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The numerical methods of Zientara and Freed [J. Phys. Chem. 83, 3333 (1979)] have been used to study the 
diffusion-controlled kinetics of domain coalescence in order to ultimately consider the time evolution of 
protein folding. The mean coalescence lifetime for a domain pair has been calculated using the eigenfunction 
expansion method and finite differences in the solution of a modified form of the Smoluchowski equation. 
This approach allows for an orientational preference in the domain coalescence process, which has been 
studied throughout the complete range of reactivities. Three cases of interdomain forces were investigated, 
one of which represents the shielding of charged domains by ions in solution. As the forces vary from the 
strongly repulsive to the strongly attractive in these cases, the coalescence lifetime decreases by several orders 
of magnitude. In addition, a hydration shell model, which provides an activation barrier to coalescence, has 
been analyzed. The lifetimes resulting from this model were observed to depend strongly on the location and 
extent of the hydration shell. Anisotropic initial conditions were also incorporated causing, in some cases, non­
negligible effects upon the coalescence lifetimes. 

I. INTRODUCTION 

Karplus and Weaver1 have recently suggested a model 
of protein microdomain coalescence based on a diffusion­
controlled kinetic treatment of the microdomain motion 
in a liquid solvent to explain the dynamics of the protein 
folding process. Protein folding processes have gen­
erated a considerable number of studies in the past. 2 

The term "protein folding" is used to denote the process 
of conversion of a randomly coiled polypeptide chain into 
the unique three-dimensional conformation of the native 
protein. 2 In the "diffusion-collision" model of Karplus 
and Weaver, the protein molecule is divided into several 
independent microdomains that must diffuse together 
and collide in order to coalesce into a structural entity 
with the native conformation. The entire folding process 
would then involve a series of such diffusion-collision 
steps. 

The concept of nucleation in one or several limited 
regions of the polypeptide chain has been suggested by 
many authors. 3 Nucleation is thought to involve portions 
of the chain that are near each other in sequence. A 
subsequent growth and/or coalescence of these regions 
into larger units during later stages of the folding pro­
cess leads ultimately to the folded protein. 3 Theoretical 
arguments propose that not all of conformational space is 
sampled in a statistical mechanical sense by the molecule 
during the folding of the polypeptide chain, as this would 
require too much time. 4 (Fully random sampling for a 
protein of 150 amino acids would require 1026 years or 
more, 2 while proteins folding in vivo during synthesis 
or in vitro during renaturation require folding times on 
the order of seconds or minutes.)5 Experimental evi-
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dence6 supports the theory that protein folding is not a 
random process and suggests that certain intermediate 
conformations are favored during protein folding. The 
existence of distinct structural domains within the folded 
states of many large ·proteins, 7 as determined by x-ray 
crystallography, also lends credence to the concept of a 
directed pathway of folding. 

Karplus and Weaver have applied arguments of diffu­
sion-controlled kinetics to derive the basic equations 
for the time dependence of the coalescence of two diffus­
ing spherically symmetric microdomains. They em­
phasize this as an elementary step in the diffusion-colli­
sion-coalescence model of protein folding. The diffu­
sive character of the microdomains (referred to here­
after as "domains") emerged from an analysis of mo­
lecular dynamics protein studies8-

10 and is related to 
similar diffusional studies of polymer chain segments. 11 

Clearly, the aggregation of segments of the polypeptide 
chain that have already undergone a transition from 
random-coil to native or near-native structures can be 
described by diffusion-controlled kinetics12 if the do­
mains move independently in the solvent. 

Incorporating the effects of a connecting chain with a 
finite size, charged domains, domains with preferred 
coalescence sites, and an anisotropic initial domain 
pair distribution leads to complications beyond the scope 
of the solutions available from analytical mathematical 
treatments. Theoretical and computational exploration 
of time-dependent protein and polymer chain processes 
employing either molecular dynamics8

•
9

•
13 or stochastic 

dynamics methods14 reveal correlations of chain seg­
ments and short time scale (i.e., nanosecond) behavior. 
It is not computationally feasible, however, to use these 
methods to generate the entire time evolution of a pro­
tein's native tertiary structure from an initially unfolded 
state. 
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FIG. 1. Schematic diagram of two spherical domains situated 
along a flexible chain with one domain exhibiting an angular de­
pendence in its reactivity about a preferred axis. 

In this work we include in a diffusion-controlled ki­
netic analysis of domain coalescence the orientation de­
pendence of the protein domains' reactivity and allow for 
complex interactions between these domains. The solu­
tion of the resulting problem is accomplished by the use 
of the numerical methods of Zientara and Freed, 15 

modified to obtain the mean lifetimes of an uncoalesced 
pair of domains (i.e. , _the mean coalesce nee time). 
This approach uses both the eigenfunction expansion 
method and finite differences in the solution of a modi­
fied form of the Smoluchowski equation. 16 This allows 
us to easily treat anisotropic domain properties in an 
orientation dependent diffusion-controlled reaction 
scheme by including both translational and rotational 
diffusion. 11

- 21 

The theoretical details of this treatment appear in 
Sec. II. A discussion of the numerical methods used 
may be found in Sec. III. The effects of several types 
of domain-domain interactions on the mean coalescence 
time are analyzed in Sec. IV. In particular, a hydration 
shell model22

•
23 is discussed in that section. A discus­

sion follows in Sec. V. 

II. THEORETICAL DETAILS 

We begin with a general form of the Smoluchowski 
equation16 modified to include the effects of domain rota­
tion and a spatially dependent sink within the two-do­
main model system: 

aP(r o t) 
' ' =[V 0 D 0 V +V ·R 0 V ]P(r (l t) at .. .. o o ' ' 

1 
+ kBT V., 0 D • [P(r, 0, t)V.,U(r, O)] 

1 
+ kBT Vo· R • [P(r, 0, t)VgU(r, o)] +K(r,O)P(r, 0,t), (1) 

where P(r, 0, t) is the time and spatial dependent prob­
ability that one domain exists separated from another 
and oriented relative to it. K(r, O) is an orientation de­
pendent reaction operator that will be used to model the 
loss of encountering domains attributed to the coalescence 
process" D is the relative translational diffusion tensor, 
R is the rotational diffusion tensor, and U(r, O) is the 
potential energy affecting the rotational and relative 

translational diffusion. 

The physical characteristics of the hypothetical pro­
tein domain system examined in this study follow closely 
from the two-particle orientation-dependent simulation 
of Zientara and Freed. 15 Figure 1 is a pictorial repre­
sentation of the protein domain pair, whose mutual sep­
aration and relative orientation as a function of time are 
of interest. Each domain represents a region of local 
structure in the polypetide chain, that is, a contiguous 
section of the polypeptide chain that has adopted the 
same or similar local conformation as in the native 
state of the protein. These domains or nucleation cen­
ters for folding might be expected to involve such sub­
structures as a-helices, 24 /3-pleated sheets, 25 or hydro­
phobic cores. 26 (Compact domains in protein structures 
have recently been defined by Wodak and Janin27 purely 
on the basis of surface area criteria.) In the actual 
protein, several nucleation sites might form in different 
parts of the polypeptide chain. The results obtained in 
this work reveal the mean observable time necessary for 
a pair of these domains to aggregate and form a larger 
coalesced region, which may either proceed to disag­
gregate or remain coalesced to become one permanent 
part of the protein's native tertiary structure. 

