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The applicability of the Lanczos algorithm in the general ESR (and NMR) line shape problem is investigated 
in detail. This algorithm is generalized to permit tridiagonalization of complex symmetric matrices 
characteristic of this problem. It is found to yield very accurate numerical solutions with at least order of 
magnitude reductions in computation time compared to previous methods. It is shown that this great 
efficiency is a function of the sparsity of the matrix structure in these problems as well as the efficiency of 
selecting an approximation to the optimal basis set for representing the line shape problem as distinct from 
actually solving for the eigenvalues. Furthermore, it is found to aid in the analysis of truncation to minimize 
the basis set (MTS), which becomes nontrivial in complex problems, although the efficiency of the method is 
not very strongly dependent upon the MTS. It is also found that typical Fokker-Planck equations arising 
from stochastic modeling of molecular dynamics have the property of being representable by 
complex-symmetric matrices that _are very sparse, so calculation of associated correlation functions can be 
very effectively implemented by the Lanczos algorithm. It is pointed out that large problems leading to 
matrices of very large dimension can be efficiently handled by the Lanczos algorithm. 

I. INTRODUCTION 

The connection between ESH spectra and the dynamics 
of the rotational motion of the paramagnetic probe is • 
well established, and it can be expressed by means of 
the relation1 

I(w) = (1/71) Re {(v l[i{wl -£) + rJ-1 Iv)}, (1) 

where /{w) is the intensity of the absorption as a function 
of the sweep frequency w, Iv) is the vector of the al
l~wed spectral components, £ is the Liouville operator 
associated with the Hamiltonian of the magnetic inter
actions for the spin probe, and r is the {symmetrized) 
diffusion operator for the stochastic variables that mod
ulate the magnetic interactions, i.e., the Euler angles 
that describe the orientation of the spin probe. The 
vectors and the operators are defined in the product 
space of the ESH transitions and the functions of the 
stochastic variables. 

The theoretical simulation of ESH spectra is a power
ful tool in extracting information about the dynamics of 
rotational motion. In fact the spectra in the so-called 
slow motional region are sensitive to the form of the dif
fusion operator r and, in principle, it is possible to 
distinguish between different models for the motion by 
comparison between experimental and theoretical spec
tra. 2 Therefore, future applications of ESH spectros
copy will be strongly dependent upon the efficiency of the 
algorithm for calculating simulated spectra. Recently 
there have been developments in the theory of molecular 
rotational motion in the liquid state that go beyond the 
usual hypothesis of Brownian motion. 3 As a matter of 
fact the utilization of these new models implies calcula
tions with matrices that increase geometrically in di
mension. 

On the other hand there are a growing number of ap
plications of the EPR technique, with corresponding 
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. simulation of spectra, to systems of physical or biologi
cal relevance with the purpose of deriving the relaxation 
time for the reorientational motion. 4a In this field sim
ple forms for the diffusion operator are utilized, thus 
the magnitude of the matrix is relatively small. But the 
use of a very compact algorithm that does not need a 
large core memory will allow the utilization of mini
computers directly connected to ESH spectrometers with 
considerable saving in time thus increasing the range of 
applications. Furthe_rmore, we note that with the de
velopment of new NMR pulse techniques, it has been 
possible to obtain NMR line shapes in the slow motional 
region, which are also analyzed in terms of Eq. (1). 4b 

In the future, one expects to see a growing number of 
applications requiring detailed spectral simulations. 

The preferred way for obtaining the simulated spec
trum from relation [Eq. (1)] is to diagonalize the com
plex symmetric matrix r - i£ and thereupon, from the 
eigenvalues and the transformed vector Iv), to calculate 
the absorption or its derivative for each value of the 
frequency w. In this scheme the usual procedure used • 
is to transform the banded matrix into tridiagonal form 
by means of the algorithm developed by Rutishauser5 

(hereafter we shall call it the Rutishauser algorithm) 
followed by the application of the QR algorithm in order 
to derive the eigenvalues. 6 The tridiagonalization pro
cess imposes the limitations of this scheme from both 
the point of view of the time of calculation, since it is 
much slower than the following QR algorithm and the 
previous construction of the matrix, and the require
ments of core memory, because storage of the matrix 
(in a banded form) is required. Moreover, in order to 
solve problems with large matrices one needs to con
sider a secondary storage such as a disk with consider
able increase in calculation time for reading and writing 
between core memory and disk. 

In recent years there has been an increasing interest 
in the Lanczos algorithm with a growing number of ap
plications to different fields of research characterized 
by the large size of the matrices. 7 A related approach 
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has been applied by Alexander et al. 8 to ESR problems 
with emphasis on the study of the asymptotic structure of 
the ESR matrices for simple problems which can readily 
be handled by standard methods. 

The purpose of this work is to extensively investigate 
the application of the Lanczos algorithm9 in the calcula
tion of ESR spectra as an alternative and preferable way 
in order to tridiagonalize the often large and complex 
matrices. 10 

The Lanczos method uses as intermediate results in 
the computation only the components of two vectors and 
it does not modify the original matrix. Therefore, it is 
convenient when the matrix is very sparse (and this is 
the case for ESR problems) so that only the elements 
different from zero are stored. Moreover, programs 
can be written so that the elements are generated when 
they are needed,' which in our opinion is a very appeal
ing way when the computer has an insufficient core 
memory. The substantial savings in execution time 
realized for our types of problems arises mainly from 
the sparsity of the matrices as well as the fact that the 
Lanczos algorithm may generally be employed in a num
ber of iterative steps that are much less than the matrix 
dimension but still sufficient to accurately simulate the 
spectrum. This latter feature is partially related to the 
fact that the number of eigenvalues that make signifi~ 
cant contributions to the spectrum is typically only a 
small fraction of the matrix dimension. 

Both these considerations strongly support the use of 
the Lanczos algorithm from a computational point of 
view. We think there are other reasons that justify the 
use of this algorithm. One is connected to what we call 
the minimum truncation scheme (MTS): One desires a 
truncation scheme for the matrix fZ, - r, which in itself 
is infinite, so that the dimension of the problem is re
duced to a minimum, consistent with the spectrum re
maining correct to a reasonable accuracy. In our 
opinion the solution of the truncation problem is as im
portant as the algorithm for the diagonalization in order 
to minimize calculation time for a given problem. The 
Lanczos algorithm, together with some empirical rules, 
can give useful information about the MTS. 

The Lanczos algorithm can be studied within the 
framework of what is called the theory of moments. 11 •12 

This generalization establishes a connection between 
such types of mathematical formalism as continued 
fractions and Pad~ determinants, 13 that in our opinion, 
allows us to consider the calculation of ESR spectra in 
a more general way. On the one hand we consider this 
generalization very important, because it justifies the 
use of the Lanczos algorithm beyond a mere computa
tional device, while, on the other hand we can apply 
some results of the theory of moments to our problem 
in at least a qualitative way. The theory of moments 
and the Lanczos algorithm have been well studied for 
symmetrical real operators, but to our knowledge there 
is very little work on complex symmetric problems such 
as Eq. (1). 

The range of potential applications that involve com
plex symmetric operators is wide and goes beyond the 

simulation of ESR spectra. In particular, the general 
class of Fokker-Planck equations, such as those re
cently developed3 are, in general, represented by com
plex symmetric operators, due to the existence of both 
inertial or drift terms and damping terms. The calcu
lation of time correlation functions (or more precisely 
their Fourier-Laplace transforms) is also found to pro
ceed from expressions like Eq. (1), and, furthermore, 
they are found to have the characteristics of: (1) sparse 
bounded matrix structure, and (2) only a few contribut
ing eigenvalues. 311 This to our mind, guarantees the 
utility of the Lanczos algorithm for complex symmetric 
matrices for this important class of problems. 

- We give in Sec. II a summary of the Lanczos algo
rithm that is appropriate for the solution of problems .ol 
the type described by Eq. (1), while in Sec. III the com
putational details relating to the convergence and the ef
ficiency of the method are given. In Sec. IV, we dis -
cuss the important matter of the minimum truncation 
scheme. The application of the Lanczos algorithm to 
Fokker-Planck equations in the study of molecular dy
namics is outlined in Sec. V with reference to a simple 
example. Our conclusions appear in Sec. VI. 

II. THE LANCZOS ALGORITHM 

The Lanczos algorithm9
•
10 can be seen as an applica

tion of the more general theory of approximation of op
erators known as the method of moments in Hilbert 
space. 11

•
12 In that method then-dimensional approxima

tion A" of an operator A for a fixed starting vector lz) 
is given by the relation 

(2) 

where P" is the projection in the subspace defined by the 
vectors generated by operator A <►tl acting on the start
ing vector lz) with k = 1 to n (i.e., the vectors lzk) 
=Ac11-u lz)). If the operator A is symmetric or self
adjoint, the method of moments is equivalent to the 
Lanczos algorithm, which generates a tridiagonal form 
for ~ by means of developing a proper representation 
of then-dimensional subspace. This representation, 
which we label as lk), is produced from the lzt) by a 
Schmidt orthonormalization process. This algorithm 
clearly yields a procedure for iteratively generating the 
new basis set lk). -

Let us first consider the algorithm in a real Hermi
tian space. Then the first new basis element is given 
by the starting vector properly normalized 

jl)=llzll-1 lz) (3) 

and the kth new basis element lk) for 1 < k,.: n is defined 
as 

( 4) 

where the coefficient f3t is uniquely defined by the nor -
malization condition for lk) and the projection operator 
Pt can be written as 

k 

P-=Llj)(jl. 
J•t 

(5) ·' 

From definition (4), the following properties are imme
diately derived: 
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(l) A. is symmetric. 

(ii) A. ls tridiagonal (i.e., A.=T.). In fact, consid
ering the scalar product (j lk) for j> k we have 

0 = (j lk) = 1¼1 (j 1(1 - pk_,)A lk-1) = 13;1(j IA lk -1) . 

