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The role of cooperative modes of reorientation in liquid crystals for the spectral densities of importance in 
magnetic resonance relaxation is examined from the viewpoint of microscopic models that can be solved 
analytically. These include linear arrays of rods in an applied external field whose orientations are strongly 
coupled and whose motion is described by overdamped and coupled diffusion equations. Also considered are 
Cayley-tree models, which, at least for nearest neighbors, can mimic higher dimensions than one. All these 
models lead to the result that the qth normal mode of relaxation has a decay rate that depends upon q as 
sin'(qa/2), where a is the lattice spacing. Using simple scaling, it is argued that if a is replaced by a '=La, so 
our model consists of blocks of L rodlike molecules with renormalized parameters, then molecular detail 
becomes less important and the model arrays become more physically representative. These results are then 
utilized to extend the standard hydrodynamic theory for long wave vectors q to short wave vectors 
approaching molecular dimension, The spectral densities obey scaling (i.e., are nearly independent of a') and 
are nearly identical to the hydrodynamic result for lower frequencies. However, the new results do show small 
departures at the higher frequencies usually studied by NMR. 

I. INTRODUCTION 

Cooperative modes of reorientation are now known to 
play an important role in the NMR relaxation of mole­
cules in liquid crystals. t-a Their role in ESR relaxation 
is less clear, in part because of the higher frequency 
terms to be averaged in the ESR spin Hamiltonian. 5• 7 

The theory utilized for calculating relaxation rates is 
based on the hydrodynamic model of director fluctua­
tions8

• 9 as adapted for spin relaxation. 1• 5, 7, 10• 11 This is 
basically a theory appropriate for low wave vector q 
such that molecular details are unimportant and the 
liquid crystalline phase may be treated as a continuum. 
Nevertheless, the theory is typically used for large q 
with only the restriction of a cutoff Q.,= 21r/a where a is 
of molecular dimension. This is a rather arbitrary and 
uncertain procedure. Can the low q limit even be ex­
tended to moderate values of q, and how do the high q 
modes go into the localized (but cooperative) modes of 
reorientation of individual molecules? The latter ques­
tion was discussed previously5 in terms of a generalized 
Fokker-Planck equation which describes individual mo­
lecular reorientation in the field of the instantaneous 
value of the director, while the director relaxes on a 
slower time scale according to the hydrodynamic theory. 

In this work, we explore a different point of view to 
examine the first question in an attempt to improve the 
model of the director fluctuations for obtaining the 
spectral densities needed for magnetic resonance relaxa­
tion. We base our considerations on simple physical 
models which have the virtue of being amenable to 
analytical solution. 

Our simplest model is based upon the solution to the 
rotational diffusion of a linear array of rigid rods whose 
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orientations are strongly coupled to their next nearest 
neighbors. When this coupling is strong enough, this 
becomes a system of torsional oscillators engaged in 
Brownian diffusion, the mathematical solution of which is 
well known12 and has appeared in recent work on poly­
mer chain dynamics. 13

•
14 We make use of these mathe­

matically related treatments, although we use a some­
what more compact formalism. We also introduce the 
aligning effects of a constant external field (e.g. , a 
magnetic field) to guarantee long-range order of the 
chains. 

Unrealistic features of this model, if we were to 
identify the hard rods of the model with actual liquid 
crystalline molecules are: (1) the actual molecules can 
reorient by large angles, although our model rods are 
constrained to small torsional motions; (2) the actual 
molecules can translate, while the rods are taken as 
forming a fixed array; (3) the actual molecules are 
flexible and have many internal modes of motion. Thus, 
we do not claim any physical value for our model on the 
actual molecular level. Instead, we introduce simple 
scaling and renormalization concepts15<a> leading to the 
point of view that this model is useful for blocks of 
actual molecules which, if large enough, would remove 
molecular detail so that features (1)-(3) are no longer 
problems. 

The matter of dimensionality is also important. 
Analytical solutions are readily achieved for one­
dimensional arrays, but we were not able to solve 
regular two and three-dimensional models. Instead, 
we resort to Cayley tree models, 150> which are mathe­
matical constructs that can mimic, at least for nearest 
neighbors, two- or three-dimensional behavior. The 
Cayley tree lattice models are more amenable to analytic 
solution and we discuss our solutions. What does 
emerge from a consideration of these models is a strong 
suggestion that features of the one-dimensional solution 
should carry over to two and three dimensions with only 
minor changes. On the basis of this we propose an ex-
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pression for three-dimensional spectral densities from 
director fluctuations. 

The main feature which emerges from the models con­
sidered is that the free energy as well as the relaxation 
terms should depend upon q as sin2(a' /2)q, where a' is 
a scaling length, instead of the q2 dependence predicted 
by hydrodynamic theory. Since our models are not 
rigorously three dimensional, but they do reduce to the 
q2 dependences of the hydrodynamic theory, we view 
our approach as suggesting a functional dependence upon 
q to extend the well-established hydrodynamic theory 
for low q to higher values of q approaching (but not 
necessarily equal to) molecular dimensions. 

The resulting spectral-densities J(w) obtained with 
the sin2(a' /2)q functional form agree quite well with 
the hydrodynamic result for low frequencies (w/21r) 
S1 MHz as they should. In the range of 1-100 MHz, 
which is currently studied by NMR, 1

-
5 differences of 

nearly a factor of 2 may be observed in the limit of 
very slowly diffusing molecules. The effect of including 
finite translational diffusion of the molecules is to re­
duce differences between the predictions for the lower 
frequencies, but to enhance somewhat the high-fre­
quency (asymptotic) results by ~ 50% in the present 
case. Careful experiments would be needed to dis­
tinguish such differences, but it might possibly be that 
more detailed models could lead to more substantial 
effects. We point out that some of the analytic methods 
employed in the analysis of the Cayley tree model could, 
e.g. , be adapted to numerical studies of large regular 
two- and three-dimensional arrays of coupled Brownian 
torsional oscillators. 

Faber16 has tried to deal with the present subject from 
the Debye point of view. He uses a continuum model 
based upon extending the hydrodynamic limit but with a 
cutoff in the spectrum of modes determined by the total 
number of molecules. A fundamental flaw with the 
Debye approach to distortion modes in liquid crystals 
and noted by Faber is the presence of large fluctua-
tions, i.e., of finite rotations of the molecules, which 
preclude a simple independent mode approach. Our 
approach may instead be thought of as replacing the hy­
drodynamic continuum with a simple limiting molecular 
model, and this is the source of the different q depen.: 
dence of the modes. The difficulties encountered by 
Faber in dealing with substantial disorder on a molecular 
level, because he, following Debye, deals with all 2N 
modes by continuum theory, are instead formally dealt 
with here by the renormalized blocks of molecules 
whose properties are simpler. Thus, we can still allow 
for additional degrees of freedom within each block for 
the more complex motions on a molecular level. We 
believe our approach clarifies these aspects of the 
problem. 

The nRtter of localized cooperative modes, for which 
molecular detail is relevant, is dealt with in another 
work, 17 where we introduce the dynamic cluster model 
for liquid crystals, and we also consider the coupling 
of the short-range (or localized) and long-range (or 
hydrodynamic) cooperativity along lines previously dis­
cussed. 

