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Analysis of electron spin echoes by spectral 
representation of the stochastic Liouville equationa> 
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Motional effects can easily be incorporated into calculated spin echo decay envelopes by idealizing the effects 
of the pulses and by using the stochastic Liouville equation (SLE) to govern the time dependence of the 
density matrix between pulses. The spectral representation of the 90'-r-180'-r envelope is: 
I,.ma,,m exp[ - (A, +A* m )r ], where A, is the /th eigenvalue of the SLE matrix, and a,,m are products of 
relevant components of eigenvectors. The long time (larger) phase memory time T;: is equal to (Re A ,r', 
where A I is the smallest eigenvalue. For an axially symmetric g-tensor case in the slow motional region, 
T;: /TR<:::: 3IFrR 1- 112

, 21FrR 1- 113, and I, for Brownian, free, and jump diffusion models, respectively, with 
F=.2,/:J,H 0(g 11 - g 1)/311 and r R the rotational correlation time. Analogous results hold for nitroxides having 
nuclear hyperfine tensors. The echo results are compared with simple methods of measuring r R from cw 
spectra. The overall shape of the echo envelopes in the slow motional region is exp( - bF2r 3 Ir R) for very 
short times and exp( - 2r IT;:) for the longer times. Carr-Purcell (CP) sequences suppress the initial 
exponential in r 3 and increase the phase memory times as a function of decreasing r. Detailed analysis of CP 
sequences can provide information on motional model. The analysis of motional averaging of nuclear 
modulation effects by our method is also given and it is pointed out that this approach may be useful in 
studying very slow motions. Despite the simplicity of the methods, we are able to approximately fit 
experimental data from the Tempone/glycerol-water system in both fast and slow motional regions. 

I. INTRODUCTION 

Electron spin echo (ESE) spectroscopy is emerging as 
an important method for studying molecular dynamics 
in liquids. 1

-
5 ESE phase memory times in the slow mo­

tional region ( i. e. , the range of rotational correlation 
times ~ 10·9 to ~ 10-s s) have been shown to be sensitive 
to the rotational diffusion model4•

5 and therefore to pro­
vide a means to determine the model of diffusion in 
viscous media. For quantitative studies, computer sim­
ulations of the ESE decays must be performed. 7 These 
are based on the time-dependent stochastic Liouville 
formalism developed by Freed and utilized for the inter­
pretation of saturation recovery experiments in liquids. 8 

The great length and complexity of these calculations 
have motivated us to consider simpler ways of simulat­
ing ESE decays. Our present method is based upon the 
eigenvalues and eigenvectors of the stochastic Liouville 
equation, which are regularly computed in predicting 
the cw ESR line shapes. 9• 

10 We refer to this method, 
therefore, as the spectral representation method. We 
show that in the limit of ideal microwave pulses (i.e., 
precisely 90° or 180° pulses of infinitesimal duration), 
this same information is sufficient to predict simple 
90°-T-180°-T echo sequences as well as the multipulse 
Carr-Purcell sequence and its variants. 11

• 
12 

By means of some prototype examples we can explore 
typical features of the echo decays in the case of slow 
motion, and a number of interesting results emerge with 
regard to their short-time vs long-time behavior and 
their dependence upon motional model. 

We also consider echo modulation envelopes which 
typically arise from small superhyperfine interac-
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tions. 1
• 2 We show how the spectral representation 

method may be successfully applied to study how rota­
tional motion averages out these modulation envelopes. 
This provides a method to study slower motions than are 
normally studied by ESE techniques. 

In large part, the motivation for this work stems from 
our preliminary work reported in a recent communica­
tion5 where the value of studying the eigenvalues of the 
stochastic Liouville equation is first pointed out. 

II. THEORY 

Molecules whose rotational degrees of freedom are 
treated classically as a stationary Markov process and 
whose spin dynamics are treated quantum mechanically 
can be characterized by a density matrix p(O, t) satisfy­
ing the stochastic Liouville equation of motion8

• 
9 

where :ie(O) is the Hamiltonian superoperator of the 
system [JC(n), ], depending on the orientation of the 
molecule specified by its Euler angles n. r 0 is the 
time-independent Markovian operator for the motional 
process, e.g., a diffusion operator and p0(n) is the 
equilibrium density matrix. 

The Hamiltonian JC(O) is divided into three parts 

3C(O)=Jeo+JC1(0)+E(t). (2) 

The first term JCo is the orientation-independent part of 
the Hamiltonian in the absence of radiation. For an 
electron spin interacting with a single nuclear spin 

JCa=Cef3eHoS•/li-ynHoI.-y.,aS.[., (3) 

where g
6 

and a are the isotropic parts of the electronic 
g tensor and the nuclear hyperfine tensor, respectively, 
and H0 is the applied field. The nuclear g tensor will 
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be assumed isotropic. 

The orientation-dependent part of the Hamiltonian 
JC1(0) can be written as a function of the random vari­
able n, 

JC(O)=" 1)2 ,{O)(F(2,m>A<2,m•>+p<2,m>p<2,m•>) 
1 4-,,/, •m. m I 6 A A ' 

...... 
(4) 

where :D~m,m'(O) are the Wigner rotation coefficients 
which transform from the instantaneous orientation of 
the molecular (unprimed) frame to the fixed (primed) 
lab frame and F;2•"'>, Fl2·m•> are irreducible components 
of the electronic g tensor and the nuclear hyperfine ten­
sor, respectively, both written in the molecular frame. 
In the high field limit, A!2•"''> is a function of s., and 
A<}•"'' > is a function of the products of S • with I,,, Jy, and 
f., all quantized with respect to the lab frame. 

In the presence of a rotating field, the Hamiltonian in­
cludes the radiation term 

( 5) 

where H 1 is the magnitude of the rotating microwave 
radiation ands. and S_ are the electron spin raising and 
lowering operators. 

The Markov operator r O has associated with it the 
equation 

(6) 

where P(O, t) is the probability of finding the molecule 
described by the Euler angles O at time t. The equilib­
rium probability distributionPeq(O) obeys r 0 Peci(0)=0. 

The equilibrium density matrix p0(0} may be written 
in the high-temperature approximation as 

(7) 

with N the total number of spin eigenstates. Since we 
are also considering the high-field limit [for which the 
form of Eq. ( 1) is correct8• 

9
], we can keep just JC0 in 

Eq. (7). 

We now introduce the reduced density matrix 

x(O, t) =P(O, t) - Po(O) 

and rewrite Eq. ( 1) as 

a A A 

at x(O, t) = (-i:Je(O} - r o)x(O, t) -i:Je'(O}po(O) 

=-Ax(O, t) +iq[€(t),:re0J, 

(8) 

(9) 

where A is the stochastic Liouville operator q=n/NkT 
and we have used Eq. ( 7) in its high-field form in the 
second equality. 

Because of the explicit time dependence of €(t) in Eq. 
( 9), we Fourier analyze x(O, t) according to 

x(O, t) = L exp(inwt)x <n>(o, t) , (10) 

where x <n>(o, t) is the nth Fourier component. In the 
high-field limit, only the n = 0 component of the diagonal 
( and pseudodiagonal) density matrix elements and the 

n = 1 component of the density matrix elements off diag­
onal with respect to the electron spin state enter into 
the problem. 13 The components of these off-diagonal 
elements we write as z~u(o, t) or simply Z1(0, t), cor­
responding to the Xth allowed or forbidden ESR transi­
tion. The Z1(0, t) may be appropriately thought of as the 
components of these density matrix elements in the 
frame rotating with the magnetic field. The diagonal 
density matrix elements for n = 0 are written simply as 
x:O>(o, t). They do not rotate with the field. Finally, we 
define x:.;>(o, t) = p,.,(O, t) - p0(0) to collectively include 
only these high field z~u(o, t) and x,W>(o, t) density ma­
trix components. 