(iii) The coefficients 13k define the off-diagonal ele
ments of T.: 

13k=(kl(l-Pk-l)Alk-l)=(k!Alk-l). (6) 

Therefore, the recursive relation (4) can be written 
more explicitly with the use of Eq. (5) as 

13kjk)= (A-ak_11) jk -1)-13,._1 jk-2), (7) 

where a k is the kth diagonal element of T •. 

The Lanczos algorithm can be applied to complex 
Hermitian spaces in two different ways according to the 
property of symmetry of the matrix. The previous 
definitions are immediately extended to a self-adjoint 
matrix yielding a self-adjoint tridiagonal matrix by 
means of the recursive relation 

(8) 

Instead, for complex symmetric matrices such as 
r - ii! in the relation (1), the Schmidt orthonormaliza
tion process does not generate a tridiagonal matrix and 
it destroys the symmetry of the matrix. • The Lanczos 
.algorithm can be extended to this situation if the new 
basis set satisfies the relation 

L<x, lm)(x, I l)= 6.,, , (9) 
J 

where the summation, is taken over all the elements Ix,) 
of the starting basis set in which A is symmetric. This 
implies a pseudo-Schmidt orthonormalization process in 
which the bra vectors for definition (5) of the projectors 
are 

(ki=L(x,lk)(x,j. (10) 
J 

Or, equivalently, the scalar product is defined without . 
the complex conjugate of the components of the bra vec
tors and this assures the validity of Eqs. (3)-(7) in a 
space that is no longer metric. Note that the starting 
vector lz) must be normalized accordingly, that is, its 
pseudonorm is defined as 

(11) 

that generally is a complex quantity. 

In order to solve Eq. (1), this version of the Lanczos 
algorithm can be applied to A= r - i,C, with Iv) of Eq. 
(1) as starting vector by using Eq. (7). The following 
relation is obtained for the spectral function in the n
dimensional approximation for A: 

1.(w) = (1/11) Re {(1 I [(1/T~ + iw)l + T.]- 1 I 1)}, (12) 

where 11) is the normalized starting vector in the new 
basis set [cf. Eq. (3)]. [The derivation of Eq. (12) is 
given in Appendix A.] At this point, the version of the 
QR algorithm for a complex symmetric matrix6 can be 
used to generate the eigenvalues x, of T • and the compo
nents c I of 11) with respect to the eigenvectors ly ,), so 

that the absorption, or the (experimentally more rele
vant) derivative, is calculated as a function of the sweep 
frequency 

1 ( " 2 ) 
1.(w)=;Re Lx +1/To+iw ' 

J•I J 2 
(13a) 

'( ) dl.(w) 1 ["£ d ] 
1. w =~=;Im J=I (x, + 1/Tg + iw)2 (13b) 

As an alternative way the spectrum can be simulated di
rectly from the tridiagonal matrix by means of a con
tinued fraction formalism: 

1.(w) =-(l/11)Re(ft), (14a) 

(14b) 

,. J 

I~(w) =.!Re(> II l',2 t~) , 
11 t;( 1=1 

where f I stands for the continued fraction25 

- 13: 
f,= (1/i1+iw+a1)+ 

-13j.1 -ft. ) 
(1/T~+iw+a,.1)+ ... +(1/'ig+iw+a.)' (14c 

with 131 = - 1. In Appendix A the derivation of Eqs. (14a) 
and (14b) are sketched. 

We mention that the continued fraction representation 
of the spectral function [Eq. (14a)] can be seen in the 
context of the Pade approximants. 13 In fact, applying 
the arguments of Ref. 12, the spectral function can be 
related to the [n+ 1, n] Pade approximant constructed 
with the coeffici~nts a, of the power-series development 
(v I (1 + wAt1 Iv)= I, a1w

1, where w = 1/(1/T~ + iw). From 
this point of view, the Lanczos algorithm constitutes a 
method for generating the proper function [i.e., the con
tinued fraction (14a)], that converges in the region 
around 1/w=0 for Re(w)>0. 

The connection between the Lanczos algorithm and the 
method of moments emphasizes how this algorithm pro
duces subspaces that progressively approximate the 
given operator. The rapidity of convergence of the 
spectral function with increases in dimension of these 
subspaces determines the efficiency of the algorithm in 
the calculation of ESR spectra. The problem of the con
vergence ·can be seel_l in the full (i.e., infinite) space in 
which the operator r + i,C is defined, One would like to 
have a general theorem that guarantees in all generality 
the convergence of the spectral function. To our knowl
edge in the framework of the moment method there are 
only theorems for bounded or self-adjoint operators11 •12 

while our operator is complex symmetric and, in gen
eral, unbounded because of the diffusion operator r. On 
the other hand, this type of convergence is equivalent to 
the statement that the spectral function [Eq. (l)] exists, 
and this can be taken as an implicit and physically justi
fied assumption in the theory of ESR spectra (and re
lated Fokker-Planck forms, cf. Sec. V). 

If the starting vector has a finite number of compo
nents (as is the case for isotropic media, see Appendix 
B) the calculation of ESR spectra by means of the 
Lanczos algorithm can be done without introducing any 
truncation in the matrix associated to r + iS, because 
this matrix has a band structure and, therefore, the 
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calculation of T n for a fixed n involves only a finite sub
matrix. However in practical applications, it is always 
convenient to fix the truncation independently of the 
number of steps in order to reduce computation time. 
Then the convergence of the spectral function is assured 
[the approximated form of Eq. (2) of the operator coin
cides with the truncated form of the operator when n = N, 
N being the dimension of its matrix representation]. ' 
While the rate of convergence with increasing number of 
steps is of major importance for practical applications, 
there is to our knowledge no theoretical analysis of the 
convergence rate that is appJ.icable for our type of ma
trices. On the other hand we find that, in general, .the 
spectral function reaches (to a specified reasonable ac
curacy) its convergent form with a number of steps con
siderably less than the dimension of the matrix. We 
think that the concept of the optimal reduced space is 
useful in explaining these results. We define the opti
mal reduced space as the subspace with the least dimen
sion and with a representation of the matrix that gen
erates a spectrum correct to within a fixed accuracy 
with respect to the full solution. If one thinks of the re
lation (13a) in terms of the eigenvalues of the full space, 
this subspace is related to the eigenvectors character -
ized by a weight I c~ I greater than some fixed value. 
{Note that in Eq. (13a) the height, as distinct from the 
intensity, of the jth component is inversely proportional 
to Re("-1) while for Eq. (13b) it is inversely proportional 
to [Re("-,) )2. Thus very broad components may contrib
ute less significantly to the spectrum than this criterion 
would imply.} . The Lanczos algorithm can be interpreted 
as constructing subspaces that progressively approxi
mate that optimal reduced space. Consequently, the 
choice of Iv) as starting vector is dictated not only by 
the economy of the algorithm in order to avoid the com
putation of Iv) with respect to the new basis set, but also 
by the consideration that the vector Iv) through its pro
jections c1 selects the optimal reduced space. 

In practical computer applications the main weakness 
of the Lanczos algorithm is the loss of orthogonality be
tween the calculated new basis set as a consequence of 
the round-off error. 9'b>,u,ts As a consequence the method 
continues indefinitely beyond the dimension of the ma~ 
trix and it produces spurious eigenvalues. In a true 
eigenvalue problem this limits the application of the 
Lanczos algorithm in its original form, because of the 
identification problem for the eigenvalues, but the use 
of the algorithm in a more sophisticated form could be 
employed to overcome the loss of orthogonality. 9<b> For 
our sort of problems the original form of the Lanczos 
algorithm is adequate because: 

(i) We are not strictly concerned with the eigenvalues. 
In fact, by means of Eqs. (14a) and (14c), the spectrum 
can be calculated directly from the tridiagonal matrix. 
Therefore any approximate form of Tn is adequate, in
dependent of the effect of the loss of orthogonality, if it 
reproduces the spectral function well. In this context 
it is still useful to analyze the eigenvalues associated 
with T n in order to understand how the Lanczos algo
rithm functions in our type of problems. 

(ii) It is well known that the loss of orthogonality is 

important only when the number of steps approaches the 
dimension of the space. u Generally we do not need to 
reach such situations, since sufficient convergence is 
reached for n « N. 

Ill. COMPUTER RESULTS 

A. General considerations 

Since the Lanczos algorithm is defined by the same 
recursive equation (7) for both complex and real sym
metric matrices, we used a standard form of that algo
rithm for real matrices, 16 modified only for the complex 
arithmetic and in which the storage of only two vectors 
is needed. All the calculations were made with a PDP 
11/34 minicomputer (64 kbytes of program memory) with 
a data memory of 196 kbytes. The required matrix ele
ments were stored in data memory while the vectors 
were stored in program memory. With this type of 
organization the Lanczos algorithm allows us to solve 
ESR problems related to matrices with a maximum di
mension of 870, but this covers almost the whole range 
of conventional spectral simulations. Once the tridi
agonal matrix Tn is obtained, the spectrum is calculated 
by means of the continued fraction method defined by 

• Eqs. (14a)-(14c). In the case where one needs the 
eigenvalues of T n• the standard QR algorithm for com
plex symmetric matrices6 can be used. A previous pro
gram written for the PDP 11/34, that calculates by a 
form of the Rutishauser algorithm followed by the QR 
algorithm the ESR spectrum for a nitroxide probe (nu
clear spin equal to one) or for only the g tensor, was 
utilized to obtain the correct eigenvalues and to compare 
the respective calculation times for the two algorithms. 
The particular form of the Rutishauser algorithm is one 
we developed for a minicomputer with disk storage of 
the matrix elements, 17 in which the sequence of equa
tions is modified with respect to the standard form of the 
algorithm 5 for complex symmetric matrices, 6 in order 
to have maximum efficiency in communication between 
core memory and disk. In that form of the algorithm, 
the limit on the size of the matrix is given by the avail-
able space in the disk, but for a practical point of view, 
its utilization is limited by the execution time (e.g. , a 
typical ESR problem with a matrix dimension of 600 re
quires about one day). 