In Sec, II, we introduce and solve the model of coupled 
torsional diffusion of a linear chain of rods in an applied 
static field, The angular autocorrelation function and 
spectral density for this model are obtained in Sec. III, 
while the Cayley tree model is discussed in Sec. IV. 
Renormalization and scaling is introduced in Sec. V, 
and the modified three-dimensional spectral density 
appears in Sec. VI, where it is compared to the hydro­
dynamic results. Concluding remarks appear in Sec. 
VII. 

II. COUPLED ROTATIONAL DIFFUSION IN AN 
APPLIED STATIC FIELD 

Consider a fixed, linear array of N + 1 identical rigid 
rods that are equally spaced along the x axis (i.e., a 
separation distance of a). The rotational motion of each 
rod has only a single degree of freedom correponding 
to rotation about an axis parallel to the y axis and 
passing through the center of the rod. The orientation 
of the ith rod is described by the angle 91 (-1r=== 91 === 1r) 
which is the angle between the major axis of the ith rod 
and a fixed reference axis parallel to the z axis. As­
suming that each rod is coupled to a bath of particles 
which is constantly held at thermal equilibrium, and the 
coupled rotational motion of the rods is overdamped 
so we can neglect their angular velocities (for times 
longer than their relaxation time18

) then we can ex-
press the motion of this system through the multi.­
dimensional condi ti.onal probability P( 8° 19, t) which satis­
fies the Smoluchowski equation, 12

-
14 

Here B is an N + 1 dimensional vector whose components 
are the {91}, while P(B0 18, t) is the probability that the 
system of rods will be found in the orientation 8 ={91} 

at time t if the system is in the orientation 8° at t = 0, 
Also, R is the rotational diffusion coefficient and 
/3= 1/kBT, V, is the divergence operator in the N + 1 
dimensional space spanned all by the 91• U(8) is an 
angular dependent potential, which, in this model, can 
be chosen to have the following form: 

U(9) = ulnt(8) + u.,.t(B) , 

where Ulnt(9) represents the potential energy due to 
coupling of the relative orientations of next nearest 
neighbors, which we write as 

N•l 

U11ttlB) = -€1nt I: cos2 81, 1+1 , 
j:1 

(2) 

(3) 

where 91, 1• 1 = 0,.1 - 91 and represents the relative angle 
of rotation between the ith and i+ 1th rod, u ... t(B) 
represents the potential energy due to the energy of in­
teraction of the rods with a static electric or magnetic 
field aligned parallel to the reference z axis, and we 
write it as 

N 

u.,.t(B) = - €.,.t L cos2 91 • 
1=0 

(4) 

Since 91= 01• 1 is an energetically favorable orientation, 
then it follows €int >O, as in a model employing ferro­
magnetic interactions. Similarly, we let €.,.t > 0, so 
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81= 0 is preferred. In the limit that rod-rod and rod­
field coupling allows only small angular deviations in 
each 81 we can approximate cos2 81= 1- 8~ and cos2 01J 

= 1 - e~J• The linearized force on the ith rod then can 
be written using Eqs. (3) and (4) as 

( 
au(e)) Ji<fJ) = - ae = - 2 [(2E:1nt + E:ext>e1 - E:1nt(8;+1 + 01-1)] • 

I Bpi 

(5) 
From Eq. (5) we can define the quantities (= 2/3RE:1nt 
and €1 = 2/lRE:ext each having units s·1• The linearized 
form of Eq. (1) now becomes 

BP =(8/ae)T .[R(BP/ae)+PA'e], 
at 

(6) 

where P =P(6°19, t); (a Jae) is an N + 1 dimensional 
column vector with components (B/801); 6 is an N+ 1 
dimensional column vector with components 01; and the 
matrix A'= (€A+ €1 1) where A is the coupling matrix 
which has elements A 00 =ANN= 1, A 11 = 2 (for 2:::: {5 N - 1) 
and A1, 1+1 = - 1, with all other elements equal to zero. 
1 is the N + 1 dimensional unit matrix. 

The matrix A' is a tridiagonal matrix (nearly in a 
Toeplitz form) which can be diagonalized by the ortho­
gonal transformation Q whose elements are14 

k=O, ~ 1/ ,'2' 
QJk = V2/(N+ l) { cos[k7r(j + ½)/(N + 1)] , ( 7) 

1::::k::::N. 

The columns of Q constitute the eigenvectors of A'. 
In this model, both ends of the linear array of rods 
are free, i.e., there are no external constraints on 
them. This seems reasonable for modeling effects in 
the bulk. However, an alternate model can be de­
veloped by using periodic boundary conditions, i.e., 
by requiring the (N + l)th rod to exhibit the same motion 
as the first, and the results for this model are included 
in Appendix A. Of course, as we let N - 00 , differences 
due to different boundary conditions should become un­
important. Then Eq. (6) can be written in terms of 
the N + 1 normal coordinates E = Q~10 as 12- 14 

BP_~ I B
2
P + B(~kP)] 

at - ~ LR~ µ.k a~k ' 
(8) 

where now P =P(f IE, t) and E ={~,.}. That is, 
P( E° I E, t) is the probability that the system of rods 
will be found in the orientation E at time t if it is in the 
orientation f at t = 0. The N + 1 eigenvalues of A' are 

(9) 

for the free boundary conditions. The solution to Eq, 
(8) is separable in the normal mode coordinates and is 

N 

P(flt,t)=Il <1>,.(~~1~,..t), (10) 
k=O 

where12
- 14 

¢,.(~;I~,., t) =[(µk/2rrR)/(1- exp(- 2µ 11t))]
1l 2 

x exp[ - (µ ,./2R)(~,. - "f,.)2 /(1 - exp(- µ. 11t))] 
(11) 

and "i:,. = ~;exp(- µ,.t). The equilibrium limit, t- 00 on 
Eq. (11) is 

<Ptii(~k) = <P,H;! ~.,..o0) = (µ,./21rR) 112 exp[-(µi2R)~!] . 
(12) 

Thus, each normal mode behaves as an independent 1 

Gaussian random process, that is characteristic of the 
overdamped Brownian harmonic oscillator, In con­
structing this solution, we have allowed the 81 to vary 
from - o0 to + o0 instead of just - rr to + rr, which is per­
missible since the probability of large deviations from 
01 = O is negligible. The complete equilibrium solution 
to Eq. (8) is 

P.q{E°)=P<rlE, 00 )=Zexp[-<½R) t µ,.~] (13) 

with the normalization factor Z = n!,0(µ/21rR) 1fl\ Final­
ly, we note that we can obtain P( 8° I 6, t) from P( E° I E, t) 
according to 

(14) 

where the first equality follows from the linear trans­
formation from the E to the Q, and the second equality 
states simply that the conditional probability is now 
expressed as a function of the independent variables 
0° and e. 

It has been shown5
•

7 that Eq, (8) may be solved for 
each </> k(~;I ~,., t) in terms of its eigenfunctions which 
are the Hermite functions. This is obtained by writing 
the differential equation obeyed by each <P ,.(~~I ~,., t) as 

(15a) 

(15b) 

and "symmetrizing'' the operator Lk by the following 
transformation: 

(16) 

where Lkq:,,,_.,/ 12 = 0, Then the solutions of the eigen­
value problem 

are given by the Hermite functions 

l/Jn,.<~,.) =Nn,. exp(- µ.k ~!/4R)Hn,.~21t rz ~k) ' 

where Hn(x) are the Hermite polynomials and 

Nnk = ([µ.k/2R]l/ 2 //i?l."kn,.l )1/2 , 

(17) 

(18) 

and E"k = n,. µ.,.. The conditional probability for the ~,.th 
mode is then written as the Green's function, 

or, by use of the eigenfunction representation of the 
Dirac delta function and from the above results, .. 

