theory in mind. The usual basis of the 3D theory is the 
Smoluchowski solution for the coagulation model. 17

•
29 

One solves the diffusion equation for B particles at their 
initial concentration (say, at unit concentration) relative 
to an A molecule on which B particles coalesce. This 
solution may be interpreted to yield the rate of first bi­
molecular encounter of A with a B molecule or cp{t), but 
it does so by treating the effect of each B molecule as 
being independent (cf. Collins and Kimball, Ref. 19). 
(In effect, one is solving for the interaction between a 
single A and a single B molecule, where the concentra­
tion of Bis just 1/V with V the volume of the sample.) 
One then obtains in 3D 

cp(t) =411na(1 + ~) na a, 
v rrDt • 

(89) 

where n8 0 is the initial uniform concentration of B (and 
we could '1et n80 =11). cp(t) represents the flux of B par­
ticles (with radius d/2) into a sphere of radius d/2 about 
the point center of an A particle. This flux is time vary­
ing only for short times and soon assumes its steady state 
value. The boundary condition at r =d fort> 0 is n 8 (r, t) 
=0, an absorbing wall. [The discontinuity in Eq. (89) 
for t = 0 may be attributed to the immediate absorbing of 
any B molecule initially at r =d. We neglect this by only 
considering t > 0.] For times t »d2 /D the transient term 
in Eq. (89) is unimportant, and one usually uses the 
steady state form 

2k2 =4rrDd, (90) 

where 2k2 is the rate constant for new bimolecular en­
counters at a particular center separation of d. In the 
case of 2D, the equivalent treatment yields 

q,(t) =(16D/rr)J(0, 1, Dt/d2)n8 ,o , (91) 

where J (0, 1, Dt/d 2) is an integral over Bessel functions 
discussed elsewhere30 (or alternatively it could be cal­
culated by our present methods by starting with a uni­
form initial distribution of B). This expression never 
reaches a steady-state value since it is easy to show that 
an infinite outer concentration would be needed to sup­
port the steady state. 31 In fact it goes asymptotically 
with t as q,(t) = [8rrD/ln(4Dt/d 2)]n8 , 0 • The physical rea­
son for the difference between 2 and 3D may again be at-

tributed to the re-encounter probability t1(r) =d/r in 3D 
and unity in 2D. Thus, in 2D, as time progresses, one 
must ultimately "coagulate" all B molecules, so <1>(t) 
must go to zero. In 3D, since t,(r) < 1, a uniform initial 
distribution of B molecules can never be fully depleted. 

Now, in the context of our earlier discussion, <I>(t) 
for n8 , 0 = 1 [which shall hereafter be referred to as <I>0(t)] 
can be regarded as the rate of first bimolecular en­
counter per A molecule at time t due to a unit concen­
tration of B molecules at time t = 0. Thus, the general 
expression for the number of first bimolecular encounters 
at time t per A molecule is the integral 

N(t) = ft ip0(t-t')n8(t')dt' 
0 

having a Laplace transform32 

(92) 

(93) 

The lower limit in Eq. (92) reflects the choice of t = 0, 
as the time when n 8 = n8,0, e.g., radicals B have just 
been created, or else their concentration has remained 
constant up to t = O because of abse nee of radicals A and/ 
or scavengers for t < 0 and the upper limit the fact that 
we want <1>(t)only fort >0. Equation (92)allowsfora time 
varying spatially uniform concentration of n 8 • Then 
the overall rate is obtained by differentiating Eq. (92) 
to obtain 

d:t) = lat <1>0,/t -t')n8 (t')dt' +ip0(O.)n8 (t) , (94) 

where <1>0,0(t)=dcp0(t)/dt. [This yields the same Laplace 
transformed expressions as Eq. (92).] In the special 
case where iJJ0(t) is constant [e.g., Eq. (89) neglecting 
the transient term which is unimportant for long times 
anyway], one has <I>o 0(t) =0 and dN(t)/dt = q,0 n 8 (t), or 
the usual result used for diffusion-controlled reactions. 
When the small transient term is included, but one rec -
ognizes that if?o O (t) is very small, except for t:::: 0, and 
assume n8 (t) i; a slower varying function of t, one can 
write the approximate form 

dN(t) ::::41TDdn
8

(t) (1 + _d_) fort> 0 in 3D . (95) 
dt ,fiidl 

In the case of 2D, <1>0(t) is always a function oft, so the 
equation (94) must always be used with q,0(0.) =41TD/ 
(1TDOJp)11 2, where this term will cancel an equivalent 
term in the integral. That is, using the expansion of 
<I>o(t) =4rrDx{(rrcr)"1I2 + ½-¼ (cr/rr )112 +½ er - ···}with 
cr=Dt/d 2, one has 

~~ ::::4rrDd[nB(t)(½+ ✓ :Dt) 

+ lt (-½(a'! )1/Z + ½- •• •) n8 (t') dt'] , (96) 

with ex' =D (t -t')/d2, where we have used the same ap­
proximation as in Eq. (95). 