We assume in our analysis a Smoluchowski diffusion 
equation for the rotational motion. In Appendix B, the 
derivation of the matrix elements of (r - i .£) together with 
the specific conditions on the magnetic interactions, are 
described. 

Since the Lanczos algorithm is an iterative procedure 
that utilizes the specific form of the matrix to construct 
successive approximations, its behavior, and therefore 
its efficiency, depends strongly on the type of problem 
to which it is applied. As a consequence, it cannot be 
used as a pure computational tool independent of the par
ticular structure of the problem. On the other hand, the 
performance of the Rutishauser algorithm, once the di-,, 
mension and the bandwidth are chosen, is not specifi
cally related to the nature of the problem. In the follow
ing part the computer results for some typical situations, 
covering the usual applications of ESR spectroscopy in 
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TABLE I. Magnetic, diffusion, and truncation parameters.• 

g,,,, g'n g •• Bob I AD 
b 

A-n b Au b D C Dn• ). L...u Km,a N n d 
l • 

i- 2.007 1. 973 2.02 3300 2.5X106 6. 5X 106 0 16 12 42 16 

II 2.007 1. 973 2.02 3300 2. 5 X 106 6.5xl06 0 24 18 85 19 

III 2.007 1. 973 2.02 3300 2. 5X 106 7.5X108 0 16 12 42 34 

IV 1. 991 1. 989 2.02 3300 2.5x 106 6.5x106 0 16 12 42 10 

V 2.007 1. 973 2.02 3300 2.5x106 6.5xl06 10 16 12 42 9 

v1• 2.008 2.008 2.002 3300 1 5 5 34 106 0 18 0 57 45 

VII 2.008 2.008 2.002 3300 1 5 5 34 106 0 30 0 93 56 

VIII 2.008 2.008 2.002 3300 1 0.5 0.5 3.4 106 0 18 0 57 26 

IX 2.008 2.008 2.002 3300 1 5 5 34 106 10 18 0 57 21 

x• 2.005 2.009 2.002 3300 1 2 19 32 7 X 105 7 Xl05 0 16 12 330 63 

•see Appendix B for the meaning of the symbols. 
bin G. 
•1n sec"1• 

dsufficient number of steps accordingto relation (16). 
"In these calculations L...u and Kmu constitute the MTS with respect to the accuracy of 10"4• 

the slow motional region, are analyzed with particular 
emphasis on the rel?,tion between the behavior of the 
Lanczos algorithm and the features of the problem. This 
can be done in only a partially quantitative manner, and 
we will also use more qualitative concepts, like that of 
the optimal reduced space (cf. Sec. II). 

In order to analyze the convergence problem for the 
Lanczos algorithm, we define the error in the spectrum 
as a function of the number of steps for fixed diffusion, 
magnetic and truncation parameters (i.e., size of the 
matrix), as • 

(15) 

where I R(w) is the exact spectrum (i.e., the normalized 
spectrum in absorption obtained from the Rutishauser 
algorithm), and In(w) is the spectrum obtained from the 
Lanczos algorithm applied for n steps. Note that both 
Ja(w) and In(w) are normalized: 

J- IR(w) dw=.J- I,,(w) dw= 1 -- --
In order to illustrate concisely the convergence to the 
correct spectrum, En= - log10(~n) is plotted against n in 
Figs. 3 and 4. The diffusion, magnetic, and truncation 
parameters used in the calculations are given in Table I. 
Since our purpose is to use the Lanczos algoritJ}m with 
the least number of steps consistent with obtaining a cor -
rect spectrum, we define the sufficient number of steps 
n., as the minimum n satisfying the condition 

(16) 

This corresponds to the condition that there is no visible 
difference between Ia(w) and ln(w), i.e., accuracy better 
than ~an be achieved experimentally. We note that the 
problem of convergence has two aspects: (1) the re
quired size of the matrix N (which is independent of the 
specific algorithm for the diagonalization), and (2) for 
fixed N, the value of n.- for the Lanczos algorithm. The 

former (i.e., the truncation of the matrix) is discussed 
in the following section, while here we specifically con
sider the second aspect. Thus we start with specific 
cases in which aspect (1) has already been resolved; 
i.e., we already have what we call the minimum trunca
tion scheme (MTS) for the particular set of values of 
diffusion and magnetic parameters. This implies that 
we have K...u and Lmu (where the indices Kand L are 
defined in Appendix B) leading to the smallest value of 
N consistent with the spectrum being correct within an 
accuracy of 10-4 (see Sec. IV) We have, for purposes 
of our tests, explicitly determined these values. (It 
is immaterial whether the Rutishauser or the Lanczos 
algorithm is used for this purpose.) 

B. Examples 

We now discuss in detail the results for one case (viz., 
Table I, case I) which displays the characteristic 
behavior of the Lanczos algorithm seen in much more 
complicated cases, even though it is a simple calcula
tion of the slow motional spectrum for an anisotropic g 
tensor, ( e. g. , Fig. 1). In Table II the eigenvalues and 

FIG. 1. Derivative spectrum for a nonaxial g tensor (see 
Table I, case I, for the magnetic, diffusion and truncation 
parameters). 

t ,..L--- nL __ \t-1 "7A U- "7 1 A ..... a 1QA1 
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TABLE II. Eigenvalues and components from the Rutishauser 
algorithm applied to calculation I (see Table n. 

Eigenvalues (X1) Components (cj) 

j Real Imaginary Real Imaginary 

1 4.2533 - 9.6223 0.16413 0. 64141 X 10"3 

2 5.3351 38.981 0. 82995x 10·1 0. 87541 X 10"1 

3 3.4612 - 29.416 0.83186x10"1 -0.86460x10"1 

4 8, 7559 -14.823 0. 84263 X 10"1 0, 40377 X 10"2 

5 15.937 3.0708 O. 83192x 10·1 - 0. 20804 X 10"2 

6 8.4422 -24.394 0. 39234 X 10"1 -0.65563x10·1 

7 17.252 - 8. 9660 0.68361X 10"1 0. 21037 X 10"1 

8 16.889 26.082 0. 39064 X 10"1 0.47402x 10·1 

9 13.911 29. 544 0.43119x 10·1 0.43451xl0"1 

10 12.747 -20.023 O. 50359x 10·1 - 0. 32527 X 10"1 

11 17.668 4.5846 0. 55391 X 10"1 0.16298x 10·1 

12 17.763 18.025 0.54082x10·1 0.16208 X 10"1 

13 23.683 14.814 0. 42033 X 10"1 0. 38758 X 10"2 

14 21.822 -7.3724 0.11539X 10"1 - 0. 38167 X 10"1 

15 11.874 -19.653 0. 33228 X 10"1 - 0.18009x 10·1 

16 20.669 - 2.9274 0. 35822 X 10"1 - 0.13673 X 10"2 

17 24.551 16.864 0. 79936 X 10"2 0.18927x 10·1 

18 25;132 6.6072 0. 20213X 10"1 - 0. 22767 X 10"2 

19 19. 789 -14. 854 0.50900x10·3 - 0, 17555 X 10"1 

20 16.230 - 19. 713 -0.30917x10·2 0. 20757 X 10"2 

21 27.335 - 5.0499 - 0. 52585 X 10"3 0. 33323 X 10"2 

22 31.136 8.1608 o. 22303x 10·2 - 0, 13070 X 10"2 

23 29.027 - 8. 2156 0. 15157 X 10"2 0.11256X10"2 

24 26.828 29.176 0. 79231X 10"3 -0.38072Xl0"4 

25 25.397 -19. 875 0. 45374 X 10"3 -0.11742x10"3 

26 35.825 - 0.46477 0. 49027 X 10"5 - 0, 33185 X 10"3 

27 36.899 19.967 - 0. 34792 X 10"4 - 0.10306X 10"3 

28 41.270 23.188 - 0. 61962 X 10"4 0. 85753 X 10"4 

29 40.404 7.2359 - 0. 41851 X 10"4 - 0. 90946 X 10"4 

30 31.230 -19.464 0. 82025 X 10"4 - 0.15358 X 10"5 

31 23.109 -19. 707 -0.10875X10"4 - 0,31637 X 10"4 

32 31.298 -21.328 - 0. 98443 X 10"5 - 0.11906 X 10"4 

33 46.463 4.1298 - 0, 12138 X 10"4 0. 50214 X 10"5 

34 37 .457 -17.008 0. 84510 X 10"5 - 0. 52566 X 10"5 

35 49. 782 17. 718 0. 24899 X 10"6 0. 64558 X 10"5 

36 35.472 -17. 538 - 0. 48422 X 10"5 - 0. 20440 X 10"5 

37 44.099 9.4065 - 0. 51339X 10"5 0. 27728 X 10-8 

38 41. 517 - 4. 2402 - 0. 12162 X 10"5 - 0. 21922X 10"5 

39 45.309 - 12.324 - 0. 76693X 10-6 -0.68177X10"6 

40 54.155 - 6. 7230 - 0. 37865 X 10"7 0.10999 X 10"6 

41 52.981 5.6905 0. 27077 X 10"7 0, 35344 X 10"7 

42 64.565 0.85538 0. 27954 X 10-8 - 0. 72428 X 10-8 

the square of the components from the Rutishauser algo
rithm are listed. The sufficient number of steps n. with 
the Lanczos algorithm is 16 (cf. Fig. 3). The eigen
values and the square of the compqnents calculated by 
means of the QR algorithm applied to the tridiagonal 
matrix generated by the Lanczos algorithm in 16 steps, 
are listed in Table III and the distribution of the eigen
values obtained from the two algorithms is represented 
in Fig. 2. 

Based on these (and many other) results we make the 
following observations: 

(i) Given the criterion of Eq. (16), then we need only 
consider the set of eigenvectors ly 1) such that l c; I:.. 10·4, 
where c1= (y I Iv). Then we find that the Rutishauser 
algorithm needs 28 eigenvalues to reproduce the spec -
trum, while the Lanczos algorithm reduces the problem 
to a subspace of dimension 16. 

