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Spin-echoes for diffusion in bounded, heterogeneous media: 
A numerical studya> 
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The diffusive behavior of spin-bearing species in a bounded heterogeneous medium is analyzed in a 
manner appropriate for spin echo experiments in the presence of field gradients. A numerical method 
based upon the stochastic Liouville equation (SLE) is discussed that includes the discontinuities in 
transport and solubility properties due to the different spatial regions. The double step computational 
algorithm, which takes advantage of the different time scales of diffusive and spin-quantum phenomena, 
is then introduced as a general approximate solution of the time dependent SLE. This method is applied 
to the calculation of the decay of spin echo amplitudes, and it suggests a new approach for analyzing 
such experiments in terms of the microscopic details and chemical properties of heterogeneous systems. 

I. INTRODUCTION 

The NMR spin-echo technique1-5 offers an accurate 
measure of the diffusion of nuclear spin-bearing spe­
cies. This has led to the study of restricted diffusion 
in a bounded medium6

-
9 and in colloidal systems. 10 

Spin-echo measurements may be applied to the deter­
mination of the physical characteristics of heteroge­
neous systems of, for example, biological interest,11

•
12 

while also aiding in the elucidation of biological meta­
bolic processes. 13 In particular, samples containing 
membranes or sets of membranes seem appropriate for 
experimental study, 14 but the previous theoretical treat­
ments 5- 10 are inadequate for dealing with the complex 
diffusive properties of such materials and how this af­
fects the spin-echo decays. Analytical mathematical 
solutions exist only for the simplest of models. 

In a recent study which highlighted these difficulties, 
Tanner 15 discussed the calculation of an apparent diffu­
sion coefficient [i.e., a time-dependent D(t)] when one­
dimensional diffusion is hindered by equally spaced bar­
riers of arbitrary permeability. Similar strategies 
were employed by Tanner15 as in earlier works by 
others 7• 10- 12 to obtain apparent diffusion coefficients 
from theoretical results (or experimental data). By 
this method, one fits the observed results to an avail­
able mathematical relation for the echo amplitude de­
rived using a theory assuming a homogeneous bounded 
(or infinite) medium. The logarithm of the echo ampli­
tude is usually linear in the diffusion coefficient for these 
simple cases, so the calculation of an apparent D, or 
D(t), 15 attributed to the net effects within the entire sam­
ple, is straightforward. However, we shall present an 
approach which permits more realistic modeling of the 
heterogeneous nature of the sample. 

In this work, we shall discuss the theoretical and nu­
merical construction of models of a heterogeneous 
bounded medium and the calculation of the resulting 
spin-echo amplitudes. The spin-echo phenomenon will 
be studied by focusing on molecules containing a single 
unpaired nuclear spin (i.e. , I= 1/2, the case of a pro-
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ton, is chosen here for simplicity) for which a density 
matrix formalism 16 will be used to determine the time 
and spatial dependence of the diffusing spins. The 
stochastic-Liouville equation (SLE), which describes 
the diffusive and quantum mechanical time evolution of 
the spin density matrix elements, 17 will be applied with 
time dependent solutions calculated via a new approxi­
mate numerical method that is applicable for time de­
pendent solutions of the SLE. 18 The models that may 
be analyzed by this method may contain an arbitrary 
number of membranes of finite thickness in which the 
spin-bearing molecule has different diffusive character­
istics and solubilities relative to the surrounding medi­
um. The methods outlined here allow the possibility of 
numerically simulating realistic systems if some, but 
not all, of their physical characteristics are known, as 
is commonly the case. 11 These characteristics include 
membrane widths, sample packing characteristics, dif­
fusion coefficients or solubilities inside or outside the 
membranes, and any other physical properties included 
in the model. One would then attempt to match the ob­
served spin-echo decay to a set of numerically deter­
mined results for a range of values of the unknown 
physical characteristics. Since our approach may be 
applied to models which simulate highly complicated 
cases, we shall limit our study to the development of 
the appropriate theoretical tools and conclude with the 
analysis of several illustrative examples. 