For convenience in this effort to explore the simplest 
effects of domain-domain orientations and interactions, 
we assume in Eq. (1) that both domains can be described 
as spheres with hydrodynamic radii ra and rb located at 
two points along a flexible chain. This flexible chain 
represents the intervening polypeptide chain that con­
nects the two domains. The spheres (i.e., domains) lo­
cated along this chain translate independently in a solvent 
medium under the constraint of a maximum allowable 
separation. The motion of the domains is described by 
Brownian diffusion in three dimensions. At this step in 
our analysis we also choose to describe O dependent dif­
fusion processes neglecting the effects of an intervening 
chain of finite size. Domain a is assumed to have 
spherically symmetric chemical properties and is chosen 
as the origin of the coordinate system within which rela -
ti ve translational diffusion will be represented. Domain 
b, whose orientation is specified by Euler angles, n, 
and whose rotation is governed by the diffusion tensor, 
R, will now, for simplicity, be assumed to have a single 
preferred axis, e. Therefore, one angle, 0, as seen in 
Fig. 1, is sufficient to account for the relevant orienta­
tion dependent domain interactions. This angle 0 is the 
angle created by the intersection of e and the interdo­
main vector, r, which is the axis connecting the domain 
centers. Also, we shall let U(r, O) = U(r) and K(r, O) 
=K(r, 0) where r= Ir I and D- 01, and R- R 1 for sim­
plicity. Suppressing all notation of cp in the following 
(its presence need only be included in later normaliza­
tion factors), we can rewrite Eq. (1) to more explicitly 
define our model: 

aP(r, 0, t) = D ~ (r2 aP(r, e, t)) 
at ?ar ar 

+ (D/~ +R) ~ sine aP(r, 0, t) +-1-
sm0 a0 a0 kBT 

x [? !r (r 2P(r, e, t) a~;r))] +K(r, 0)P(r, e, t), (2) 
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with the reflecting wall boundary conditions, 

aP(~e, t) I = aP(~e, t) I =O , 
r=d r-rN 

(3) 

which simulate the effect of having the domains linked by 
an intervening chain such that the distance of closest ap­
proach is d =ra +rb and the greatest allowed separation 
is specified as rN. These distance parameters d and rN 

correspond to the distances a and b, respectively, 
utilized by earlier studies. Our analysis differs from 
that of others1

•
28 in our use of the boundary conditions 

[Eq. (3)], functionally complicated force terms, and the 
spatially dependent reaction sink term K(r, B)p(r, 0, t) to 
simulate coalescence. This operator K(r, 0) also will 
be allowed to promote the formation of coalesced do­
mains over a finite, but usually small, region of space. 
This more realistic 15

•
29 reaction representation is an 

improvement over the mathematically simpler domain 
contact forms required by analytical approaches. The 
relationship between the kinetic parameters used in our 
approach and those of Karplus and Weaver, who em­
ployed a Collins and Kimball30 type partially absorbing 
inner boundary condition, has been discussed29

• 
31 pre­

viously and will be emphasized in the comparisons of 
results in Sec. III. 32 The coefficient (D/r 2 +R) of the 
second term on the right-hand side of Eq. (2) demon­
strates that a variation in 0 can come about by the inde­
pendent effects of translational motion (through the D Ir 2 

term) and by rotation of domain b, hence the R term. 29 

The detailed derivation of these terms is given by Zien­
tara and Freed, 15 who also point out the dimensionless 
ratio of interest, 

Rd 2 /D=3r4 d/4Ksd, (4) 

which results from the Stokes-Einstein definitions, 

(5a) 

R= kB[ 
81r17rbKs 

(5b) 

since D=Da +Db. Here, 71 is the bulk solvent viscosity, 
Ks is a correction factor, which allows for the "rotation­
al slip" of domain b, kB is Boltzmann's constant, and T 
is the temperature. 

An important question in any study involving the time­
dependent orientational fluctuations of protein domains 
is whether both the translational and rotational por-
tions of the second term of the right-hand side of Eq. (2) 
participate to the same degree in causing the relaxation 
of orientational preferences of the domains. Clearly, 
in physical systems of nonlinked diffusing particles15 

chemical effects due to rotational encounter mechanisms 
may be significant. These rotational chemical pathways 
may exert an influence on either the reactive 15, 17"21 or 
quantum 15 aspects (or both) of certain diffusion-controlled 
systems. Referring to the protein model exhibited in 
Fig. 1, the assumed free-particle-like translational dif­
fusion of each domain is rationalized by neglecting the 
finite bulk and rigidity of the intervening "chain," ac­
tually composed of amino acid residues. This funda­
mental protein backbone together with the side chains of 
the amino acids can also sterically inhibit translation 

by interdomain blocking intrusions. Indeed, the dis­
crete nature of the protein segments separating domains 
may, for certain biochemical systems, possibly over­
come simple diffusive stochastic behavior. However, 
we shall make the same assumption in this study as did 
Karplus and Weaver, 1 that is, the intervening polypep­
tide chain is unlikely to hinder the free translational dif­
fusion of the domains. Effects of the connecting chain 
would be expected to become less significant as the 
length of the chain increases. 

On the other hand, the completely free spherically 
symmetric rotational diffusion of any linked protein do­
main can be dismissed from consideration on intuitive 
grounds. In consideration of an intervening chain com­
posed of discrete links rather than one resembling a 
flexible string, one may conjecture that an asymmetric 
(i.e. , wobbling) rotation of the domain takes place about 
an axis formed by the adjacent rigid link of the inter­
connecting chain. This motion might exploit the do­
main's available rotational degree of freedom due to the 
single covalent bond linking the domain to the remaining 
protein segments. We shall ignore this possibility and 
assume in our numerical tests that the constraint of 
being located within the protein chain completely re­
stricts the rotational character of domain b. 33 In this 
initial computational effort, therefore, we assume that 
the changes in relative orientation of the domain pair 
evolve solely through translational diffusion of the do­
mains. This mechanism for protein microdomain coal­
alescence is exhibited in Fig. 2. 

Further simplifications of Eq. (2) can be attained 
first by the change of variable P(r, 0, t) =rP(r, 0, t) and 
then by multiplication of both sides of the equation by 
the scaling factor d2/D. The result of these changes is 
a new equation that includes dimensionless forms for all 
quantities: y = r/ d, T = tD/ d2

, and K(y, 0) =K(r, 0)d2 /D. 

For computational ease we will perform all of our cal­
culations after first applying the Laplace transform (to 
avoid the restriction of an iterative numerical scheme 
later), and employing the new probability variable, 

P(y, 0, a)= Iaoo e•crT P(y, 0, r)dT. (6) 

In some of our analyses the domain system steady-state 
limit will be required. If necessary, it may be easily 
found from the r- 00 or a- 0 probability values. 29 A 
small but finite a< 10·10 usually suffices in these limiting 
cases. 34 As we shall note in the following, the calcula­
tion of the mean lifetimes of uncoalesced domains in dif­
ferent systems requires the use of any 1 ;:?. a> 10·10

• 

The potential energy term in Eq. (2) will be treated 
as in earlier studies. 29 •

35 That is, we shall define the 
resulting force exerted by the domains on each other as 

F(r) = __ 1_ BU(r) 
kBT l7r ' 

(7) 

where the dimensionless forms are: F(y) =dF(r) = 

=F(y )/y and U(y) = U(r)/kBT. The force is defined such 
that F(y) >0 describes a force causing an increase in the 
radial separation of the two domains. Consistent with 
this then, U(y) >0 represents the interdomain repulsive 
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FIG. 2, Specific steps of the orientation dependent microdo­
main coalescence process as assumed in this study. (a) The 
protein domains are located at some initial separation. These 
domains result from the formation of near native conformations 
among nearby residues along the polypeptide chain. (b) Diffu­
sion proceeds, affecting the domains, the intervening chain, 
and end chains. The domains approach, interact, and collide, 
possibly in a reactively unfavorable orientation. (c) The do­
mains separate, diffusing apart while extending the intervening 
chain and simultaneously reorienting. (d) The domains ap­
proach, interact, and, in this example, collide in a reactively 
favorable orientation. (e) the coalescence product, a temporary 
or possibly permanent portion of the protein's native tertiary 
structure, is formed. In subsequent steps, this newly formed 
coalescence product may associate with a domain at another lo­
cation along the polypeptide chain, coalesce, and result in the 
unique three-dimensional conformation of the native protein. 

effects while U(y) < 0 represents attraction. 

These modifications allow us to rewrite Eq. (2) in a 
form readily inserted into the numerical scheme. 

o-P(y 0 o-)-P(y 0 O)= fi'f,(y, 9,0-) 
' ' ' ' ayZ 

O'p(Ll(y 0-)-p<L>(y <1)= a2plL>(y,o-) 
' ' ay2 

(}. Rd2) A, 1 8 A A 

+\y,-+J:J L(L+l)pL>(y,a)-y ~[p<L>(y,o-)F(y)] 

+ (1/y
2

_+Rd
2
/D) _!_ /sin0 8P(y, 0, o-))-(_!_) _!_ 

sm0 80 \' 80 y 8y 

x [P{y,0,o-).F{y)]+K(y,0).P(y,0,o-). (8) 

We shall in our study choose the following first-order 
form to describe simply the orientation effects included 
in the specific reaction rate operator 

(9) 

where we can define for future use the isotropic and 
angular dependent portions as 

K1(y)=(Ko+½Ki)1i(y-l), 

K
11 (y, 0h ½K1(cos0)1i(y·-1) , 

(1Oa) 

(10b) 

which will be employed in simulating domain coalescence 
(Fig. 2) in our numerical analysis. The Dirac delta 
function forms of Eqs. (10) duplicate exactly the contact 
type of reaction used by earlier studies. 1 Although the 
theoretical formulations are similar in this case and 
previous works, the application of these terms in our 
numerical scheme results in a finite extent of reactive 
region due to the spatial discretization of the numerical 
approximations. 