• • 
60 • 

• • 
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• • 

40 • • • 
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•• • .. • • • • • •• • .. 
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FIG. 2. Distribution of the eigenvalues for calculation I (see 
Table n. The units are in G. The x axis and y axis represent, 
respectively, the imaginary and real parts of the eigenvalues. 
A: eigenvalues from the Lanczos algorithm listed in Table III; 
e: eigenvalues from the Rutishauser algorithm listed in Table 
II. (Note that for tbe three x1 with smallest Re(X1), the two 
algorithms give virtually identical results. 

(ii) Only 7 eigenvalues from Table ID find a corre
spondence with the "exact" eigenvalues. There is gen
erally less agreement between the eigenvalues in the two 
methods as the real parts of the eigenvalues increase in 
magnitude. 

(iii) ff we assume that each eigenvalue and its corre
sponding component c1 obtained from the-Lanczos algo~ 
rithm approximates the analogous "exact" quantities, 
only the sets nos. 4 and 5 in Table ID have a sufficient 
accuracy to predict with an error less than 10-4 the line
shape described by the corresponding "exact" set (nos. 
2 and 3 in Table II). 

The Lanczos algorithm approximates the spectrum 
surprisingly well in spite of a rather low accuracy for 

TABLE III. Eigenvalues and components from the Lanczos 
algorithm with 16 steps in calculation I (see Table I). 

Eigenvalues (X,) Components (c}) 

j Real Imaginary Real Imaginary 

1 12.776 -13.415 0,23643 0, 65377 X 10"1 

2 15.886 2.4657 0.16654 - 0, 15140x 10·1 

3 4.1561 - 9. 5836 0, 15142 0, 31806 X 10"2 

4 5.3351 38.981 0.82995x10·1 0.87541X10"1 

5 3.4612 - 29.416 0. 83177 X 10"1 - 0. 86461X 10"1 

6 13.468 -19, 312 0, 29865 X 10"1 - 0, 10649 
7 20.243 14.329 0.10418 0. 57283 X 10"2 

8 18.127 24,607 O. 60629x 10·1 O. 73134x 10·1 

9 8. 3990 -24.409 0.40133X 10"1 - 0, 63006 X 10"1 

10 13,965 29.471 0. 46912 X 10"1 0, 47215 X 10"1 

11 22.803 27.223 - 0, 22153 X 10"2 - 0, 11259 X 10"1 

12 37.420 23.244 0. 20855X 10"3 0. 2'!1882X 10"3 

13 27.695 -15. 726 - 0 • 28168 X 10"3 -0, 61059X 10"' 
14 47.104 21.151 0, 79661 X 10"5 - 0, 11588X 10"4 

15 57,347 10.920 0, 16972 X 10"6 -0.21962xl0"7 

16 67,019 1,5835 - 0.61199x 10·8 -0,15893 X 10-9 
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the eigenvalues and their components. One way to have 
some insight, at least partially, into this behavior is to 
Jook at the results in terms of an approximation of clus
ters of eigenvalues instead of single eigenvalues. If we 
take as an example the eigenvalue no. 2 in Table III, 
which can be related to the exact eigenvalue no. 5 in 
Table II, then we find that Re(c;) differs by a quantity of 
the order of 0. 08. Instead, if we think of that eigenvalue 
as an approximation of the ensemble of the "exact" 
eigenvalues nos. 5, 11, and 16 of Table II, the sum of the 
Re(c;) terms differ from the Lanczos value by a quantity 
of the order of O. 01. This organization in clusters is 
directly suggested by Fig. 2. 

The concept of cluster is of course very qualitative, 
since its exact formulation is not possible. Moreover, 
the eigenvalues obtained from the Lanczos algorithm 
cannot be considered lndependent from one another in 
the evaluation of their effect on the spectrum. The 
unique way to characterize these results in all general
ity is to state that the Lanczos algorithm produces an 
approximation of the optimal reduced space required to 
represent spectral function instead of accurately repro
ducing the eigenvalues. In this context the interpreta
tion in terms of clusters is only a partial and qualitative 
explanation of this general behavior. 

There is no other method that gives the optimal re
duced space, and the exact solution of the eigenvalue 
problem determines only an upper limit for its dimen
sion, i.e., the number of eigenvalues with weight (i.e., 
I c; I) greater than 10"4• As a consequence, it is not 
possible to evaluate exactly how the Lanczos algorithm 
approximates the opti.mal reduced space; only some in
dications can be given comparing that upper limit with 
the actual number of steps needed (27 against 16 in the 
previous example). On the other hand, the results in 
Table III show that the Lanczos algorithm produces only 
an approximation to the optimal reduced space. In fact, 
the last three eigenvalues have a weight less than 10"4 

and they are not necessary to reproduce the spectrum 
with the condition equation (16). 

We may relate the fact that the Lanczos algorithm only 
approximates the optimal reduced space to what we call 
the extreme eigenvalue effect. It is known that the 
method of moments tends to seek out the eigenvalues of 
larger magnitude. 11 • 18 If the starting vector lz) is ex
panded in terms of the eigenvectors ly 1) of the exact op
erator A (Aly1)=A1 1y1)), i.e., 

(17) 

then the kth vector generated by the method of moments 
can be written as 

(18) 

Therefore by increasing the order of approximation for 
A (i.e., by increasing k) the method of moments tends 
to include in the subspace defined by P" in Eq. (2), the 
eigenvectors with larger A1 . This extreme eigenvalue 
effect will be stronger the larger the magnitude of the 
coefficients a1 in Eq. (17} for the larger eigenvalues 

relative to those for the smaller ones. The same effect 
is generated by the Lanczos algorithm, since it ts a -par
ticular case of the method of moments. 

In our problems, the extreme eigenvalue effect can be 
further analyzed in terms of the particular structure of 
the matrix. The Liouville operator has matrix elements 
whose orders of magnitude are independent of the value 
of the K and L indices, and these matrix elements 
quickly reach a constant (asymptotic) form determined 
by the asymptotic values of the relevant 3j symbols. 19 

On the other hand, the isotropic part of r yields only 
diagonal matrix elements that increase with the squares 
of the ii:idices L and K. In calculations for isotropic 
systems (i.e., when A= 0) like that previously de
scribed, we can approximately subdivide into two parts 
the basis set in which r - ,;£, is represented before the 
application of the Lanczos algorithm: 

(i) The subset that is strongly mixed into the solution 
of the eigenvalue problem: This subset is characterized 
by off-diagonal matrix elements with the same order of 
magnitude as the diagonal ones. Thus it is defined by 
those elements of the basis set with small values of the 
indices K and L relative to Kmu and Lmu• This subset 
leads to eigenvalues characterized by an imaginary part 
that reflects the line position of the Lorentzians in a 
rigid limit spectrum, and a (relatively) small real part 
that determines their broadening. 

(ii) The subset characterized by large diagonal ele
ments with respect to the off diagonal ones: This subset 
is defined by the basis elements with K and L indices 
close to Kmu and Lmau respectively, and they have only 
a perturbational effect on the eigenvalues associated 
with the previous subset. The associated eigenvectors 
are well approximated by the eigenvectors of the diffu
sion operator [i.e., the Wigner rotation matrices 
n;.l((n)] and the eigenvalues have a large real part. 

Since the starting vector typically belongs to the first 
subset (e.g., for isotropic media it has nonzero compo
nents only for L = 0, see Appendix B), only the eigen
vectors associated with this subset give a relevant con
tribution to the spectrum. But, as a consequence of the 
extreme eigenvalue effect, the Lanczos algorithm tends 
to insert also the eigenvalues related to the second sub
set, since they have the largest numerical value. In 
this way, we explain the appearance of the last three 
eigenvalues in Table III. On the other hand, the extreme 
eigenvalue effect only partially reduces the efficiency of 
the Lanczos algorithm (e.g., these three eigenvalues 
vs a total number of 16) because the coefficients a1 in 
Eq. (17) for subset (ii) have only small values. 

Therefore, we can state that the combination of the 
extreme eigenvalue effect and the particular structure 
of the matrix associated with the Smoluchowski equation 
generates a departure from ideal behavior of the Lanczos 
algorithm (i.e., the optimal reduced space). This con
stitutes a negative feature of the application of the 
Lanczos algorithm to ESR problems, but it is inherent 
in the method and the previous results show how, in 
spite of this, the algorithm allows us to approximate the 
matrix in a subspace with dimension much smaller than 
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En 

n 

FIG. 3. Behavior of the logarithm of the error: En=-Log10(A.) 
[An is defined in Eq. (15)) as a function of the number of steps 
n in the Lanczos algorithm. (See Table I for the magn~tic, 
diffusion, and truncation parameters.) 

the initial dimension of the matrix. 

We now consider other examples which illustrate 
aspects of the convergence. Calculation II differs from 
calculation I only with respect to the truncation param
eters Kmu and Lmu• Figure 3 shows how the increase 
in size of the matrix slows down convergence in the 
Lanczos algorithm. This can easily be explained in 
terms of the extreme eigenvalue effect: In fact, in this 
problem the increase of Kmu and Lmu is equivalent to 
enlarging the subset of type (ii) by inserting new basis 
elements that lead to eigenvalues numerically larger 
than in the calculation I. However, the effect is really 
quite small. Thus ns·only increases from 16 to 19 steps 
while the dimension of the matrix is more than doubled. 
This result illustrates one of the advantages in the use 
of the Lanczos algorithm. Since there is ~o exact cri
terion for the truncation (see Sec. IV), in routine cal
culations, the matrices are often truncated with larger 
dimension than strictly necessary. Thus ideal behavior 
of the Lanczos algorithm, from the point of view of com
puter effort, would be an invariant ns with increasing 
dimension of the matrix. We found from the computer 
calculations.that for most of the cases (e.g., the pre
vious one) the performance of the Lanczos algorithm is 
close to ideal behavior. 

