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The variational finite-element method introduced by Zientara and Freed for the solution of the stochastic
Liouville equation is modified to utilize the advantages of an infinite outer element. Within this infinite 
element, the correct asymptotic forms of the solutions may be used, and they may be matched to those of 
the inner finite elements. Large reductions in the computational effort are realized by this scheme while 
maintaining high accuracy as illustrated in the example of high-field chemically induced dynamic spin 
polarization. Applicability of this method extends to solutions of partial differential equations in chemical 
physics characterized by a large spatial region with simple interactions and a restricted region in which 
more complex behavior occurs, such as is found in treatments of chemical reactions modulated by liquid 
state diffusive processes and in scattering theory in quantum mechanics. 

I. INTRODUCTION 

Previous theoretical studies such as chemically in
duced dynamic spin polarization [CIDN(E)P l have been 
performed utilizing either numerical1 or analytic2

•
3 

mathematical methods. Both approaches proved useful, 
but were generally unrelated in their employment. Re
cently, Zientara and Freed4 (hereafter referred to as I) 
have introduced the use of variational methods .for the 
solution of problems requiring the stochastic -Liou ville 
equation (SLE). These problems include CIDN(E)P4 and 
the simulation of electron spin resonance spectra. 5 Vari
ational methods unify the mathematical techniques, par -
ticularly in a finite element (FE) format, since different 
local interpolation functions can be chosen as suggested 
by the appropriate form of the SLE. 6 Below we will show 
how characteristic features of the solutions of the SLE 
can be included in a numerical-variational scheme em
ploying both FE's and an infinite element7 (IE). For the 
IE, an element of infinite "length," we will use trial solu
tions that are more closely related to the asymptotic 
solutions of the SLE. To emphasize the numerical sim
plifications resultingfrom theIE, we willreanalyzethe 
FE treatment of the high field CIDN(E)P problem. The 
reader is therefore directed to I for the elementary dis
cussion of the FE method and notation, and CIDN(E)P 
theory [cf. Refs. 1-3 also]. 

The advantage of introducing an IE in a numerical 
scheme can be appreciated by analyzing the spatial be -
havior of the solutions of the SLE (or other partial dif
ferential equations in chemical physics). When dealing 
with problems involving the relative diffusion of two 
radical species in solution, most quantum (e.g. , spin 
exchange) and classical (e.g., shielded-Coulombic) in
teractions that are functions of interradical separation 
quickly damp to zero [e.g., as exp(-cr), cir", or 
15(r -d), where c is some constant and d the distance of 
closest radical approach]. Typical treatments therefore 
involve the division of radial space into inner and outer 
regions. The inner region is characterized by compli
cated interactions and additional couplings which become 
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reflected in the complex functional forms of the spin den
sity matrix elements. Even in the simplest cases of 
CIDN(E)P, a general solution [i.e., for values of K, q, 
and j 0 (the dimensionless rate constant, hyperfine differ
ences, and exchange, respectively), cf. IJ of the SLE in 
this inner region is feasible only for the simplest mod
els, which are not very realistic. The outer region 
most often only includes the spatially invariant portion 
of the spin Hamiltonian and the spatial dependence may 
be characterized by simple diffusion. Thus, the asymp
totic forms of the spin density matrix elements as r- oo 

may easily be found. 

Monchick and Adrian3 utilized this overview in their 
approximate analytic treatment of CIDEP which illustrated 
how the knowledge of asymptotic solutions of the SLE aids 
in an analysis. In their study, they used a spin basis set 
for which the density matrix elements decoupled in the 
limit as r- ""· They then solved the SLE in the limit 
<r- 0 (where <r is the dimensionless Laplace transform 
variable) and q 112 « 1 utilizing a global Green's function 
method. Clearly, finite difference1 (FD) numerical 
methods cannot take advant;ige of any knowledge of such 
asymptotic functional behavior. Instead, in the FD stud
ies, and the FE method in I, the artifact of a "collecting'' 
region at a finite r = r(N) was employed, where r(N) was 
chosen sufficiently large to include enough radical re
encounters to yield negligible error. However, this 
strategy eliminated the possibility of applying asymptotic 
solutions in these numerical studies. 