II. THEORETICAL DETAILS 

A. SLE and spin-echo theory 

The application of the SLE to the NMR spin-echo 
problem is directly related to the Bloch equation for­
malism used in earlier works, 3• 8 and for spin 1/2 nu-
clei leads to identical results. We shall start with a 
general form of the SLE that contains no reactive sink terms 

(1) 

where we use the superoperator notation AxB =[ A, B] to 
denote the commutator of the spin Hamiltonian operator 
JC(r), and the density operator 

p(r, t') = L Ii) C 1(r, t') Cj' (r, t') (j I (2) 
i, j 
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where we define the density matrix elements 

piJ(r, t') '= C 1(r, t') Cj (r, t') , (3) 

with the C 1(r, t') being coefficients of the system wave 
function expanded in terms of the spin functions Ii). In 
Eq. (2), we have used bra-ket notation and a bar to de­
note an ensemble average. For a proton, the spin mag­
netic moment may be M1 = ± 1/2, specified below by 
a(M1 =+ 1/2) and f3(M1 = -1/2), and spin states I a) or 
I f3). r r is the diffusion operator with D a diffusion co­
efficient. We shall write Eq. (1) for every different re­
gion of space for which the spin-bearing molecule has a 
different D and/or solubility. These regions will be 
linked by interfacial regions which have physical prop­
erties intermediate between those of the surrounding 
regions. Examples of this construction are found in 
Figs. 1 and 3. 

If there are K total regions with the constant diffusion 
coefficients Dik = 1, 2, ... , K), then within each respec­
tive region the spatial variation in D that normally en­
ters Eq. (1) via the V • D • V operator can be removed. 
The actual change in the diffusion coefficients across 
each interface will be included below in a rigorous but 
practical manner using finite difference arguments. 
Since a magnetic field gradient in a single direction is 
usually employed in spin-echo studies, we can reduce 
the dimensionality of the operator equation [Eq. (1)] and 
calculate its matrix elements yielding 

apk 1(x, t') ~ [ 1 x ( ) J - , at = ~ - "ij,ckl,ij X +Drxoki. olj P11(X, t) 
1,J 

for all k, l = a or f3 with 

'.fC:l,lj=(1(',,;0jl-Oki'.fCjl), 

(4) 

(5) 

and for this problem the Hamiltonian matrix elements 
1C11 '= (i I 1C I j) are 

la> lf3> 

(a I (- ~ y(H0 + gx) 0 ) 
(6) 

(/31 0 + ~y(H0 +gx) 

with the nuclear magnetogyric ratio y = gN /3N/1i, static 
magnetic field H0 , and magnetic field gradient gin the 
x direction which for simplicity in the present discus­
sion we take as perpendicular to the simulated barriers, 
interfaces, membranes, and walls of the model. Also, 
the Smoluchowski form of the diffusion operator is17 

a2 ~ a 
rx= a?° - ax [F(x)~] (7) 

where F(x) is a force on the spin-bearing molecule as­
sociated with the different physical_properties of the dif­
ferent phases (see below). If we temporarily ignore the 
heterogeneity of the problem, Eqs. (4)-(7) combine to 
give 

ap""(x, t') = D a2p""(x, t') -D a[F(x)p""(x, t')] 
at' a? ax 

_ [p""(x, t')-p"" 10(x, t')] 
Tl 

(Ba) 

_ [Pse(x, t') - Psa,o(x, t') l 
Tl 

ap (x t') . -
s"at' = -iy(Ho+gx)pea(x, t') 

+ D82p~x, t') -D a[F(x)p8"(x, t')] _ pag(x, t') 
a ax T2 

(Be) 

(Be) 
and p08 = (paa)* due to the Hermicity of the density ma­
trix. The last terms of Eqs. (8) describe the longitudinal 
and transverse relaxation of the spins and are added in 
an ad hoc fashion, with p001 ,0(x, t') representing the equi­
librium value of p0101 (x, t'). After the 1r /2 pulse ( chosen 
to occur at l'=O), p0101 (x, O)=p8s(x, 0)=½ and p801 (x, 0)=1 
since M=Mx+iMy=N5 Tr[prJ=NsPsa, where the "step up" 
operator /•=Ix+ ily is used and the x axis is chosen as 
the axis of observation with the rf pulses producing ro­
tations about the _y axis. N 9 equals the total number of 
unpaired nuclear spins in the actual sample. The effect 
of an instantaneous 1r pulse can be simulated8 by p8 (x, t' 