We now expand P(y, 0, <1) in a series of zero rank 
spherical harmonics, Y~(0, cp), according to 

.. 
P(y, 0, o-) = ~ p<L>(y, o-)Yi<0, cp) , 

L,,O 

(11a) 

(11b) 

where the cp variable appears for completeness. The 
expansion in L can usually be truncated15

•36 at a value 
L =Lmu. such that convergence in the system's observed 
results has been obtained. For example, we can then 
write, 

P(y, 0, a)~ (12) 

and perform test calculations to insure that the trunca­
tion error is negligible. This simplifies greatly the 
method of solution of Eq. (8) because the spherical har­
monics form the orthonormal eigenfunctions of the ro­
tational diffusion operator, with eigenvalues equal to 
L(L + 1). We can take advantage of this feature by intro­
ducing in Eq. (8) the P(y, 0, T) and P(y, 0, r) forms 
utilizing the expansion of Eq. (12). Multiplying the re­
sulting equation by Y~(0, cp) and integrating over all 
allowedvaluesof0,O:S0:Srr, andcp, O:Scp:S2rr, yields 
an equation governing the y and a dependence of the 
probability coefficients, 

+ "t p<L'>(y, a) (J. 2
" (" YlK(y, 0)Yl, sin0 d0 dcp) for all L = 0, 1, ... , Lmu 

L'=O O Jo 
(13) 
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where we note the solution of Eq. (13) requires the integrals 

Yl (e, cp)(cosB)Yl, (e, cp) sine dB dcp = [ (2L _ l)(~L + 1) pr2 = L • for L' =L -1 

(L + 1) _ 
=-[(2L+1)(2L+3)]1f2"'L for L' =L + 1 (14a) 

and the orthonormality condition 

J2•1· Yl(e, cp)Y~,(e, cp)sinBdBdcp=oL L' 
0 0 ' 

(14b) 

From Eq. (13) we wish to note the coefficient [i.e., 
p<L>(y, a)] coupling caused by an asymmetric domain's 
"reactivity" or coalescence. The last term of the right­
hand side of Eq. (13) consisting of integrals involving 
the reaction operator, K(y, 8), may possibly couple co­
efficients with L' * L by virtue of Eqs. (10b) and (14a). 
The translational diffusion terms are seen to couple only 
values of the probability coefficients with identical L 
values. The rotational diffusion operator, although cou­
pling only similar L value coefficients, causes the ex­
ponential decay of the nonzero L value coefficients. 
This is the appearance of the origin of the mechanism 
of orientational relaxation in our domain pair system. 
This process will, for example, cause the eventual 
randomization in the orientational distribution of ini­
tially anisotropically oriented domains. Also, it will 
provide the reason for the orientational relaxation of a 
system whose probability 8-profile has become nonuni­
form due to the angular specific coalescence of domains 
during a domain pair encounter. 

The orientational relaxation process can be described 
by the decay of any preferred state of the angular de­
scription of domain-domain location relative to the r 
axis. We can associate this decay with an effective di­
mensionless time parameter15 [cf. Eq. (13)] that is a 
function of interdomain separation: 

(15) 

where the dimensionless rotational correlation time is 

T*-1 = !_ (Rd
2
)-l = ~ K8 d 

R 6 D 9 dr
0 

(16) 

and the dimensionless characteristic time associated 
with a traqslational displacement of (6.y)2 in three-di­
mensional liquids is37 

(17) 

By our arguments above, we will assume a negligible 
rotational contribution to the relaxation mechanism, 
i.e., T~-1 ~0. 

The relevant observable quantities regarding time 
(or a) dependent coalescence yield can be calculated 
using the definition of Eq. (12). Thus, the probability 
that the domain pair in the studied system remains un­
coalesced38 for a given value of er is 

A JYNJ2rfr <P(er) = a<J>(a) = er Y8(e, cp) 
1 0 0 

xfi(y,8,cp,a)ysin8d8dcpdy, (18) 

where the Jacobian entering in Eq. (18) is modified by 
our earlier transform of P- P. The uncoalesced do­
main probability in the steady-state limit can, again, be 
found via (P=lim.,--oa<P(a). We can then define the reaction 
or coalescence product yield via equations analogous to 
Eq. (18), 

and in the steady state, 

ff"=l-CP. 

(19a) 

(19b) 

To obtain the mean lifetime of the uncoalesced domain 
pair within the specific system under study, we will as­
sume that a single decay time, r*, governs the yield, 
a ff"(er), via 

which has the appropriate Laplace inverse, 

ff"(T) = 1 -e-T/T*. (21) 

By definition, 1 •28 the mean lifetime is the first moment 
of the time variation of the product yield 

f ~ (dff"(t)) ( T* d 
2 

) r(mean lifetime)= 
0 

t ~ dt = -jj- . (22) 

In other words, the quantity T* calculated from a numer­
ical solution of Eq. (13) is the required dimensionless 
form of the mean lifetime of uncoalesced domain pairs. 
The inverted form of Eq. (20) will be used in obtaining 
our results, 

T* = [1-0'ff"(er)]/[a 2ff"(a)] . (23) 

Numerical tests were performed for validation purposes 
throughout the er spectrum and ff"(a) was fit to Eq. (20). 
Negligible ( < 1 %) error in T* resulted indicating that the 
assumption of a single system relaxation time is indeed 
applicable in both situations where forces between the 
domains were either absent or present. In Sec. III we 
shall discuss the numerical method utilized in the solu­
tion of Eq. (13) and the calculations leading to the result 
of Eq. (23). In Sec. IV we will present results based 
on calculations of r* from Eq. (23) and ff"(a) values cal­
culated by numerical means. 

Ill. NUMERICAL METHOD 

The solution of Eq. (13) involves additionally a treat­
ment of the remaining domain separation variable y. 
Once values for the coefficients, p<J.>(y, a) [and thus 
P(y, a, 8)] are obtained for some chosen a "..alue, the 
probability of domains within the system, <P(a), can be 
calculated by Eq. (18), ff"(a) via Eq. (19a), and ulti­
mately r* using Eq. (23). The first step in this solution 
leads us to treat they dependence in Eq. (13) by the 

J. Chem. Phys., Vol. 73, No. 10, 15 November 1980 
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method of finite differences (FD). 15
•
29 In implementing 

this method, the independent variable y and the variables 
dependent on y will be specified only at discrete nodes 
(i. e. , node 1 to node N) in space, with the nodal index 
designated through the subscript. For example, the 
spatial nodes (connecting concentric shells of infinitisi­
mal thickness) will be fixed at the distances y 1 where 
1 ::=:: i ::=:: N. The entire region available to the diffusing 
domains consists of an inner region where 1 ::=:: y ::=:: 1 + ll1 

and the remaining diffusion space of 1 + t:.1 ::=:: y ::=:: YN, such 
that 

(24a) 

(24b) 

and 

Yt =l+ll1+(i-2)/l for 2-:Si-:SN, (24c) 

where ll is a fixed chosen FD nodal separation quantity. 
This permits us to specify the extent of the reactive re­
gion (as t::=::y::=::½ll1) where the reactive (i.e., sink) 
terms cause the reduction of the uncoalesced domain 
population. The important model parameter, the great­
est allowed domain center separation, is, from Eq. 
(24c), 

(25) 

Thus, the radial range of the diffusion space excluding 
the finite size of the domains is YN -1 corresponding to 
(b-a)/l of Karplus and Weaver. 1 

Following the nodal specification of the radial sep­
aration variable, we can now write in FD terms the 
dimensionless dependent variables from Eq. (13) as 
p<L>(yi, o-), F(y1 ), and K(y;, e). This notation is further 
simplified by f,<L> (y1, o-)- p<L>(i, o-), F(y1 )- .F(i) and 
K(y1 , e)-K(i, e). The translational diffusion operator, 
which couples the probabilities at two nodes, can be 
written in a FD scheme by using Eq. (24) and the meth­
ods outlined in Refs. 15 and 34. This yields the ele­
ments of the transition matrix, W, which comprise the 
FD analog of the Smoluchowski diffusion operator. The 
elements of the tridiagonal matrix W are: 

W1,1=-2(l+ll1)/(ll1)2-F(2)(l+ll1)/ll1 , (26a) 

W1,2 =2/(6.1)2 -F(l)/ ll1 , (26b) 

W2,1=2/[ll1(1l+ll1)]+F(2)/(ll1 +1l), (26c) 

W: _ 2 [F(3)(l+ll 1+/l)-F(l)] 
2'2-- (ll1ll) - ((l+/l1)(/l1 +1l)] ' (26d) 

W2,3 =2/[ll(ll 1 +t:.)]-F(2)/(ll 1 +ll), (26e) 

and, for 3 ::=:: i-:S (N -1), 

W1 ,1-1 = 1/ ll2 + F(i)/(21l) , (27a) 

w . . = -2/ 6.2 _ [F(i + l)y1.ilY1 -F(i - llY1-1IY1] (27b) 
,,, (2/l) ' 

W1,1.1=1/ll2 -F(i)/(21l), (27c) 

and, finally, 

WN,N-1 =2/ il2 +F(N)/t:., (28a) 

WN,N = - 2(1 - t:./yN )/ ll2 +F(N -1) [(1 - ll/yn)/ ll] ,(28b) 

with all other W1 ,J = 0 for j tc i or i ± 1. Note here for 

ease we have written Eqs. (26)-(28) employing the ac­
tual dimensionless force, F(i), rather than F'(i). 