¢;,(~~I ~,.,t)= L exp[-n,.µ,.t]ln,>(n;I 
n,.=O 

using 

(19) 

(20) 

In,.)= I</>:" 112 l/Jn,.(~k)) (21a) 
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and 

(21b) 

and noting (n11 L 11 1n1) =En/>,,_, o,,_ 1• From Eqs. (10) and 
(20) we have the solution to the complete conditional 
probability in the form .. .. 
P(tl~,t)= L ... L Cno•--nNlno·••nN)(no•••n;I 

no=O nN=O 

(22) 

where we have used the product states of the normal 
modes, denoted by 

In.)= lno • • •nN) = lno>ln1) • • • lnN) 

and 
N 

c.=cno--•n (t)=exp [- L n11µ.i]. 
N 11=0 

The equivalence of Eq. (20) with Eq. (11) is shown in 
Appendix B. 

Ill. THE ANGULAR AUTOCORRELATION FUNCTION 

We now calculate the correlation function: 

(23) 

where e;(t)= 01(t)-(01) and the angular brackets indicate 
ensemble averages. The explicit form of the averages 
is given by 

(24) 

The reduced distribution function W(e;, 00 t) is given by 

(25) 

where the prime on the multiple integrals excludes in­
tegrating over 01 and 0~. It is easier to use the equiva­
lent expressions in terms of the normal mode coordinates 
E° and E [cf., Eq. (14)]. Thus we have 

G(t)= f ae f dt P<e°I e, t) 0° eP.q<t)-[/ de° 0° P.q<t)] 
2

, 

(26) 
which may alternatively be written in terms of the 
bra-ket notation of Eq. (22) as 

G(t)=I:' exp(-Ei) l<oleln.)1 2 (27) 
• 

with 

while 

The prime on the multiple summation carries the re­
striction In)* I 0), where 10) designates the product of 
the ground state eigenfunctions of each rod, i.e., no 
= 0, n1 = 0 ••• , nN = O. We now write 01 in terms of the 
~,. as 

(28) 

and we use Eq. (7) for the Qu,• For a rod in the bulk, 
we can, without loss of generality let i = N /2 with N 
even for the free boundary conditions, so Eq. (7) be­
comes 

N 

0N 12= 0 = ~0 / ✓ N+ 1 + "'2/(N+ 1) ,L(-1)1112 ~,. 
11=2 

even 

(29) 

since the N /2th rod will be a node in the standing wave 
modes of k odd. Then (irrespective of boundary con­
ditions and noting µ. 11 >0) we rewrite ~,. in terms of the 
raising and lowering operators R,,_,.: 

~,.= ( :,. y12 (Rr+R,._)' 

with 

Rr In,.)= v'n,.+ 1 In,.+ 1) , 

and 

R,._ln,.) = -rn;in,.-1) . 

Thus, fromEq. (29) we have 
N 

(OI eln> = L T,.(OI (R,,.+R,...)ln) 
11=0 

with 

T,. = (- 1)1112 [(R/ µ. 11)(2 - o,,_ 0)/(N + 1)]112 
• 

Now 

(0,.1 (R,,. +R,._) In~ = (0,.1 R,.. I 1,.)1in,..1k = on,.,lk • 

(30) 

(31a) 

(31b) 

(32) 

(33) 

(34) 

This shows that only singly excited states of In,) such as 
I 0, O, ... , 1, ... 0) contribute, so 

I (0101 n) I 2 = ~ Ono,olin1,o· •• on,., I ••• OnN,o • 

Thus, we obtain 
N 

G(t) =R exp(- i't)/i'(N + 1) + [2R/(N + 1)] L exp(- µ. 11t)/ µ. 11 • 
k=2 

even 

(35) 
It also follows from Eq. (32) that (0) = (01010) = O. The 
mean-square fluctuation (02) is given by 

(02
) = L (OI eln)(nl 010> 

n 
N 

=G(O)=[R/(N+l)i'] [1+2i' ~ µ.;1] (36) 

even 

In the limit of ~' - 0, i.e., no external field, then 
j..Lo=O [cf. Eq. (9)], and the ~o mode follows simple ro­
tational diffusion [ cf. Eq. (8)) with eigenvectors 
(1/v'27r) exp(iEono/v'N+l) which are orthonormal over the 
range 

The eigenvalues are immediately found to be Eno 
= ngR/(N + 1). (The ~,. for MO still represent torsional 
modes.) Thus, we consider the correlation function 
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g,,.(t) = (exp(- im0( T)) exp(+ im0(t+ r))) 

~ (exp(- imt0(r)/v'N+f) exp[imt0(t + T)/✓N + lJ) 

( 
2m

2
) f-x 1 + N + l ~ (tk(T)tk(t+ T)) (37) 

81'8D 

and we obtain for N» 1 , 

g.,(t) = exp(- m2Rt/N) { 1 +[2m2R/(N + 1)] t exp(-µ~t)/µ~ 1 
mn (38) 

withµ~= µk(i' = 0). Comparing Eq, (38) with Eq. (35) 
we see that the two cases lead to correlation functions 
with somewhat similar structures. 

Taking now the limit N - 00 , we approximate the sum­
mation over kin Eq. (35) by an integral using the 
trapezoidal rule. [We also use the identity 
J;exp(-µkt')dt'=exp(-µJ)/µkinEq, (35).] We 
obtain19 

limG(t)=R f'" exp[-(2i+i')t']I0(2it')dt', (39) 
N•oo t 

where I0(z) is the zero order modified Bessel function. 

In the limit of short times we can write the integral of 
Eq, (39) as /0 - J& and expand the Bessel function in 
the range of 2£.t« 1. For longer times Eq, (39) can be 
used directly. In summary, 

R{[t'(4t+t')]-112 -t}, it« 1 
i't« 1' 

_R_ erfc(v'Pi), 
2v'W 

it>l , 
i't>l 

_R __ exp(- i't) it» 1 
2 ✓t£.' {rri't i't»l. 

From Eq, (40) we have for limN_ .. (0 2), 

(40) 

(02) = G(0) =R[i'(4€ + i')]-112 (41) 

and from Eqs. (39) and (40) we find the relative correla­
tion function for f.

1 t, f.t>l, 

lim G(t)/G(0)~ ½[(4£. + €1)/€]112 erfc(v'~' t) , (42) 
N-oo 

which yields for 4E » t' the simple form, 

limG(t)/G(O)=erfc(v'Yt}, t't> 1. 
N-oo 

(43) 

The spectral density follows easily using Eq. (35), 
By definition 

J(w) = 2Re _['° exp(- iwt)(0(t)0(0)) dt . (44) 
0 

Thus 

J(w) = 2Re{R/[N + 1) €1(€ 1 + iwt1
] 

+[2R/N+ 1)] t [µ~1(µk+iwt1]} , (45) 
""2 

k8T8D 

In the N- 00 limit we have from Eq, (39), 

.. [ t 
J(w) = 2Re fu exp(- iwt) A -R fa exp[-(2€ + i')t'] 

Xlo(2it') dt'] dt (46) 

with the real constant A =R[€'(4€ +i')J-112. 