The general approach for solving the operator dif­
ferential equation, Eq. (9) [with Eq. (10)], is discussed 
by Freed8 and by Stillman and Schwartz. 7 In order to 
accurately describe the evolution of the density matrix 
during some arbitrary pulse sequence, 7 one first divides 
the sequence into time regions where a pulse is present 
and regions where there is no pulse. Equation (9) is 
then solved in the individual regions. This requires 
somewhat lengthy and complex calculations, which tend 
to limit it to only the simplest cases. We therefore 
adopt an easier approach, based on treating the pulses 
in an idealized way. We assume that the radiation field 
is intense and short enough so that the sole effect of a 
pulse is a rotation of the density matrix by an appro­
priate angle. Thus, we assume that €(t) dominates the 
spin-Hamiltonian in the rotating frame [i.e., written in 
terms of the Z !1)(0, t) ], and more generally, it domi­
nates the stochastic Liouville operator A during this 
infinitesimal time. 

Then, in the absence of any microwave radiation, 
Eq. ( 9) [ with Eq. ( 10) l may be written 

:tx:,>(o,t)=-IA!fx!.,>(o,t)], (11) 

where A:;>= - i[(JC0 - nwS.)" +J<\(Ot] - r 0 , the rotating 
frame stochastic Liouville operator. The solution to 
Eq. (11) is 

( 12) 

In the presence of the very intense microwave pulse 
of short duration we have 

(13) 

~ -iE':.,(t} ' 

where Er1(t) = Y eH 1 s,Jn. It is here most convenient to 
return to Eq. (1), which becomes in this limit 

a ) ~ 0
A" atPr1(0,t =-tEr1Pr1(0,t), (14) 

with the solution 

P,iO, t+ T) = exp(-iEriT)Prl(O, t) , (15) 

corresponding to a rotation of the density matrix that 
only affects the electron spins. Equation ( 15) is the 
usual transformation used to describe idealized pulses 
in earlier analyses of spin echoes that do not include 
motional modulation in a stochastic Liouville operator. 

The effects of this rotation can be calculated by ex-
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panding a zxz density matrix (whose four elements rep­
resent the two electron spin states) in the four Pauli 
spin matrices and setting 

p(t + E) = exp(i0S,/1i)p(t) exp(- i0S ,/Ii) 

for a rotation by angle 0 = Y • H 1t about the jth axis. 

For rotations about the x axis 

-isin0[ ] p._(t + E) = 
2 

P •• (t) - P .. (t) 

+ (cos
2
~)P •• (t) + (sin2 f)P .• (t) , 

P .• (t+E)=P:'.(t+E), 

-i sin0 [p 
P++(t + E) = z .. (t) -P .• (t)] 

+ (cos2;)P •• (t) + (sin2 ~)p_(t) , 

+isin6[ 
P .. (t + E) = 

2 
P •. (t) - P .• (t)] 

+ (cos2 %)P .. (t) + sin2 %p •• (t) , 

(16a) 

(16b) 

(16c) 

( 16d) 

where we have only displayed the density matrix ele­
ment with respect to electron spin. The nuclear-spin 
part of the matrix element is unchanged by the rotation. 

For rotations about the y axis 

-sin0 
P+.(t + E) = -

2
-[P •• (t) - P .. (t)] 

+ (cos 2 ;)P .. (t) - (sin2;)P .. (t) , 

P .• (t+E)=P:'.(t+E), 

-sin8[ ] P •• (t + E) = -
2
- P •. (t) + P .• (t) 

(. 2 e) I . 2 e) + \cos 2 P •• (t) + \sm 2 P .. (t) , 

-sine [ ] 
P .. (t + E) = -

2
- P •. (t) + P .• (t) 

+ (cos2;)p_(t) + (sin2 ~)P •• (t) . 

(17a) 

( 17b) 

( 17c) 

(17d) 

The observed ESR signal from the Xth transition Si{t) 
may be expressed as 

( 18) 

where s~(O) is the signal from those molecules at an 
orientation O from the Xth transition and the superbar 
implies averaging over an equilibrium distribution in O. 
Requirement of the imaginary part of z!0 (0,t) is a con­
sequence of the convention of irradiating along the rotat­
ing x axis and observing along they axis. We therefore 
need to solve for the off-diagonal density matrix ele­
ments only. 

The 90°-r-180°-r pulse sequence is particularly sim­
ple because the magnetization created in the x-y plane 

by the 90° pulse always remains in this plane, i.e., we 
never interchange components of the diagonal [x,t°'(o, t)] 
and off-diagonal [Z !1>( O, t)] elements of the density ma­
trix. Therefore, we can set up our equations to follow 
just the time dependence of the components of the off­
diagonal elements, which we order in a vector Z. 

At t = 0, Z = 0. A 1T /2 pulse creates nonzero values 
for all the components representing allowed electron 
spin transitions [cf. Eq. (16a)]. The Z vector just after 
the 90° pulse z.12('1, 0), then evolves for a time T ac­
cording to Eq. (12), resulting in a new vector at time r, 

(19) 

where we have dropped the superscript n = 1 on A,.,. 
Equation (19) yields the free induction decay following 
the 90° pulse, and its Fourier transform is just the cw 
ESR spectrum. 

A 180° pulse transforms Eq. (19) into its complex 
conjugate [cf. Eq. (16a)] 

(20) 

[More precisely, Arl means the complex conjugate of 
all operators linear in the components of S, while those 
operators independent of S (such as the nuclear Zeeman 
term) are unaffected. l 

After another time r, 

(21) 

Equation (21) is the basic equation representing the 90°­
r-180°-r pulse sequence. The reasoning thus far is 
easily extended to Carr-Purcell sequences, i.e., se­
quences represented as 90°-r-180° - 2r-180° - Zr - • • • 
-(180° -Zr)-•··, with the result 

Z(O, nr) = exp(-A,.,T) exp(-Arlr)z:,2[n, (n - 2)T] . (22) 

Pulse sequences which involve other than 180° pulses 
following an initial 90° pulse may be analyzed in an 
analogous fashion. However, components of the diago­
nal density matrix elements x,co 1(0, t), as well as the 
z~0 (o, t), must be included in the calculation, although 
Eq. (18) shows that only the off-diagonal elements are 
detected at the end. General formulas are more cum­
bersome to write down, because the effects of the pulses 
fsee Eq. (16)] can be to add or switch around elements 
of p(O, t). There is nothing conceptually different about 
these pulse sequence calculations, however, and we are 
currently implementing them on the computer. 

To proceed further, we expand each Z ~ll(o, t) in a 
complete orthonormal set of functions G m(O), 

mmu 

z?>(n, t)" L [C,.(t)]AGm(O) . 
m=l 

(23) 

It is convenient to choose the G ,/Ol as the eigenfunctions 
of the diffusion operator governing the rotational motion. 
These are usually the generalized spherical harmonics 
(or Wigner rotation matrices), the !Di.v(Sl). Then, under 
isotropic conditions [where Peq(n) is a constant], it can 
be shown that 

S(t)a:ImL(Ce1(t)l1, (24) 
A 
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where [C 0(t)]1 is the coefficient in Eq. (23) of :ng0• (A 
similar expression may be written for anisotropic 
media. 9) 

The vector of expansion coefficients C(t) is of dimen­
sion A xmmaz• It follows from Eq. ( 11) that in the ab­
sence of radiation C(t) obeys the matrix differential 
equation: 

aC(t) = - B C(t) 
at ' 

(25) 

where the matrix B is readily obtained from A,1 and 
Eq. (23). The form equivalent to Eq. (12) is 

C(t) = exp(-Bt)C(O) . (26) 

Equations ( 13)-( 17), which describe the effect of the 
ideal pulses, can also be cast into such forms. In par­
ticular, z.12(n, 0) becomes a new vector in the space 
spanned by C(t), which we write as the vector U (to cor­
respond with previous notation8). A 180° pulse takes 
C(t) to C *(t), ( except for the effect on terms in A ,1 
independent of S, see above). Therefore, after a 90°­
r-180°-T pulse sequence 

C(2r) = exp(-Br) exp(- B*r)U* 

and the averaged signal may be written 

S(2T) a: Re {utr exp(-BT) exp(-B*T)U*} 

(27) 

(28) 

[the real part is needed because utr is pure imaginary, 
cf. Eqs. ( 16) and ( 24) ]. 