As in Ref. 15, we can order the probability coeffi­
cients, p<L>(i, O') and construct a supervector 

( 

~(1, o-) 

P(2, o-) 

P(N, o-) 

P(o-l = (29) 

where each subvector contains (Lmu+ 1) elements written 
as, 

P(i, o-l = 

f,<O>(i, O') 

pOl(i, o-) 
(30) 

P(-r) is created in the same fashion as its Laplace trans­
form in the preceding in Eqs. (29) and (30). 

When all operators from the right-hand side of Eq. 
(13) are likewise included with W in coupling the ele­
ments of P(O'), there results a supermatrix15 •34

- 36 struc­
ture that is arranged and written in matrix form as 

AP(o-) = P(-r = 0) , (31) 

where A is block tridiagonal (i.e., A1,, -tcO for j = i, 
i ± 1) and the submatrices are given by 

(32) 

where 1 being the unit matrix of dimension (Lmax + 1) and 
W1,1 is the ijth element of the transition matrix. 

From Eq. (10) and using our FD notation we can write 
the terms of the reaction (i.e., coalescence) operator 
as 

K
1
(i)=K

1
(y;)=(Ko+½K1)c'i;,1' (33a) 

K
11

(i)=½K1L'c'i1,1c'iL,L"1. (33b) 

Likewise, the rotational terms of Eq. (13) can be de­
scribed through the FD operator 

W; ,I= (1/y f + Rd 2 /D) . (34) 

The final block diagonal submatrices of A can now be 
constructed. Using the simplifying notation A1 ,I - A <11 

to retain an indicator of nodal index then we can define 
the elements of each tridiagonal A <II as 

(35a) 

and 

(35b) 

for l = 0 to Lmu. with all other A v,>m = O. '.('he definitions 
of L• and rare given earlier in Eq. (14a). 

For solution we need only perform a single matrix 
inversion to calculate the coefficients of the spherical 
harmonics as seen in Eq. (12). That is, for some finite 
positive value of o-, 

P(o-)= A- 1 P(-r=O). (36) 
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t a 
b C 

P(YJ:,8,T=O) 

0 
-a~ .,,. 0 .,,. 0 

FIG. 3. Graphic and pictorialrepresentationsofthe initial con­
ditions of dome in orientation utilized in this study. (a) P <Yr, 
6, T = 0) a: (1 + cos6), with most domains oriented such that 
6 ~ 0. The case of domains oriented with 6 = 0 is depicted 
above, (b) P(y 1, 0, T= 0) a: (1- cos0), with most domains oriented 
such that 6 ~ rr. The case of domains oriented with 8 = T is de­
picted above; (c)P(y1 , 8, r=O)=constant, with a completely 
random domain orientation. One possible orientation is pic­
tured having O < I! < T. 

Then, from Eq. (18) written in FD terms the probability 
that uncoalesced domains still exist is calculated using 

N 

J>(o-)=o-L p<0>(i, o-)V(i)' (37) 
1=1 

where only the L = 0 coefficients contribute as expected 
and the FD volume elements, V(y1 )- V(i), are the 
analogs of the continuous differential y dy, written as 

V(l)=½Ar, (38a) 

V(2)=(Ar+A)/[2(1+Ar)], (38b) 

V(i) =y1 A for 3 :s i < N, (38c) 

and 

(38d) 

The value of <P(o-) from Eq. (32) is then used to com­
pute oir(o-) via Eq. (19a), after which r* is found using 
Eq. (23L Only one matrix inversion is necessary pro­
vided results are based on a small but finite value of a 
and o->0. This is because Eq. (23) yields r* irrespec­
tive of the a value used; thus we have uniformly utilized 
a= 10-s in our numerical calculations, except as noted. 

An important factor in the analysis of protein folding 
is the correct specification of an initial condition that 
reveals the correct original orientation of the diffusing 
domains. This is easily implemented using the compu­
tational method described previously. In Sec. IV we 
shall employ two specific initial conditions where the 
domains exhibit an orientational preference, plus the 
case of an isotropic initial condition. These different 
cases can be seen in Fig. 3, which exhibits a particular 
situation where the domains start at an initial center-to­
center separation Yr• 

For the example of a uni.form spatial distribution in 
the initial condition which is also isotropically oriented, 

( 
1 )1/ 2 

P(r 8 r=0)= -
' ' 4,r 

(39a) 

which can be applied in Eqs. (31) and (36) in dimension­
less terms through the equivalent statement: 

p<0>(i,r=O)=y;/N, (39b) 

and 

_p<L>(i,r=O)=O, forL> 0 (39c) 

where the y 1 factor occurs due to the earlier change of 
variable. The two simple cases of anisotropic initial 
conditions15 we shall study are specified by 

( 
1 )1/ 2 

P(r,8,r=O)= ~ (1±cos8) 

or, in FD terms, 

p<0>(i, T =0) = yi/N 

and 

p<l>(i, T =0) = (± 1//3)(y;/N) 

with 

p<L>(i, r=0)=0 for L >1 

(40a) 

(40b) 

(40c) 

(40d) 

where the (±) options in Eq. (40c) refer to the choices of 
the respective initial condition 8-probability profile in 
Eq. (40a). The modification of the preceding values to 
denote a specific starting domain separation, for exam -
pleat Yr, involves the multiplication of Eqs. (39a) and 
(40a) by 6(r-rr) noting Yr =rr/d. Then Eq. (39b) 
becomes 

(41) 

and in the case of anisotropic initial conditions Eqs. 
(40b) and (40c) become 

p<0>(i r=O)=y 5 , I i ,I , 

p<l>(i,r=0)=(±1//3)(yr1i1,rl. 

(42a) 

(42b) 

Computations were carried out using a PDP 11/34 
minicomputer. The matrix inversion of Eq. (36) was 
accomplished in each case by Gaussian elimination with 
partial pivoting. 

IV. RESULTS FOR COALESCENCE LIFETIMES 

A. In the absence of forces 

The approximate analytic results of Karplus and 
Weaver1 and Adam and Delbrilck28 were used to deter­
mine the accuracy of our numerical approach. In all the 
different physical models studied using our numerical 
methods (i.e., force free or forces present, cases 
I-IV) tests for the convergence of the results were per­
formed to optimize the numerical parameters N and 
Lmar These tests revealed the numerical results quoted 
to be in most cases <1% in error due to the FD dis­
cretization and L truncation approximations, except the 
results for the hydration shell model (Sec. IVB, Case 
IV) are qualified to be < 5% in error due to the large 
magnitude and spatial variation of the assumed forces. 
For domains in three-dimensional isotropic diffusion 
space and a weakly absorbing coalescence process, we 
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can write in our notation the formula of Karplus and 
Weaver for the dimensionless mean lifetime of unco­
alesced domains (with a spatially uniform and isotropic 
initial condition) as39 

T* = (K.r~ 111) (Y1; 1 ) ' for Kerr« 1 , (43) 

where we have introduced an effective spherically sym­
metric reaction rate constant that is a function of our 
orientation dependent reaction parameters, 15 

(44) 

with Ko and K1 entering the numerical problem through 
Eq. (33). In Eq. (43) this effective specific rate con­
stant (times ½ 111 ) enters in place of Karplus and Weaver's 
{3 absorption factor. This is due to the pseudo-first­
order reaction process29 we utilize to simulate coales­
cence. The use of this process in our calculations 
allows the coalescence of domains in the radial region 
1 ::o y ::o 1+½11 1 , thus the additional appearance of this 
distance term. In contrast, the Collins and Kimball30 

boundary condition employed by Karplus and Weaver per­
mits coalescence only on actual domain contact, a hard­
sphere technique. Table I is a comparison of results 
for this force free case indicating <1% error in our nu­
merical results in weakly absorbing examples. 