Equation (46) simplifies by using the properties of the 
Laplace transform, and recognizing that the integral of 
the constant term A is pure imaginary. This leaves 

J(w)=2Re{w[(iw+ 2t.!':')2 _ 4€2]112 } for €
1
>0. 

(47) 
The apparent divergence as w-0 in Eq. (47) vanishes by 
rewriting J(w) in the form 

J(w) = 2R Re{!.. [(i' B- w2) - iw(B+ €') ]112} (48) 
w ( E12 + w2)(F + w2) 

with B = 4£. + €1
• This expression is simplified by taking 

the complex square root of the numerator, This can be 
evaluated approximately at low frequencies, for 
I w(B + i') /( i' B - w2

) I « 1, 

~ [ (B+£.
1
) ][ 1 ]l/2 

J(w)=R WB-w2)1/z (€'2+w2)(i}+w2) (49) 

and thus: 

J(0) =R(B+ €1)(i'Bt3 l 2 
• (50) 

In the range i' «w«€ one obtains from Eq. (48) that 

R ( 2 )112 J(w)"" - -----:. 
W Wf. ' 

while for w» €, €1 one has 

J(w):::: 2R/w2
• 

(51) 

(52) 

When we come to two and three dimensional cases, we 
find realistic models already pose significant difficulties 
in obtaining an analytic solution. Instead, we discuss 
Cayley tree versions in the next section. 

IV. CAYLEY TREE ARRAYS 

We now generalize the one-dimensional case by means 
of a Cayley tree model, 16 also known as a Bethe lat­
tice. We start with a particular rod labeled 0, 21 Rods 
1, 2, ... , K + 1 are the K + 1 nearest neighbors of rod 
zero and they form the first shell S1 consisting of first 
nearest neighbors of rod 0, Each rod in S1 also has 
K + 1 nearest neighbors: rod 0, and K rods in S2, the 
second-nearest neighbors of rod o. Each .rod in S2 is 
a nearest neighbor of only one site in S1. This structure 
continues to branch K times for each rod in Sn and never 
turns back on itself, so that rods in Sn couple only to 
rods in Sn-I and Sn+i (and no rods in Sn are nearest 
neighbors of other rods in Sn)• This lattice is homo­
geneous because each rod could act as the original 
rod with K + 1 nearest neighbors. In this sense the 
model is like some multidimensional array which is 
locally like some real geometric array of rods. For 
this model we may rewrite Eq. (3) as 

N-1 

U1nt(~) = - f.1nt L cos2 01, 1 A(i,j) , 
i<J 

(53) 

where A(i,j) = 1 if i and j are nearest neighbors and 
A(i,j) = 0 if they are not. The linearized force on rod 
i becomes [cf. Eq. (5)] 

(54) 
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A one-dimensional linear array corresponds to K = 1 
(cf. Eq. (5)]. For K>l, the coupling matrix A is no 
longer tri-diagonal but it may be transformed to tri­
diagonal form by an orthogonal transformation based 
on the Lanczos algorithm. 20 The new vectors (or 
modes) can be written in terms of the original 01 ac­
cording to 

Ua = Ba , 

u1=<K+1r112 I: 01 , 
i lnS1 

un =[(K+ l)K"•l]•l/2 L 0J. 
I In Sn 

(55) 

Thus, in this basis only the .single completely symmetric 
linear combination of the 01 in the S"th shell couples to 
00. The tri-diagonal matrix in this basis has diagonal 
elements Ali= K + 1 for all i and off-diagonal elements 
A0,1 =A1,0 = - ✓K + 1 and all other A1, 1• 1 = - fK. This 
particular form of A corresponds to a fixed boundary 
condition instead of the free boundary condition used in 
the one-dimensional case (cf. Sec. II). 21 The modes u 
which couple to zto = 00 will then obey a diffusion equation 
very similar to Eq. (6), in particular, 

ap at =(B/au)T •[R(BP/au)+PA'u]' (56) 

where P =P(u0
1 u, t) and A'= (€A+ ~'1) with A as given 

here. 

No simple analytic method21 was found to diagonalize 
the (N + 1) x (N + 1) matrix A for arbitrary K when treat­
ing an N shell (i, e., Si, ... ,SN) Cayley tree model. 
However, rigorous bounds on the eigenvalues A= (Xo, 
Ai, ... , AN) of A can be derived by the use of the "escala­
tor" method of Morris22 and Fox. 23 First, consider the 
NxN Toeplitz matrix W having elements Wu =K + 1 and 
W1, 1.,1 = - .fK with all other W1, J = 0. The distinct eigen­
values of W are (cf. Rutherford21 ) 

µ.k=(K+ 1- 21'K)+4 ../K'sin2 
2(!: l) for k = 1, ... , N , 

(57) 
where µ.N > • • • > µ. 1 and the N components of the eigen­
vectors Z (k> corresponding to the kth eigenvalue and ex­
pressed in terms of the basis vectors of Eq. (55) are13 

z~k) = zmk= ../2/Nsin ( ~k:i) form= 1, ... ,N. (58) 

so Z is the diagonalizing transformation. Secondly, 
write the eigenvalue problem Ax= AX in partitioned form 
as 

which upon inspection yields the characteristic value 
equation for A 

f(A)=(K+1)I: z(k)(z<k>)T -(K+l-A)=o, 
k µ.k - A 

where the known solution to the simpler NxN problem 
WZ = µ.Z is employed. Evaluating this expression for 
different values of A one forms a Sturm sequence. The 
observed changes in sign of the terms in this Sturm 

sequence reveal that the value of a particular eigenvalue 
of A "separates" or is bounded by two consecutive roots 
of W. That is, 

and also one can determine that (for AN+t >AN>· • • > A1) 

and 

µ.N:SAN+1:SK+l+ ff+ -IK+l 

by the application of the Gershgorin theorem. 24 (This 
interlacing of eigenvalues is applicable here since 

w1,1•1 W1•1,1 >o. 25
) 

In this way it is shown that the eigenvalue distribu­
tion of A is well approximated by the distribution of the 
N values of µ.k vs k. The error in this approximation 
is negligible as N becomes large [i.e., order (100)], 
as revealed by actual numerical determination of the 
(N + 1) Ak using the method of bisection. 26 If neces­
sary, employing Eq. (57) and the computedµ." and z0 >, 
the exact eigenvectors of A (77<k>, i;lk>, ... , 1;1k>) can be 
determined. 26 

Employing an argument identical to that used above 
to obtain the bounds on the A1t, we claim in the limit of 
N» 1 the eigenvalue spectrum of A is well approximated 
by that. of an (N + 1) x (N + 1) matrix W, with the cor­
responding similar eigenvectors. 