~ Ot 

after pulse)= - Paa (x, t' before pulse). Furthermore, 
theechoamplitudeattime 2T, i.e., F(2T), isgivenby 

F(2T)=Rej p801 (x, T)dx , (9) 
all x 

within sample 

so we need only consider Paa(x, t') in any subsequent 
analysis. 

Then, by employing the transformation 

p 801 (x, t')=exp[+(iyH0 +T21)t']p801 (x, t'), (10) 

Eq. (Be) becomes 

ap8c,(X, t') . ( ') 
at' = - z ygxp801 x, t 

+ Da 2pll0 (x, t') Da[F(x)pll .. (x, t')] (ll) 
ax2 - ax 

By using the simplifying transformation of Eq. (10) in 
our following discussion and examples, we assume that 
the relaxation rate T21 is constant throughout each spa­
tially homogeneous region. In the consideration of more 
complex models, this may be undesirable, but we note 
that the explicit inclusion of spatially varying relaxation 
rates in the numerical approach does not create any dif­
ficulties. We may now display the theoretical frame­
work in terms of the natural dimensionless variables 
applicable in this bounded problem. 8 If we measure dis­
tance in units of a, where a is the width of the entire 
sample in the x direction (i.e., 0 s xs 1), then the other 
intrinsic dimensionless variables are t=t'a2/D 0, a 
=yga3/D0, and/(x)==aF(x), with D0 being one of the Dk 
(e.g., the diffusion coefficient of water Dw) chosen ar­
bitrarily and utilized only to properly scale these quan­
tities. Equation (11) can now be written for the kth re­
gion in our model as 

ap80 (x, t) . ( t) 
at = - tC1XPsa x, 

D:a2p8 .. (x, t) D:a[f(x)p8a(x, t)] (l2) 
+ ax2 - ax ' 

where Dt == Dk/D0. 

J. Chem. Phys., Vol. 72, No. 2, 15 January 1980 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

G. P. Zientara and J. H. Freed: Spin echoes for diffusion 1287 

B. Finite difference method 

We can reformulate the spatial portion of the diffusion 
operator r. in FD terms using the analogous forms 1 7• 19 

a2p8,.(x, t) I _ PaaU + 1, t) - 2p8,.(l, t) + Ppa(l -1, t) (l3a) 
ax2 (t.x)2 ' 

%1 

:x [J(x)Paa(x, t)] k 
J(l + l)p8"'(l + 1) -f(Z - l)p8a(Z -1) 

- 2t.x 
(13b) 

with the FD nodal distance x 1 = lt.x. 20 Also, t.x = x 1• 1 

- x 1, l is the nodal index, and we have used the short­
hand notation, for example, Paa(x 1, t) - p8a(l, t) to denote 
the FD nodal value of a quantity. In the FD form, we 
can rewrite Eq. (12) in terms of the vector Paa with ele­
ments p8,.(l, t) for l= 1 to N, with N being the total num­
ber of nodes or FD spatial divisions. 

The Hamiltonian superoperator and diffusion operator 
correspondingly become matrix operators which operate 
on Pa0t• In order to describe the elements of these ma­
trices when x space may contain regions with different 
physical properties, we have chosen an example shown 
in Fig. 1. This is a case with one interface (now an in­
terfacial node) and two regions, in which the spin-bear­
ing species exhibits diffusion coefficients of D1 and Du, 
respectively. A difference in the solubility of the spe­
cies in region II relative to region I is simulated by us­
ing a potential energy U(x) in region II (while that for 
region I is taken as the arbitrary zero). Using a step­
function form for U(x), i.e., 

lo , 
U(x) == . U' (14a) 

the dimensionless force is then 

f(x)= _=-.!._ aU(x) = -15(x -x1)U, 
k 8 T ax k 8 T 

(14b) 

where k 8 is Boltzmann's constant and T is the tempera­
ture. In FD terms with the Kronecker delta replacing 
the Dirac delta function, we then have 