Equation (28) can be conveniently computed by intro­
ducing the complex orthogonal matrix O which diagonal­
izes B according to: 

(29) 

with /\. a diagonal matrix of eigenvalues /\.1 and 0·1 = otr. 
Equation (28) becomes 

S(2-r) a: Re {utro exp(- /\.-r)otro* exp(-/\. *-r)Otr* U*}.( 30) 

In terms of matrix elements, this matrix equation be­
comes 

s(2T)a:Re L U1r01r100 0t;O::;p;:exp(-[/\.1 +/\.jh}, 
f, l,k, l,m 

=ReLai1 exp(-[A1 +/\.j]T). 
i,I 

(31) 

(32) 

Equation (32) expresses the echo as a sum of expo­
nentials of complex argument. This is what we refer to 
as the spectral representation of the echo. The com­
plex eigenvalues /\. 1 and the associated eigenvector com­
ponents I 1r 011,U,. determine the cw spectrum as a super­
position of complex Lorentzians with width=Re/\.1 and 
position= Im/\. 1• Equation (32) shows how the echo sam­
ples the eigenvalue spectrum of the stochastic Liouville 
operator in a different manner than does either the cw 
or FID experiment. In particular, the argument of the 
exponential (/\. 1 + /\.f)T leads to the addition of the decay­
ing real parts of these eigenvalues but to the difference 
of their imaginary parts, which can lead to oscillating 
beats in the echo envelope. 

In the fast motional region, only 2 J + 1 eigenvalues 

are important {i.e., small), where I is the nuclear spin. 
Equations (31) and (32) then predict an echo envelope 
governed by 21 + 1 decay constants, Amr• with T2,,,.1 
=== (Re A);~. For very slow motion, the real parts of all 
the eigenvalues become very small, so that B = Re B 
+ilmB~ilmB and exp{-B-r)exp(-B*r)~l. Then, 
Tm-oo· 

Finally, we can introduce a physical simplification 
into Eq. (32) by restricting the summations over l and j 
to include only those spectral components which are 
strongly irradiated by the two pulses, i.e., we retain 
only those eigenvalues /\.1 which satisfy the approximate 
resonance condition 

and denote the restricted summation with a "prime": 

S(2r) a: Re I;' a 11 exp(- [A1 + Af h} . (33) 
JI 

The Carr-Purcell analog to Eq. (33) is 

(34) 

or 

Xexp(-[A1 +/\.f]rf u:;. (35) 

These last equations show how spectral representation 
can be conveniently used even for multipulse sequences 
such as Carr-Purcell. 

Ill. EXAMPLES 

A. Axially symmetric g tensor 

1. 90°-T-180°-T echoes 

This is the simplest case for examining electron-spin 
echoes and slow tumbling with only a single ESR transi­
tion. Uia:io1, 1 and Eqs. (31) and (33) simplify to 

S(2r) a: Re Lail exp(- [A1 + Af h) , (36) 
i, l 

ail= L 0u0fi0110i*i , (37) 
j 

where the prime on the summation over j and l has been 
omitted since we are assuming that the entire spectrum 
is affected by the pulses. 

Figure 1 shows the echo envelope generated by our 
method for the case where the correlation time TR= 1 
x 10"6 s. It has been plotted and fit to a single exponen­
tial exp( - 2T /TM) using a linear least squares procedure 
over two T ranges: 250 ns < T < 8 µs (gives TM= 8. 1 
x10-7 s) and 250 ns<-r< 1 µs (gives TM= 5. 9X10"7 s). 
The figure illustrates the important differences between 
the long and short time behavior of echo decays, as ex­
pected from the form of Eq. (36). 

We next compare our results using ideal pulses with 
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FIG. 1, A typical axially symmetric g-tensor echo envelope, 
Brownian diffusion, (g11 -gJ.) = - 7, 5 x 10·4 , TR= 1. Ox 10-6 s, 
151 TR=15 (5 =2f3.H 0(g,,-gJ.)/31f), Circles-calculated points, 
solid lines-best least squares fit to exp(-2T/T.v): (a) T.v 
=8,1x10·1 s; (b) T.v=5,9X10-7 s. 
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more complete results obtained by Stillman and 
Schwartz1 based on explicit use of the full stochastic 
Liouville operator during irradiation with a large but 
finite microwave field applied over a finite time period. 
In those calculations, each echo envelope was calculated 
as a function of T for T > 200 ns (to mimic usual experi­
mental restrictions) and then fit to the form exp(- 2T/ 
T .v). The range of T fit to each exponential was chosen 
large enough that an increase in the range did not change 
the resulting T ,.,. Since only the simulations for the 
shorter correlation times (TR$ 5 x 10-e s) produce an 
exponential decay (for T> 200 ns), this procedure (here­
after called the asymptotic r; procedure) effectively 
selects out only the slowest decaying exponential contri­
butions to the overall echo envelope for the slower mo­
tional cases [similar to the T 1,1 result in Fig. l(a) ]. 

Figure 2 shows log-log plots of r; vs TR for the sim­
pler and the more complete theories. 1 The pulse width 
assumed in the latter calculation is 5 G, compared to a 
cw spectrum of ~ 3 G in extent ( see Fig. 4), so that the 
duration of a 90 ° pulse is 1. 8 x 10-a s, compared to the 
minimum calculated r; of~ 3 x 10·1 s. Both calculations 
assume isotropic reorientation. 

The two methods agree perfectly in the fast motional 
region (i.e. , the TR range where T .v decreases as TR 
increases). The TR dependence in the slow motional re­
gion (the TR range where T 11 increases as TR increases) 
is diffusion model dependent. Shown in Fig. 2 are re­
sults using the Brownian model (molecules reorient by 
random jumps of infinitesmal angle with an infinitesmal 
time between jumps; TR= (6Rt1, where R is the rota-

FIG. 2, Comparison of asymptotic 
phase memory times Tji, calculated 
from the present method (solid lines) 
and from the more complete method 
of Stillman and Schwartz (Ref. 7) 
(dashed lines) incorporating a finite 

b pulse magnitude of 5 G. For large 
TR, Tji (present method) can be 
fit to Tji ex -rb» (g11 - gJ.) = - 7, 5 
x 10·4: (a) jump diffusion, Rt 
= 1. 0, b 91! 0, 96; (b) free diffusion, 
Rt=l, 0, b 91! o. 63; (cl Brownian 
diffusion, b 91! 0, 43, 

2xlc5 7 .___-......._L..1.-......,_. ....... _......,___,__._L.L........_-.__.,__..__.......,_L..L.1..u...--'-_._...,____.__._ ....... 
lxio-9 lxlO-8 1x1O·7 1x1O·6 

TR (sec) 
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Q) :::E 

I- lxl0-6 

-1 
2xl0 I xLl-<Y--=7=---'---'----'-.....L-'--'-L..L..I x .... ,o __ ,6,------.L--.L-.....J 

TR {sec) 

FIG. 3. Phase memory times 71,, the time it takes for the 
echo amplitude to decay to e-1 of its value at T = 200 ns. For 
large T11 , T~ can be fit to Tft o: Tj. (g11 -g") = - 7. 5 x 10""4 : (a) 
jump diffusion, Rt=l.O, bE!!O. 92; (b) free diffusion, Rt=l.O, 
b E!! o. 63; (c) Brownian diffusion, b E!! O. 34. 

tional diffusion constant), the approximate free diffusion 
model ( molecules rotate freely at some orientation for 
a time t and then instantaneously reorient; T 11 = ( 1 
+ 6Rt)112/6R), and the jump diffusion model (molecules 
have random fixed orientations for a time t and then in­
stantaneously reorient; T 11 = (1 + 6Rt)/6R). For the latter 
two models, Rt was set = 1. 0. 

We are at present not certain whether the small dif­
ferences observed between the two methods for slow mo­
tion are due to differences in computational method 
(Stillman and Schwartz7 numerically integrated the sto­
chastic Liouville equation with respect to time vs the 
present use of spectral representation or eigenvalue 
expansions), or to actual effects from the finite micro­
wave fields of finite duration, although we suspect the 
latter. 