Now the above discussion is for a single A molecule. 
In particular, Collins and Kimball19 ~oint out that the 
usual derivation should be associated with the a priori 
probability at t = 0 that the A particle will react at a later 
time. That is, the A particle is known to exist initially. 
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Then the overall rate would depend upon nA,o• Thus we 
would obtain the total number of first encounters from 
A and B molecules per unit volume by rewriting Eq. 
(92) as 

t 
NA(t)= l if>o(t-t')nA(t')n8 (t')dt', (97) 

so Eq. (94) becomes 

N (t) = dNA(t) =lt i (t-t')n (t')n (t')dt' (98) 
A dt O o,o A B , 

with i 0, 0(t -t')= if>o,it -t') +ll(t -t') cf10(O.) which yields 
the usual form for constant cf1o 

(99) 

Using CIDN(E)P formalism, 2 f!'(x, t) is the probability of 
a spin-selective reaction for a radical pair initially in 
contact and with spin state X=Ta, S, or RI. Thus, by 
analogy to Eqs. (84) and (88), wherein we regard f!'(X, t) 
as the molecular response to the first encounter of the 
radical pair, we have 

dnA(t) Jt ( ') • ( ) Jt , ( ) -~= fl'o X,t-t NAT dT= dt fI 0 X,t-t' 
0 0 

I' x£ i 0, 0(t' -t' +E)nA(t")ns(t")dt" , (100) 

where fl' 0(x, t) = a;J(x, t)/ at. In the 3D case where cf1o 0 

=0 and 5'0(t)~;J(oo)U(t) one recovers the simple for~ 

dnA(t) 
- ~=;J(oo)cJ1onA(t)n8 (t), (101) 

but the more general form of Eq. (100) is needed for 
2D. The Laplace transform of Eq. (100) is 

s nA(s) -nA(t =0) = -i(x, s) <I>0(s) nAn8 (s) , 

where 

(102) 

(103) 

and we have used the fact that the Laplace transform of 
fFt>(x, T) is 

J"' e""T fJ~21 (x,T)dT=i 121 (x,o-)-;J<2>(x,T=O)=i121 (x,o-), 
0 

(104) 
etc. [see Eqs. (21)-(25) and Footnote 2(a)]. 

By similar arguments we obtain for the magnetization 

dM',,(t)/dt =it Pa o(RI, t-t')Na(t')dt' 
0 ' 

(105) 

when we neglect any initial polarization at the time of a 
new encounter. 2 One can now use Eq. (98) for N

4
(t') in 

Eq. (105) in order to obtain a complete expression. The 
final analysis of Eq. (105) is also best handled by 
Laplace transforming the multiple convolution. Then, 
in this case of CIDEP in the presence of a chemical re­
action one may use Eq. (42) in the form f,121 (0- RI) 

"(2) -" 2 a ' 
=Pa,,..o(o-, Tohr 1 1(o-,RI) in the Laplace transform of Eq. 
(105), where both P!~~0(o-, T0) and i 121 (o-,RI) are given in 
the previous sections. [Note that the Laplace transform 
in our notation of P!~~(T, RI) is P!21 (o-, RI), cf. Eq. (104).] 

We now wish to consider the situation where there is a 
radical scavenging reaction (or else T 1 processes). We 
shall consider as our example the rate of production of 
recombination product R(t). We may, utilizing Eq. 
(100), express it as 

dR(t) = (t dt'[exp(-k1(t-t'))5'
0
(t-t')] 

dt ) 0 

t' 

X £ [exp(-k1(t-t')) io,o(t' -t" + E)nA(t")nB(t")dt"], 

(106) 
where exp[-k1(t-t")]representstheprobability of sur­
vival from scavenging (or leaving the surface) at time t', 
given that radicals have been formed at t" (e.g., by a 
sudden burst of radiation at time f"'0) and we have set 
R(t=0)=0. That is, the rate of first encounter at t', 
cf1o 0(t' -t") is reduced by this probability of surviving the 
sc~venging reaction prior to the encounter. Also, once 
they have encountered, the rate of formation of recom­
bination product, 5'0(t -t') is reduced by exp[-k1(t -t')] 
or the probability of survival during the multiple re-en­
counter process. (We are, of course, assuming that the 
scavenging and recombination reactions are statistically 
independent.) 