Thus, using this large N approximation µ.k':E! Ak 

(where the µ.k are now appropriate for an N+ 1 dimen­
sional W) allows the calculation of angular reorienta­
tion correlation functions, such as Eq, (26), for the 
Cayley tree model of cooperative dynamics. We will 
briefly outline two methods of calculation of the cor­
relation function below. First, we follow the approach 
used earlier. Our discussion of the A matrix reveals 
that the eigenvalues µi,:v;~ of the N + 1 dimensional 
(Cayley tree model) matrix A' are approximated as 

,.11 > ~ A( ;:-;- ) 2 A ~ • 2 krr 
JJ.,..cT=E vK-1 +4EvKsin 2(M+l) 

fork= 1, ... ,M (59) 

and here M =N + 1. For K = 1 these eigenvalues are 
virtually identical to Eq, (9) for the linear chain, 
Also, from Eqs. (58) and (55) we have in matrix nota­
tion Zu= ~. where ~ are the normal modes. Then we 
can form the conditional probability P( t I ~. t) 
=P(Zu0 1Zu,t)=P(u0 lu,t) similar to the method used 
in Sec. II. Thus, in this case P( E° I~. t) can be ex­
pressed via Eqs. (10)-(22) employing products of 
normal mode eigenfunctions i.e. , the Hermite func­
tions, [Eqs. (18) and (21)] with the eigenvalues E1 

= L !',:l nk µ i,:v;~. The transformation matrix Z, ob­
tained from Eq. (58), would now be substituted in the 
analysis in place of Q·1 which was employed in the 
previous cases (cf. Eq, (7)]. Therefore, for the 
Cayley tree model the multiparticle conditional prob­
ability can be obtained in the form of Eq, (22), and 
G(t) may then be calculated. 

Because the transformation matrix Z converts the u 
of Eq, (55) rather than the original 8, we found an 
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alternative method more convenient. It is suggested 
by comparing the u of Eq, (55) for K = 1 with the meth­
ods of Sec. II for the one-dimensional case. Con­
sider an N shell Cayley tree model with a perturbed 

• A' (A A, ) 'l A r;:;.; force matnx .N. = €.A+ E: 1 , where~ 1 =A1 0 = - v 2K. 
' ' We shall again approximate the N + 1 eigenvalues of 

A as the above µ~~Y, and thus the eigenvectors z~> 
are appropriate, within a small error, for A. Con­
sider an independent adjoint Cayley tree lattice sys-

A"= 

(K+ 1) 

- .fl{ 

0 

-& 
(K+ 1) 

(K+ 1) 

Now we introduce an orthogonal transformation matrix 
S which yields the new basis vectors v =Su". Its func­
tion is to construct symmetric and antisymmetric pairs 
from the original and adjoint Cayley tree basis vectors 
in such a manner that the central rod (i.e., 90) appears 
as the N + 1th (or central rod) of the combined system. 
Thus the structure of the calculation is rendered virtual­
ly identical to that for the case in Sec. II and the solu­
tion follows almost immediately. The nonzero matrix 
elements of S are 

and 

S1, 1 =-S1, 2N+2. 1 =-1/./2 for i=N+2, ... ,2N+1. 

Thus SA"s-1 = W written for the 2N + 1 dimensional space, 
and VN+ 1 = Uo = 90 , This yields 

2N+l 
9= 9

0
= ..f:~2/~2-N_+_l L (-1)<11+1>1 2 ~

11
• 

k=I 
odd 

Using the raising and lowering operator form of ~k and 

Tk,CT = (- 1)(11+1)/2 [2R/ µ.~~-;.1>(2N + 1))1/ 2 

[cf., Eq. (33)] for odd k, permits us to calculate matrix 
elements such as (0191N). Thus, from Eqs. (27) and 
(32) we obtain, for N» 1, the Cayley tree lattice model 
result 

~ 2R 
G(t)= 2N+ 1 

2N+I 

L ,..,. 
odd 

exp(- µ<2N+l>)/µ<2N+l) 
k,CT k,CT , (60) 

tern with N-1 shells for interacting rods having the 
same interaction parameters and diffusive properties 
as our original rod system, and also having K + 1 neigh­
bors found only among the members of the newly con­
structed system. For this system we approximate 
A'~ (£W + i'1), and we require the diffusive motion of 
the two systems to be uncoupled. 27 The new basis vec-

" { AA A} th tors become u = uN, uN-1 ••• ui, Uo, u1 ••• uN-1 and e 
2N + 1 dimensional matrix A" is approximated as 

0 
_,[j[ 

- .fl{ 

(K + 1) 

which is identical in functional form to G(t) obtained 
from a one-dimensional system of 2N + 1 rods with fixed 
boundaries, i.e., a linear chain of rods bounded by 
rods fixed in their equilibrium positions. 13•21 Just as in 
the cases of Sec. II, one can show that as N - 00 , G(t) 
is independent of the particular choice of boundary con­
ditions [cf, Eqs. (35) and Appendix A]. Thus for K= 1 
we obtain Eq. (39) in this limit. However, for K> 1 we 
achieve aformally identical result but with rescaled 
rod-rod and rod-field interactions. That is, in Eq. 
(39) one replaces € by .fK€. and ( 1 is replaced by £' 
+ £( fi - 1) . Thus the rod-rod interaction is increased 
by the factor .fl{, while for K> 1 there is an additional 
"rod-field" contribution i( ll-1)2. It is not clear 
whether this additional term is a peculiarity of the Cay­
ley tree (possibly arising from the fact that it branches 
and never can turn back on itself) or is associated with 
the free energy of stabilization of the aligned phase, 
which in the absence of an aligning field, should not 
have any preferred direction, 8•

9 except that we have con­
structed our model with an intrinsic preferred direction, 
In any event, we will be primarily interested in the 
rescaled i, with an otherwise simple sin2[k1r/2(M + 1)] 
dependence in the eigenvalues of Eq. (59). 

While our emphasis in the present work is on soluble 
analytic models, we believe that aspects of the method 
used in this section could readily be extended to de­
velop numerical solutions for extended two-dimen-
sional arrays of coupled torsional Brownian oscillators 
with next nearest neighbor (and even higher order neigh­
bor) interactions. The primary procedure that simpli­
fied our analysis of the Cayley tree is that of Lanczos 
tri-diagonalization, which transformed the Cayley tree 
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model into that of an effective linear chain of Brownian 
torsional oscillators with rescaled couplings. This 
procedure also allows one to directly focus on a single 
molecule which can be regarded as being at or near the 
center of the array. The Lanczos algorithm has been 
shown to be a powerful method for numerically achiev­
ing tri-diagonal form for even very large arrays in other 
physical problems, 20 and its applicability to complex 
diffusional problems has recently been demonstrated. 28<al 

In the present application the Lanczos algorithm could 
be used to numerically tri-diagonalize the A matrix which 
is then easily diagonalized. Then the approach of Secs. 
II and ill can immediately be employed to numerically 
obtain the correlation function and spectral density. 

V. SCALING AND DIRECTOR FLUCTUATIONS 

As noted in Sec. I, the models we have discussed in 
the previous sections have defects (distinct from matters 
of dimensionality) when compared to actual liquid crys­
tals, a matter we attempt to deal with in this section. 
For example, the linear array of N + 1 rigid rods does not 
correspond to a "real" linear array of liquid crystal 
molecules in two important respects: (1) the potential 
between rods, Elnt is not so large that each rod experi­
ences only small angular deviations e;, and (2) in a real 
liquid crystal the molecules translate and exchange with 
their neighbors. The effect of Eq. (1) is that in a nor­
mal liquid crystal the order parameter S~ O. 4-0. 6, 
while the torsional limit would require s?o. 95. The ef­
fect of Eq. (2) is to randomize somewhat the time-depen­
dent fluctuations in interaction potential sensed by a 
particular molecule. Also, Eq. (3) the flexibility of a 
real liquid crystal molecule will tend to lead to a varia­
tion in the intermolecular potential acting on different 
parts of the same molecule. These are problems we 
ascribe to a proper description of localized cooperative 
dynamics of liquid crystalline molecules. Instead we 
believe our model results are more useful for dealing 
with long-range cooperativity of the type referred to as 
director fluctuations (cf, Sec. I). 