We note that the T; values that we calculate from our 
method are virtually identical, for each TR, to the in­
verse of the real part of the smallest eigenvalue of B, 
( Re A1r 1

. Thus, as expected, Eq. ( 36) does indeed re­
duce to a single exponential when measured over a long 
enough T range. 5 We have used this fact to extend the 
T'.v curve for the jump model in Fig. 2(a) by simply 

A 

B 

FIG. 4. Axially symmetric g-tensor cw absorption (A) and 
first derivative (B) spectra illustrating several linewidth de­
finitions. Brownian diffusion, (g11 -g ") = - 7. 5 x 10-.t, TR= 1. 0 
x 10-s s, I~ I TR =15. First derivative peak-to-peak Lorentzian 
inhomogeneous linewidth=0.1 G. (a) Maximum to zero cross­
ing width; (b) peak-to-peak width; (c) outer half-width at half­
height. 

plotting (Re A1t 1 for TR> 3 x 10-e s. 14 

Our method then predicts a functional form of T; 
a: T~ for the slow motional region, with b ~ 1/2, 2/3, 1 
for the Brownian, free and jump models, respectively. 
Thus we can write 

T;/TR=C 1 !ffrR!·112
, Brownian, (38) 

T;/TR=C2 lffrRj·113
, free (Rt=l), (39) 

TZ/TR=C 3 , jump(Rt=l), (40) 

where ff=t(/3.,H0/li)(g 11 -g") and Ci, C2, C3 are constants. 
We have found C 1 ~ 3, C 2 ~ 2, and C 3 ~ 1. Note that 
I ff TR I is a dimensionless parameter that measures the 
extent to which the cw spectrum is characterized by 
slow tumbling. The larger the lffTR I, the closer is the 
spectrum to the rigid limit. Other workers have de­
fined a TM as the time it takes for the echo to decay to 
1/e of its initial value ( observed at about 200 ns). Fig­
ure 3 shows that these "T~/' results also depend upon 
the diffusion model with the exponents of TR for slow 
motion [cf. Eqs. (38)-(40), Table I], similar to but not 

TABLE I. Values of b for g-tensor relaxation times: [relaxation time] o: 1ii, 

Diffusion 
model 

Brownian 

Free {Rt=l.O) 

Jump {Rt=l,0) 

0,43 

0,63 

"Calculated by present method. 
bo=O.lG. 

Tft 

0,34 

0.63 

0,92 

Half-width at 
Half-heightb.d 

0,53 

0.82 

i:::I.O 

Peak-to-peak Maximum to zero 
widthb,d crossing widthb,d 

0,63 0,63 

1.0 0,90 

;::o. 82 ;;;:o. 82 

0 Tji=' (ReA1)·1 for TR>3x10·6 s. 
def. Fig. 4. 
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identical to those for TZ. The discrepancies between 
the two methods is not surprising in view of the fact that 
the slow-motional envelopes are really a sum of decay­
ing exponentials. 

The different exponential dependence on HhR I for the 
different reorientational models is of some interest. The 
fact that for Brownian motion, slow motional spectra ex­
hibit linewidths that go as T°i

12 may be related to a re­
sult of Alexandrov et al., 15 who pointed out that the sim­
ple stochastic Liou ville equation from a g tensor ( or 
from a nitroxide in a simple "adiabatic" assumption) is 
of the form whose solutions are zero-order spheroidal 
wave functions of complex "potential. " The real parts 
of the eigenvalues in the asymptotic limit of slow motion 
will all go as ( 13' I/TR)112

, although their coefficients (as 
well as their imaginary parts) will, in general, be dif­
ferent. Thus the T}[2 behavior of TZ appears as a na­
tural consequence of the form of the differential equa­
tion for Brownian motion to which an angular dependent 
spin Hamiltonian is added. Baram16 has recently ob­
tained a similar asymptotic result by another method. 

In the case of jump diffusion for slow motions, one 
finds that, in general, the smallest eigenvalues are 
nearly identical in their real parts, differing only in 
their imaginary parts, and, of course, all these real 
parts exhibit a Til dependence. 

Some time ago, Mason and Freed17 offered an intuitive 
model for the TR dependence of cw linewidths in the slow 
motional region. They argued that in the near rigid 
limit, rotational jumps would carry the nitroxide radi­
cal between different orientations corresponding to sub­
stantially different ESR frequencies yielding an "uncer­
tainty-in-lifetime broadening" given approximately by 
-r'il. This is just the result of Eq. (40) for (T;)"1 for 
the jump model! Clearly, this is not the correct physi­
cal model for Brownian diffusion, where (T;)"1a: TiF2• 

In Brownian diffusion, reorientation is by infinitesimal 
steps for which the spectral frequency change is also 
infinitesimal. Kivelson and Lee18 have recently sug­
gested an approximate model that predicts the ½ power 
law. In their model, one calculates the "motionally 
narrowed" linewidth (or T21

) resulting from only the 
small ranges of angles (about a mean orientational 
angle) that the molecule can sample as a result of the 
slow reorientation. The range of angles sampled is 
determined by the "time scale" of the ESR experiment 
( viz T 2), so a greater range of angles is sampled the 
faster the motion. This appears to be a reasonable 
model in the Brownian limit. [For cw linewidths, dis­
cussed below, the presence of finite inhomogeneous 
broadening Ii alters the results for Brownian motion, so 
that the exponent on TR approaches unity as Ii increases. 
This might be explained by noting that for an observable 
effect, the Brownian motion must reorient the molecule 
out of the cone of angles from which each part of the 
ESR spectrum results, and the cones are increased in 
the presence of inhomogeneous broadening. These 
larger reorientations would then take on a character 
more like lifetime uncertainty broadening of the ESR 
spectrum as originally suggested by Mason and Freed.17] 

Equations (38)-(40) show that estimates of TR may be 

(.) 

Q) 

"' 
Q) 

E 

C 
0 -0 
)( 

0 

Q) 

a:: 

A 

'R (sec) 

FIG. 5. Composite plots showing the relationships between 
various relaxation times. (g,, -gJ.) = - 7. 5 x 10-4. (A) jump dif­
fusion, Rt= 1. 0; (B) free diffusion, Rt= 1, 0; (C) Brownian dif­
fusion. (a) cw linewidth: (2/3112) (peak-to-peak width)-1; (bl 
cw linewidth: 3-112 (maximum to zero crossing widthr1; (c) cw 
linewidth: (half-width at half-height)-1; (d) T'; or (Re~1)-1; (e) 
r; from Stillman and Schwartz (Ref. 7); (fl T~. (a)-(f) for 
jump diffusion all fall within the two solid lines in (A). 

obtained from T; (or from T1'), but one must have some 
idea of diffusion model. Estimates of TR can also be ob­
tained from the cw spectrum, as is well known, 9, 17- 19 

and we wish to compare the simple approaches of treat­
ing the cw spectrum with the echo results. 

Figure 4 shows typical absorption and derivative cw 
spectra for the axially symmetric g-tensor case, on 
which we have illustrated several definitions of line­
width. The linewidth of the high field derivative line is 
taken as the outer half-width at half-height minus the 
rigid limit value for the same quantity. The linewidth 
of the low field derivative line can be calculated in two 
ways: (1) peak-to-peak width multiplied by (3) 112/2 and 
(2) maximum-to-zero-crossing width multiplied by 
( 3) 112

. From each of these is subtracted the analogous 
rigid limit quantity. We simulated cw spectra using an 
inhomogeneous broadening contribution of Ii = 0. 1 G and 
Lorentzian distribution. 

Table I and Fig. 5 summarize the linewidth data along 
with all the previous data for each diffusion model. The 
TR exponents for the linewidths order as do the TR expo­
nents for r:;, but in each case are slightly larger for 
the linewidth measurement. This result indicates the 
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FIG. 6. A typical echo envelope showing short time exp(-c-r3
) 

behavior Brownian diffusion, (g11 -gj) = - 7. 5 x 10-4 , TR =3. 0 
x 10-6 s, I 5' I TR= 44. Circles-calculated points. (A) Solid 
line-best fit to exp(- 2-r IT .v>, T fi = 1. Ox 1 o-6 s, (B) solid line­
best fit to exp(-c-r"), c=6.lx10 8, n=2,97. 

distorting effect of the inhomogeneous broadening on the 
dependence of the cw widths on TR- The T; results do 
not include any inhomogeneous broadening, although they 
can be significantly affected (as can the cw widths) by 
other T2 processes as the rotational motion slows suffi­
ciently. We have found that as o- 0, the TR exponents 
of the linewidths become more nearly equal to the Tii 
results. 