The analysis of problems in scattering theory8 and 
quantum mechanics (especially using WKB approxima
tions9) has similarly benefited from studies based on 
multiregion spatial segmentation with local solutions 
matched at boundaries. Particularly, Gordon10 and 
Alexander and Gordon11 have proposed the use of a piece
wise linear representation of the Coulomb interaction 
leading to exact local solutions of SchrBdinger's equa
tion. Askar12 later intr<;>duced the FE method in the 
solution of this same problem but applied linear inter
polation functions. 

II. INFINITE ELEMENT METHOD 

As mentioned in I, a variational FE approach allows 
the flexibility of choosing different trial solutions to a 
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differential equation in each separate element or region 
of space. This ability implies that the asymptotic (r- oo) 
solutions to the SLE may be employed within this for
malism. First, we must dispose of the previously used 
collecting element [near r(N)] and extend the spatial re
gion we are considering tor- oo. This is accomplished 
by defining an Mh element, 13 the IE, which comprises 
the region hitherto omitted, where r(N) < r < co. As be -
fore, in the inner region of FE's (i.e., elements 1 
through N-1), we will continue to apply the linear in
terpolation functions. This permits us to incorporate the 
two region strategy of analytic mathematical treatments. 
Here, though, our inner region (where the forms of the 
interactions, and hence the solution, is in general very 
complex) is still handled in a piecewise manner follow
ing the discussion of I. In the outer region, we shall 
make full use of the asymptotic behavior of the solutions 
to the SLE. 

If h< 0 denotes the dimensionless radial "length" of the 
ith element [cf. I, Eq. (2.35)], then we can characterize 
an IE by 

while, as in I, we still have the finite nodal distance 
[cf. I, Eq. (2.38b)]: 

N-1 

(1) 

y(N)=r(N)ld=l + L h<m> (2) 
m•l 

In the IE, we must define a slightly different14 local 
spatial variable 

z =y -y(N) , (3) 

where the dimensionless distance .is y =rid and, in Eq. 
(3), 0 ::s z s co. The matching conditions on any trial 
solutions p<,.N> to the ath spin density matrix element in 
the IE are 

(4) 

where Pa(N) is the value at the Mh node (i.e., that be
tween the IE and the outermost FE), and the outer bound
ary condition 

limp<N>=o. (5) 
y-oo CW 

(Superscripts refer to functions or properties within an 
element while nodal values are indicated by indices fol
lowing in parentheses.) Equation (5) requires that we 
utilize asymptotically decaying forms but this often 
naturally appears in CIDN(E)P and quantum mechanical 
cases. A practical condition on any p;.N> is that it must 
permit the evaluation of the variation in the functional 
integral [Eq. (2. 44) of I]. This means that we must be 
able to describe the contribution of the IE, the ,Mh ele
ment, to the variation of the variational integral J [i.e. , 
the ailap01 (N')] through the second term of 

(6) 

[compare with Eqs. (2.49) of I]. We shall refer to the 
two RHS terms of Eq. (6) as its FE and IE components, 
respectively. Since the FE component of Eq. (6) pro
duces several rows of the final supermatrix [cf. I, Eqs. 
(2.49) and (2.50)], the use of an IE will never require 

added computational effort. Below, we will discuss how 
the choice of particular trial solution in the IE deter
mines the degree to which we can significantly reduce 
the dimension of the resulting numerical problem, and 
show that sometimes it may be reduced to a trival size. 

The appropriate changes in the matrix elements de
rived in I to solve the CIDN(E)P problem are minimal, 
and they reflect the absence of a collecting element. 
The x matrix [which is composed solely of geometric 
factors and is defined in I, Eq. (3. 7)] remains the same 
but we must now use new terms in the final rows of the 
transition matrix W [which now replace Eqs. (3) and 
(6e) of I]: 

(7a) 

(7b) 

with X!'"> =h<m> 3 
/
0
1 z"(a<m> +z)2 dz and a<m> =y(m)lh<m>. 

These are due to the FE comp.onent of Eq. (6). The IE 
component is more easily expressed as the value of the 
term entering Eq. (6), so it can then be simply added to 
the appropriate supermatrix elements (already contain
ing the other ax' + O - W' terms). The nodal values of 
the spin density matrix elements are then calculated as 
in I. 