Now we consider the rate of loss of radicals A, which 
is equal to 

(107) 

The Laplace transforms of Eqs. (106) and (107) are ob­
tained with the aid of Eq. (102): 

sR(s) = rr:(s + k1) i 0(s + k1) nA n8 (s) , 

with R(t = 0) = 0 and 

snA(s)-nA(0)= -sR(s) -k1,a nA(s) . 

(108) 

(109) 

If, for simplicity, we assume Bis in excess and ki,b"' 0, 
so n8 is approximately constant at n8 , 0 and k 1 "'ki,a, then 
we have nAn8 (s) =nA(s)n8 , 0 and Eqs. (108) and (109) be­
come 

and 

nA(s) =nA(0)/ [s +k1,a +if(s +k1,a) <I>o(s +k1, 4 )n 8, 0]. 

Then 

(110) 

(112) 

which becomes the usual 3D result by making the re­
placements ~<21 (k1,4 )- ff'131 (t =oo); i~21 (k1, 4 )-$~31 • Thus 
we obtain a well-defined limiting recombination concen­
tration R(t- oo ). On the other hand lim,~ .. nA (t) = 0 in both 
2D and 3D as it must. The complete time evolution R(t) 
[or nA(t)] would follow from Laplace inverting Eqs. (110) 
and (111) utilizing the appropriate forms for §(s) (and 
, 0(s)) from Sec. IV. The manner in which CIDNP po­
larizations may be obtained from R(t) is discussed by 
Freed and Pedersen. 33 

One can, of course, further generalize this approach 
to explicitly include the process(es) by which radical 
pairs first appear on the surface as was done in Sec. 
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VII, but this is a straightforward generalization of the 
methods already outlined in these two sections. 

Also, we note that since A(t)=3'0(S,t) or A(s)=ff'0(S,s) 
the results we have obtained above for ff'(u) may also be 
used for A(u), which may then be compared to the usual 
spin-independent theories of reaction kinetics. 

In the case of Heisenberg spin exchange we are again 
interested in the rate of first bimolecular encounter per 
A molecule, but we neglect any reactions. Thus, this 
rate is given by 

(113) 

where na is constant after B has been produced or has 
appeared on the surface. Then we can write [by analogy 
to Eq. (88)] 

if •. (t)=f' P. 0(HE,t-t')N(t')dr+P0 (HE,t=O) R(t), 
0 • 

(114) 
where, in the present case, P. (t = 0) = - 1, and P0 (HE, t) 
is given in terms of l1P(t) by Eq. (53) or 

A -1 A A 

M .. (u)-M.,(O)=u P0 (HE, u)i[>0(u)na. (115) 

Then by analogy to the 3D case2 we can write 

wHE (<T) =' A.P(dt, u) i 0(u) n 8 , (116) 

where wHE(<T) is the (u-dependent) Heisenberg exchange 
frequency. In the 3D case where we let 

WHE =' lim WHE (T) = limwHE (u) (117) 
T .. 00 a .. 0 

we obtain the correct result: w};J = l1P13> (d,) i(,~3>. 

In the present of radicals being scavenged or leaving 
the surface (or else T 1 processes treated simply, cf. 
Sec. VII) we will obtain in 2D [by analogy to the deriva­
tion of Eq. (112)1 

(2) ~ ( A ( ) 

wHE = l1P dt, k1) 4>o k1 ns (118) 

or a well-defined limiting value. 