The estimates of Tii described up until now have 
ignored the first 200 ns after the 180° pulse. Although 
this time period is as yet difficult to probe experimen­
tally, it is easily studied theoretically, and Fig. 6 shows 
a typical echo decay as a function of T for 0 < T < 2 µs 
and for 0< T< 0.1 µs. We have found that the initial por­
tion of the 90°-T-180°-T decays can be fit almost ex­
actly to the form e-cT3, a form reminiscent of that ex­
pected from translational diffusion in the presence of 
an inhomogeneous external magnetic field11• 12• 20 

M(2T) = M(0) exp(- 2T /T z) exp[- 2(Ys8H /az)2DT3/3] . (41) 

Our short time T3 fit is intuitively satisfying if in F.q. 
(41) we replace aH/az, the linear inhomogeneity in the 
field with 15' I, a measure of the anisotropy of the spin 
Hamiltonian, and D, the translational diffusion coeffi­
cient, with Tjl. Indeed, we have found that c f?!! 0. 11 5' I 2 

x T'jf, independent of diffusion model. The short time 
T3 dependence of the echo envelope decay appears quite 
general. In fact, we are able to obtain its explicit form 
from a short time expansion of the stochastic Liouville 
equation for the case of Brownian motion. In particular, 

we find that c e;;;: \ 15' I 2T;f. 

Our best fits of entire echo decays are based on fitting 
the initial portions to exp( - CT3) and the final portions to 
exp(-dT), where d f?!! 2/T'.w. Examples are shown in Fig. 
7. Note the intriguing difference between the echo 
envelope shape for the jump model, where the two forms 
appear to join together smoothly at a single T, and that 
for the Brownian and free diffusion models, where the 
two forms hold only at the extremes of the echo envelope, 
with a large region in between. This model difference 
was found to hold for all cases tried. We expect that 
this range of T where the cross over between the two 
forms takes place will contain important physical infor­
mation. Also, note that a comparison of short-time vs 
long-time behavior can give information about the mo­
tional model, since the short time decay gives TR• while 
the long time decay depends also on the model. 

2. Carr-Purcell sequences 

Prompted by the close formal analogy between trans­
lation in an external inhomogeneous magnetic field and 
slow rotation of a molecule described by anisotropic 
magnetic parameters, we have calculated echo decays 
from a Carr-Purcell (CP) sequence using F.q. (34). 
Figure 8 shows three series of CP echo envelopes ob­
tained for Brownian motion. Plotted with each series 
for comparison is the envelope from the simple 90°-T-

i ;__;;;:;;::::=:::::::;::::'.::=::::::=:::==~B~ 
ci 
E 
0 

0 
.s:::. 
u 
Cl) 

"O 
Cl) 

.!:! 
0 
E ~~::::::::;~::::::=::::=::=~ 
0 z C 

0.0 0.5 LO 1.5 2.0 
T (µ.sec) 

FIG. 7. Fit of echo envelopes (circles) to N1 exp(-cr) (short 
times, heavy solid line) and to N 2 exp(2T /Tji) (long times, heavy 
solid line). The thin solid line is the best fit of the entire enve­
lope to exp(-2T/T.11). (g11 -gL)=-7.5XlO'"'. (A) Jump diffusion, 
Rte:1.o, TR=a.ox10-s s, l5'1TR=44. N1=1.o, c=s.1x1018, 
N2 =1. 1, T.v =3. Ox 10-s s, T.11 = 2. 9x 10-6 s; (B) free diffusion, 
Rt=1.0, TR=6.6X10-6 s, 15'1TR=96. N1=1.0, c=2.6Xl018 , 
N2=3.0, T,v=l.Oxl0-6 s, T.11=1.5X10-6 s; (C) Brownian dif­
fusion, TR=3.0x10-6 s, l5'1TR=44. N1=l.O, c=9.1x1018, 
N 2 =0.8, T,v=l.ox10-6 s, T.11=9.9x10·7 s. 

J. Chem. Phys., Vol. 77, No. 11, 1 December 1982 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

5418 Schwartz, Stillman, and Freed: Analysis of electron spin echoes 

Cl) 

-c 
::, -
a. B 
E 
0 

0 
.J::. 
u 
Cl) 

-c 
Cl) 
N 

0 

E ... 
0 
z 

0 2 4 6 8 
t (.usec) 

FIG. 8. Comparison of 90"-T-180"-T and Carr-Purcell (CP) 
echo envelopes (the alternating positive and negative signs in 
the CP envelope have been suppressed). Circles-calculated 
points, solid lines-best fit to exp(-2T/TM) or to exp(-t/T_&l. 
Brownian diffusion. (Al (g11 -g,.) = - 7. 5x 10-4 , TR= 5. ox 10-6 s, 
15 I TR= 73: (al 90"-T-180"-T, r; = 1. 7Xl0-6 s; (bl CP, T = o. 32 
µs, T_&/T;=2.8; (cl CP, T=0.16 µs, T_&/T;=8.8; (d) CP, T 
=0,05µs, T_&/T;=82. (B) (g11 -gL)=-3.75x103, TR=5.0x 
x 10-B s, I 5 I TR= 360: (a) 90"-T-180"-T, r; =7. 6 x 10-1 s; (bl 
CP, T=0.32 µs, T_&/T;=l.3; (c) CP, T=0.16 µs, T_&/T; 
=2.1; (dl CP, T=0.05 µs, T_&/r;=s.1. (Cl (g11 -gL)=-7.5 
x10-4, TR=1.ox10-6 s, l51TR=l5: (a)90°-T-l80°-T, T.11=8.2 

x10-1 s; (b) CP, T=0.32 µs, T_&/T;=l.3; (c) CP, T=0.16 µs, 
T_&/T; = 3, 7; (d) CP, T = O. 05 µ s, T_&/T; = 35. 

180 ° -T sequence. The decays are normalized so that 
they all have the same value at the first point of the CP 
decay having the largest CP T. It is seen that in each 
series, the 90°-r-180°-T envelope decays faster than 
any of the CP decays, which themselves decay slower 
and more like a single exponential the smaller the CP T. 
We expect this qualitative behavior by analogy with the 
use of the CP sequence to remove the effect of transla­
tional diffusion in an inhomogeneous applied field. That 
is, an intuitive picture is that the successive 180° pulses 
repeatedly reverse the electron spin precession so 
rapidly that the g-tensor anisotropy is averaged more 
effectively than it can be randomized by the slow tum­
bling. 

Figure 8(B) shows results for a case differing from 
that in Fig. 8(A) in that l5'rRI has been increased by in­
creasing lff' I. As expected, a shorter CP T is required 
to average the larger magnetic anisotropy, or, more 
precisely, to obtain the previous values of T°N/T M• (T~ 

= the phase memory time resulting from a CP sequence.) 
Note that except for CP r's so large and ineffective that 
Ti ei! T .11, the CP decay curves are either exponential or 
nearly exponential, so that while there is ambiguity in 
the definition of TM for an ordinary 90°-r-180°-r echo 
(as discussed above), this is less true of T~. 

Figure 8(C) shows results from a case differing from 
that of Fig. 8(A) in that I n'rRI has been decreased by 
decreasing TR. Once again, shorter CP r's are required 
to obtain a previous T~/T M ratio because a shorter T is 
needed to scale to the shorter TR· 

We have found that a natural way to plot the CP re­
sults is in terms of the dimensionless parameters 
T'Ji/T M vs TRI r. Then, for each model, the results de­
pend only on the product 15' IT R· Plots for Brownian, 
free, and jump models are shown in Fig. 9. While all 
the curves are seen to ( 1) monotonically increase with 
rR/T, and (2) be displaced to the right for larger 15' lrR, 
we have, as yet, not found a simple functional form that 
approximates them. 21 We note that these curves, while 
similar for the different models, nevertheless show 
some model-dependent differences. This suggests the 
possible use of CP sequences to study model dependence 
by experimentally running a series of CP sequences for 
different values of r and comparing the results with 
theoretical calculations for different TR and model. (To 
facilitate the comparison, a plot of Ti/TM vs T Mir is 
most convenient since the axis variables are all experi­
mental. Such a plot shows the same trends as that in 
Fig. 9. ) The experiments should be repeated at several 
different temperatures, if possible, since the model­
dependent differences do vary somewhat with 15' lrR. 