To implement this scheme, we will choose a Pa(N) that 
satisfies the conditions of Eqs. (4) and (5), and calculate 
the IE component of Eq. (6) for all spin density matrix 
elements. Therefore, for all a, we must solve 

atN> =f 00 

{(ap</>) a(ap<N> lay) 
Bp01 (N') y(N) By 8p01 (N') 

-~aa,8 Pt> [a~:)J}y
2
dy, (8) 

where we have simplified the general expression by as
suming p~N> = 0, i.e., the radicals were not initially in 
the IE. 

A. Simple asymptotic forms: solution 

For the first example of the use of an FE-IE scheme 
in treating CIDN(E)P, we have employed the solution to 
the Laplace transformed radial diffusion equation in 
spherical polar coordinates as our IE approximation. 
This corresponds to the K =q =j0 = 0 form of the SLE: 

(o--v!)T>a(y,o-)=j5.,(y,r=O), (9a) 

which yields our IE approximation 

,:(N> __ (N) exp(-v'uz) 
Pa -Pa (yfy(N')) , (9b) 

using Pa to denote Pss, Proro, ReiJsro, and Im"fisro• Equa
tion (9b) satisfies the requirements of Eqs. (4) and (5). 
Although early studies have illustrated1- 3 that certain 
p<,.N> are oscillatory, Eq. (9b) does not violate any con
ditions on IE interpolation functions and, indeed, pro
duces CIDNP results identical to those tabulated in I. 

These results were obtained by creating the overall 
SLE supermatrix as described in I and Eq. (7), and cal
culating the IE component of Eq. (6). This latter task 
is accomplished by inserting the interpolation function 
(9b) in Eq. (8), yielding 
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aJ<N> _ _ y(N)2 
A _ 

apa(N) -y(N) [1 +y(N)fo-]pa(N)+ 2fo- ~aa,sPs(N)' 

for all a , (10) 

which only affects the values of the elements within the 
bottom rightmost 4 x 4 sub matrix of the supermatrix 
[given by Eq. (2. 50) of I]. CIDN(E)P parameters are 
then found using the now IE-modified relations [cf. Eqs. 
(3. 12) of I]: 

N·l 

<P(a) = L { (x 3ml -X im>) [Pss(m) + PToTo(m )] 
... 1 

+Xim> [p55 (m + 1) + PToTo(m + 1) J} 

+ (y(N)/a) [1 +y(N)fo- ][;555 (N) + PToT0
(N)] (11a) 

with 

<P= lim a/P(a) 
a-o 

(11b) 

and 
N·l 

P 0 (a) = -2 ~[(X3m> -Xtm>)RepsT
0
(m) +Xim> RepsT/m + 1)] 

- 2 [y(M/a][l +y(N)fo-] Rep5 T/N) , (12a) 

with 

P; = lim aP.(o-) 
a-o 

(12b) 

In Eqs. (11) and (12), only the last term contributes sig
nificantly for small values of a (we observed this using 
a< 10·15 in all recent studies4). This term originates 
from the value of the respective IE integral 

1~ p~N>y2dy 
y(N) 

=pa(N)y(N)exp[+fo-y(N)] f~ y exp(-fo-y)dy • (13) 
y(N) 

which enters because the quantities IP and P; represent 
observables calculated from integrals over all space. 

Our results showed that a minimum of 40 elements 
(i.e., FE's plus theIE)were needed to rigorously de
scribe the CIDNP quantity 5'*. As expected, this is not 
more efficient than the FE scheme in I, since the finite 
q causes an oscillating behavior in (;5~~0 - ~~

1
) and Im;5~1;!

0 
thatisnotincludedintheformofEq. (9b). However, even 
this naive approach illustrates that an IE formalism is suc
cessful in eliminating the previously used artificial col
lecting region. It also follows that only the calculation 
of the Mh nodal value of the spin density matrix ele
ments is sufficient to represent an outward diffusive 
wave (i.e., p~N> extending to infinity, for a- 0, a« lq I). 