\refle:ting 

Region I 

[D1] 

i-2 

wal I boundaries 

Region II 

[Du, u] 

interface 
---___) at x i 

6x 6x ---------------
[i-.i] (i+.i] 

i-1 2 i 2 i+1 i+2 N 

FD nodal index -
( 1 through N) 

(14c) 

FIG. 1. A bounded, two region model system with a single 
interface. The FD nodes near the interface are indicated. 

3 

2 

,,..,.,.,,,..,,,,,...,,...,.,.,,.. 
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FIG. 2. Chemical potential of a membrane t.14emlk 8 T calculated 
from actual numerical results of systems in equilibrium ver-
sus the program input parameter S (solid curve). The dashed 
line represents the approximation t.~m/k 8 T ~ S. 

where the interface is located at the ith node. This 
method of simulating a membrane utilizing an energy 
barrier was proposed by Danielli21 (who also applied a 
similar energy barrier approach to model jump diffusion 
between locations in the sample where diffusing particles 
encounter an energy minimum). We have found from our 
calculations that it is useful to define a model parame­
ter S=Ut.x/k8 T. The ln(c~iq/c:.~), where qiq and 
c::,m are the equilibrium concentrations of the solute in 
the outer liquid medium and membrane, respectively, is 
found to be a simple function of S (i.e., the logarithm 
depends upon U and t.x only via their product). We now 
introduce the (standard state) membrane chemical po­
tential from equilibrium considerations by 

(15a} 

where 

(15b) 

and the partition coefficient is 

(15c} 

We show in Fig. 2 the relationship between S and t.µ!em 
calculated from the equilibrium concentrations. For 
small enough S, the two are equal as one might expect, 
but for S > 0. 5 they deviate. This is due to the effect of 
the interface of finite but small thickness t.x in our FD 
approach. (It is straightforward from our analysis to 
model interfaces of finite thickness in more detail than 
that employed here.) 

As we see in Fig. 1, the interface22 lies between re­
gions with differing diffusional characteristics. Equa­
tions (13)-(15) must reflect this feature when trans­
forming from continuous to FD on x. utilizing fluxes 
calculated at x1 ± t.x/2 (referred to as the i ± ½ nodes in 
FD notation19), we can use a form similar to Eq. {13a): 

J. Chem. Phys., Vol. 72, No. 2, 15 January 1980 
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[
Dr + Dn] ( • ) [ Dn ] ( • 1 ) - (Ax)2 Peo. z, t + (Ax)2 Peo. z + ' t ' (16) 

where the central difference form of each derivative is 
always used. For example, 

af(x) / _ f(l + 1) -f(Z) . 
ax x

1
+cii.xl2) AX 

(17) 

Likewise, for the force terms analogous to Eq. (13b), 
we will use 

{
a [Df(x)p 8o.(x, t) ]}. I _ __!_ In f ( + Ax) ( . + Ax t) 

ax x. Ax L n xi 2 Peo. \x, 2 ' 
' 

(18) 

noting all terms including f(Z) are zero by virtue of Eq. 
(15) except when l = i. Also used in Eq. (18) is the av­
eraging {for example, 19 f[x 1 + (Ax/2)]= [f(i + 1) +f(i)l/2} 
needed to describe the derivative of nodal quantities. 
The result of Eq. (18) can also be obtained from con­
siderations of the conservation of total probability (or 
concentration) (provided there are no "sink" terms in­
cluded in the model). 