IX. SUMMARY AND FURTHER COMMENTS 

We have seen in this work how the change in dimen­
sionality has a profound effect on predicted CIDN(E)P 
observables due to the important role of the re-en­
counter mechanism in these phenomena. In two dimen­
sions the re-encounter probability asymptotically ap­
proaches unity for long times approximately as - ½ lnu 
with a~ r- 1 • This same asymptotic logarithmic charac­
ter shows up in the time (or ·<T) dependent probability of 
reaction, which approaches unity for long times. It may 
be ascribed to an effective encounter time which ap­
proaches infinity as (- ½ lno-t1

• The model for CIDNP in 
2D is characterized by the dominant role of the initial 
encounter for short times just as in 3D, and for a re­
encounter mechanism for long times again dominated by 
the effective encounter time which logarithmically ap­
proaches infinity. Similar comments apply for CIDEP, 
except here the effective encounter time one may associ­
ate with the exchange depolarization process is the one 
which logarithmically approaches infinity, so the multiple 
re-encounter process effectively destroys any CIDEP 
polarization. Similarly, the Heisenberg exchange proba­
bility logarithmically approaches unity with long times. 

In "real" situations the polarizing and depolarizing 
mechanisms are terminated after finite times by a variety 
of processes such as radical scavenging or radicals 
leaving the surface or by T 1 processes. Illustrative ex­
amples of such effects enabled us to show that the pre­
dicted CIDN(E)P observables are characterized by well­
defined values, which are typically not their asymptotic 
values. We do wish to note that the explicit dependence 
of the polarizations upon the termination processes in 
two dimensions was treated rather simply in this work; 
there ultimately are important many-body aspects. 
Thus, for example, for finite radical concentrations 
(but not very strong reactivity) a single radical will en­
counter many other radicals each of which can interfere 
with the polarizing (and/or reaction) processes of a 
single radical pair. Related concentration-dependent 
effects have been studied for three dimensions, 290

•
34 but 

such effects should be even more important in two di­
mensions25 where the re-encounter process between an 
individual radical pair will, in principle, continue even 
while the individual radicals of that pair are undergoing 
re-encounters with entirely different radicals, because 
of the unit re-encounter probability. Such processes 
will still tend to randomize or terminate an individual 
radical-pair re-ereounter process, but the values of the 
polarization, which depend on the termination times 
albeit logarithmically, should then be quite sensitive 
to the many-body nature of such phenomena. 

A particular aspect of the two-dimensional problem 
with which we have not concerned ourselves is the ex­
istence and nature of the two-dimensional diffusion co­
efficient itself. This problem has, for example, been 
discussed by Saffman and Delbruck16 for several cases. 
It is analogous to problems dealt with in the present 
work, i.e., logarithmic divergences for long times. 
Thus if one has a finite sheet of dimension YN, then they 
find that n. =D~i~ln2yN -1/2) with D~~1=kBT/4rrµh (a 
Stokes-Einstein coefficient) where µ is the sheet vis­
cosity and h its width. [Note that this type of logarithmic 
factor appears in Eq. (27b) relating effects of u to YN•] 
Another case they consider is that of finite viscosity of 
the outer liquid. This would be applicable, e.g., for 
particles diffusing on a membrane surface and in contact 
with the external liquid. (It would not be applicable to 
the diffusion of adsorbed particles on a metal surface 
under high vacuum conditions.) It yields the result 
n. =D~'[ln(µh/µ'a)-0.5772], where here a =½d and 
µ' («µ)is the viscosity of the outer liquid. In this case, 
then there is a well-defined time-indpendent diffusion 
coefficient. However, when this is not applicable, then 
they get a time-dependent diffusion coefficient which for 
long time (or smalls) may be written as .D(s)""D~1[ln(4µ/ 
pa2s )112 -0. 5772] with p the density of the fluid compris­
ing the two-dimensional surface. If such a form is re­
quired in a particular problem, then one must solve the 
Laplace transformed form of the SLE [e.g., Eq. (15)) 
but with D replaced by IJ(s). 36 

Clearly, the predictions for CIDN(E)P in two dimen­
sions here suggest that if appropriate experiments are 
feasible, then they would be expected to yield much use­
ful information about the relatively unexplored nature of 
bimolecular encounter processes in two dimensions. 
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APPENDIX: GLOSSARY OF SYMBOLS 

A complete glossary of symbols used in previous three-dimensional theoretical CIDN(E)P studies can be found in 
Ref. 2(a). We list here the new symbols introduced in this work and those employed previously but of special im­
portance. 