Nevertheless, no more than three elements (two FE's15 

and the IE) were needed to reproduce the analytic results 
for the reactivity parameter A to less than O. 5% error. 
Equation (9), as noted, is the exact solution (neglecting 
the inner excluded volume) to the K=q=O (i.e., no spin 
state mixing) problem, so it is not surprising that it is 
suitable for this q = 0 case. Since K > 0 in calculating A, 
we see that an FE-IE variational treatment is capable 
of representing interactions of possibly large magnitude 
within a small inner region. 16 The significant reduction 
in size of this diffusion-controlled kinetics problem 

should be advantageous in future calculations where ad
ditional degrees of freedom and/or interradical forces 
are included. These more complex cases, unlike this 
illustrative example, would require numerical methods. 

B. Asymptotic forms for spin-dependent problems 

In treating CIDN(E)P adequately, it is clear that one 
wishes IE interpolation functions that include, in some 
way, the effects of the coupling among the spin-density 
matrix elements due to the spatially independent part of 
the spin Hamiltonian. One would expect such interpola
tion functions to decrease the size requirements of the 
resulting numerical problems even when q and j 0 are 
nonzero. Thus, in our second example, we will use the 
solution of the K =j0 = 0, q * 0 case of the SLE in creating 
our IE trial functions. These approximations to the solu
tion of the SLE may be obtained by analyzing the SLE in 
the uncoupled doublet spin representation, 1 where the q 
interaction is diagonal so analytic solutions are easily 
obtained. By transforming back to a coupled (i.e., 
singlet-triplet) basis, one finds that the singlet and 
triplet spin state populations are now mixed through the 
term Imps To• For j 0 = 0, Reps To is decoupled from all 
others. 

These IE asymptotic functions 17 satisfying Eqs. (4) 
and (5) are (with some simplification of the notation): 

(-:::<N> -<N>)--<N> __ (N) exp(-fo-z) 
PToTo+Pss =Pr -Pr [y/y(N)I ' 

(-:::<NJ -<N>)--<N> __ ( ) ( ) exp(-uz) 
PToT0 -Pss =Pu -Pu N cos vz [ J (N)!' 

-<N> _ _ ( ) exp(-fo-z) 
RepSTo-RepsTo N [y/y(N)! ' 

-<N> _ . ( ) exp(-uz) 
ImpsTo-CsTosrnvz [y/y(N)]' 

where we have used, for q > O , 18 

U
2=(W+0')/2, 

v2 =(w-a)/2, 

with 
W=(4q2+a2)1/2 • 

y y 

(14a) 

(14b) 

(14c) 

(14d) 

(15a) 

(15b) 

(15c) 

The ease of producing the matching condition [Eq. (4)] 
at y(N) in Eqs. (14) is obvious. Before applying these 
formulas, we must recognize the two constraints that 
enter our analysis due to the particular choice of Eqs. 
(14). These constraints are related to Eq. (14d), and 
are 

Imp5 T
0
(N) =0 (16a) 

and 

CsTo = -Pu(N) • (16b) 

Equation (16a) is a consequence of the sin(vz) portion of 
Eq. (14d) which is zero at y(N). In order to constrain 
the amplitude of this damped oscillatory function, we 
have introduced the variational parameter C sTo• which 
is not a nodal value but plays an important role. The 
constraint on CsTo [Eq. (16b)] follows from the solution 
of the original single element [Le., y(N) = 1] problem 
with K =j0 =0, where one notes that 
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Pu +iimpsTo er exp[- (u +iv)z] • (17) 

The correct understanding of the forms of Eqs. (14) and 
the effects of the constraints (16) and (17) was important 
in the analysis. 

Following our first example, we can insert Eqs. (14) 
in Eq. (8) to find the corresponding IE components of 
Eq. (6), written for all '{5,.(N). However, by Eqs. (16), 
the variable Im'f5sT

0
(N) is removed from the problem. 