In order to see this, we need to introduce simple, but 
current ideas on scaling and renormalization. In par­
ticular, we might argue that Eqs. (1)-(4), before we 
restrict the 01 to only small fluctuations, might still 
be a good starting point for a molecular description. 
We could improve on this description by allowing for (a) 
translational diffusion of each molecule and (b) full 
phase-space treatment in the angular motion, i.e., 
angular momentum or inertial effects. Instead, we 
shall divide our lattice of rods with nearest neighbor 
coupling into blocks of length a'= La, where a is again 
the distance between rods. Now we reconsider our 
model as a model of blocks of L rods with nearest neigh­
bor interaction between these blocks. If these blocks 
are large enough, then the effective interaction between 
neighboring blocks should be large enough that they 
become strongly coupled in the sense that (01 - 01,.1) be­
comes very small, where now 01 refers to the director 
orientation of the ith block. Also, for large enough 
blocks, the translational diffusion of molecules within 
each block and between adjacent blocks should be of 
little significance to the property of the blocks them-

selves, 28
(bl nor should any inertial effects be important. 

Thus, we redefine our problem in terms of blocks 
which again obey Eqs. (1)-(4) but with rescaled ener­
gies: Ei'~l and E!:l and with rescaled rotational dif­
fusion coefficient R <L >. In this limit, molecular details 
have been averaged out, and the approximations leading 
to Eqs. (5) and (6) become applicable. We do, however, 
give up details of order a' or less (i.e., wave vector 
q?:::. 1T/aL), and for the present we are not attempting to 
calculate the rescaled parameters Ei'~l, E!fl, and R<L l 

in terms of true molecular properties. 

Instead, we now consider the opposite limit of long 
wave vectors, q. In this limit we should obtain the hy­
drodynamic results appropriate for director fluctuations. 
It is not, at present, possible to perform this compari­
son rigorously, since the models we could solve for 
analytically are not true three dimensional cases, so 
we must use a weaker inferential approach. In particu­
lar, let us suppose we can use the results of the pre­
vious sections as approximations to modes in three 
dimensions. 

Thus the mean-square fluctuation for the kth normal 
mode may be given by 

(~;) =(Oki ~!l Ok) =R(L) /µtL) 

-[ (L) • 2 ( k7T ) (L)J-l 
- 4/3E111t sm 2(N+ 1) + /3Eezt k=O, 1, ... ,N, 

(61) 
where we have introduced rescaled parameters (which 
also includes the rescaling due to the K nearest neighbors 
cf. Sec. V). Then in the limit of (k/N)- 0 we have 

2 I (L) n2 k2 (L) 1-1 
lim (~k)= /3E1nt (N+l)z +/3Eext , 

(k/ N)•O 

(62) 

which we wish to relate to the known hydrodynamic ex­
pression8

•
9 for liquid crystals. In this theory one writes 

the distortion free energy for the nematic state in the 
simplified one-constant approximation as 

Fd=½ L (Kq2+xaH 2)[jn.,(q)J 2 + lny(q)J 2
]' (63) 

• 
where the Fourier components of n.,(r) and ny(r) are 
defined by 

n.,(q)=~ f n.,(r)exp(iq•r)dr (64) 

and where Vis the sample volume, while K is the force 
constant for the distortion modes, and X4 H 2(n;+n!) is a 
magnetic free energy of distortion per unit volume. The 
mean square fluctuations of the director modes is given 
by 

( I n.,(q) J 2) = ( I ny(q) J 2) = (f:3Vt1 /(Kq2 + XaH 2
) (65) 

and each mode has a relaxation rate: 

T(qt1 =Kf/TJ+ X4 H2/TJ • (66) 

We now require that Eq. (62) be equivalent to Eq. (65). 
This is readily achieved by first letting [cf. Eq. (7)) 

1T k 
qk= a' (N+l) ' k=O, ••• ,N (67) 

and then recognizing that Ei;'l represents internal energy 
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per block of volume a'3 , etc. One obtains 

Ei~/ =Ka' 

and 

(68) 

{69) 

When we use Eqs. {67)-(69) as well as the renormalized 
form of Eq. (9) in the limit k- 0, we obtain 

7)-1 = 2(:lR(L) a'3 • {70) 

{Recall for a sphere of radius a undergoing Stokes­
Einstein rotational diffusion T 1 = [Rl(l + l)]-1 = 81ra311f3/ 
l(l + 1), for the lth spherical Harmonic, which is quite 
similar, but not identical to Eq. (70).} 

We summarize our point of view by rewriting Eq. (63) 
as 

Fd=2 ~ [x/a'2

) sin2 ~ q+¼x.If] [ln,.(q)l 2 + lny(q)l 2

], 

{71) 
while Eq. (66) becomes 

T{qt1 ={2/a')2 Ksin2 

( f q)/11(q)+x_0 H 2/11(q). (72) 

In summary, this scaling approach suggests a simple 
form to extend the hydrodynamic approach to large q in 
a way that reflects upon microscopic noncontinuum be­
havior of the system. Instead of the q2 dependence of the 
distortion free energy and relaxation frequency of the 
qth mode, we obtain the sin2(a' /2)q dependence. This 

} i Ge 

= (2rr)3 
0 

is important in the calculation of spectral densities 
as shown below. However, it should be noted that we 
do not avoid the need to invoke a maximum or cutoff 
qc as is usually employed in calculations based on the hy­
drodynamic model. In that model, qc is arbitrarily 
taken as of molecular dimension representing the ex­
treme upper limit that a hydrodynamic model could be 
pushed. Our approach based on scaling suggests in­
stead a qc ~ rr/a' = rr/La r cf. Eq. (67)1 where L is chosen 
as small as possible but consistent with a renormalized 
form of Eq. (1) in which molecular detail has been 
smoothed out. This a' or qc then enters explicitly into 
our expressions. It represents the fact that there are 
still localized degrees of freedom or localized modes on 
a molecular scale which have not been included. These 
localized modes should have faster relaxation rates, 
so they would sense the instantaneous distribution of 
values of the cooperative modes analyzed here. Thus, 
methods of combining both types of modes: long-range 
and short range may be developed along lines previous-
ly discussed. 5

• 

17

•

29 

VI. A MODIFIED SPECTRAL DENSITY FOR THREE 
DIMENSIONS 

We use the results of the previous section to obtain 
a spectral density function for director fluctuations in 
three dimensions. We start with the standard expres­
sion based upon hydrodynamic theory2

• 
7 but we make use 

of Eqs. (71) and (72). That is, we write for the cor­
relation function for n. = n" ± iny , 

(73) 

which reduces to the standard hydrodynamic expression5•7 if we let sin2((a'/2)q):.:((a'/2)q)2• Here q is given by 
Eq. (67) and qc = rr/ a'. Now let q = 0 I a' with 0 = rrk/(N + 1) and Os 0 ~ 1r. Substituting into Eq. (73) we have: 

(n(r, 0 )tn{r, t)) 

_ 81rksT [r 
- {211)3 a'3 

0 

where we have used Eqs. (68)-(70) to obtain the second 
equality in Eq. (74). It is seen to be our three dimen­
sional extension of the one-dimensional correlation func­
tion {35) in the limit of large N (where summation 
over k is replaced by an integration), and is independent 
of N, so,,.> 

We now introducethe new constants (in units of s-1): 

k T 
C=~, (75) 

Cl= 2K/a'211 ' (76) 

b= x_.HZ/11 ' {77) 

X=X{j)=2asin2 (0/2)+b=(a+b)-acos{0). (78) 

Then Eq. (74) is written as 

I(t)=C (r exp{-xt} 02 d0=C (rj'" exp(-Xt')02 dt'd0, 
lo X 10 , 

(79) 
reversing the order of integration yields 

I(t) = C J: 00 

dt' exp[-(a + b)t '] £r exp[{ at' cos(0)] 02 d0 . 

