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Linear prediction and resolution enhancement of complex line shapes 
in two-dimensional electron-spin-echo spectroscopy•> 
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A new type of two-dimensional electron-spin-echo (2D-ESE) spectroscopy was recently shown 
to be useful for studying slow molecular motions in liquids. A recently developed method of 
spectral enhancement based upon linear prediction with singular value decomposition ( LPSVD) 
is applied in the present work to dramatically improve the signal-to-noise ratio and to correct for 
finite dead time in the data from this 2D-ESE experiment. This permitted a more accurate 
comparison between theory and experiment. Good agreement is now obtained with a model of 
nearly isotropic Brownian motion for tempone in glycerol/water solvent. 

I. INTRODUCTION 
Recently it was shown by Millhauser and Freed 1 that 

two-dimensional electron-spin-echo spectroscopy ( 2D­
ESE) is useful for studying slow molecular motions in li­
quids. As with most new forms of spectroscopy, certain diffi­
culties arise that hinder a complete quantitative analysis of 
the results. We report here on the application of a technique 
of spectral analysis that is based on linear prediction. We 
show that not only is the signal-to-noise ratio (S/N) im­
proved dramatically, but, in addition, certain spectral arti­
facts are removed. Furthermore, we show that it allows for 
more efficient data collection. Finally we show, that with 
this improvement in SIN and removal of artifacts, the com­
parison with theory becomes easier and more successful. 

The 2D-ESE spectrum is obtained by monitoring the 
height of a spin echo obtained from a two-pulse sequence as 
the magnetic field is scanned. 1•

2 Typically a family of 50 
scans, each taken at an increased time, r, between the pulses, 
is collected and Fourier transformed with respect tor. Two 
difficulties arise from this approach. First, to avoid so-called 
fast-Fourier transform (FFT) window effects, it is necessary 
to collect data over a time range greater than five times the 
longest T2. This means that a considerable amount of experi­
mental time is spent collecting data in regions where the 
signal-to-noise ratio is low, and hence, the spectral resolu­
tion is low. (This loss of resolution is more pronounced in 
spectral regions with more rapidly relaxing components. 
Thus, this problem is not uniform across the spectrum when 
a common time range is used. ) The second difficulty arises 
from the spectrometer dead time, rd, which is the shortest 
delay after a microwave pulse before a signal can accurately 
be detected. Since the T2's are found to vary across the spec­
trum, 1 this dead time affects the different spectral regions to 
a different extent. In effect, the more rapidly relaxing spec­
tral regions tend to be filtered out. 1 

To remedy these problems we have applied a linear pre­
diction method developed by Kumaresan and Tufts. 3 The 
first application to magnetic resonance problems, both 
NMR and ESR, was demonstrated by van Ormondt et al.4

•
5 

In the latter work, 4 details of the technique were developed, 

•> Supported by NSF Grant No. CHE83 l 9826, NIH Grant No. GM25862, 
and the Cornell Materials Science Center (NSF). 

and it was shown how dead-time artifacts could be removed 
giving rise to distortion-free frequency-domain representa­
tions of both one- and two-dimensional data. In that initial 
application, the emphasis was on obtaining accurate fre­
quency information, whereas for our purposes it is the accu­
racy of the complete line shapes that is critical. We show 
here, that indeed the linear prediction method is useful for 
resolving line shapes, and furthermore, that the analysis can 
be applied in an automated fashion to two-dimensional spec­
tra. We also find that by collecting the data in a new mode, 
different from that required by the FFT, we can maximize 
the advantages gained by the linear prediction treatment. 

II. LINEAR PREDICTION WITH SINGULAR-VALUE 
DECOMPOSITION (LPSVD) 

The basis for (autoregressive) linear prediction is that a 
discrete time series: 

{X1.X2,•••,XN} (1) 

can be modeled by the expression 
M 

Xn = _La;Xn-i• 
i=l 

(2) 

where the set {a;} are called the linear prediction (1.p.) coef­
ficients, and the order M is less than N. The least squares 
solution for the set ofl. p. coefficients, in terms of the entire N 
data points, is written as 

(3) 

It was shown that by using Prony's method on a set of equa­
tions similar to Eq. ( 3) but written in the backwards sense, 
i.e., 

M 

Xn = _La;Xn+;, 
i=l 

(4) 
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one can model the time series in terms of exponentially 
damped sinusoids and determine all of the relevant param­
eters: frequency, time constant, amplitude, and phase.6 

Hence the time series can be regenerated and extended both 
forward and backward in time. 