D =Da +Db Diffusion constant for relative motion of the radical pair 

D~ A "Stokes-Einstein'' two-dimensional diffusion coefficient 

D(s) s -dependent diffusion coefficient 

g:(t), &(s) Time dependent probability of radical pair reaction and its modified Laplace-transform where 
&(s) = s5'(s) 

F(r),f(y) Force of interaction between radical pair, with the dimensionless formf(y)=dF(r)/kBT 

g:*(t), i(s) Time-dependent probability of reaction of triplets for unit reactivity of singlets and its modified 
Laplace-transform where ~*(s) =s5'(s) 

g:* Long time (i.e., t- co) asymptotic value of g:*(t) 

cI>(t) Time-dependent flux of particles into a sphere about a specific target center 

cI>0(t), cI>0, 0(t) The flux cJ,(t) for the case na,o = 1 and its time derivative cI>0, 0(t) = dc1>0(t)/dt 

J(r), j(y) Exchange interaction between radical pair and its dimensionless form 

j 0 Dimensionless exchange interaction at y =1 (or r=d), j 0 =J0 d 2 /D 

k8 Boltzmann constant 

k, K First order rate constant for radical reaction upon contact and its dimensionless form K = kd 2 /D 

k0(t) Time-dependent source of radicals, usually k0(t) = k0 U(O) [where U(O) is the unit step function] 
K0 =k0 d 2/D 

ki, K 1 First order, spin-dependent radical decay rate constant due to, for example, scavenging processes, 
and its dimensionless form 

k2 One-half of the rate constant for new bimolecular encounters in 3D 

Xr, K' Space- and spin-dependent reaction operator with its finite difference matrix analogue 

.C(cr)"" lny N A er-dependent quantity numerically approximating the effects of an outer absorbing boundary, 
.C(cr)"" lny N 

A(t), A(s) Time-dependent pyobability of radical reaction for Q=O for singlets, with its modified Laplace 
transform where A(s)=sA(s) 

A Long-time (i.e., t-co) limiting value of A(t) 

nA(r,t), Time- and space-dependent radical concentrations 
na(r,t) 

nA,o, na,o Initial uniform concentrations of species A and B 
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nA (t), nA (s) 
n5 (t), n5 (s) 

(P(t), <P(s) 

q 

R 

s 

(1' 

t' 1' 

tiYr,YN) 
t,(Yr, a) 

7'1 

Tr 

7';2>' rJ3> 

7',(t), T, 

7' 1 (:\) 

7'). 

7'(2) 
). ' 

7'(3) 
). 

V(i) 

w 

y 

Yu 

Yr 

YN 

G. P. Zientara and J. H. Freed: CIDNP in two dimensions 

Time- (ors) dependent concentration of radicals A and B considered uniformly distributed 

Finite difference spin Hamiltonian matrix operator 

Time-dependent electron spin polarization of a radical and its s-dependent form. [Note in high 
magnetic fields Pb(t) = -P.(t)] 

Long time limiting value of P0 (t) 

Time-dependent fractional change in the electron spin polarization from its initial value (and its 
modified Laplace transform) given two radical were initially separated by the distance (dimensionless) y1 

Time-dependent probability that radicals have not reacted to form products, <P(t) = 1 - 3'(t), with its 
modified Laplace transform 

Dimensionless form of half the difference in ESR resonant frequencies of the two interacting radicals, 

q=Qd 2/D 

Relaxation matrix containing spatially independent terms 

Laplace transform variable 

Dimensionless form of s, a=sd 2 /D 

Time variable and its dimensionless form, T = tD/d 2 

Transfer factor denoting the probability that radicals initially separated at y1 will eventually- come in 
contact before an absorbing wall at distance YN interferes with the diffusive process, and its 
a-dependent form 

Lifetime of the interacting radical pair for contact interactions (i.e., within small spatial region 
about y = 1), 7'1 =dAr/(2D) 

Dimensionless analogue of 7'1, 1'1 = Ay /2 = r 1 D/d 2 

Effective lifetimes of radical (contact) interactions in two or three dimensions: r]2>(a) ~ r1 £(a) 

and r}3' = r1 

Time-dependent lifetime of radical pair interaction for spin exchange process and its long time 
limiting value 

Effective lifetime (in seconds) of an exchanging radical pair when the spin exchange process may 
occur over a finite region of space (i.e., rex finite) 

Effective radical exchange lifetimes for ru-d in two or three dimensions: ri2> ~Ti.lnyN ~7'i.£(a) 

and r!3> ~ 1'i. 

Finite difference form of the differential y dy written at radical separation Yi 

Finite difference "transition" matrix which comprises the discrete form of the diffusion operator 

Dimensionless radical distance y =r/d 

Dimensionless exchange distance, Yes =ruld 

Initial radical separation 

Position of outer absorbing wall 
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