The main point that we wish to make is that such CP 
sequences are potentially more informative than just 
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FIG. 9. Results of Carr-Purcell sequences. Solid lines­
Brownian diffusion, dashed lines-free diffusion (Rt= 1. 0), 
dotted-dashed lines-jump diffusion (Rt=l. 0). (a) 151 TR =5. 8; 
(b) 151TR=15; (c) 151TR=19; (d) 151TR=20; (e) 151TR=73; 
(f) l5ITR=96; (g) l51TR=360. 

J. Chem. Phys., Vol. 77, No. 11, 1 December 1982 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Schwartz, Stillman, and Freed: Analysis of electron spin echoes 5419 

simple two-pulse echoes. In the latter, usually only a 
single T 11 (e.g., T'.;) is obtained for a given sample at 
fixed experimental conditions, while in the former, a 
whole set of Ti, are obtained vs -r, which could be used 
effectively to explore motional dynamics in greater de­
tail. 

Finally, we wish to call attention to the fundamental 
nature of CP sequences, viz. their ability to drive an 
otherwise irreversible process back toward reversibil­
ity, or more precisely, to cancel out the irreversibil­
ity, by the reversible averaging performed by the suc­
cessive 180° pulses. One does not normally think of 
this as being possible in the fast motional limit where 
the echo appears totally determined by a single expo­
nential decay for which T 11 = T 2 • However, we find that 
even in this limit, provided we study the full stochastic 
Liouville equation and use the full spectral-representa­
tion formula, then as long as -r « -r R and -r $ 19" 1 •1

, the 
irreversibility as manifested by a simple T 2 decay of the 
90°-180° echo is canceled out by the CP sequence. The 
main problem is an experimental one-to obtain CP 
pulses with short enough T ! 

We conclude this section on simple g-tensor prob­
lems by noting that although the cases covered in this 
section (and the next) are restricted to those with axial 
magnetic parameters and isotropic reorientation, this 
restriction was done for convenience only and there is 
no fundamental reason limiting calculations to these 
limiting cases. 

B. Axially symmetric nitroxide 

We now consider the more complicated case of a 
nitroxide with two objectives: (1) One is typically able 
to irradiate only a portion of the ESR spectrum, so we 
use the nitroxide to illustrate the theory for partial ir­
radiation and (2) nitroxides are an important class of 
spin probes and spin labels, 9 so it is of value to have a 
quantitative basis for analyzing nitroxide echo experi­
ments. In general, we find that most of the qualitative 
features we have already described for echoes from a 
g-tensor spectrum are also exhibited by nitroxides. We 
will discuss below special features of nitroxides. 

A nitroxide spectrum has three hyperfine components 
and U is pure imaginary with three equal nonzero ele­
ments representing the coefficients of :og0 in the expan­
sions of the three allowed ESR transitions. Equations 
(31) and (33) become 

s(2-r)a: ReL~
1

•

1 

exp(- [A1 + Ajh) , ( 42) 
i, l 

3 

a
1
,, =L LOk

1

0;
1

0
11

0;'
1 

• 

k=1 i 
(43) 

Figure 10 shows typical cw absorption and derivative 
nitroxide spectra. The two outer extrema of the deriva­
tive spectra are quite characteristic, and several simple 
methods, based on the position and widths of the extrema 
relative to those in the rigid limit, have been developed 
for estimating TR directly from cw spectra. 11- 19 

The extrema represent those nitroxide radicals whose 
2p11 orbital (on the nitrogen) is nearly parallel to the 

A 

B 

C 

high 
extremum 

b 

d 

FIG. 10. cw absorption (A), first derivative (B) and second 
derivative (C) spectra illustrating several nitroxide linewidth 
definitions. Brownian diffusion, (g11 -g,.) =-6. ox 10-3, (A 11 -A,.) 
= 29 G, TR =5. 6 x 10·8 s, I~+ :o' I TR= 13, First derivative peak­
to-peak Lorentzian inhomogeneous linewidth= 1. 0 G. (a), (b) 
first derivative outer half-width at half-height; (c), (d) second 
derivative peak-to-peak extrema widths. 

applied field for either the m1 = 1 or m1 = -1 nuclear 
quantum states. Thus, isolating the nitroxide extrema is 
conceptually similar to isolating the "parallel" deriva­
tive peak in an axially symmetric g-tensor spectrum 
(e.g., the high field peak in Fig. 4). 

Figure 11 shows the calculated T'.; vs TR in the slow 
motional region for 200 ns < -r < 1. 4 µs (typical experi­
mental nitroxide studies5 would monitor -r up to ~ 1 µs). 
For each TR, T; was calculated separately for the three 
regions of the cw spectrum: the two extrema ("low" 
and "high," cf. Fig. 10) and the central region. Thus, 
we are assuming that we can produce ideal pulses 
covering any of the three regions without affecting the 
other two, clearly an approximation. 

As in the g-tensor case, these values of r; are al­
most identical with (Re A1t 1 where now A1 is the small­
est eigenvalue of B which contributes to the region being 
"irradiated. " We have plotted (Re A1t 1 instead of T'.; 
for some of the points in Fig. ll(B) (free diffusion, Rt 
= 1. 0) and for all of the points in Fig. ll(C) (jump model, 
Rt= 1. 0). 14 A fit of the data to the form T;a: -r~ gives 
the same b's as were found in the g-tensor case: ~ 1/2, 
~ 2/3, ~ 1 for Brownian, free (Rt= 1. 0) and jump (Rt 
= 1. 0) diffusion, respectively. There is some deviation 
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FIG. 11. Nitroxide phase memory times TM fit to T;c:q·~. (A) 
jump diffusion, Rt= 1. 0 (g11 -gi) = -4. 8 x 10-3, (A 11 -Ai) =30 G: 
(a) central region, b E!! O. 95; (b), (c) low, high extrema, b ,;,,_ O. 97. 
(B) free diffusion, Rt=l.O (g11 -gJ.)=-6.0x10·3, (A11-A.L)=29 G, 
(ReA1r1 is plotted for TR> 3x10·7 s: (a) central region, 
be! O. 67; (bl low extremum, b ~ o. 67; (cl high extremum, 
be!0.63. (Cl Brownian diffusion, (g11 -gJ.)=-6.0X10"3

, (A"-AJ.) 
= 29 G: (a) central region, b E!! O. 56; (b) low extremum, b e! O. 54; 
(c) high extremum, b 9!t O. 50. 

for the central region (large TR's) when the smallest 
eigenvalue is plotted instead of the calculated r;. This 
deviation is probably due to the fact that there are so 
many contributing eigenvalues of similar magnitude to 
the central part of the near rigid-limit spectrum that a 
single eigenvalue decay constant is not valid except for 
unreasonably long time intervals. 

These results imply slow motional equations of the 
form 

TM/TR ~C1(TR lff" + :.D' 1r112 
' Brownian' 

TM/TR~ Cz(TR lff" +!D' I )"113 
' free (Rt= 1) ' 

jump (Rt= 1) , 

(44) 

(45) 

(46) 

where C 1, C2, C3 are dimensionless constants and :n' 
= ~A 11 -A.1.), cf. fil:J_s. (38)-(40). We have found C 1 ~ 2, 
3. 5, 1; C2 ~ 1, 2, 1; and C3 ~ 0. 9, 1. 4, 0. 9 for the low ex­
tremum, central region and high extremum, respec­
tively. 

We show in Fig. 12 experimental data, previously re-

ported, 5 from a spin echo study of Tempone in 85% 
glycerol/15% water solvent. The superimposed lines 
are plots of (Re A1)"1 from the central region of the 
spectrum for the jump model (Rt= 1. 0) and free diffu­
sion model (Rt=l.0). 23 A separate cw study24 (using 
the perdeuterated solute and glycerol-dsfD20 solvent) 
established the relationship between TR and tempera­
ture for the jump and free Rt ::.1. 0 models which we 
use here to plot our eigenvalue results (calculated as a 
function of TR) against temperature, namely, 

lnTR/TR0 =EA/RT, (47) 

where EA= 15 kcal/mol and -r Ro= 2. 3 x 10-21 s. 