• In order to show how the extreme eigenvalue effect is 
specifically related to the structure of our matrices, in 
4:alculation III, the anisotropy of the motion (i.e., D,/D

1
) 

la increased with respect to c·alculation I but keeping 
D1. and all the remaining parameters the ~ame, while in 
calculation IV the degree of nonaxiality of the t 
{ 12 2l] g ensor 
i.e., F, • ts decreased, but with the diffusion arid 

truncation parameters remaining the same. In both 
cases the size of the subset (1) is decreased with respect 
to calculation I, but ln two different ways: increasing 
the diagonal matrix elements of the diffusion operator 
for K~ 0 in calculation ill and decreasing the off-diagonal 
matrix elements that connect basls elements with differ
ent K index in calculation IV (in both situations a Kmu 

equal to 4 would be sufficient to reproduce the spectrum 
within an accuracy of 1()'"4). We find that the extreme 

eigenvalue effect contributes much more in calculation 
• III than in calculation IV. In fact, Fig. 3 shows that the 
convergence in calculation m is much slower not only _ 
than that in calculation IV, but also with respect to cal
culation I. We mention that a K,.. .. close to 4 would re
duce considerably the extreme eigenvalue effect. The 
departure from ideal behavior (i.e., the minimum opti
mal basis set) by the Lanczo~ algorithm, becomes more 
serious as we approach limiting ·cases like large anisot
ropy of the motion. However, in these cases good 
truncation of the matrix reduces the dimension of the 
problem thus partially compensating for the relatively 
poorer efficiency of the algorithm. 

Calculation V includes a strong potential (A= 10) cor
responding to an order parameter vi0 equal to O. 896. 
Since the diffusion operator is no longer diagonal in the 
starting representation of the matrix, it is not possible 
to apply the previous analysis of the contribution of the 
initial basis set to the spectrum. Instead, it is more 
useful to think in terms of the eigenvectors of the 
Smoluchowski operator r as the initial basis set. For 
this large value of A, the asymptotic solution of the dif
fusion operator1a.>,20 constitutes a good solution. The 
equation for the eigenvalues of r is more complicated 

·than in the isotropic phase, but the main effect scales 
according to A which is large. As a consequence, the 
basis vectors strongly coupled by the Liouville operator 
[i.e., type (i)} are found to be few in comparison to the 
corresponding isotropic situation. Therefore, few 
eigenvalues contribute significantly to the spectrum. 
This is equivalent to stating that an increase of the po
tential reduces the size of the optimal reduced space, 
and the computer results (compare in Fig. 3 the rate of 
convergence between calculations V and I) show that the 
Lanczos algorithm reproduces this effect, even though 
we used the spherical harmonics as the initial basis set. 
In general as long as N is correctly chosen, the value 
of ns required for convergence is substantially indepen
dent of the choice of the initial basis set. 

The previous analysis of the behavior of the Lanczos 
algorithm for problems involving only the g tensor, can 
easily be extended to calculations with both g and A ten
sor. In fact, the introduction of the A tensor is equiva
lent to substituting E:ach basis element defined by some 
values of the K and L indices, with a subset representing 
all the possible transitions (index p and q in Appendix 
B). In each subset the diffusion operator and the part of 
the Liouville operator proportional to the g tensor, give 
a diagonal contribution independent of the transitions, 
and only the A tensor contributes to the off-diagonal 
elements. Therefore the extreme eigenvalue effect, 
since it is related to the diffusion operator, is not really 
affected by the introduction of these addition transitions. 
On the other hand the contribution of the different tran
sitions (for each value of the L and K matrices), to the 
optimal reduced space does depend on the magnitude of 
the A tensor. Consequently, a reduction of the magni
tude of the A tensor decreases n,. 

Calculation VI constitutes a typical slow motional situ
ation for an axial nitroxide probe. The effects of an in
creased N and of a strong potential are illustrated in 
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FIG. 4. Behavior of the logarithm of the error: En= - log10(t.n) 

[t.,. is defined in Eq. (15)] as a functiqn of the number of steps 
n in the Lanczos algorithm. (See Table I for the magnetic, 
diffusion, and truncation parameters.) 

calculations VII and IX, respectively. We see from Fig. 
4 that the Lanczos algorithm behaves in the same way 
as the corresponding situations for the simple g tensor. 
Calculation VIII shows that a decrease of the A tensor 
leads, as expected, to a more rapid convergence. 
Finally, calculation X displays the convergence for a 
typical slow motional spectrum of a nonaxial nitroxide 
probe. 

C. Convergence and efficiency 

We now wish to inquire whether we can in an a priori 
fashion estimate n, for a particular problem. For self
adjoint matrices it is known that for each approximate 
root >.., there is an exact >..; that satisfies the relation 

1>-,->-;I ,i;; liS,..,c",I, 09> 
where C is the nx n transformation matrix that diagonal
izes then-dimensional tridiagonal matrix produced by 
the Lanczos algorithm. "•21 Since our matrices are com
plex symmetric, that relation may not be strictly ap
plicable, and to our knowledge there is no exact criterion 
for the accuracy of the eigenvalues. 

Nevertheless we have found from the computer calcu
lations that in most cases I t3,..1CnJ I constitutes an upper 
bound for I>.., - >..; I in the sense that for most eigenvalues 
relation (19) is satisfied. However, for a few eigenval
ues I t3,..1 c,., I is still of the same order as I>.., - >..; I even 
though the inequality of relation (19) is violated in a 
rigorous sense. But in our opinion this relation, even 
as an approximate form, is of little value in the calcu
lation of ESR spectra. First we mention that to employ 
such a criterion requires the diagonalization of Tn, but 
it is more convenient to use the continued fractions rela
tions (14) to obtain the spectrum. Furthermore when we 
use Eq. (19) to estimate the error in the spectrum [cf. 
Eq. (15)] using Eq. (13) (and ignoring any error in the 
estimates of the c/s) we obtain 

(20) 

But from the computer calculations we found that the 
right-hand side of Eq. (20) often overestimates t.n by at 
least an order of magnitude, and that it is a more slowly 
decreasing function of n than t.,.. Therefore this rela
tion is not helpful in finding n,. In fact as we have al
ready pointed out, the Lanczos algorithm produces an 
approximation to the optimal reduced space that mini
mizes the error with respect to the spectral function 
/(w) rather than to the individual eigenvalues. We have 
no simple relation, between accuracy in the spectrum 
and accuracy in the eigenvalues. 

We have found that an empirical approach is much 
more useful. In particular, one need only compare the 
spectrum obtained after the nth step with the previous 
one [after the (n - l)th step]. This procedure has the 
advantage of interpreting the accuracy directly in terms 
of the spectral function, and furthermore it can be • 
executed on the tridiagonal form by means of Eq. (14a). 
This approach is not without risk, because it might hap
pen that the spectrum does not change appreciably for 
some range of n, even though it is still far from the cor
rect one. It is safe to compare spectra differing by sub
stantially more than one in the number of steps. Finally, 
with experience from similar calculations -0ne develops 
a rather good insight into what this difference should be 
as well as into what n. should be. 

We note that generally the ratio n,/N decreases with 
increasing complexity in the description of the ESR prob
lem. In fact in the simplest situation given by the axial 
g tensor in the anisotropic phase, this ratio is equal to 
1, since the matrix is already tridiagonal. On the other 
hand, the computer results previously described (see in 
particular calculations I, VI, and X where the MTS was 
used) show that n,/N decreases when the A tensor is non
zero and when the tensors are nonaxial. In particular 
for calculation X, where both these factors contribute, 
we have n./N<>t 0. 2. 

In the following paragraphs we analyze the use of the 
Lanczos algorithm from both the point of view of needed 
storage and of execution time, emphasizing in particu
lar its advantages with respect in the Ruthishauser algo
rithm. 

We first note that the operations in the Lanczos algo
rithm are always well defined. Instead, in the Rutishau-, 
ser algorithm the Jacobi rotations are not defined if an 
element to be eliminated A 1 , 1 and its left contiguous one 
A 1 , 1• 1 are related by • 

(21) 

In our experience that never happens in simulations of 
conventional (unsaturated) ESR spectra, but that need 
not be the case in other problems. As an example, we 
mention the simulation of ESR spectra for conditions of 
saturation. 22 

In the Lanczos algorithm only the storage of two vec
tors is strictly necessary, while the matrix elements 
can either be stored or generated when they are needed. 
The former is preferred if the maximum N for a partic
ular type of problem allows one to store the matrix; 
(this is the case with a PDP 11/34 minicomputer for 
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typical calculations of ESR spectra). On the other hand, 
the second option allows one to solve very large prob
lems in computers that have a limited (or better, large) 
memory, provided the computation of the matrix ele
ments can be efficiently performed. But, if the first 
option is to be used, the efficiency of the storage can be 
considerably increased by considering the sparseness of 
the matrix, since only the non zero matrix elements are 
needed. For ESR problems, as described in Appendix 
B, the suitable parameter to characterize the sparse
ness is nE, the average number of matrix elements dif
ferent from zero for each row counted from the diagonal 
element. In fact in the limit Lmu »(I+ 1), nE tends to a 
constant, while the ratio between matrix elements dif
ferent from zero and N2 tends to zero. We give the 
limiting value of nE in two situations: 

(i) axial magnetic tensors and Lmu »(I+ 1): 

nE =6A + 8- 6(/ + 1)"1 ; (22) 

(il) nonaxial magnetic tensors, Lmu »(I+ 1) and K,,.u 
»(J+l): 

(23) 

where 6A is zero if the coefficient A in the definition [Eq. 
(B3)] of the pseudopotential is zero, one otherwise. 
Moreover the number m of elements of nE that have a 
real part different from zero is very small [in case (i) 
m = 1 + 26A, in case (ii) m = 1 + 46A]. Therefore it is 
convenient to store the real part only if it is different 
from zero. In this way the needed space in memory, 
for the matrix elements and the two vectors, is given by 
N[(nE+m) real m1mbers+2(nE+m) integer numbers1 
where integer numbers are needed to describe the posi
tion in the matrix of the matrix elements. An approxi
mate value for N, correct in the limit Lmu »(I+ 1), is 
given by the equation 