BfN) 
y(N) [1 +y(N)../a] 0 

Bpr(N) 

8/(N) 
0 y(N) [1 +y(N).✓q] 

Bpu(N) 
= 

afN> 
0 0 

aRei'JsT0(N) 

where the diagonal term multiplying 'f5u(N) results from 
the (J- 0 limit of 

~f N) = y (N) [1 + y (N)u (1 + U2 )~ 
Bpu(N) 2 w ~ 

xi'Ju(N) -½ q CsT0y(N)
2 en (19) 

and the application of Eq. (16b) removes C8 T
0 ·from our 

problem as mentioned. Note that, for q=O, Eq. (19) 
produces the result of Eq. (10), and all spin density ma
trix elements have similar diffusion-type terms as ex
pected. Equations (11) and (12) can then be employed to 
calculate CIDN(E)P properties after the nodal values of 
the spin density matrix elements are calculated. 

The use of the IE functions (14) significantly reduces 
the size of the resulting numerical problems for the cal
culation of CIDN(E)P when K, q, j 0 ;1,0. CIDNP calcula
tions of the spin-dependent recombination probability ~ 
(for j 0 = 0) can be performed over the entire range of q 
with results exhibiting no more than about 25% error 
using as few as three elements, 15 where, for comparison, 
400 finite difference nodes were required in the accurate 
Pedersen-Freed studies, 1 and 50 nodes in I. 19 If more 
exact results are required, the number of inner region 
FE's may be increased. We have, using Eqs. (14) with 
an IE, reproduced the analytic results for ~* (valid for 
j 0 =O) given by Pedersen2 with < 0.1% error, using at 
most about 30 elements and on the average about 15 FE's 
for the entire range of q values (i.e., 10"6 < q). The 
interior elements employed had a geometrically increas
ing "length" hm (cf. discussion in I) which further aided 
in the optimization leading to the above results. This 
large reduction in computational effort makes feasible 
the consideration of more complex problems, e.g., that 
of low-field CIDN(E)P, where large basis sets made cal
culations previously intractable. Of course, this effi
ciency will be related to proper choices of IE asymptotic 
functions (see Appendix). An added feature is that the 

(Note that we must properly constrain its value to zero 
in the other matrix equations.) Also, the newly intro
duced variational parameter, the amplitude factor CsTo• 
is removed from our set of unknowns by use of the con
straint (16b). If more complicated constraints had been 
introduced, we could have utilized the method of Lagrange 
multipliers at this point in our analysis, but this tech
nique was not necessary in the present example. There
fore, we are left with the set of equations for the IE 
(q > 0, q » (J form shown here) 

0 'f5r(N) 

0 X 'f5u(N) (18) 

y (N) [1 +y(N)v'a] Re'f5sT/M 

exact (J dependence can ·be retained, if necessary, in 
Eqs. (18) and (19). Thus, the FE-IE method still allows 
calculation of all (J dependent properties for (J > 0. The 
time dependence of these observables therefore can be 
found through, for example, a numerical Laplace trans
formation. 20 

The calculation of CIDEP using Eqs. (14) and an IE has 
led to computing benefits similar to those evidenced in 
the case of CIDNP. There was no alteration in the ef
fectiveness of the IE j 0 = 0 approximation when a finite 
j(y) (i.e., withj0 ;1,0) was included within the interior 
region of FE's. This was demonstrated by numerical 
results obtained using an exponentialj(y) form1• 4 and 
finite exchange distance Yax= r ul d. A maximum of about 
30 elements was needed to reproduce with negligible er
ror the FE CIDEP results of I, where 50 to 70 FE's 
were employed. This emphasizes that the IE interpola
tion functions satisfactorily represent the q-induced 
oscillations of the spin-density matrix in the outer region 
regardless of the mixing of states in the inner (FE) re -
gion. 

Ill. CONCLUSION 

In the above discussion, we have introduced the con
cept and use of an infinite element in a variational solu
tion of the SLE applied to the CIDN(E)P problem. Within 
this IE, we employed successively more sophisticated 
trial solutions derived from the exact solution of some 
simpler problems. This simplifying feature has prev
iously been only available in the context of (approximate) 
analytic methods. It was well demonstrated that the 
FE-IE method can lead to reductions in the dimension 
of resulting matrix equations, i.e., results as accurate 
as in I and more accurate than in Ref. 1 are obtained 
with far less labor. In future studies, when multiregion 
segmentation schemes can be invoked in the theoretical 
solution of complex problems, 21 the variational FE-IE 
format will be advantageous since it includes the ease 
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of numerical methods in its application, yet it retains the 
mathematical insight of an analytical analysis. 