In the fast motional region, the experimental echo 
T M's, the calculated (Re A 1)"1,s and the experimental 
T 2's obtained from the cw study (not shown in the figure) 
agree quite well. In particular, the cw T2's (which 
cover the range 5 x 10-a s ~ T 2 $ 6 x 10"7 s) and the 
(Re A 1)"i,s match perfectly. 

In the model dependent slow motional region, we find 
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FIG. 12. Superposition of central region (Re A1)"1 values onto 
a plot of experimental TM values obtained from a study (Ref. 5) 
of Tempone/85% glycerol-15% water. Open circles-experimen­
tal points, solid line-jump diffusion (Rt==l.O), dashed line-
free diffusion (Rt= 1. 0). Actual magnetic parameters (Ref. 24) 
areg,, gy, g 6 =2.0084, 2.0060, 2.0022 and A,, Ay, A6 =5.5, 
5. 7, 35. 8 G. The calculations used axial approximations (Ref. 
23): g,=g

7
=2.0075, g 6 =2.0027 andA"=Ay=6.0G, A.=36.0G. 
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FIG. 13. Central region (Re A1)"1 values for jump diffusion. 
The curves can be fit, for large TR, as (Re A1)"1 o: ~- (g,, -g.11 
=-4.8xto·3, (A 11 -A.11=30 G: (a) Rt=lO, b ~0.89; (b) Rt=l.O, 
b~0.96: (c)Rt=0.1, b~0.73. 

that the (Re J\. 1)"1 lines do not match the experimental 
spin echo TM points. The jump (Re 1\1)"1, as shown 
above, follow the relationship (Re A1)"1 ~ T; ~ TR; the 
experimental TM's follow TM~ TR/6. The free diffusion 
line veers more toward the experimental points, but 
with the wrong slope. We note here that the previous 
cw simulations were not sensitive enough to distinguish 
between jump and free model fits, and the Brownian 
model did not fit the cw data well. 

Figure 13 shows results of additional jump calculations 
with Rt= 0.1 (weak jump) and Rt= 10 (strong jump). They 
show that while Rt= 1. O is already close to the strong 
jump limit, Rt= 0. 1 gives a (Re J\. 1)"1T~ dependence with 
b less than 1, a trend closer to that of the free diffusion 
model. There is the possibility of a better fit, there­
fore, in Fig. 1225 if other models and Rt values are ex­
plored. Even from the Rt = 1. 0 points already 

plotted in Fig. 12, however, it is clear that the 
echo theory that we are using, and indeed the T; limit 
(i.e.' TM~ T;~ (Re A1)"1] that we are assuming here, 
contains most of the important features of real systems. 
Further comparisons of this kind require careful com -
bined experimental cw studies and spin echo studies on 
the same sample and such work is in progress. 

Nitroxide slow motional extrema linewidth results 
are summarized in Table II. We have calculated the 
motional width by following Mason et al. 19 who measure 
the outer half-width at half-height linewidths of the two 
individual extrema minus the effective widths of the rigid 
limit extrema, and Kivelson and Lee, 18 who measure the 
difference between the peak-to-peak linewidths of the 
two extrema. In effect, the method of Mason et al. 17 •19 

uses the widths of the two extrema to extract both TR 
and the ejf ective inhomogeneous width. The method of 
Kivelson and Lee18 attempts to cancel out the role of 
the latter by taking differences. We have calculated 
these quantities from both the first and second deriva­
tive spectra and are particularly interested in the role 
of the inhomogeneous linewidth. 

We find the following trends. When the superimposed 
inhomogeneous linewidth is small (e.g., 0. 1 G, com­
pared to a nitroxide spectrum of extent ~ 100 G), all of 
the above methods give the same value for Brownian dif­
fusion for bin the equation (inverse linewidth)=aT~:b 
~ ½, while a is method dependent, as shown in Table II. 
As the inhomogeneous linewidth is increased to realistic 
values, however, both a and b increase, with the second 
derivative results increasing somewhat more smooth­
ly18

,2
6 than those from the first derivative spectra. The 

conclusion is that the inhomogeneous broadening due to 
nonmotional causes can have important effects on the 
spectra. The first method17•

19 thus requires fitting data 
by interpolating from Table II, while the second method18 

TABLE II. Nitroxide linewidth data, Brownian diffusion: (linewidth)"1 =a~. 

Low extremuma 

{P o. 1 1 3 5 o. 1 

be 0.45 0.81 0.85 0.46 0.46 
ae,e 7. 7 X 10"5 4.1x10·2 1. ox 10·1 2. 5X 10"4 5.2x10·5 

bf 0.48 0.81 1,1 1.1 0.47 
af,ll 1.1x10-4 3. 2x 10·2 8.7 3.9 5. 3X 10"5 

Extrema difference0 

{Ji o. 1 1 3 5 

be 0.46 0.57 0.50 0.21 
a9,ll 1,3x10"" 7.8x10-.t 2.4x10"" 4. 8x10-S 

bf 0,46 0.52 0.65 0.68 
a'•• 1. lxl0-4 2. 7 X 10-4 3.4X10-3 5. 6 X 10-3 

(gll -g.1) =-6, QX 10"3, (A11 -A.1) =29 G. 

aLow extremum linewidth minus rigid limit low extremum linewidth. 
bfUgh extremum linewidth minus rigid limit high extremum linewidth. 
cHigh extremum linewidth minus low extremum linewidth. 
dFirst derivative peak-to-peak Lorentzian inhomogeneous line broadening G. 
8 First derivative outer half-width at half-heightx2(3)"112 , cf. Fig. 10. 
fsecond derivative peak-to-peak linewidth G, cf. Fig, 10. 
a a is in units of [s 11·•. 

High extremumb 

1 3 

0.67 0.71 
2. oxlo-3 4. 5 X 10-3 

0.64 1. 2 
1.ox10-3 5.9 
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A 

B 

t-
3G 

FIG. 14. cw absorption (A) and first derivative (B) spectra for 
the case/=1/2, g 8 =2.002, Ax=Ay=-3.25 G, Ae=6.5 G. 
gn = 5. 5854, Brownian diffusion, TR= 3. 6 x 10-:, s, HO = 2200 G 
showing the two allowed and two forbidden transitions. The firs 
derivative peak-to-peak Lorentzian inhomogeneous linewidth is 
0.1 G. 

still requires correction for effects of inhomogeneous 
broadening that are not subtracted out. In comparison, 
echo T; results are not affected by inhomogeneous 
broadening although they would be affected by additional 
T2 (relaxation) processes that are independent of the 
radical tumbling. These latter processes are typically 
much smaller in magnitude than the inhomogeneous 
broadening due to proton (or deuteron) superhyperfine 
structure which affects nitroxide radicals. 

C. Nuclear modulation 

For cases where there is an electron-nuclear hyper­
fine interaction, and the hyperfine field seen by the nu­
cleus is comparable in magnitude to the external field, 
the nuclear spin can be quantized along a different axis 
than the electron spin. As the external pulsing sequence 
reorients the electron spin, the changing hyperfine field 
at the nucleus can cause it to reorient as well, resulting 
in a "forbidden transition" where both spins flip simul­
taneously. The coherent precessing field due to the nu­
cleus then modulates the external field felt by the elec­
tron, and this modulation is seen in the electron echo 
envelope. The depth and frequencies of the modulation 
structure for rigid limit patterns have been analyzed to 
gain information about the kind of nuclei present, their 
number, distance from the electron site and arrange­
ment. 21,2a 

In order to produce nuclear modulation in the simula­
tions, one must retain the nuclear Zeeman term in the 
Hamiltonian (it was safely omitted in the nitroxide 
simulations of Sec. B). Equations (31) and (33) are 
applicable for this case provided we use the more gen­
eral interpretation of the asterisk (i.e., complex con­
jugate of all terms of A,., in S, with the nuclear Zeeman 
term unchanged). Thus A1, Ou are the eigenvalues and 
eigenvectors of B calculated using JC(Q) from Eqs. (2), 

(3), and(4), while A;, 01'j are the eigenvalues and 
eigenvectors of B calculated from :ic'(O), where JC'(Q) 
is identical to JC(O) except that Wn- - w"' where wn 

= -YnH0. This means that two separate diagonalizations 
are required. 

