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fairly ~ood fit for 0.1 M is obtained. A comparable fit 
occurs with a= - 3 and o = 5. 2 x 10·3, implying D ~ 4. 96 
.A. Again with a= - 3, the 0. 01 M MC results are very 
well fitted with o =0. 0016, implying D ~ 7. 25 A. Since 
mean field theory suggests that a should be concentra­
tion independent, it is reassuring that good fits are pos­
sible here for 1 to O. 01 M with a constant a value. It is 
likely that the LLGM requires an increasing lattice step 
size with decreasing concentration because a fluid situa­
tion is being approximated by a lattice model. Finally, 
dielectric saturation can be readily added to the LLGM, 14 

leading to a more realistic treatment. When MC results 
for both fiuids and lattice situations become available it 
will be of interest to see how the LLGM a (and perhaps 
N as well) depends on d, Ea, and M. The LLGM could 
then be of direct value to practicing electrochemists for 
both liquid and solid electrochemical applications since 
it would yield a much more accurate representation of 
DDL behavior than does conventional Gouy-Chapman 
theory. 

a)Work supported by National Science Foundation Grant DMR80-
05236. 
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In recent years there has been a growing interest in 
the Lanczos algorithm1 and its applications to problems 
in physics and chemical physics. 2 In particular, this 
algorithm was shown to be very useful in the calculation 
of correlation functions for slow motional ESR spectra. 3 

Generally, in past work the computational value of this 
algorithm was emphasized. The Lanczos algorithm is 
~ot widely recognized as a theoretical method that can 
concisely extract the relevant information from a gen­
eral description of physical systems. 4 

The value of the Lanczos algorithm to theoretical 
analyses derives from its close relation to the more 
general method of moments, 5 which may then be used 
in the study of the dynamics of classical statistical 
systems. One generally employs correlation functions 
to describe both the dynamical properties of a many par­
ticle system and the experimental data. We show here 
that the Lanczos algorithm leads in a natural way to 
their continued fraction representation. 

Let us recall briefly the Lanczos algorithm. For a 
given self-adjoint operator A, defined in a Hilbert space 
E and given a normalized starting vector lz) E: E, the 

method of moments5 defines the nth approximation A,, of 
A by the relation 

A,. =P,,AP,,, (1) 

where P,, is the operator that projects any vector belong­
ing to E, onto the subspace E",, constructed with the vec -
tors lz,..1) =Aklz) fork =0 ton -1. If, by means of a 
Schmidt orthonormalization procedure, we produce an 
orthonormal basis set spanning E",, represented by the 
vectors lk) fork =1 ton, we obtain the recursion rela­
tion characteristic of the Lanczos algorithm1• 3<b> 

(2) 

A tridiagonal self-adjoint matrix T,,, with the a,.'s as 
diagonal elements (a,,== (k I A,, I kh (k I Al k)) and the {:3,,' s 
as off-diagonal elements ({:3k = (k I A,, I k - 1) = (k I Al k - 1) ), 
constitutes the representation of A,, in this new basis set. 

The application of the Lanczos algorithm to the cal­
culation of the classical autocorrelation function (acf) is 
straightforward, once the acf is written as 

(3) 
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where/ is a function of the coordinates q and the momenta 
P of the system, the scalar product is defined as an 
integral over the phase space (i.e., ( ) = f dpdq), P,q 

is the equilibrium distribution function (P,q =e· 81 kT / Z) 

characterized by the Hamiltonian H, Z is the partition 
function Z=(e·Hlk7), and L=L(p, q) is the classical 
Liouville operator which is Hermitian in the Hilbert 
space of the dynamical variables. 6 Also we define J(t) 

so that (j(O)) = /(0) =0. 

The following equation is obtained for the spectral 
function associated with F(t): 

F(w) = lim f., exp[- (iw +r)t] F(t) dt 
T •0 0 

=lim lf !2 (1j[(r+iw)l+iT]·1 \1), 
r •O 

(4) 

where T is the infinite self-adjoint tridiagonal (or con­

tinuant7) matrix generated by the Lanczos algorithm 
applied to L with the normalized· 1 z) = 11) = ( I 712)·1 

x IP!~3/) as the starting vector [cf. Ref. 3(b) Appendix 

A for the simple details leading to the second equality]. 

We note that if the function/ has a definite parity with 
respect to time reversal, then all the diagonal coef­
ficients of T are zero, since L- - L under time re -
versa!. This is usually the case since most spectro­

scopic 'data are interpreted with acf's that are functions 

of molecular position and/or orientation. By means of 
standard techniques31 b>, 7 the continued fraction7 repre­

sentati9n of F(w) is obtained from the continuant ma­
trix of Eq. (4) as follows: 

F(w)=liml/1 2 { .
1

. 
r•O (r+tw+Hl'1)+ 

I /32 1
2 

... ( _I 13 I~ ) ... } . 
r+iw+za,. + 

(5) 

Equation (5) is, in fact, equivalent to the well-known 
Mori continued-fraction representation of the acf. e. 9 

Moreover the memory function hierarchy is easily re­
covered once the generalized memory function1° K 1(t) 

is defined as 

K 1(t) = I /31 I 2 (j ! exp[-i (1 - P 1• 1}Lt] lj) 
(see appendix below). 