The FD form of Eq. (12) utilizing matrix operators is 

p=[-iO+W]p, (19) 

with the nodal index ranging as 1 -s Z -s N, so the vector 
p is given by 

p= 

Paa(l, t) 

Pso.(2, t) 

(20) 

Similar to past studies 17 employing numerical solutions 
of the SLE, the quantum mechanical operators will be 
included inn with all pure diffusive terms in W, the 
"transition" matrix. 23 For this problem, AtW1, 1,.1 rep­
resents approximately the probability of a particle jump­
ing from the region immediately surrounding the (Z ± l)th 
node into the region near the Zth node over a span of time 
equal to At. The quantity 1 + AtW1, 1 consequently speci­
fies the probability that the particle originally near the 
Zth node will be found there after At has passed. 24 Con­
servation of total probability may then be expressed by 

LW1,k=0, for all Z. 
k 

(21) 

This may be rewritten in terms of the discussion above, 
assuming only W 1, 1 and W 1, 1,o1 are·nonzero as 

(22) 

or there is unit probability of a particle near the Zth 
node being present at some location after At. Equation 
(19) represents a supermatrix17 construction applicable 
to arbitrary sized basis sets (i.e., any number of den­
sity matrix elements) with straightforward modifica­
tions. From Eq. (12), the elements of n are given by 

(23) 

and are unaffected by the variation in regional diffusive 
properties. These latter effects are found in W, which 
for the case shown in Fig. 1 is, by virtue of Eqs. 
(13)-(18), 

W1, 1 =-2/(Ax)2 , 

Wz, 1±1 = 1/(Ax)2 

for Z < i except for 

W1, 1 = - l/(Ax)2 , 

W1-1,1 = 1/(Ax)2 - f(i)/2Ax . 

The elements for the interfacial node are 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

W1 , 1 = - (1 + D;'1)/(Ax)2 + (1 - Di1)f(i)/2Ax , (24f) 

W1 , 1• 1 = Di1/(Ax)2 , (24g) 

where Dir= Dul D1 • The elements specifying region II 
are 

WI, 1 = - 2Dir/(Ax)2 , 

wl,1±1 =Dir/(Ax)2 

for Z > i except for 

W;.1,1 = Di1/(Ax)2 + f(i)/2Ax , 

WN,N= -D;'1/(Ax) 2
• 

(24h) 

(24i) 

(24j) 

(24k) 

In order to emphasize the broad range of biophysical 
problems for which this numerical method of analysis is 
applicable, we can also insert terms which simulate 
"facilitated" diffusion pathways. 25 Such phenomena can 
be included via adding the matrix K to the operators of 
Eq. (19). For example, if particles were transported 
from around node j to node Z by some process that could 
be described by the first order rate law 

-dp8o.(j, t) _ dp8o.U, t) -k ( • t) 
dt - dt - Pao. J, ' (25) 

then K would contain all zero-valued matrix elements 
except for the elements 

(26) 

The construction of the W matrix for the two membrane 
(or five region) system under study in Sec. III [see Fig. 
3(a)] follows the logic displayed in simulating the system 
shown in Fig. 1, except that in this more complex case 
four interfaces are necessary and one must account for 
the varying diffusion coefficients in the manner used to 
obtain Eqs. (24). Also, it is important to note that, in­
stead of Eq. (14c), we now have 

J. Chem. Phys., Vol. 72, No. 2, 15 January 1980 
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FiG. 3. (a) A bounded five region modelsystem including in­
ner and outer liquid media on either side of a membrane having 
a diffusion coefficient Dmem and solubility factor S. (b) A typi­
cal calculated concentration profile of the system in Fig. 3(a) 
where the spin-bearing species is less soluble in the membrane. 
In this specific example, t.,4.,m/kBT= 0. 40, N"' 50, and inter­
faces are shown at i =' 15, 20, 30, and 35. 

f(l)= 

l

+(U/kBT)o,,1, 

if the membrane is to the left of the interface, 

-(U/kBT}6 1,i, 

if the membrane is to the right, as in Fig. 1, 

(27) 

and the value of (U/kBT) may be different for each mem­
brane. In the case pictured in Fig. 3(a), membranes 
are simulated by regions of space having unique diffu­
sive properties and bounded by two permeable inter­
faces. Continuous diffusion through the membranes is 
assumed, while modifications due to facilitated trans­
port can be made via Eq. (26) if desired, but are ignored 
in this elementary demonstration of the numerical 
method. 