Also in Table I we compare our results in the limit of 
complete absorption (i.e., the domains have unit prob­
ability of coalescing after coming in contact) to the ap­
proximate formula of Adam and Delbrilck28 (which they 
note as having <2% error for YN ~ 10) written as 

(45) 

TABLE I. T*, mean lifetimes of uncoalesced domains, in the 
absence of forces. Results for P(y, 6, T = 0) = constant, in a 
case of weak absorption and the complete absorption limit. a 

K1 = 10-S Kt= 106 

(yN - l)b Weak absorption° Complete absorption<! 

9.33x1O6 (9.33x1O6) 6.43x1O-1 (6.66xI0-1) 

5 2, 87X 108 (2. 87X 108) 4.42XlO1 (5.OOxlO 1) 

10 1. 77x 109 (1. 77 x lo9) 3.29x102 (3.67xlO2) 

20 I. 23x 1010 (1. 23x 1010) 2.57XlO3 (2.8OXlO3) 

100 I. 37x 1012 (I. 37x 1012) 3.22x 105 (3.37x 105) 

aFinite difference results found using the input as noted together 
with Ko=O, 111=0. l, Lmaz=4, and an isotropic, spatially uni­
form initial condition. Additional input of N= 51 and rl= 16. 67 
was used in the case of weak absorption. N = 100 and Tl= 0 
were used to study complete absorption. 

byhe finite difference spatial discretization value employed, A, 
can be calculated for each case from Eq. (25) and the above 
imput. 

"The numerical result is listed first, with the value calculated 
from the result of Karplus and Weaver (Ref. 1), given in Eq. 
(43), following in parentheses. 

°!'he numerical result is listed first, with the value calculated 
from the approximate formula derived by Adam and Delbriick 

(Ref. 28), Eq. (45) of this work, following in parentheses. 
Numerical results were found utilizing the input noted above 
except Kt= 108 differed by< 1% from the results displayed above 
for Kl= 106

. 

TABLE II. T*, mean lifetimes of uncoalesced domains, in the 
absence of forces. Results for P(y,6,T=0)=o(y-y1 ). a 

Yr Kt b= 10 103 106 C 

I. 826 1. 14X 104 5. O4X 102 2. OlX 102 (2. OOx 102) 

3.864 I.16x 104 6. 3Ox 102 ~, 27X 102 (3, 27X 102) 

5.903 I.16xlO4 60 67X 102 3.63X 102 (3.63X 102) 

7.942 1. 16x 104 6. 81 X 102 3. 78X 10
2 

(3. 77X 102
) 

11. 000 l.16X 104 6. 87x 102 3. 84X 102 (3.83X 102
) 

aFinite difference results found using the input N = 100, Lmaz 
=4, yN=ll, 111 =0.01, rl- 1 =O, K 0=O, and an isotropic initial 
condition, with unit probability at location y =y1 and zero else­
where. 

~esults utilizing a reactivity K9u ::s 1 exhibit < 1 % variation in 
T* for 1. 826 ::s y1 ::s 11 with other input similar to that preceding. 

°The numerical result is listed first for input of K1 = 106 with 
the value calculated from the result. of Weaver (Ref. 40), Eq. 
(46) of this work, following in parentheses. 

Our results, which apply to a range in YN beyond the 
limits for which Eq. (45) can be used show about 10% 
deviation from values calculated from Eq. (45). As 
noted in Table I we have chosen the isotropic portion of 
the reactivity, Ko, to equal zero in our calculations. 
The angular dependence of the reactivity in this case, 
K(y, 0)a: (1 +cos0) (cf. Fig. 2 of Ref. 15), more appro­
priately describes protein domains that coalesce in a 
preferred orientation (i.e., an orientation where 0 ~ 0). 
Because of orientational relaxation on the time scale 
of r1; •rt we have not observed particular orientation de­
pendent effects arising from domains initially in an 
isotropic spatially uniform distribution other than the 
reduction in domain reactivity through Eq. (44). Indeed, 
results calculated in these cases by simple isotropic 
methods, using K9 rr given by Eq. (44) differ by <5%. 
These two methods yield almost exactly the same re­
sults in cases of low reactivity, K

9rr « 1. This is due to 
the need for repeated domain encounters that cause am­
ple orientational relaxation during diffusive excursions 
and an almost completely isotropic domain distribution 
prior to experiencing a new opportunity for coalescence. 
These observations are only true, in general, for iso­
tropic initial conditions. As we shall see in the follow­
ing, anisotropic initial conditions will produce a signif­
icant orientation dependent effect on the mean lifetime 
of uncoalesced protein domains, particularly when the 
total allowed domain separation, YN, is small. 

The extent of the accuracy of our numerical results in 
the complete absorption limit was further tested in the 
case of a specific initial domain separation. This case 
was recently analyzed by Weaver. 40 Table II illustrates 
the variation in lifetimes for different values of the ini­
tial domain separation, y 1 • In the complete absorption 
limit (K.rr » 1 ), our results vary by < 1 % (as y1 varies 
an order of magnitude) from those calculated from 
Weaver's exact analytic formula, 

r* =¾(1-y~) + h1(1-1/y1 ) for K0u» 1 . (46) 

However, results were obtained for the complete range 
of effective reactivities, K9 rr, from which we have ob-
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TABLE III. T*, mean lifetimes of uncoalesced domains in the absence of forces. Results for 
anisotropic initial conditions. a 

Isotropic 
P(y, fl, T=0) 
(4rrt112 (l+cosfl)6(y-y1 ) 

P(y, fl, T=0) 
=(471't112(1-cosfl)6(y-y1) 

initial condition: 
P(y, 0, T=0)=6(y-y1) 

1. 77 X 1010 

1. 36x 104 

6. 49X 102 

3.87x102 

3, 84X 102 

1. 77x 1010 

9.65xl03 

7.26X102 

3.Ssx102 

3. 84X 102 

1. 77x 1010 

1.16x 104 

6. 87X 102 

3. 87x 102 

3.84x102 

aFinite difference results found using the input values N=l00, Lmax=4, YN=ll, .C.1=0. 01, TJ.-1 =0, 
Ko= 0, Yr= 11, and the specific initial condition as noted. 

When we analyzed the variation in the mean lifetimes 
of the uncoalesced domains versus the reactivity (or 
coalescence ability) for the anisotropic initial condi­
tions discussed in the preceding and noted by Eqs. (41) 
and (42). This comparison is seen in Table III and the 
specific initial conditions are described in detail in 
Fig. 3. 

As observed in Table III the values for r* are inde -
pendent of the preferred initial domain orientation in 
both the Kort - 0 and Kett - oo limits. This can be ex­
plained in the first case by the long periods of diffusive 
walks during which orientational relaxation occurs. 
eliminating any possible anisotropic initial condition ef­
fects. This orientational relaxation takes place in a 
time rl.tt which can be calculated from Eq. (15) and the 
input listed in Table III. For example, if YN = 11 and 
r;-1 = O, 1:hen r: !i: =-r;(y). This yields the value for the 
effective relaxation time -r; eff~ 20. 2 [for -r;(YN) from 
Eq. (17)] so for weakly absorptive reactivities r; ett 

« T*. We note that r: •tt is on the short time scale of 
the mean lifetimes observed for complete absorption. 
It follows, then, that orientation dependent effects may 
be permitted by this argument for the case of complete 
absorption. In this special case, however, the domains 
exist in the reactive or coalescence region long enough 
to allow them to reorient and coalesce without requiring 
additional encounters. This is the predominant factor 
that quenches any effects of an anisotropic initial condi­
tion in these circumstances. 

B. Forces present 

Proteins are composed of long chains of amino acid 
residues linked by peptide bonds. In solution a poly­
peptide chain in the absence of any form of stabilizing 
interactions would tend to produce a tangled string in 
continuous conformational flux, i.e. , a random coil. 41 

However, the native state, exhibiting a unique, stable 
three-dimensional structure, is known to be attained 
spontaneously from the amino acid sequence under prop­
per environment. 2•3 The forces responsible for the for­
mation and maintenance of the native conformation must 
be able to overcome the configurational entropy of the 
disordered form. The major types of interactions that 

cooperate in stabilizing the native tertiary structure of 
a globular protein include hydrogen bonds between pep­
tide groups or between various amino acid side chains, 
hydrophobic bonds between nonpolar residues, and ionic 
bonds between positively and negatively charged side 
chains. (Disulfide bonds, which covalently link differ­
ent segments of the polypeptide chain, are only regarded 
as a means of added stability in those proteins in which 
they occur, leaving the noncovalent interactions left to 
account for protein folding). 2• 41 In the present study we 
will incorporate the presence of several types of forces 
and examine the effects on the mean coalescence time 
r*, for two spherical domains, to simulate the interac­
tions present in a folding polypeptide chain. 