(80) 

The integrand of the 0 integral from Eq. {80) can be ex­
panded in terms of the modified Bessel functions. The 
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resulting 0 integrals are easily evaluated, leading to the 
most general result: 

I(t)=C [;
3 f"' dt'exp[-(a+b)t']I0(at') 

+4vt ¥f"' dt'exp[-(a+b)t']Iiat')l. (81) 
k=l t J 

For short times, at'« 1, we can rewrite the integrals of 
Eq. (73). In this limit I0(at')"" 1, Ik(at')"" 0 for k>0, 
leaving for at'« 1 the approximation 

/(t)~crl l +4vi: (-l)k(a+b ✓ b(2a+bW 
L3 lb(2a+b) 1,ct (k2)ak ✓b(2a+b) 

_ !f!( 1 -exp[-(a+ b)t] \] . 
3 a+b ) 

(82) 

[Note /(0) is equal to the first two terms of Eq. (82).] 

The long-time limit of Eq. (79) may be obtained by 
recognizing that the values of X near its minimum will 
dominate. 30(b> Thus by letting A"" b+(l/2)a02, replacing 
rr by 00 in the limit of the second integral, and exchang­
ing the order of the integrals one obtains 

I(t)"" C ~j"' exp(-bt') dt' 
✓ 2 . t (at')3f2 • (83a) 

In the limit that b - O+ (i.e. , b becomes infinitesimal), 
then 

J(t)"" C/f.i/a312 t 112 , (83b) 

which is identical to the result from the equivalent hydro­
dynamic model in the absence of a cutoff qc. 5

•7 In this 
long-time limit, I(t) given by Eqs. (83a) or (83b) is in­
dependent of a' (i.e., it exhibits scaling behavior). 

From Eq. (79) we obtain the Fourier transform where 
s= iw 

J{w)=2Re j"' dtexp(-st)I(t) 
0 

= 2Re [c j "'dtexp(- st) f"' dt' fr exp(- xt') 02 a0] 
0 t 0 

=2Re re I"' dtexp(-st) J"'dt' rr exp(-Xt)02 d0 
L o o Jo 

- Cf t dt' fr exp(- Xt') 02 d01. (84) 
0 0 j 

Note the first term yields a [const/(iw)] which is pure 
imaginary and can be extracted immediately from our 
solution. 

Using the same analysis of the exp(- xt') term used 
earlier to calculate J{t) gives 

J(w) = 2Re [- C Ia"' dtexp(- st) [t dt' exp[-(a+ b)t '] 

x [;
3 

I0(at')+4rr t /"(at')(-l)"/n2]J. (85) 

Performing the integrals yields the formal result written 
in standard form as 
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FIG. 1. Graph of spectral density J(w) vs frequency to the 
inverse one-half power in dimensionless units. The ordinate 
is given in units of J(w) =J(w)a where a is defined by Eq, (76), 
while the absicca is given in units of w" 112 , where w =w/a 
= (1r2/2)wlwc. Also shown on the abscissa is the value of ,,-llz 
= (w/2,r)"112 in (MHz)"112 for the typical values of K = 6. 3X 10·7 

dyn, 71 = 1. 3P, and a'= 15 A. The solid lines correspond to Eq. 
(86) and the modification for finite diffusion coefficient D. This 
is compared to the predictions of the hydrodynami'1 theory 
(dashed lines) obtained from Eq. (74) by replacing sin2(8/2) by 
82/4. The curves labelled a, b, and c correspond to values of 
dimensionless D =D/aa'2 = (D71/2K) of 0, 0.62, and 1.03, 
respectively. (Using the above values of K and 7) they become 
0, 6X 10"7, and 1x10-s cm2/s, respectively.) [Note x0 H2/71 is 
kept small enough so as not to affect the results.] 

(
v3 ~ (-1)" [(iw+ a+b)- ,/(iw+ a+b)2 

- a 2
]")~ 

x 3 +4rr;i'-"T a" ~ 
(86) 

with B = 2 a+ b. [ The apparent divergence in the coef­
ficient~ w"1 may be shown to disappear, as w- 0 by 
analogy to the discussion of Eqs. (47)-(50).] We note, 
that Eq. (86) [and also Eq, (81)] must be multiplied by 
3s2 /2, where S is the mean ordering of the molecule, 
in order to correspond to the usual spectral density 
(and correlation function) needed in magnetic resonance 
(cf, Ref. 5). 

We compare the result of Eq. (86) with the standard 
hydrodynamic result2• 5•

7 in Figs. 1 and 2 as a function 
of w over the range of interest to NMR relaxation ex­
periments (viz., 104-108 Hz). 1-

5 These figures are 
actually in dimensionless units: w = w/ a ( w0 = w.l a 
= v2 /2) and J(w) ssJ(w)a. If follows from Eq. (83b) 
that for low frequencies J(w)a: w·11 2, as in the hydro­
dynamic result, i(w)Ho• 5•7 There is only a small in­
crease {approaching a factor of two) in the ratio j(w)/ 
cl(w)HD as w.:wc (cf. Fig. 2) and for w»wc (typically 
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FIG. 2. Ratio of spectral density j(w) to the hydrodynamic 
result j (w)HD as a function of w·112 and l-'-112 (in MHz"112 for 
K = 6. 3 x 10·7 dyn, T/ = 1. 3p, and a' = 15 'A). The curves labeled 
a, b, and c correspond to values of dimensionless D of 0, 
0.62, and 1.03 (cf. Fig. 1). 

greater than 100 MHz) both results become comparable. 
This is in agreement with the identical asymptotic form 
of J(w)<>< 2irR<L> /3w2 with R<L> given by Eq. (70) that may 
be obtained from the above expressions. Thus, there 
are just modest differences predicted by the two theo­
ries in the absence of translational diffusion of the 
molecules. 