N=[(21+1)/8] 

X [ (2/ + l)Kmu(2Lmax -Kmu) + 4Lmu(J + 1)] . (24) 

Instead, in the Rutishauser algorithm all the matrix 
elements in a complex form and within the band struc -
ture of the matrix must be stored. Therefore its stor
age in the limiting situations (i) and (ii) is given by 
N(M + 1) complex numbers, where M is the largest band
width of the matrix. In the comparison between the two 
algorithms from the point of view of storage, the quanti
U8f "• and M must be compared. The maximum band
width has the following limit values for the same cases 
u F.qa. (22) and (23): 

,,~(i) M=(2/+1)(2+J+JOA)+0
10

(0A-1)+1 
* 
(11) M = (1 + al)(2J+ t)ZK...u 

. 2 

(25) 

(26) 

These relations show clearly an important advantage of 
the Lanczos algorithm, viz. , the bandwidth grows lin
early with K..u and quadratically with I, while nE is in
dependent of X.u and it reaches a constant limit with in
creasing I. Moreover the introduction of a mean poten
tial almost doubles the bandwidth, while it implies only 
the increase of one (or two) for "•· 

The number of multiplications between real numbers 

in the Lanczos algorithm is approximately n5N(2nE + 21). 
Correspondingly in the Rutishauser algorithm one has 
about 16N2M multiplications; (this is an upper limit that 
does not take into account the nullity of elements within 
the band of the matrix, but this sparseness is progres
sively destroyed by the Jacobi rotations). Therefore the 
savings in computation time is given in terms of the ra
tios n./N and (2nE + 21)/16M. We have already discussed 
this latter ratio, while for the former we recall that, in 
general, n./N decreases with increasing N. Moreover, 
in minicomputers the efficiency of storage with the 
Lanczos algorithm implies a further savings in calcula
tion time when the matrix reaches the size in which the 
Rutishauser algorithm needs a secondary storage device 
like a disk with consequent increase in calculation time 
for the large number of reading and writings between 
core memory and secondary storage device. As an ex
ample, calculation X requires about 6 h with the Ruti
shauser algorithm, while 15 min is sufficient with the 
Lanczos algorithm. 

Another source of savings of computation time is the 
use of the continued fraction method [see Eqs. (14a)
(14c)} to calculate the spectrum from T". Since in this 
way the number 'of operations is proportional to n, that 
is an effort comparable to the calculation of the spec
trum by means of Eqs. (13a), (13b) once the eigenvalues 
A1 and the components c1 are derived, one saves the ex
ecution time for the application of the QR algorithm to 
T n• The number of operations in. the QR algorithm being 
proportional to n2, 6 for large n it could contribute con
siderably to the total execution time. We remark that 
this savings in calculation time can be achieved only 
with the tridiagonal matrix obtained from the Lanczos 
algorithm, because the Rutishauser algorithm generates, 
from the starting vector Iv), a transformed vector that 
generally has all its components different from zero. 

IV. THE TRUNCATION PROBLEM 

ESR problems are in principle described by infinite 
matrices. Thus the computer calculations require that 
these matrices be truncated to finite dimension. In or
der to minimize th~ execution time as well as to be able 
to perform the calculation given the limits on the capac
ity of the available computer, it is important to know 
how to truncate so as to minimize the size N of the ma
trix consistent with the results· being correct to within 
the specified accuracy (i.e., the MTS). Moreover, the 
particular way in which ESR calculations are utilized in 
routine work emphasizes the importance of this aspect. 
In fact simulated spectra are compared to the experi
mental ones in order to derive the values of the prin
cipal components of the diffusion tensor and the order 
parameter A for the anisotropic phases; (the principal 
values of the magnetic tensors are usually known from 
the rigid limit spectra). Therefore for each experimen
tal spectrum one must perform a series of calculations 
with different values for these parameters. Usually ex
perience suggests a rough estimate of these parameters 
so that their possible range is limited, and the MTS does 
not change appreciably for each experimental spectrum. 
Knowledge of the MTS can considerably speed up this 
repetitive calculation. 
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Before analyzing the information given by the Lanczos 
algorithm, we shall point out what can be derived from 
the structure of the matrices associated with ESR prob
lems. First of all we emphasize that there is no strict 
criterion for the MTS; only a comparison between spec
tra associated with different truncation schemes ulti
mately assures the convergence of the results. How
ever, it is worthwhile to establish some empirical rules 
that describe, at least approximately, the dependence of 
the MTS on the values of the diffusion tensor. (We found 
that a pseudopotential is of secondary importance in re
gard to the truncation problem, at least for moderately 
high values of the parameter .\ and for sufficiently slow 
motion. Therefore the analysis will be limited to the 
isotropic phase.) 

The simplest problem, i.e., the axial g tensor with
out hyperfine contributions, is -useful to characterize the 
convergence with respect to the index L. In this situa
tion the matrix is already tridiagonal and the error in 
the spectrum t..n, as defined in relation (15) with n=N 
the dimension of the tridiagonal matrix and JR(w) the 
correct spectrum (e.g., calculated with a larger value 
of n), is a rapidly decreasing function of n. More pre
cisely for small n, A,, is of the order of the unity, but 
the error decreases by order(s) of magnitude with in
creasing n. This behavior is related to the Smoluchow
ski form of the diffusion operator, since it gives a di
agonal contribution that increases as L 2, while the off -
diagonal elements derived from the Liouville operator 
tends to a constant asymptotic value. Therefore, the 
increase of the size of the matrix, by taking into account 
high values of the L index,. has even more negligible per -
turbation effect on the spectrum. Our analysis of the 
MTS for a spectrum correct to within 10-4 has yielded 
the empirical rule 

L!u=45 GL, (27) 

where the dimensionless parameter G L describes the 
slowness of the motion, and it is defined as the ratio be
tween the asymptotic value of the off-diagonal matrix 
element and the perpendicular component of the diffusion 
tensor, i. e. , 

IF12
•

01 1w G _!ff I 0 
L-4 2 D,.g , (28) 

and the F~ 2,m> are the irreducible tensor components of 
the µth tensor [cf. Eq. (Bl)] where g is the mean value 
of the g tensor. Equation (27) predicts surprisingly 
well the effect of D,. on the MTS. 

The MTS for more complicated problems can be de
rived by means of the rule [Eq. (27)]. First we general
ize the analysis to a spin probe in which both the g and 
A tensors are axial. We have already pointed out in the 
previous section the similarity in the structure of the 
matrix between the g tensor problem and the problem 
with both g and A tensors. Thus Eq. (27) can be ex
tended to this case with a redefined G L parameter that 
takes into account the off-diagonal asymptotic contribu
tion of the A tensor 

(29) 

We verified the relation (29) for some different 
situations, always obtaining correct results. 

The calculation of Lmu does not completely solve the 
problem of the MTS for this type of problem, since it 
is still possible to truncate the M and q indices in each 
subspace. Usually this is not important for the nitrox
ides, because in these situations only very few basis 
elements can be eliminated (mostly the doubly forbidden 
transitions for the higher values of L). On the other 
hand, this type of truncation becomes very important in 
dealing with large nuclear spins like the vanadyf com
plexes (/ = 7/2). 

For the most general situation of nonaxial g and A 
tensors, relation (27) with the parameter GL defined in 
relation (29) could be used to calculate Lmu• For trun.,. 
eating the K index, the same type of considerations for 
truncating the M and q indices for the axial probe could 
be applied, i.e., a maximum value for K could be de
fined for each value of the L index. However we have 
generally found that Kmu is almost independent of L (of 
course without considering the condition K,;; L), and a 
unique Kmu approximates quite well the MTS. An esti
mate of Kmu can be given when D11 > D,. (considering the 
analogy between the tridiagonal form for the axial g 
tensor and the submatrices defined in the subspace of 
the basis vectors with the same value of the L index). 
Also, in this case the off-diagonal elements (or blocks 
for N 0) are determined only by the Liouville operator, 
and their order of magnitude does not change with the K 
index, while the diffusion operator gives only a diagonal 
contribution that grows as K 2• We can also formulate 
an empirical rule for Kmu as 

(30a) 

where the slowness parameter must now be referred to 
the F~2•

21 components of the magnetic tensors: 

_ .!_ IF2•2 ' lw0/g + IF~2•2> ly,.J 
GK- 4 D • 

II 

(30b) 

In these cases the empirical rules predict the values of 
Kmu and Lmu with less certainty than in the axial case 
[and in some limiting situations they give absurd res\llts 
(for example when F~2

•
01 = 0 implying Lmu = 0) ], since 

these relations are derived under the strong simplifica
tion that the K and L indices can be analyzed indepen
dently. Nevertheless, provided these relations are ap
plied with caution, they generally yield an estimate of 
Lmu and K,,, ... 

The Lanczos algorithm (L.A.) gives some useful in
formation about the truncation problem that is comple
mentary to the previous empirical rules. For an Her
mitian matrix, in the hypothesis that the L.A. chooses 
the new basis set according to the optimal reduced sub
space, and if n_. is the number of steps with which the 
spectrum is reproduced within a fixed accuracy, then the 
projection of a particular starting basis element in the 
n. dimensional subspace generated by the L.A. gives a 
direct measure of its contribution to the calculation of 
the spectrum. For the complex symmetric problems, 
we define the projections according to the nonmetric 
form of the scalar product [see Eq. (10)] 
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"s 

P,=~ (x1 lk)2 
• 

k•I 
(31) 

This is a simple extension to nonmetric space of the 
concept of projection that usually is defined in metric 
space. Therefore the quantities p1 in relation (31) do 
not have the usual properties of a projection: They are 
complex.quantities and consequently the nullity of p1 
does not imply the nullity of all the quantities (x, lk). 
Nevertheless they constitute, at least from a qualitative 
point of view, the analog of the "true" projections. In 
fact if. n. coincides with N, then all the p I are equal to 1, 
and if the matrix elements are real, the "true" projec
tions are obtained. Moreover, our interest is to evalu
ate the contribution of the different starting basis ele
ments to the final spectrum, so we judge as sufficient 
this qualitative correspondence with the "true" projec
tion. We emphasize that the quantities p I can be calcu
lated without substantial modification in the computer 
program (one need only accumulate the quantities (x1 1k) 
each time the L.A. produces a new vector lk)). 