C. The double step procedure 

From Eqs. (23)-(27), one is able to construct the 
proper matrix equation (19) for the heterogeneous model 
being studied. However, the solution of Eq. (19) as a 
function of time is not computationally straightforward. 
Solutions of the SLE applied in other studies have uti­
lized Laplace transform methods17 or diagonalization 
methods18 <a> to treat the time dependence. The Laplace 
transform technique is limited, since its main advantage 

lies in the calculation of only the t- 00 results, while 
diagonalization methods are conceptually simple but 
computationally demanding due to the requirement of the 
complete storage of all the eigenvalues and eigenvectors. 
An approximate iterative scheme, the "double step" 
method, has been developed26a to solve the SLE in the 
time domain for arbitrary sized spin-basis sets. 

The double step method involves the use of a FD de­
scription of the spatial variable(s); thus, the problem 
may be expressed in the form of Eq. (19). This has 
the formal solution 

p(t) = exp[ - int+ Wt]p(O) , (28) 

which does not directly lead to a practical method of 
solution. However, over a short enough time span (t..t), 
the nodal values in p do not vary appreciably from the 
internodal diffusion. During t.t, though, the values of 
spin-density matrix elements at each node will evolve 
due to the quantum mechanical interactions in Eq. (19). 
Therefore, on a very short time scale, the quantum and 
diffusion operators commute approximately and their 
effects may be separated. This can be more rigorously 
specified by the expansion of Eq. (28) to O[(t..t)2]: 

p(t. t) ~ [ 1 + (- i'2 + W)t..t + ½(- iO + W)2(t..t)2] p(0) , (29) 

which can be partially reformed as 

p(t+t.t)~e-lOAt[l +Wt.t]p(t), (30a) 

where we have indicated the variation in p over any t.t 
interval and recognizing in Eq. (30a) that the omitted 
terms of O[(t..t)~ are 

Error{O[(t..t) 2]}={-i[w,n]+WW}(~t)
2

. (30b) 

Equations (30) are eminently suitable for numerical 
computation as a two step procedure for each t:.t inter­
val in time: 

p*(t + t.t) = [1 + Wt.t]p(t) , 

p(t + t.t) = T-1 e-mdA 1Tp*(t + t.t) , 

(31a) 

(31b) 

where '1d=TnT·1 may be solved for once and only in­
volves N (N = total number of nodes) diagonalizations of 
L2 XL 2 (L=total number of spin states) symmetric ma­
trices, each of which is a partitioned, uncoupled sub­
matrix along the diagonal of n. 26

b p(t) contains the known 
values of the spin-density matrix element nodal values 
either previously calculated or supplied in a defined ini­
tial condition p(0). Equations (30) and (31) are not 
unique,. and the reverse order of the operations, or an 
average of Eq. (30) and its analog with the reordered 
operations, can be utilized, but we have found Eq. (30) 
sufficient for the present problem. 

The suitability of using Eqs. (31) in the solution of the 
SLE lies in the relatively small amount of information 
required to be in high-speed core during each t:.t step 
and peripheral storage of results not immediately needed 
is possible. This allows the time dependent solutions of 
the SLE on small-core computers even if large spin 
basis sets are considered. 27 Equation (31a), which is 
written as an explicit19 solution of the diffusion equation, 
requires :S 5N storage locations during computation while 
Eq. (31b) requires only about L2(L 2 +3) locations. 