The Smoluchowski equation, as applied in this prob­
lem [cf. Eq. (l)], includes the effects of a spatially 
varying potential energy for two diffusing particles, 
that is, the protein domains. Through Eq. (8), we have 
shown how the potential energy, and hence the inter­
domain forces, can be included in the theoretical analy­
sis of domain coalescence and the mean lifetimes of un­
coalesced domain pairs. However, the solution of this 
biochemical problem and other problems in chemical 
physics utilizing the Smoluchowski or stochastic Liou­
ville29 equations including complicated potentials clearly 
requires numerical methods29

•42 since analytic mathe -
matical solutions to the underlying equations do not 
exist. 

In the discussion that follows we shall study the ef­
fects of four forms of spatially varying domain-domain 
interactions. In the first three cases the functional 
form of the potential energy employed may represent 
ionic solvent effects on charged domains or may be 
generalized from the examples noted to account for non­
ionic domain interactions, which may be simulated by 
similar potential energy functions. Positively and 
negatively charged groups such as the -NH3 of lysine 
residues and the -COO" of aspartic and glutamic acid 
residues would account for charges on the protein do­
mains. The source of nonionic energy variations could 
be, for example, an approximation to the non-negligible 
effects of the intervening chain and its finite size or 
solvent excluded-volume effects. The final case, which 
will be discussed separately, simulates the effects of 
hydrophobic interactions and is based on the hydration 
shell model of Nemethy and Scheraga. 43 The energetics 

J. Chem. Phys., Vol. 73, No. 10, 15 November 1980 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Zientara, Nagy, and Freed: Kinetics of protein domain coalescence 5101 

of this reflect the requirement of the domains to pene -
trate each other's hydration shell (or layer) before co­
alescence. 

All of the potential energy functions (and respective 
forces) included in our numerical approach can be de­
fined either as continuous (as in the following) or discon­
tinuous35 functions, or they may exist only numerically 
[and the nodal values input directly to Eqs. (26)-(28) ]. 
The first three cases of domain-domain interactions to 
be studied are the following. 

Case I. Debye-Huckel ionic interaction (Ref. 44) 

U(y)= (ZaZbe
2
) exp[-KnHd(y-1)] . (47) 

f.dkBT y(l +KnHd) 

Case II. Exponentially decaying interaction 

(48) 

Case III. Coulombic interaction 

U( )= (Z.,Z 11 e
2

) ! . 
y f.dkBT y 

(49) 

z. and Zb are the effective electrical charges (carrying 
the sign) of the two domains; e, the fundamental elec­
tronic charge (= 4. 802 86 x 1010 esu); f., the dielectric 
constant of the medium; kB, the Boltzmann constant; T, 
temperature in degrees Kelvin; KnH, inverse of the 
Debye length44; and y E, a characteristic length for the 
exponentially decaying potential energy example, We 
can note from the earlier discussion of this section that 
the relevant variables of the coalescence process are 
YN, Ko, Ki, t.1 • and possibly y 1 • In the following studies 
of model interactions we will choose certain experi­
mentally applicable examples of system parameters as 
our basis and only observe the effects of the magnitude 
and functional form of the domain-domain interactions. 

The overall structure of a folded protein is remarkably 

Y-
2 3 4 5 6 

0 

U(y) 

-I 

-2 

-3 

FIG. 4. Potential energy vs interdomain separation for examples 
of cases I-III. Curve a includes Debye-Hiickel type ionic ef­
fects, ihe energy calculated using Eq. (47) and KvHd= 1. 272. 
Curve b corresponds to an exponentially decaying potential 
energy calculated using Eq. (48) and YE= 1. 5. Curve c displays 
a Coulombic potential energy, calculated utilizing Eq. (49). 
Valuesofd=IOA, t:=80, T=293'K, andZ,,Zb=-4werealso 
used to compute the curves for each case. 

-20 -16 -12 

8 

6 

ln(r;PIT'') 4 

[Debye-Huckel 
U(y)] 
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16 20 

FIG. 5. ln(T;Fh*) vs ZaZb for a Debye-Hiickel ionic domain­
domain interaction. Results are presented for weak absorption 
(Ki= 10-5

, T* = 1. 77 x 1010

) and complete absorption (K
1 

= 105

, T* 
=3.26xl02). Additional input includesN=lOO, Lmaz=4, YN 
=11, t.1=0.01, T:-1 =0, Ko=O, and anisotropic, uniform initial 
condition. Also, the protein is assumed to be in a O. 15M uni­
valent salt solution, d=IOA, t:=80, andT=293'K, soKv~ 
= 1. 272. 

compact. 2 For example, the extended polypeptide chain 
with 58 residues of bovine pancreatic trypsin inhibitor 
has a length of 211 A (3. 63 A/residue), yet the folded 
state has a maximum dimension of 29 'A. 45 In the case 
of a larger protein, the extended chain of carboxypep­
tidase with 307 residues would be 1114 A long, but the 
maxi~um dimension of the folded molecule is only about 
50 A. 46 Since the folded state of large proteins seems 
to be divided into several relatively independent domains 
the choice of d = 10 A for the diameter of one such do­
main therefore seems reasonable and consistent with 
known protein dimensions. 

Figure 4 shows the variation of these different ener­
gies with domain separation for a similar input value of 
z Zb. In all of the following calculations we have used a ' 
the values d = 10 A, f. = 80 (i.e., H2O as the solvent), 
T = 293 °K, and an ionic strength based on a solution of 
0. 15M univalent salt, with the assumed protein molarity 
being «0.15M. Thus, we have employed in case I the 
model parameter KnH d ~ 1. 272 which is widely applicable 
in biochemical experimentation. It may be observed 
from Eqs. 47-49, though, that any increase in the tem­
perature, solution ionic strength, or domain size 
will have an effect of decreasing U( y) and will cause the 
mean lifetime of uncoalesced domains with forces pres­
ent, T}p, to approach the force free value, T*. It can 
be observed from Fig. 4 that the Debye-HUckel poten­
tial, which reflects behavior in realistic liquid systems, 
is damped to a greater degree than the Coulombic (i.e., 
gas phase type) interaction. 

Figures 5-7 exhibit the variation in the ration rh/T* 
with differing domain-domain charges, z. Zb. For do­
mains that carry a small effective electronic charge 
(i.e., IZ. Zbl ,;,4) we can observe that ln(Th/T*)cr z.zb 
in cases of both weak or complete absorption. The slope 

J. Chem. Phys., Vol. 73, No. 10, 15 November 1980 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

5102 Zientara, Nagy, and Freed: Kinetics of protein domain coalescence 

of the linear portion of each curve in the small charge 

region of Figs. 5-7 is particular to each case and in­

creases as the potential energy becomes more like that 

of a gas phase interaction (i.e. , Coulombic interaction 

results seen in Fig, 7 vary the greatest with charge). 

The lifetimes of uncoalesced domains vary over sev­

eral orders of magnitude as the domains' interactions 

change from the repulsive to the attractive, as revealed 

by our numerical results. For example, a Debye­

Hilckel interaction for weakly reactive domains with 

z.zb = - 10 produces a lifetime Th= 7. 90 x 108, that is, 

7.9 sec ifd=lO AandD=10"6 cm2/sec. A repulsive do­

main pair with z.z~ = 10, on the other hand, yields 

Th= 4. 63 x 1011 or a lifetime of 1 h 17 min. In each 

case we find that Th/T* varies more for a weakly reac -

tive system. This is indicative of the domains experi­

encing the diffusive effects of forces for a greater period 

of time as they repeatedly encounter attempting to co­

alesce. 

As mentioned in the discussion following Eq. (18), the 

steady-state limit can be found in our Laplace trans­

formed calculations utilizing a- 0. Thus, we can ob­

tain the relation that links the energetics of the 

Smoluchowski equation to equilibrium state parameters. 