If the series is corrupted by noise, the solution to Eq. ( 3) 
becomes unstable. The proven method for handling this is to 
apply a singular value decomposition on the matrix and then 
to subtract out the effects of the noisy singular values. Thus 
to model a particular time series there are two adjustable 
parameters to optimize the analysis: ( l) the number of l.p. 
coefficients (i.e., the order M) and ( 2) the number of singu­
lar values attributable to signal, which is often referred to as 
the reduced order, K which is less than M. 

The application of LPSVD to two-dimensional ESE is 
based upon the following approximate theoretical expres­
sions which describe the experiment. 1 Let S(2T,w') be the 
echo height at time 21" from arr /2-T-1T sequence correspond­
ing to the field position eu' lye. Then 

[
-21"] [-(w'-w.)2] S(2T,w') ex icj exp -- exp 

2 
1 

, 

J T2J t:,. 
(5) 

where T2J and eujlr. are, respectively, the T2 and the reso­
nant field position of the jth dynamic spin packet ( DSP) 
with relative amplitude cj, while t:J.. is the width of the Gaus­
sian inhomogeneous broadening. LPSVD may be applied to 
Eq. (5) for each field position eu'lr. yielding, in general, a 
sum of simple exponential decays for which the S/N has 
been improved. 

The final 2D representation is obtained by performing a 
Fourier transform with respect to 21". When there is finite 
dead time Td, then one obtains1 

T2-
S(eu,eu') ex Icj ~ 

2 
j 1+euT2J 

(6) 

In principle, LPSVD analysis ofEq. ( 5) would allow for the 
backextrapolation of the experimental data to correct for the 
dead time, provided sufficient relevant information is recov­
ered during the time interval sampled by the experiment. 
This would remove the factor of exp[ - 2Td/T2J] in Eq. 
(6), a factor which reduces the relative importance of the 
DSP with relatively shorter T2J, thereby distorting the 2D­
ESE spectrum. 7 

Ill. RESULTS AND DISCUSSION 

In our 2D-ESE experiment we measure 100 times series, 
each one a 50 point echo decay envelope taken at a different 
magnetic field location. We display the 5000 data points as 
normalized contour plots ( such that each slice along the 
width direction is normalized to unity at 0 MHz), to reveal 
the linewidth variations across the spectrum. 1 The spectrum 
oftempone in 85% glycerol/water, at - 75 •c, analyzed by 
our standard FFT method (zero filled to 128 points and then 
fast Fourier transformed) is shown in Fig. 1 (a). The steps in 
T were 40 ns so that 1" ranged from 0.2 to 2.2 µs. The phase 
memory time, TM in the center of the spectrum, where it is 
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FIG. 1. Normalized contour 2D-ESE spectra oftempone in glycerol/water 
at - 75 •c. (a) Experimental spectrum from Ref. I, which was processed 
by standard FFf methods (without the apodization window, cf. Ref. I); 
(b) spectrum after LPSVD is applied to the data set from which (a) is 
obtained; (c) spectrum obtained from an experiment (at - 77 °C) where 
the data was collected to optimize the LPSVD analysis that was applied ( cf. 
the text). The contours have been normalized to the O MHz slice, shown in 
each figure by dashed lines, as described in Ref. 1. Each successive contour 
line represents a 10% change relative to the normalized maximum. In (a) 
and (b) we have deleted the two contours because of the low SIN. In all 
other graphs only the lowest contour is deleted. 
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found to be the longest, is 450 ns. The dashed line across the 
bottom of the plot shows the O MHz spectrum, which is the 
slice from the unnormalized spectrum, taken in the field di­
rection at O MHz, [i.e., set w = 0 in Eq. (6) ]. 