APPENDIX 

We can generalize the prescription for obtaining IE 
asymptotic solutions to spin basis sets of arbitrary size. 
This is needed, for example, in the case of low field19 

CIDN(E)P. We start by writing the Laplace transformed 
SLE in its form used for CIDN(E)P (with only simple 
radial diffusion, see I for more complex forms for 
the diffusion) as 

[s +i:lCx(r)-nv;lp(r, s) =p(r, t =0) . (Al) 

For the IE, we use the asymptotic form of :;cx(r): 

lim :;cx(r) =Jex (A2) 
,- ao O ' 

where JC~ is independent of r. Either analytically or 
using a numerical diagonalization, 22 we can obtain the 
orthogonal transformation T and eigenvalues in A (di
agonal) such that 

(A3) 

where JC 0 is the Hamiltonian matrix operator and T- 1 

= T tr. Then we may construct the Hamiltonian superma
trix transformation23 

TX JCo(T xrl =AX ' 

where 

Ti1k1=T1kT~} 

and 

(Ma) 

(Mb) 

(Mc) 

Equation (Al) then becomes, for all a, in dimensionless 
form, 

[a-+i\,. -v;]p!(y,a-)=p!t(y,r=0), 

where (letting ij - a and kl - {3): 

P!(y,a-)= I: r:syps(y,a-), 
B 

(A5) 

(A6a) 

(A6b) 

with V~=a2/ay2 and Xa=A:ad2/D. Equation (A5) is diag
onal, and if we consider the radicals as initially in con
tact, it has the solution 

p!(x, a-) =p~ exp[-(a-+i>..a)112 x] (A7a) 

where 

x=y -1 (A7b) 

and the assumed initial condition is explicitly 

P!t(y, r=O)=p~ 6(x), (A7c) 

with the p~ being constants. The expansion of Eq. (A7a) 
yields 

p~(x,a-)=p~[cos(v.,x)-isin(v.,x)]e-u.,x, (AS) 

where 

(u., +iv.,)= (a-+ i>..., )112 (A9) 

is the analog of Eqs. (15). Thus, the solution to the 
original dimensionless SLE 

[a-+ iJCx(d2 /D) - d2 v;l p"' (y, o-) = ;'i(y, r = 0) 

is given by 

p"'(y, a-)=!_ 1: [(Txf1loaPJ(y, a-) . 
y B 

The resulting IE interpolation functions then are 

-(N) = p°'(N) "[(Txfll 
P"' [y/y(N)J"t o,B 

(Al0) 

(All) 

x[cos(va,e)-isin(va,e)lpge-•s•, for all a, (A12) 

where the pg in the IE (related to some "initial condi
tion," albeit arbitrary) are retained to keep the various 
p"'(N) in phase. 

It is often advantageous in the calculation of CIDN(E)P 
to employ elements in p that are real valued (e.g., by 
the separation of Pr, Pru, Rei5sr0 , and Im"f5sTo as used in 
Sec. IIB). This enables the use of only real-valued 
arithmetic in any subsequent matrix inversions, although 
the symmetry of :;cx(r) (and hence O) is destroyed. If 
this technique is utilized, then the relevant portions of 
Eq. (Al2) become 

-=<N> _ Prx(N) '°' [(Tx)-1] ( ) o -•a• (A13) 
/J"' - [y/y(N)] 4;' .,a cos vs,e p8 e , 

where here the p"'(N) are equal to linear combinations 
of the mf> for diagonal elements [cf. Eq. (.A6a)l or equal 
to Re~f> with i, j =S, T0 , T., ... , and i ¢j. Also, the 
constraint (16a) is now 

p"'(N) =0, (A14) 

where p"'(N) = ImpiJ(N) for i ¢j. Other constraints follow 
from an analysis similar to that used to obtain Eq. (16b), 
in the context of the form of Eq. (AS). Since the ele
ments of (rr1 are known and constant, all that remains 
is the insertion of Eq. (A13) in Eq. (8). Once one ob
tains general expressions for aJ<N> /ap"'(N) [cf. Eq. (19)], 
then the above outline constitutes a procedure which may 
be performed entirely by the computer for any spin state 
basis set. 
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