J. Chem. Phys., Vol. 72, No. 2, 15 January 1980 
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The previous discussion emphasizes the applicability 
of the double step method to the general solution of the 
time dependent SLE. Because of Eq. (8), only one spin­
density matrix element will be considered for the pres -
ent spin-echo simulations. Equation (31b) then simpli­
fies since n is originally diagonal, as given by Eq. (23). 
Starting with a known initial condition Paa(0), one can 
iteratively perform the steps of Eqs. (31) until T, the 
time of the JT pulse, is reached. Then the instantaneous 
JT pulse is simulated by the operation 

Re[p8a(T, after 7T pulse)] 

= - Re[p8a( T, before JT pulse)] , (32) 

after which Eqs. (31) can be used to iteratively step 
through time until T=2 when, analogous to Eq. (9), the 
echo amplitude can be calculated in FD terms by 

N 

F(2'f) =LI Re[p8a(l, 2T)] I AX . (33) 
1=1 

The numerical scheme in Eqs. (31)-(33) is the same 
as that used earlier for the case of bounded homogeneous 
diffusion by WayneHb> although derived by alternate 
arguments. We can improve upon the accuracy of the 
explicit diffusion equation solution (31a) by substituting 
the unconditionally stable implicit Crank-Nicolson pro­
cedure. 19 The new form of the diffusion step in t:,.t then 
is 

p*(t+t:,.t)=[1-½Wt:,.tJ1[1+½WM]p(t), (34) 

which we have used. The requirement of the matrix in­
version in Eq. (34) is not found to be time or storage 
consuming since [1 - ½w1::,.t] is tridiagonal and efficient 
inversion methods are known. 28 

Ill. RESULTS 

The analytic results of Robertson8 for the spin-echo 
amplitudes obtained using a steady gradient (JT/2)-JT­
pulse sequence for spins diffusing in a homogeneous, 
bounded medium served as an initial determination of 
the accuracy of numerical results. Simulating the case 
Robertson studied where we used N ~ 50 and t:,.t :s 10-4, 

we reproduced his values of the echo amplitude versus 
2T to within 0.1% error with computations done on a 
PDP 11/34 minicomputer. 

Computations were performed using (1) the explicit 
FD scheme of Eq. (31a); (2) the Crank-Nicolson FD 
scheme of Eq. (34); (3) reversed order of steps, i.e., 
(I) Eq. (31b) then (II) Eq. (31a); (4) reversed order of 
steps, i.e., (I) Eq. (31b) then (II) Eq. (34); and (5) av­
eraging of test number 2 and 4 results for each t:,.t. In 
each test case, identical results were obtained to within 
0.1% deviation. Also, checks were run on systems con­
taining membranes to guarantee that no artifacts of the 
calculation appeared in the results for the echo ampli­
tudes. Membranes were shifted in position along the 
x axis in one test (but their size and physical proper­
ties kept constant) and in another case constant terms 
were added to the magnetic field. Neither perturbation 
caused significant deviations in the echo amplitudes, as 
expected. This indicates the accuracy of the double step 
method when applied to the solution of the SLE. 
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FIG. 4. La[F(2T)] calculated for the model system of Fig. 3 
versus 2T for various values of t:,.µ~~n/kBT as listed. Additional 
imput includes T21 = 0, °' = 1, Dmen/D 11q = 1/4, N = 50, t:,.t = 10"4, 

with an equilibrium initial condition. Interfaces are located 
at i = 15, 20, 30, and 35. Results in (a) refer to systems 
where the equilibrium spin concentration in the membrane 
(C:..,) is greater than or equal to that in the other media (Ct1q). 
Results in (b) refer to cases where C\'?q 2: C::Om- The dashed 
line in (a) and (b) displays the echo decay when there are no 
membranes present. 

As mentioned above, we have studied in detail the case 
pictured in Fig. 3(a) which includes, in a simple exam­
ple, all of the aspects of a heterogeneous system dis­
cussed in Sec. II ( with facilitated transport neglected) 
and cannot be treated by analytic mathematical methods. 
Also included in the example studied was a variable ini­
tial condition. Figure 4 exhibits the logarithm of the 
spin-echo amplitude versus 2T starting with the equilib­
rium system concentrations. In these cases, the pure 
diffusion of the spin-bearing particles (with the magnetic 
field off) is computed until equilibrium is attained (here 
about 0.1 to 0. 5 time units), at which time (set as t= 0) 
the spin-echo experiment is simulated. The equilibrium 
concentration profile of our example for one typical value 
of Sis seen in Fig. 3(b). Other profiles vary similarly 
and can be generated by the information given in Fig. 2. 
Figure 5 shows the simulated results for a spin-echo 
experiment where the solute was initially constrained to 
be within the inner medium of Fig. 3(a). 29 