In order to use correctly the information derived from 
the projections, one needs to take into account that the 
L.A. always produces an approximation of the optimal 
reduced space as a consequence of the extreme eigen
value effect. In the previous section we described how 
the L.A. tends to reach the higher eigenvalues. The 
projections p1 for basis elements lx1) with high values 
of K and L indices are strongly affected by this behavior 
and the p I can have a large value even if the contribution 
of lx1} to the spectrum is negligible. Therefore the p,'s 
are not so informative with respect to the K and L trun
cation for which the empirical rules [Eqs. (22) and (25)] 
can be used to supply the needed information. The pro
jections do characterize well the relative contribution of 
the basis elements that differ only by the indices M and 
q, for whic.h there is not the extreme eigenvalue effect 
(cf. Sec. ill). 

We judge as useful this projection approach to the 
truncation problem in the calculation of the spectra of a 
spin probe characterized by a high value of nuclear spin 
momentum I, since it allows a considerable reduction 
of the size of the matrix by means of a detailed scheme 

• of truncation for the transitions obtained retaining the 
basis elements that have lp1 I greater than some value 
related to the required accuracy. Also, its application 
in the calculation of ESR spectra of a nitroxide would be 
very useful when the director for an oriented phase is 
tilted with respect to the static field. In this situation, 
the "selection rule" [Eq. (B16)] is no longer satisfied, 
and the indices M and p must be considered independent 
of each other with a corresponding increase of the size 
of the matrix. Also, in this case the projections could 
give a detailed MTS for the M index. 

Lastly, we mention that the projections could be de
fined so that they are not affected by "the extreme 
eigenvalue effect." This would be the case if the scalar 
product (x1 1k) in relation (31) is substituted by the scalar 
product (x1 1y1) (recall ly1) is an eigenvector of T") so 
that Eq. (31) becomes p; = 1"'.1 (x1 ly1)2, where the sum
mation is taken for all the e!genvectors that have a 

weight greater than the fixed accuracy for the spectrum. 
We consider this approach strongly limited in practical 
applications, because it implies: 

(i) storage of Qn [see Eq. (Al)]. 

(ii) the use of the QR algorithm with the transforma
tion of all the coefficients of~-

Therefore it is not feasible from both the points of view 
of storage and calculation time for large size matrices 
for which the knowledge of the MTS is importaQt. 

V. THE LANCZOS ALGORITHM AND FOKKER
PLANCK EQUATIONS 

We think that one interesting field of application of 
the Lanczos algorithm is the calculation of correlation 
functions from Fokker-Planck equations. In fact, given 
conditions that we will discuss, this problem is formally 
similar to the calculation of ESR spectra, and all the 
results of the previous sections can be applied.· In order 
to examine in detail those formal analogies, we take as 
a simple example the Fokker-Planck equation for the 
planar rotator, since it has all the features of the gen
eral problem, even though it is described by a very sim
ple equation. Its time evolution is given by the equa
tions3,23 

8P(r,y,t) =-rP( • t) 
8t Y,'Y, ' (32a) 

r=r1+r2 , (32b) 

. 8 F(y) 8 
r1=Y 8y +-J-ay, (33a) 

kT 8 /8 y ) 
r 2 = -f3y 8y \ay +·IkT ' (33b) 

where y is the angle that the rotator makes with the 
laboratory frame, y is the corresponding angular veloc
ity, J is the moment of inertia, and (3 is the friction co
efficient. The force F(y) acting on the rotator is derived 
from a potential function V(y): 

8 
F(y) = - Sy V(y) . (34) 

Note that the Fokker-Planck operator is separated into 
two parts: the classical or reversible drift operator r 1 

and the diffusive or irreversible operator r 2. Any cor
relation function can be written as 

where P oq is the equilibrium distribution function 

P•q =exp(-Jy2/(2kT)- V(y)/kT]/Z , 

(35) 

(36) 

where Z the normalization factor, and the scalar prod
uct is defined in the proper Hermitian space for the 
functions of y and y. Defining the symmetrical Fokker
Planck operator I' as 

we obtain 

I'1=r1, 

I' __ (3kT (..!_ _ Jy )(..!_ Iy) 
2 - I 8y 2kT 8y + 2kT ' 

(37) 

(38a) 

(38b) 

J. Chem. Phys., Vol. 74, No. 7, 1 April 1981 
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and the correlation function can be rewritten as 

g(t) = ( f2P112 I e•i' 1 
lt1P

112
) . (39) 

Therefore the correlation functiO!}S can be calculated 
once the eigenvalue problem for r is solved. 

From the operational form or r, it can easily be de
rived that the matrices associated with the classical 
evolution operator and the diffusive evolution operator 
have different kinds of symmetry 

fi=-ft' 

r;=r2, 

(40a) 

(40b) 

where the superscript"+" stands for the adjoint matrix. 
Therefore the matrix associated with the global time 
evolution operator will never be self-adjoint. The 
unique way to solve the problem is to introduce a proper 
basis set so that the Fokker-Planck operator is repre
sented by a complex symmetric matrix. Moreover, it 
is always possible to define such a basis set. If we in
dicate with <t>,iY)!/1,(Y) the orthonormal basis set for the 
problem, a (complex) symmetric matrix representation 
of f is obtained in two ways: 

(i) ip.,(Y) = real function, ¢1(-y) = ¢1(y)", if the poten
tial obeys the following condition of symmetry: V(-y) 
= v(y). 

(ii) <t>m(-Y) == q>.,(y)", ¢,(y) == real function, for any 
symmetry of the potential. 

This can be verified by considering the symmetry prop
erties or each operator (i.e., Y, a/ay, etc.) that enters 
into Eqs. (33a) and (38b). The proper basis functions 
for case (i) are <t> .. fr) == hm(y), !/1,M = (211r 112 e11", where 
h.,fr) are the eigenfunctions or the one-dimensional 
quantum-mechanical harmonic oscillator (3, 23) i.e., 
the Hermite functions. The convenient choice for case 
(ii) is <t>.,(Y) =i"'h.,(y), 1/',M =[411(1 + a,, 0)J-112(e11" ± e"117). 

The same type of analysis can be applied to more 
complicated problems like the three-dimensional rotator 
to obtaining the correct form for the basis· set. Once the 
symmetric matrix associated with f is obtained, the 
Lanczos algorithm can be applied in order to calculate 
the correlation function or the corresponding spectral 
function 

This type of application of the Lanczos algorithm differs 
Crom the calculation of ESR spectra in two respects: 

(i) two starting vectors are possible: ftP~2 andf2P~2• 

(ii) in general those vectors have complex components. 

The Lanczos algorithm for complex symmetric matrices 
as described by Eq. (5) can also be applied to a complex 
starting vector if it is normalized according to Eq. (8), 
that is, 

L (x, [t,P~2)2 = 1 , i = 1 or 2 . (42) 
J 

Concerning the first point, the Lanczos algorithm can 
be generalized so that eaeh time a new basis element 

is created, its projection on the left-hand vector is_ cal
culated. But in our opinion that could render void one 
of the features that significantly influences the efficiency 
of the algorithm, viz., the use of a number of steps n 
much less than the dimension N of the matrix. In fact, 
it is possible that the left hand vector will continue to 
have relevant components even as n approaches N. 
Then, as we have seen (cf. Sec. II), the results will be 
strongly affected by the loss of orthogonality. In order 
to best use the algorithm, one needs to reduce the cor
relation function to a form that does not require the cal
culation of the transformed left hand vector. 

Once / 2P~2 has been chosen as the starting vector, the 
vectors I k) for k> 1 produced by the Lanczos algorithm 
are orthogonal to the left hand vector according to Eqs. 
(9) and (10), if the functions / 1 and / 2 in the correlation 
function (35) satisfy the condition 

(43) 

where I l, m) is any element of the initial basis set, 
e.g., IZ,m)=<t>.,(y)ip,(y). Given a function.f(y,y) we de
fine r(y, y) as 

/5(Y, Y) =P".!12 L I z, m)(Z, m It P~
2t . (44) , ... 

The general correlation function can be reduced to cal
culations with a single starting vector by means of the 
relation 

J1(t)· 12(0> =½U11w + n(1>J'tNo> + n(o>J 

-n(tt/2(0)-/1(t'f /f(O)}. (45) 

Each of the three correlation functions on the right-hand 
side is readily calculated by the Lanczos algorithm. Equa
tion (45) can easily be verified by taking into account the 
following property which derives Crom Eq. (39): 

n• (t)/i(0) =ft(t)* f2(0) . (46) 

,We have previously shown that there are two different 
complex symmetric matrix representations of the 
Fokker-Planck operator (32), if the potential is sym
metric. We can choose between the two representations 
in such a way that the computational effort (i.e., the 
number of times that the Lanczos algorithm is applied) 
is reduced to a minimum. As an example, if we are in
terested in correlation functions for real functions of the 
angular variable, the representation type (ii) is more 
convenient. In fact the diagonal correlation (i.e., /1 =/2) 

implies only one diagonalization, since in this case r 
= J. Moreover the cross correlation function (i.e., 
f 1 ~ Ji) requires only one further diagonalization if the 
two corresponding diagonal correlation functions are 
known. 