This assumes that the steady state of our microscopic 

domain pair system corresponds to the observed equi­

librium state of a large number of such systems. In 

the examples highlighted above the steady-state limit 

refers to the product of a coalesced domain pair. How­

ever, for K(y, 0) = 0, we have calculated the concentra­

tion (or density) of uncoalesced domains in the domain's 

limited diffusion space for a- 0. We have found in ac­

tual numerical tests, as in the case of an infinite medi­

um, that simply 

( 
c•q ) 

ln C(yi)•q ~U(yi), (50) 

-20 -16 -12 
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6 
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FIG. 6. ln(T}p/T*) vs z.zb for an exponentially decaying 
domain-domain interaction. Results are presented for weak 
absorption (K1 = 10·5 , T* = 1. 77x 1010) and complete absorption 
(K1 =10', r*=3.26xl02

). Ad9itional input includesN=l00,
0 

LMaJ:=4, yN=ll, A1 =0.0l, rj"1=0, Ko=O, yE=l.5, d=10 A, 
€ = 80, T = 293 'K and isotropic, uniform initial condition. 
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FIG. 7. ln(rh,/r*) vs z.zb for a simple Coulombic interaction 
between domains. Results are presented for weak absorption 
(K 1 = 10·5 , T* = 1. 77X 1010) and complete absorption (K1 = 106, 

r* = 3. 26 x 102
). Additional input includes N = 100, Lina:,= 4, YN 

=11, A1 =0.0l, rj"1=0, Ko=O, d=10 A,€ =80, T=293'K and 
an isotropic, uniform initial condition. 

where c•q is the "concentration" of domains in a region 

of diffusion space where U(y1 ) = 0 and similarly C(y1 )•q 

= P(i, T- oo)/[y1 V(i)], but where U(yi) ,oO, This is con­

firmation that, under conditions of no reaction or co­

alescence, the domains in our system will distribute 

themselves according to Boltzmann's rule. As in an 

earlier study35 we can relate the left-hand side of Eq. 

(50) to a standard state chemical potential from equi­

librium considerations, 

t.µ
0(yl) _ ( C0

q ) ---,;;;r- - ln C(yi )•q , (51a) 

where 

(51b) 

and µ 0 is the chemical potential in the region of space 

where U(y) = 0 and can be chosen to be zero as a refer­

ence. We then have the simple relation, using Eqs, 

(50) and (51), 

µQ(_v,) = U(y1) 
kBT 

(52) 

or the potential energy that we can include in our cal­

culations is the chemical potential (or molar Gibbs free 

energy) that may be experimentally observed in protein 

studies. The results obtained in confirming Eq. (50) 

for the potential energies under study (cf. Fig. 4) are 

shown in Table IV. As in an earlier study of Zientara 

and Freed35 deviations in the relationship, Eq. (50), oc­

cur when max/ U(y) I> 1 but it remains true as an order 

of magnitude indicator. For any type of potential energy 

where max I U(y) I> 1 the simple steady-state domain dis­

tribution will deviate from that predicted from Boltz -

mann's relation, caused mainly by the extent and mag­

nitude of the interaction relative to the finite size of the 

modeled diffusion space. 

As we attempt to improve on the interactions between 

the domains given by Eqs, (47)-(49), we note that these 
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TABLE IV. {ln[C8q/C(y1)0q)}/U(y1) for model potentials of vary­
ing magnitude. a 

Hydration 

Yt Debye-Hiickelb Exponential0 Coulombic<i shell" 

1.00 1.00 1.00 0.91 0.13 
1. 52 1.00 1.00 0.86 0.10 
3.05 1.00 1. 00 0.72 
4.99 1.00 0.98 0.55 
6.01 1.00 0.97 0.45 

avalues for the ratio were calculated from the steady state in 
each case using the input ZaZb= -4, yN= 11, ~=0. 01, N = 110, 
and ,, = 10-12 • Where applicable the following additional values 
were used: yH=yE=l.5, sH=0.2, Kottd=l.272, Uact=8.714, 
Uc=-6. 887. 

b - 1. 25 s U(y 1):s 0. 
0 -l.5sU(y 1)s0. 
d_ 2. 9S U(y 1) S -0. 3. 
• - 6. 8 s U(y 1) s 8. 5. Both the numerator and denominator of the 
quotient are zero for y 1 ce:: 2. 5 based on the model parameters 
utilized. 

are special cases of a more general point of view. That 
point of view, expressed, for example by Freed and 
Pedersen29 in a related context, is to note that one should 
introduce the equilibrium pair-correlation function g(r) 
for the domains in its solvent medium. Then one asso­
ciates with the g(r) its effective mean potential of inter­
action U(r) by 

lng(r) = - U(r)/kt , 

so that one has from Eq. (7) 

a 
F(r) = ar [lng(r)] . 

(53) 

(54) 

We wish to make use of this point of view to model in a 
simple fashion the hydrophobic effects of the hydration 
shell. 23 ,

47
- 51 We conceive of this model as involving two 

dominant features: (1) the presence of the solvent shell 
reduces the g(r) [raises U(r)] between two nonpolar side 
chains for values of r less than their solvent separated 
distance; and (2) with the solvent displaced and the two 
nonpolar groups in contact (i.e., r =d) the favored ener­
getic state associated with the coalescence leads to an 
increase in g(r) [i.e., a decrease in U(r)]. These two 
features are illustrated in Fig. 8 for the U(r). Now, via 
the Smoluchowski equation [Eq. (1)].these equilibrium 
features affect the motional dynamics. [Of course, 
there can also be dynamical effects due to the solvent; 
these are usually modeled as an r dependent diffusion 
coefficient D(r), 52 but we are not including this refine­
ment here.] Now we can express Fig. 8 in simple func­
tional form as: 

Case IV. Hydration shell model interaction 

U(y)=Uactexp{-[(y-ya)/sH]2} 

+ Uc exp{-[(y -1)/ ½(Ya-0]2}, (55) 

where ya is the domain separation corresponding to the 
maximum in the potential energy barrier due to the sol­
vent-shell, sa is a dimensionless length associated with 
the spatial extent of the hydration shell, and U as:t and Uc 

are the energy parameters associated with the activa­
tion energy barrier and the coalescence energy, respec­
tively. Figure 8 is actually obtained from Eq. (55) for 
the values of Uact, Uc, Ya, and SH that are given, and it 
illustrates that although Uc is not precisely U(d) [and 
Uact is not precisely U(yHd)], they are similar in mag­
nitude. 

In our further considerations we wish to roughly esti­
mate values for these parameters based on the shell 
model used by Scheraga and co-workers23

•
47 in the con­

formational energy calculations on amino acid residues. 
Nemethy and Scheraga43 used parameters derived from 
the properties of hydrocarbons in solution to compute the 
thermodynamic paramters for the formation of hydro­
phobic bonds for pairs of side chains of amino acids. 
We have chosen the coalescence parameter Uc to be an 
order of magnitude larger in value, thereby estimating 
the energy associated with a group of hydrophobic resi­
dues on one domain coalescing with a patch of nonpolar 
residues on another domain. From Eq. (52) we note that 
Uc is directly related to the experimentally observed 
~G0 for the coalescence process. Clearly, the proximity 
of polar or charged groups, as well as those residues 
capable of participating in hydrogen bonding will also 
affect ~G0

, but have not been included in our calculations. 

The entire transition from an unfolded polypeptide 
chain to the native structure of the protein in the pres­
ence of solvent is known to occur with a net lowering of 
the system Gibbs free energy on the order of 1-15 
kcal/mole. 53 Therefore, we have chosen the coalescence 
parameter Uc, which represents the energy change of a 
single step in this overall process to be in this range. 
Similarly, we shall employ values for the activation 
parameter Uact that are consistent with experimentally 
determined activation energies for the conversion be­
tween denatured and native states. 26 , 54 , 55 

From the definitions of this model and the form of 
Eq. (55) (graphically depicted in Fig. 8), it is assumed 

U(y) 

10 

B 
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4 

2 
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FIG. 8. Potential energy and force as functions of interdomain 
separation used to simulate the interaction of domains with sur­
rounding hydration shells. This example was produced using the 
parametera Uc= -6. 887 and U.,,t = 8. 714 [i.e., U(d) ~ -4 kcal, 
U(y~) = 5 kcal] applied in Eq. (55). 
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that a completely absorptive reactivity would be ap­
priate, i.e., K8 rr » 1. This implies that the penetration 
of the activation barrier by a domain pair is a ·sufficient 
initiator of coalescence. However, this model can also 
be used for weak reactivity, i.e., K8rr « 1, which would 
simulate domains that traverse the hydration shell acti­
vation barrier, i. e. , coalesce, but also retain the pos­
sibility of dissociating, hence producing transitory pro­
tein unfolding. Tables V and VI provide results that show 
that the model based on Eq. (55) reveals the above-men­
tioned physical characteristics. That is, for the case of 
complete absorption, K 1 = 106, the coalescence lifetimes 
are independent of Uc (Table V) but almost totally depen­
dent on the position, height, and extent of the activation 
barrier (Table VI), as coalescence is attained merely by 
the traversing of this barrier. In contrast with this is 
a case of weak reactivity, K 1 = 10·5, where coalescence 
lifetimes show a strong dependence on the coalescence 
energy. The allowed unfolding for I Uc IS 10 in this case 
causes a significant increase in rh, which is assumed 
to account for permanently coalesced pairs only. 