The results in Figs. 4 and 5 are shown to vary with 
t:,.µ!em/k 8 T (or S) as one might predict. The functional 
dependence of the echo amplitude on time, as seen in 
Fig. 4, is significantly different in the cases where 
membranes are present than when they are absent (Fig. 
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4 dashed curve), since the spin-bearing molecules in 
the sample reveal the effects of movement in regions of 
different diffusivity. This is true even if membrane 
solubility effects are ignored, i.e., when µ~em/kBT 
= 0. 0. We show in Fig. 6 the effect of the variation of 
Dmem/D11q on ln[F(2T) ], utilizing an equilibrium initial 
condition of solute particles and a value of tlµ~em/kBT 

= 0. 4 (i.e., Cu.lCmem = 1. 5). 

Figure 5 exhibits the results for echo amplitudes ob­
tained when the spin-bearing species was initially uni­
formly concentrated between (but not in) the two mem­
branes. Since it takes, for the system parameters used 
in this study, until t= 0.1 or 0. 2 to attain the equilib­
rium distribution, the curves of Fig. 5 resemble those 
of Fig. 4 except that they are displaced along the time 
axis. 

The echo amplitudes obtained using other pulse se­
quences (i.e., Carr-Purcell4 type experiments) or 
utilizing pulsed gradients 5 have been obtained by us 30 by 
applying our numerical method with straightforward 
modifications. 

IV. CONCLUSIONS 

A numerical method for the calculation of NMR spin­
echo amplitudes in heterogeneous, bounded media has 
been presented. This double step method is discussed 

2c-
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FIG. 5. Ln(F(2T)] calculated for the model system of Fig. 3 
versus 2T for several values of A~/kBT as noted. Additional 
program input includes T21 =0, a= 1, D_,,,/D110 = 1/4, N = 50, 
At= 10-4

, with a membrane enclosed initial condition (i. e. , all 
spins in the inner medium of Fig. 3). Interfaces are located at 
i = 15, 20, 30, and 35. Results given for (a) systems with 
Crf0 sc:.., and (b) (b) Ct\sc~m-

i 
-0002 in [F(2r-)] 
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FIG. 6. Ln[F(2T)] calculated for the model system of Fig. 3 
versus 2T for various values of Dmem1Du0 as listed. Additional 
input includes T21 = 0, a= 1, N = 50, At= 10-4 , A~m/k 5 T = 0. 4, 
and an equilibrium initial condition. Interfaces are located 
at i=15, 20, 30, and 35. 

in general terms as a computationally viable scheme for 
the solution of the time -dependent SLE. Within this FD 
format, the inclusion of spatial regions with different 
physical properties in a system is accomplished by a de­
tailed FD analysis leading to the appropriate transition 
matrix elements. These matrix elements include the 
effects of a spatially varying diffusion coefficient and 
solubility, arising from the use of an interface separat­
ing regions with different intrinsic chemical potential 
Aµ~em· 

It is clear in the light of the study by Tanner15 that 
significant difficulties arise in the attempt to derive use­
ful physical data from spin-echo results from hetero­
geneous systems. The pathway suggested by earlier 
studies 7•12 •15 concentrates on the fitting of the logarithm 
of amplitude values to a formula linear in D [or D(t)]. 
However, the relationship of such a D(t) to a specific 
microscopic model is not at all clear in general (and 
may not even be unique). Thus, it is important to ex­
plicitly relate an appropriate microscopic model to the 
observations, and this is made feasible by our approach. 

The direct simulation method described by this study 
will also present difficulties in an analysis of experi­
mental data. However, as discussed in Sec. I, if the 
experiments are run under controlled biological and 
physical circumstances, and all relevant known infor­
mation about the system is inserted in the analysis, then 
the numerical modeling approach outlined above could 
prove to be a useful probe of the microscopic effects 
influencing the observed spin-echo results, such as 
membrane studies in heterogeneous but structured sys -
terns. 
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