Translational diffusion of the molecules may be in­
troduced28 with the multiplicative factor exp[ -q2Dt] 
into the integrand of Eq. (73). Here Dis the transla­
tional diffusion coefficient. 2•

5
•

31 Results32 for D-=-D/ 
aa'2 of 0. 62 and 1. 03 (which correspond to D = 6 x 10·7 

and 1 x 10·6 cm2 /s if we use typical values of K = 6. 3 
x 10·7 dyn, 17 = 1. 3p, and a'= 15 A) are shown in Figs. 
1 and 2. For low frequencies even better agreement 
is found between the two theories, and for w? We the 
differences are somewhat suppressed. However, the 
asymptotic limiting results are somewhat greater for 
the present model, and this deviation is increasing 
with increasing D. Such frequencies are accessible 
to modern NMR experiments, although this is the re­
gime where J(w) is small and therefore more difficult 
to measure. However, the current theory predicts 
an enhancement of this mechanism for finite diffusion 
indicating that it could be a little easier to detect. 
A recent NMR study demonstrates the subtle detail with 
which J(w) from director fluctuations may be examined 
as a function of frequency. 5<e> Effects of a finite Don 

the present predictions33 could be tested by performing 
experiments with molecular probes of varying size as 
a function of frequency if there is sufficient sensitivity 
to this mechanism. 

The reason for this effect from a finite Dis as follows. 
The decay constant from the qth mode (for b"' 0) becomes 
>..' = 4K/a'2 11 sin2(a'q/2)+Dq2, while the mean square 
fluctuation remains just >.. [cf. Eq. (78)]. Thus the qth 
mode contributes the amount J

4
(w) ex:(>..' />..){1/[w2 + >..'2]} 

to the total spectral density J(w), which for large w be­
comes: >..' />..w2

• Now the sin2 a' q /2 term suppresses the 
importance of the first term in >..' relative to Dq2 for the 
higher q modes (which are important at higher fre­
quencies) and >..' />.. = 1 + (Dl)/.K) [(a'2q2 /4)/sin2(a' q /2)]. 
Thus the high frequency results show a greater sensi­
tivity to D than the hydrodynamic result, wherein >..' 
=[K/17+D]q2 and >..'/>..=l+D17/K. 

VII. CONCLUDING REMARKS 

The results we have obtained for the spectral density 
J(w) may be used in an identical fashion to that from the 
hydrodynamic model in the analysis of spin-relaxation 
studies. 1-

7 It leads to predictions for the dependence of 
J(w) on win the experimentally accessible regime1

- 6 

of 1-100 MHz that can differ somewhat from the form 
obtained from the hydrodynamic model. The present 
theory shows greater sensitivity to changes in transla­
tional diffusion coefficient at the highest frequencies, 
where the largest differences from the hydrodynamic 
result are for diffusing molecules. These effects are 
not large and it would be important to first separate 
out the other mechanisms of spin relaxation in any ex­
perimental test (we note that good progress has been 
made along these lines6

). Most important of all is the 
realization that the present theory (as well as the hy­
drodynamic theory) is necessarily incomplete in not 
including relaxation on a molecular scale, and only 
when that failing is removed can the somewhat arbitrary 
choice of scaling length a' be remove. Nevertheless, 
as we already noted, convenient methods for combining 
the effects of dynamic cooperativity on a molecular 
level with the more long-range cooperativity that we 
addressed in this work are currently available. 5•

17
•34 
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APPENDIX A 

Similar to the derivation in Sec. II employing free 
boundary conditions, the time dependent correlation 
function G(t) and spectral density J(w) can be ob-
tained in the case of periodic boundary conditions. For 
periodic boundary conditions, however, we require the 
(N + l)th rod to exhibit identical motion to the first. 
Thus, we need only consider the N rods labelled 1 
through N, The implications of this choice of boundary 
condition upon the force terms entering Eq. (6) are ex­
hibited by a slight modification of A to form a circulant 
matrix such that Au= 2, A1, 1• 1 = -1, A 1,N =AN,l = -1, 
i = 1 to N, with an other elements equal to zero. This 
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symmetric cyclic matrix is diagonalized by the Fourier 
matrix transformation35 

Q1k=N·112 exp[21Ti(j-l)(k-l)/N], 1=='-j,k=='-N. (Al) 

The N eigenvalues of A' are then 

µ.k,PBc = 4€ sin2[(k - 1)/N] + i' , 1 =='- k=='- N (A2) 

and P(t0 I t, t) is given by Eq. (10) in terms of the N nor­
mal mode coordinates. (The expression of each <1>-(~~ I~-• t) 
must now include the eigenvalues µk,Psc• > Sub­
sequent expressions for equilibrium probability dis­
tributions follow as in the discussion of Eqs. (12) and 
(13). 

In order to calculate G(t) from Eq. (27) for periodic 
boundary conditions we start by writing 61 in terms of 
the normal mode coordinates Eq. (28) and consider the 
rod i = (N /2) + 1 (N is even). From Eq. (Al) we find 

N 

e,N /2>•1 = 6 = N-112 L (- 1)►1 tk . 
k=l 

Analogous to Eqs. (32) and (33) we obtain 
N 

(OI 6jn) = L Tk,PBc(Oj(R,,..+R,._)jn) 

where 

k=l 

N 

= L Tk,PBC 0n,o,o, On1,0 • '' on,..1' '• o"N"o , 
k=l 

Tk,PBC = (- 1),._1 [R/Nµ.k,PBc] 112 

with the µk,PBc given by Eq. (A2), and thus from Eq. 
(27) , 

N 

G(t) = (R/.N) L exp(- µk,Psc>/ µ.k,PBC , 
k=l 

(A3) 

(A4) 

(A5) 

(A6) 

In the particular limit of N- r;:,, G(t) for periodic 
boundary conditions equals the integral (39), con­
sistent with the assertion that model boundary con­
ditions have negligible effect in this limit of many 
coupled rods. For N- r;:, and periodic boundary con­
ditions J(w) is then, of course, equal to that shown in 
Eqs. (44)-(52). 

APPENDIX B 

Using a generalizationof the method of Uhlenbeck and 
Ornstein, 18 we can rederive the Gaussian form of 
</>k(t;I tk, t) of Eq. (11) starting with the discrete state, 
Hilbert space, representation given by Eq. (20). This 
is accomplished by writing Eq. (20) expanded as 

<l>k(YolY,x)=Ae..,. f e•ns Ha<[J~a<Yo) (Bl) 
n=O 

with 

Y =[µ.k/2R]112 tk, Yo =[µ.k/2RJ1 12 t~, x= µ.i, n=nk • 

and 

Defining, 

M(x) = t e""" Ha( y~ Ha\Yo) 
n=O 2 nl 

(B2) 

and using the Hermite polynomial recurrence relation 
successively, 18 we obtain the ordinary differential equa­
tion satisfied by M, 

dM 2 M _,, •2" dM MI 
-dx= YYo e -e dx- ' 

where 

M'=2[y2 +y~-½]e·2"M-M", 

M" = [ 4yy0 e·3" - e•b] M - e•2" M' . 

(B3) 

(B4) 

(B5) 

Equation (B3) can then be integrated directly by yield, 

M _ C( y, Yp) [-( Y
2 

+ yg- 2YYo e·")] (B6} 
- (1-e"h) 72 exp (1- e·2") 

and 

1 = lim M = C(y,y0) exp[-y2 +y~] , ,,.. .. 
so 

C( y, Yo) = exp[ ( y2 + yg}] , 

thus 

M = (1- e•2sr112 exp [-\~ = ~~:~")2] exp[+ y2], 

(B7) 

(B8) 

(B9) 

the equivalent of Eq. (B2), which after substitution in 
Eq. (Bl) and a change of variables gives Eq. (11). 
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