Thus we see that: 

(6) 

(1) The application of the Lanczos algorithm to classi­

cal statistical systems constitutes a simple method for 
obtaining the continued fraction representation of the 
correlation function and its memory function hierarchy .11 

This suggests its possible utility as an approach that 
could complement the well-known memory function meth­
ods. 10. 12. 13 Such studies would be aided by the es -
tablished connection between .the Lanczos algorithm and 
the method of moments, 5 continued fractions, 7 and Pade 

determinants. 14 

(2) In the context of the Lanczos algorithm one can 
develop useful approaches in approximating Eq. (5). 
For example, in numerical analysis1 the Lanczos al­
gorithm is employed with the finite dimensional approxi-

mation A,, of the operator A. This would be equivalent 
to a truncation of the infinite tridiagonal matrix T in 
Eq. (4) by assuming that /3n is zero. However, in the 
usual memory function approach, when one considers 
a Kn(t) that is rapidly decaying compared to F(t) [e.g., 
K"(t)""Kn(0) o(t)/y, where y plays the role of a decay 
rate], then a truncated form of T is still generated, but 
correspondingly an imaginary contribution [- iKn (0)/y) 

would be introduced to the diagonal element ll'n. 1 (see 
appendix below), thus destroying the self-adjoint nature 

of T and leading to irreversible behavior. It would also 

be of interest to relate such formal approximations to 
the application of the Lanczos algorithm in calculating an 

acf from a stochastic model represented by a Fokker­
Planck equation, as previously discussed. 3<b> We note 

that the Lanczos algorithm has indeed been recently ex­
tended to non-self-adjoint complex matrices A, which are 
generated in the analysis of such Fokker-Planck equa­
tions. 3<b> 

(3) There is considerable current interest in the use of 

variations of Mori-type memory functions, projection 
operators, and continued fractions in the modeling of 
microscopic molecular dynamics in condensed phases. 15 

The computational efficiency of the Lanczos al-
gorithm2• 31 h> strongly suggests the possibility of its 
practical use for computer calculations in this general 

area of microscopic molecular dynamics. For this pur­
pose, a matrix representation of the approximate or 
model Liouville operator is needed. It would also be of 
interest to explore the relationship between such an ap­

proach based on the Lanczos algorithm to the approaches 
currently being used1s given what we have already noted 
in paragraph (1) above. 

Appendix: Starting with Eq. (6) as the definition of the 

jth memory function, we apply the Lanczos algorithm [i.e., 

(i.e., Eq. (2)] to L;'=(l- P;.1)L, with lj) as the starting 

vector. This procedure generates the vectors I j + 1), 
lj + 2), I j + 3), ... and the infinite tridiagonal matrix 
T1 =(1-P1. 1)T(l-PJ_1). Then, by analogy with Eqs. 
(3)-( 5), we obtain 

K1(w) =lim I (3 J j 2 (j i[Uw +r)l +iT1]·1 Ii) , 
r•O 

(7) 

which is easily related to Eq. (5). [Note K 1(0)"' I ti1 12
). 

Inversion of Eq. (7) yields the time domain result 

which is the characteristic equation for the memory 
functions. 8 

(B) 
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Monte Carlo calculations for a 2: 2 restricted primi­
tive model electrolyte have recently been presented by 
Valleau and Cohen, 1 and Valleau, Cohen, and Card. 2 

Valleau, Cohen, and Card have further used the MC 
data to make a careful appraisal of the structural and 
thermodynamic properties predicted by the various 
electrolyte theories. They find that the HNC, BGY, 3 

MPB, and ORPA+B2 theories4 are the most successful. 
Here we wish to supplement previous MPB results5 (for 
the MPB3 equation) at the lower concentrations to com­
plete comparisons with the new MC data. For cs 5 
x 10·4 M the simpler MPB1 equation was used as the MPB1 
and MPB3 results are indistinguishable at these very 
low concentrations. The reduced configurational energy 
U/NkT and the virial osmotic coefficient <f>v are given in 
the table while the deviation of U/NkT from the Debye­
Hi.ickel limiting law is given in the figure. The figure 
supports Valleau, Cohen, and Card's statement that the 
MPB theory is likely to provide an excellent approxima-

tion at low concentrations. This result is not surprising, 
as this theory is closely related to the Debye-Hi.ickel 

TABLE I. Reduced configurational energy U!NkT 
and the virial osmotic coefficient cf>v for the MPB3 
(Ref. 5) and BBGY3 (Ref. 7) theories. The 2: 2 
electrolyte parameters are those used by Valleau, 
Cohen, and Card (Ref. 2). 

-U/NkT cf>v 

-le MPB BBGY MPB BBGY 

0.01 0.128 0.964 
0.025 0.361 0.362 0.908 0.908 
0.05 0.692 0.704 0.835 0.831 
0.075 0.947 0.970 0.781 0.773 
0.1 1.149 1.184 0.741 0.728 
0.15 1.458 1. 514 0.683 0.663 
0.2 1. 690 1. 767 0.643 0.619 
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