Matrices associated with the Fokker-Planck equation 
(32) will generally have a structure similar to typical 
matrices for ESR problems, the Liouville operator 
being substituted by f I and the diffusion operator by f 2 

and in particular they are very sparse. Thus in the ex
ample of Eq. (33), the size of the matrix is mainly de
terminecf by the ratio 13/(kT/1)112 •• The study of the cor
relation function in the low friction limit, when the 
Smoluchowski equation is no longer valid, implies di--

J r.hPm Phue \J,.,.J "7.4 PI..I"" "7 1 A"'.a 1001 
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agonalization of matrices that grow very rapidly in size. 
One finds that the ratio between diagonal elements and 
off-diagonal elements increases only as mt12 , with m 
the index for the basis function for the angular velocity 
<f>.,(y), while the ratio in the ESR calculation was propor
tional to L2 or K2• 

In conclusion, we think that application of the Lanczos 
algorithm to the solution of Fokker-Planck equations 
will be very useful in dealing with problems having a 
large number of degrees of freedom such as encountered 
in generalized Fokker-Planck equations in which the ef
fect of the thermal bath is explicitly taken into account.3 

CONCLUSIONS 

(1) The Lanczos algorithm is found to yield very rapid 
and accurately convergent solutions to the general line
shape problem, and is strongly favored over conven
tional algorithms. 

(2) A conventional algorithm such as that based on 
the Rutishauser method requires computation times pro
portional to N2M (N is the matrix dimension and Mis 
the bandwidth) while the Lanczos algorithm requires 
times roughly proportional to NnsnB (where n8 is the 
number of iterative steps and nB is the average number 
of nonzero elements in a row). We find ns « N and nB 
« M especially in the larger problems. This explains 
its rapidity in execution time. 

(3) The required number of iterations n8 can be ef
ficiently determined during the course of a computation 
(yielding an approximation to the optimal basis set), 
while N may, with some experience, be truncated to its 
minimum value (MTS). 

(4) Since it is not necessary to store the matrix, 
problems involving exceedingly large matrices can 
readily be handled. Our own experience, so far, has 
been with matrices of N nearly 1000 in complex number 
(double precision) which could be performed entirely in 
the core of a minicomputer even with matrix storage, 
so much larger matrices are possible without matrix 
storage. 

(5) The generality of the approach suggests it should 
prove very useful in a wide variety of problems in mag
netic resonance and in stochastic models of molecular 
dynamics. 
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APPENDIX A: ESR SPECTRA IN TERMS OF 
CONTINUED FRACTIONS 

We first demonstrate Eq. (12) for the spectral absorp
tion function. The result of the application of the 
Lanczos algorithm for n + 1 steps, as described by the 
recursive relation [Eq. (7)], can be concisely written in 
matrix notation 9111

: 

(Al) 

where q •• t is the column matrix with the components of 
In+ 1) and e!r is then-dimensional row matrix defined 
as e!r = (0, 0, 0, • • ·, 0, 1). The rectangular matrix Q. 
contains the components of the n new basis elements or
dered by columns, and it satisfies the normalization con
dition 

(A2) 

Note that in the general case (i.e., when n * N) Q.Q!r is 
different from 1. The spectral absorption function Eq. 
(1) can be written as 

/(w) = (1/11) Re {(1 IQ!'l:(1/T; + iw)l + A]"1Q. I 1)}, (A3) 

when the starting vector Iv) has only real components 
and it is normalized (see Appendix B). We indicate with 
11) the starting vector Iv) represented in the new bas is 
set produced by the Lanczos algorithm, therefore its 
components are zero except for the first. If i:ln+t = 0, 
we have 

AQ. =Q.T. (A4) 

and Eq. (12) is immediately derived from Eq. (A3) once 
it has been demonstrated that 

Q!TA"1Q.=(Q!TAQ.)"t. (A5) 

This is obviously true if Q. is a square matrix, that is, 
if A is defined in a space with finite dimension N and 
n=N. On the other hand the relation [Eq. (A5)] can 
easily be verified in the general case, taking into ac -
count that Eqs. (A2) and (A4) imply the commutation rule 

(A6) 

The Gauss reduction method, 24 applied to the tridi
agonal matrix [(1/r; + iw)l +T.] allows a description of 
the spectral function in terms of continued fractions. 
The solution of the linear problem 

(A7) 

where B is a symmetric tridiagonal matrix with dimen
sion n, can be written as 

Wt= b2lat ; 

w1(j = 2, 3, • • •, n -1) = b1•1/(a1 -b1w1.t) , 

gt =dtlat ; 

g1(j =2, 3, • • ·, ll) =;_(d1 -b1 g1.tla1 -b1w1.t) , (AS) 

y1(j=l,2,··•,n-1)=g1 -w1 y1.t, 

where y1 and d1 are, respectively, the components of the 
vectors ly) and Id) and the matrix elements of Bare de
fined as 

(A9) 

Under the condition that d1 = 6 ,., the solution has the 
simplified form 

• Y,=IT (--w.,), 
m•J 

(A10) 

-- - J. Chem. Phys., Vol. 74, No. 7, 1 April 1981 
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where the usual notation for continued fractions is 
used. 25 

Now applying the previous relations to the tridiagonal 
matrix defined as 

(All) 

where the coefficient a J and {3J are the matrix elements 
of T "' we obtain 

<1 I[(~ + i) 1 + T.]-
1 

lj> =y,,_1., = IT w;,.11,. , (A12) 
2 / . ,.., 

where /31 = - 1 and the quantities/,. are defined as 

(A13) 

and therefore they can be written in terms of continued 
fractions [Eq. (14c)]. 

By substitution of Eq. (A12) into Eq. (12) for the ab
sorption spectrum and its derivative 

Eqs. (14a) and (14b) are immediately derived. 

APPENDIX B: MATRIX ELEMENTS IN ESR 
PROBLEMS 

We consider a spin probe with one hyperfine interac
tion, described by the Hamiltonian in frequency units1: 

X=w 0S.,+y.aJ.,S.,+ L (-. l)KFt2·-K!DL,(n)At2•.11 1 , (Bl) 
KAii, 

where the nuclear Zeeman interaction is not taken into 

while for the Liouville operator .£ =JC\ we obtain 

The vector of the components is given as 

account. We assume that the rotational motion is de- • 
scribed by the symmetrized Smoluchowski equation1: 

r = [J - (1/2kT)(JV) ]D[J + (1/2kT)(JV)] , (B2) 

where J is the angular momentum operator, Dis the dif
fusion tensor, and V is the pseudopotential for oriented 
phases. 

Thereupon the expression for the matrix elements of 
(r - i£) will be derived without any restriction on the 
nuclear moment I, but with the following conditions: 

(i) The contribution of the nonsecular terms to the 
spectrum is negligible. 

(ii) The tensors g, A, D are diagonal in the same 
molecular frame. 

(iii) The diffusion tensor is axial with respect to the 
z direction of the molecular frame. 

(iv) The pseudopotential is axial and is given by the 
relation 

(B3) 

The operator r - i£ is defined in the product space of 
the Wigner rotation matrices D;.11(n) and the space of 
the ESR transitions lm',m"), where mis the eigenvalue 
of I., and the eigenstates of the electronic spin are im
plicit 

I . I") /IT+TI L ())I' ") LKM;m m = JBT Du n m , m • (B4) 

The matrix elements for the diffusion operator are given 
by the relation 

(B5) 

(B6) 

(B7) 

(B8) . 
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The magnetic tensors being diagonal in the molecular <P1Q1 l[A~2,Jf\r IPzqJ 
frame, the matrix elements have the following symmetry 
relation: = (- l)M (-P1Q1 l[A~2

••Ml]s I-Pzqz) , (B13) 

(B9) 

This allows us to reduce the dimension of the problem 
taking only the positive and even values for the index K 
corresponding to the redefined basis elements 

ILKM; m'm") =[2(1 +6K0)]"1' 2( ILKM; m'm") 

+(-l)L IL -KM; m'm")), (B10) 

while the relation [Eq. (B5)] remains unchanged and the 
relation (B6) needs the normalization factor 

NK(Ki,K2f=(l +62,K1+c/'2 • (B11) 

To take into account the symmetry with respect to the 
index M, we redefine the notation for the transitions in 
terms of two new indices p and q: 

P=m' -m"; q=m' +m". (B12) 

Therefore the allowed values of the p index are the in
teger number in the interval - 2/ to 2/ while the q index 
assumes the values - Q, - Q +-2, • ; • , Q, where Q = 2 I 
- Ip I. The use of the q index is equivalent to organizing 
the transitions in terms of allowed transitions (p = O), 
single forbidden transitions <P=± 1), etc. The quantities 
in relation (B7) satisfy the symmetry condition 

that by substitution in Eqs. (B5) and (B6) gives 

(L1K1 -Mi; -P1Q1 lr-i.C IL~z- Mz; -P2Q2) 

=(-1)Lt•Lz•ll1•.112(L1K1M1;P1Q1 Ir -JZ. IL~2M2;P2Q2) • 

(B14) 

As a consequence the problem can be further reduced, 
redefining the basis set as 

ILKM;pq) = [2(1 + 60.1160,)]· 112 

x( ILKM;pq) + (- l)L•M ILK -M; -pq)) ,(B15) 

where the index M is now positive. 

The quantities in relation (B13) have the "selection 
rule" 

(B16) 

That implies a further factorization of the problem and 
the needed basis elements are 

ILKM;q)= ILKM;Mq)' 

M=O, 1, • • ·, Min{L, 21}, 

q=-Q,-Q+2,···,Q' 

(Bl 7) 

where Q = 2 I -M. In this new representation the rela
tion (B5) remains unchanged while the Liouville operator 
has the following expression for the matrix elements: 

(B18) 

( . ·) 6.111.1126q1q1Q1Ye ( ) ·' ( 1) l[ ( }]1[ ( ) ) GAM1,Q1,M2,Q2= ~ +61,1.111-M2l6q1,q2~1Y.M2-M1v/J+ -aQ1±M1M1-M2 aQ2±M2M1-M2. 

We remark that the matrix associated with r - iJ?, is complex symmetric, both r and .C being real symmetric. 
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