Figure 14 shows a close to rigid limit powder cw 
spectrum for the case I=½. The nuclear hyperfine 
tensor elements and nuclear gyromagnetic ratio are 
appropriate for an "ideal" hydrogen atom located 
~ 3. 8 A from the electron ( calculated assuming a point 
dipole approximation, an axially symmetric hyperfine 
interaction and no isotropic hyperfine interaction). The 
external field was chosen to equalize the intensity of the 
two allowed vs that of the two forbidden transitions, a 
situation which maximizes the echo modulation depth. 28 

The intensities of the two types of transitions are equal 
for29 

H h 
A..,~ 2g,,/3n' (48) 

where A,.. is the principle axis value of the nuclear hy­
perfine tensor. Figure 15 shows the rigid limit powder 
echo envelope expected from the parameters used in 
creating Fig. 14. This envelope was calculated from 
the following well known equations which were then iso­
tropically averaged over 027

: 

Modulation amplitude (2r) 

= 1- 2k • 2/w.,r) . z(~) sm \ 2 sm 2 , 

with 

A= ijg,g:J.,(3N (3cos2 0- l} +211a 

B = iic,c,:,(3N (3 cos e sin0) . 

(49) 

(50a) 

(50b} 

(50c) 

(50d) 

(50e) 

( 50f) 

Figure 16 is a series of echo envelopes for Brownian 
diffusion, calculated by our method, showing how the 
modulation structure is averaged by the random radical 
motions. Note that these envelopes cannot be repro­
duced by merely multiplying the rigid limit pattern in 
Fig. 15 by a decay term exp(- 2r /T .v). 

The motionally averaged nuclear modulation patterns 
were found to be much more sensitive to their method 
of calculation than are the echoes discussed previously. 
Often, the modulated echoes require a larger basis set 
[cf. F.q. (23)) for convergence than is necessary for the 
corresponding cw spectrum, whereas for the unmodu­
lated echoes, the same basis set can be used for both 
calculations. Furthermore, too large a basis set can 
also change the modulation results, leading to a pattern 
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with less structure. This sensitivity of the modulation 
calculation is not surprising since not only does it de­
pend on small differences in the imaginary parts of the 
eigenvalues of B [cf. Eq. (31)], but it depends further 
on small differences between the eigenvalues of B cal­
culated from :JC(O) and those calculated from :re'(O), as 
explained earlier in this section. 

In order to obtain as accurate a set of eigenvalues for 
the modulation patterns as possible, we used the 
Rutishauser tridiagonalizing routine as the first step in 
the diagonalization of the two B matrices. 10 Although 
the Rutishauser algorithm is a more time consuming 
algorithm than is the Lanczos algorithm [which was used 
(and found to be completely reliable) in calculating all 
the cw spectra and echoes discussed in Sec. B], 
the Rutishauser algorithm is known to be more accu­
rate. 10 The above mentioned convergence complications 
were present even with the Rutishauser algorithm, how­
ever, and the slow "beat" present in Fig. 16(A) may be 
due to slight inaccuracies in the eigenvalues. 

As was previously done, modulation patterns may 
also be calculated for the free and jump diffusion 
models. These patterns look similar to those calcu­
lated for the Brownian model. 

Ill. SUMMARY 

We have shown how spectral methods in terms of the 
eigenvalues and eigenfunctions of the stochastic Liou­
ville operator permit a convenient representation of 
echo pulse sequences, and permit their accurate com­
putation in slow motional problems. In general, the 
echo decay is given by a sum of exponentials of complex 
argument whose real coefficients of time give the damp-

0.70 

FIG. 15. Rigid limit powder echo enve­
lope expected from the parameters given 
in Fig. 14. 

ing and whose imaginary parts can give oscillations. 

It is particularly convenient for computation to regard 
the microwave pulses as ideal, i.e., of exactly 90° or 
180° and of infinitesimal duration, although it is possible 
to extend these methods to diagonalizing the stochastic 
Liouville operator in the presence of all terms including 
the microwave radiation term. Our calculations for 
ideal pulses compare very favorably with a previous 
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FIG. 16. Series of echo envelopes for Brownian diffusion show­
ing the effects of motional averaging on the nuclear modulation 
pattern. Superimposed are the best fits to exp(-2T/TM)• 
Parameters are those given in Fig. 14, except: (A) TR=3.6 
x10- 5 s, TM'=7.5Xl0-7 s, (B) TR=3.6Xl0-6 s, TM=4.8xto-1 s; 
(C) TR=3. 6 X 10-7 s, TM =2.1 x10-7 s; (D) TR=3. 6 x 10-8 s, TM 
=7.6Xl0-B B. 
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complete calculation done for a simple g-tensor case 
but in the presence of a finite radiation field of finite 
duration. 7 A useful feature of the method presented 
here, aside from computational convenience, is that the 
eigenvalues and eigenfunctions of the stochastic Liou­
ville operator in the absence of radiation may be used 
to calculate both the echo signal and also the cw spec­
trum. The method also emphasizes the different man­
ner in which echoes probe motional details vs the cw 
motional dependence. 

We have shown by means of some prototype examples 
how the echo phase memory time T; may be used to 
measure slow motion rotational correlation times TR 

(for isotropic motion). We obtain the interesting result 
that T; cc T~ where the exponent b depends on the model 
of reorientation (b = ½ for Brownian motion to b = 1 for 
jump diffusion). We have illustrated, with some recent 
results on a nitroxide probe, 5 how one may use these 
T; in conjunction with analysis of slow motional cw 
spectra to study motional dynamics in greater detail thru 
can be studied with either method separately. 

As the time resolution of ESE spectrometers is im­
proved, one may hope to study echoes after short r. 
Our theoretical analysis leads to a short-time behavior 
of the echoes that goes as exp(-cr3

), where c ~8'"2/9rR 
for all the models considered, but the cross-over re­
gion to the longer time exp(- 2T /Ti) behavior appears to 
be very model dependent, and worthy of further study. 
We also found that in all cases r; ~ (Re A1t 1

, where J\1 

is the slowest decaying eigenvalue, as one might expect. 

The formal analogy between the exp(- cr3) short time 
behavior of the slow-motional echoes and the well-known 
exponential in r 3 behavior for echoes from translational 
diffusion in an inhomogeneous field led us to consider 
Carr-Purcell sequences and slow motion, especially 
since CP sequences are now becoming feasible on ESE 
spectrometers. 30 Indeed we find that rapid sets of 180° 
pulses which reverse the electron-spin precession can 
effectively average out the anisotropy in the spin Hamil­
tonian, but this does require T «TR plus r ~ 18'" 1 •1 for g 
tensors or T $ [!D' + 8'" ]"1 for nitroxides. In this limit, the 
(nearly) exponential decay of the CP envelope T'.it be­
comes much greater than T'.v. One can study this effect 
as a function of T from large T where T'.it ~ T'; to the 
shorter -r limit. In particular, we obtain universal 
curves for graphs of T'.i,/T'.v vs r R/T which only depend 
on 18'" I TR and model. We have discussed how such 
graphs provide more information on motional dynamics 
and diffusion model than do simple echo sequences. We 
note that some recent preliminary experiments are con­
sistent with the predicted trends. 30 

As another example of the application of our method, 
we have studied echo modulation patterns, which arise, 
for example, for weakly coupled protons (or deuterons) 
with substantial nuclear Larmor frequencies and aniso­
tropic hyperfine interactions. These are effectively 
predicted by diagonalizing two nearly identical stochastic 
Liouville operators (they differ only in sign of the nu­
clear Zeeman term). We are able to study how the ro­
tational motion averages out these modulation patterns 

as it speeds up. We find that the motional effects can­
not be accurately represented merely by multiplying the 
pattern expected for the rigid limit by a single exponen­
tial decay. This is as expected in view of the fact that 
the echo envelope is again representable as a sum of 
exponentials, with, in general, different decays. We 
conclude that studies of motional effects on echo modu­
lation patterns should be sensitive to very slow motions 
rR~:o,'·1, where :o; measures the magnitude of the an­
isotropic proton hyperfine interaction. This could be 
of considerable importance in extending the range of 
ESE to slower motions. 

Clearly the method described here, as well as the 
general theory on which it is based, 7• 8 may be applied 
to a variety of pulse sequences both for ESE and for 
nuclear spin echoes to explore and study their utility 
for experiments on slow motions. 
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