We applied the linear prediction analysis to this same 
data set by using up to 161.p. coefficients (i.e., M<16), at­
tributing up to 12 of the singular values to signal (i.e., 
K,;;;; 12) and repeating the treatment for all of the 100 decay 
envelopes. The required cpu time was approximately 4 min 
on a Prime 9950 computer. In regions where there was resol­
vable signal, the linear prediction routines typically recov­
ered between one and four decay components. However, 
upon examination we found that there was rarely more than 
one component of significant amplitude, and this dominant 
component is a simple (nonoscillating) decay consistent 
with the form of Eq. ( 5). [ The amplitudes of the remaining 
components were approximately a factor of 300-1000 less 
than the dominant component and they were oscillatory at 
nonzero frequency with generally slower time constants 
than the dominant component. Given that this is inconsis­
tent with Eq. ( 5), we attribute these extremely weak compo­
nents to spurious origin or else to beats between DSP's not 
included in Eq. ( 5) since they should be very weak. 1 ] The 
decay envelopes were then corrected for dead time and ex­
tended to 256 points to eliminate any FFT window prob­
lems. The curves were then Fourier transformed. This spec­
trum, shown in Fig. 1 (b), has a substantially improved 
signal-to-noise ratio such that now all regions are well re­
solved. The results of suppressing noise can be seen, for ex­
ample, in the greater curvature of the contours near the cen­
ter field maximum. The dead-time correction is expressed by 
the buildup of intensity in the O MHz spectrum in the regions 
between 3240 and 3260 G and between 3210 and 3220 G. 

We now wish to consider why it is that LPSVD recovers 
only a single dominant exponential at each field position, 
given that the theory expressed by Eq. ( 5), predicts, in gen­
eral, a sum of exponential decays. The answer, we believe, 
lies in the nature of the DSP's which contribute significantly 
to the 2D-ESE spectrum in the very slow motional regime 
that is being studied. One finds, from the theoretical predic­
tions discussed below, that all these DSP's have T2J 's of 
comparable magnitude, i.e., they vary only by about a factor 
of2 across the spectrum. The differences in T 2~) among the 
DSP's, which contribute to each spectral region, are typical­
ly even smaller. Thus, the LPSVD method, applied to our 
data with finite noise, tends to recover a single average de­
cay, which varies smoothly across the 2D spectrum. It seems 
reasonable that given such average exponential decays ade­
quately represent the finite time region studied ( and there 
are no important very fast decaying exponentials predicted 
theoretically for these experiments), then they can be used to 
backextrapolate in order to correct for finite dead time. Cer­
tainly the comparisons between experiment treated by 
LPSVD and theory as discussed below are supportive of this. 
Finally, it should be emphasized that it is the LPSVD meth­
od which tells us that the data are adequately represented by 
average exponentials; it is not forced on the method, nor was 
it necessarily anticipated from the theory. 

Because the linear prediction analysis allows the exten-

sion of a time series, it is no longer necessary to collect data in 
a region where ,,- is large and the corresponding signal is 
small. This suggests that by collecting the echo decays in 
smaller time steps and thus concentrating the data gathering 
to a region where the signal is strong, the spectral resolution 
can be further enhanced. We tested this hypothesis by gener­
ating a new data set from the sample under approximately 
the same conditions (the temperature was 2 or 3 °Clower), 
but with 50 steps in ,,- of 20 ns each, so ,,- ranged from 0.2 to 
1.2µs. The linear prediction analysis was applied in the man­
ner described above. The new spectrum, displayed in Fig. 
1 ( c), shows yet a further improvement. The sharp contour 
changes seen as one traces the lines toward the center of the 
spectrum had not previously been observed. 

Van Ormondt and co-workers mention in their conclud­
ing remarks4 that there was a need to study the usefulness of 
the linear prediction method on solid disordered systems. 
For our spectra, the only reasonable way that the l.p. tech­
nique applied independently to 100 different field positions 
(of a complicated inhomogeneously broadened spectrum) 
could yield smooth 2D contours would be to reconstruct 
these line shapes with a very high degree of accuracy. Thus, 
our results ( and related experiments2

) suggest considerable 
future utility for this method in the analysis of spectra with 
complicated structure, and in particular for time domain 
experiments with, in general several, superposed exponential 
decays. 