Table VI shows the ratio rh/r* with the variations in 
the height of the hydration shell activation barrier and 
the spatial location of the barrier. As expected the exis­
tence of a barrier in close proximity to the coalescence 
region causes an increase in the lifetimes of the unco -
alesced domain pairs. If the barrier is located farther 
away from the coalescence region, e.g., yH=3.0, the 
slowing effect of the barrier is overcome to a degree by 
the attraction of the domains after penetration of the 
shell. When the spatial extent of the hydration shell is 
increased (note the values for s H = 0. 5 in parentheses in 
Table VI) the slowing of the coalescence of the domains 
is emphasized; thus rh increases and rh/r* ~ 1 in 
most instances studied. 

The effect of an anisotropic initial condition on the re­
sults from our hydration shell model was also investi­
gated. These results, presented in Table VII, show 

TABLE V. Th,/T* vs the coalescence 
energy parameter of the hydration 
shell model. a 

Uc "1 = 10·5 106 

0.0 10.01 1. 24 
-3.44 6.54 1.15 
-6. 88 4.25 1.09 

-10. 32 2. 73 1. 04 
-13. 76 1. 73 1.00 

aFinite difference nwnerical results 
found using the input noted above the 
additional parameters U act= 9. 00, 
Ko=O, YN=ll, ~r=0.01, rJr1 =0, 
N=lOO, Lmaz=4, yH=l.5, sH=0.2, 
and an isotropic, delta function ini­
tial condition at Yr= 11. Ratios are 
based on the mean lifetimes of un­
coalesced domains in the absence of 
farces given by T*(K1 = 10"5) = 1. 77 
x toll and r*(K1 = 106) = 3. 84x 102, al­
so dependent on the input given in 
the preceding. 

TABLE VI. rh/T* vs barrier energy parameters of the hydra­
tion shell model. a 

u.,,1 YH = 1. 5 2.0 2.5 3.0 

0.0 O. 87 (O. 87) 0. 68 (0. 68) 0. 51 (0. 51) 0.39 (0.39) 
9. Ob 1. 09 (3.19) o. 80 (2. 05) 0. 59 (1. 39) 0. 44 (O. 99) 

13.5 1. 27 (7. 80) 0. 90 (4. 71) 0. 65 (3. 07) o. 48 (2. 12) 
18.0 1. 54 (21. 61) 1. 05 (12. 58) 0. 74 (8. 01) 0. 55 (5. 46) 

"Finite difference numerical results found using the input de­
scribed above and Uc= - 6. 88, "o = 0, Ki= 10:; (complete absorp­
tion), YN = 11, ~r = 0. 01, rJr1 = 0, N = 100, Lmaz =4, and an iso­
tropic, delta function initial condition at Yr= 11. Results noted 
first correspond to sH=0.2, with the results based on sH=0.5 
following in parentheses. The mean lifetime of uncoalesced 
domains in the absence of forces is r * = 3. 84 x 1 o2 for the given 
input and initial condition. 

bFor example, Uc= - 6. 88 and U act= 9 correspond approximately 
to U(d) = -4 kcal and U(yHd) = 5 kcal at room temperature, as 
calculated from Eq. (55). 

similar variations as the force free case seen in Table 
ill. In all examples utilizing anisotropic initial condi­
tions the domains were initially separated by Yr, such 
that Yr> YH> 1. Again, the orientation dependent effects 
are damped out for either weak or complete absorption 
and are finite, yet small, in the mid range of reactiv­
ities. The case of complete absorption, which disallows 
domain dissociation in our model, thus is not sensitive 
to the initial orientation of the domains. 

V. SUMMARY 

We have presented a numerical method for obtaining 
the mean lifetimes of uncoalesced protein domain pairs 
including the effects of domain orientation and interdo­
main forces in the presence of solvent. This was ac­
complished by a combined treatment of the space and 
time dependent domain probability. First, the angular 
dependence of a simple domain model in which one do­
main has spherically symmetric properties was handled 
by an eigenfunction expansion method. Second, the 
domain separation variable was treated by the finite dif­
ference method. Finally, the coalescence yield (for a 
certain value of o-) was used to calculate r*, or r;p when 
forces are present. 

Numerical results corresponded almost exactly to 
earlier analytic results when initial validation tests were 
run. The advantage of the numerical method, however, 
is its applicability to a wide range of physically realistic 
initial conditions and interactions. Also, it is not re­
stricted to either the weak or complete absorption limits. 
Results were therefore presented for cases of aniso­
tropic initial conditions, varying anisotropic reactivity, 
and four models of domain-domain interaction. 

In all cases of reduced reactivity (i.e., K8 rr « 1) and 
a uniform initial condition there emerged no orientation 
dependent effects although an angular dependent reac -
tivity was used. This important result emphasized that 
translational diffusion caused coalescence on a time 
scale longer than that of orientational relaxation, and 
this is highlighted when a low reactivity repeatedly 
causes long diffusive walks. The results obtained for 
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TABLE VII. -r;p, mean lifetimes of tincoalesced domains in the presence of forces. Results 
for anisotropic initial conditions with hydration shells surrounding each domain. a 

Isotropic 
P(y,0,-r=0) P(y,0,-r=0) initial condition: 

Kt = (4·nY1I2(1 +cos0)6(y -y1) = (4irt1I2(1- cos8)6(y -y1 ) P(y, 0, T= 0) =c5(y -y 1) 

10-5 7. 54x 109 7. 54x 1D9 7. 54X 1D9 

10 7. 52x 103 7, 22 X 103 7. 37X 103 

103 5, 49X 102 5, 90X 102 5. 70x 102 

105 4, 15X 102 4,15xl02 4. 15x 102 

106 4, 14X 102 4, 14X 102 4. 14X 102 

a Finite difference results found using the input values N = 100, Lma,c = 4, YN = 11, ~ 1 = 0. 01, 
TJr1 = O, KO= O, y 1 = 11, and the hydration layer simulation parameters YH = l. 5, sH = O. 2, 
Ua01 =8.714, Uc=-6.887. 

r* or r;p using an anisotropic initial condition, on the 
contrary, showed a slight orientation dependence in the 
coalescence lifetime but only in the mid range of reac -
tivities. Values of r}p for a range of domain charges 
showed several orders of magnitude difference from r*. 
This highlights the importance of including domain 
charge effects in further studies. 

In simulations of the steady state in our bounded do­
main pair system we developed a relationship between 
the potential energy that enters through the Smoluchow­
ski equation and the standard state Gibbs free energy 
that might emerge from biochemical experimentation. 
Our method, then, can be applied in direct simulations 
of realistic protein folding situations, a feature lacking 
in earlier analytic treatments. 

Also, we have taken advantage of the flexibility of our 
approach to simulate by a simple model the effects of a 
hydration shell on domain diffusion. This model in­
cludes solvent shells surrounding each domain that affect 
domain diffusion in such a way as to cause a general 
slowing of the coalescence process if the shell is tightly 
encircling the domain or if the shell has a substantial 
width. Anisotropic initial conditions used with this 
model produced only minor orientation dependent ef­
fects, a result explained by orientational relaxation and 
reactivity arguments. 

We have applied the arguments of diffusion-controlled 
kinetics to the consideration of domain coalescence in 
order to ultimately consider the time evolution of pro­
tein folding. The time scale for many types of struc­
tural changes in proteins has been summarized, 5 and 
changes in the topography of the polypeptide chain are 
reported to occur in the range 10-4 -102 sec. Temperature 
jump and stopped flow kinetic studies have demonstrated 
relaxation in this time range. 2 The results presented 
in this work for the mean coalescence time span the re­
ported experimental values for the various cases treated 

With the appropriate choice of parameters, computa­
tional methods presented here may be used to simulate 
the association of domains in response to long range in­
teractions whether they be hydrophobic in nature or due 
to the effects of charge, relative orientation, or hydra­
tion. Due to the generality of our approach, it is pos-

sible to include the net effect of both a hydration shell 
and charged domains (i.e., Debye-Hilckel domain­
domain interactions} by a further coupling of the ener­
gies utilized in the models of our present study. 

An assumption of Brownian diffusive motion governing 
coalescence has been used in this model. Directing 
forces, which might be provided by the connecting resi­
dues in a polypeptide chain, could be incorporated in 
future refinements by using 0-dependent potentials or 
non-Brownian motion. 

The numerical methods used in the preceding are also 
being used in a modified form in computational bio­
chemical studies of protein unfolding and quaternary 
structure formation. 
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