Now that we have considerably improved the SIN, and 
have corrected for the dead time, we are encouraged to reex­
amine the theoretical simulations of Ref. 1, which we can 
now calculate for zero dead time. Relevant simulations are 
shown in Fig. 2. They correspond to slow Brownian motion 
with (mean) rotational diffusion coefficient in the range of 
5 X 103-104 s - 1

• We consider the effects of introducing a 
small anisotropy of reorientation, N=R

11
/R 1 (where R

11 

and R 1 are, respectively, the components of a rotational dif­
fusion tensor for reorientation parallel and perpendicular to 
the molecular principal y axis). 8 We also consider the effects 
of small variations of the magnetic tensor components, but 
within the experimental uncertainty of the measured val­
ues. 8·

9 The simulations in Fig. 2 corresponding to N = 1,2, 
and 3 show a considerable change in contour shapes with N, 
indicating their sensitivity to relatively small rotational 
asymmetry. When we compare these contours and O MHz 
spectra with that of Fig. 1 ( c), we can observe a rather good 
similarity in shape such that the experimental result appears 
to lie somewhere between the simulations in Figs. 2(a) and 
2(b). This agreement is significantly improved over that in 
Ref. 1. 

Principally, the experimental spectrum shows contour 
narrowing through the middle region, and this is reproduced 
by our simulations. This contour variation was previously 1 

found to be characteristic of Brownian motion as distinct 
from a jump motion. The latter is predicted to yield parallel 
horizontal, featureless contours. 

Our 2D-ESE simulations produced to study the effect of 
small variations in the magnetic tensors showed a remark­
able sensitivity to these small variations as long as 
1 < N < 1.5, i.e., isotropic reorientation. This is illustrated in 
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FIG. 2. Theoretical simulations of2D-ESEspectra for a model of Brownian 
motion for comparison with Fig. l(c): (a) N=R

11
/R 1 = l; (b) N = 2; (c) 

N = 3. R1 = 6X 103 s-• in all cases, and R
11 

refers to rotation about the 
molecular y axis. The magnetic parameters utilized were: Kx = 2.0089, 
gY = 2.0058, g, = 2.0022 [except for (a) where g, = 2.0021 ]; 
Ax =Ay = 5.27G,A, = 36.0G. TheLanczosconvergenceparameters [cf. 
G. Moro and J. H. Freed, J. Chem. Phys. 74, 3757 (1981)], were 
Lm,.. = 44,K.,.., = 26,Mmax = 2, nL = 300. The inhomogeneous broaden­
ing is 3 G and rd = 0. 

Fig. 3. We attribute this to certain accidential near degener­
acies of the parallel edges in the central region of the spec­
trum. This effect is found in one case to cause a more pro­
nounced contour narrowing but in a more limited region just 
downfield of the center maximum as well as significant 
changes in the O MHz spectrum [cf. Fig. 3(a) ]; while in 
another case the contour narrowing is suppressed [ cf. Fig. 
3 (b) J. Such small variations (i.e., spectral shifts ofless than 
1 G), can be effective because of an inherent degeneracy in 
the eigenvalues of the rotational diffusion operator of the 
stochastic Liouville equation (SLE) when N = 1, which is 
lifted when N > 1. 10 Thus, while such effects could compli­
cate the analysis, we expect that the combination of N = 1 
and accidential spectral resonances is rare (and easily lift­
ed). Nevertheless, it would be desirable to perform 2D-ESE 
studies over a range of microwave frequencies and/ or stud-

-;; 
:I: 
:::lE 

2.488 ....-------------
18
--il 

::i: 0.000 
I-
C) 

3: 

I\ , \ 

/ \ 
/ \\ 

I \ 

-2. 488 L.-___.,~1-"_-_-_--_-_-__ ,_.......1_,_--_-_--_-_-_-_-_--_·..:.---J 

--N 
:I: 
~ -

3185.0 3235.0 
GAUSS 

3285.0 

2.488 .--------------:-(b--:7) 

:I: 0.000 
I-
C) 

3 
\ 
\ 
I 

\ ,,- ... _ \ 
I \.._ ___________ _, 

-2.488 L-.-!....'
1
------'----------~ 

3185.0 3235.0 3285.0 
GAUSS 

FIG. 3. Theoretical simulations of 2D-ESE spectra showing sensitivity to 
magnetic parameters for a model of isotropic Brownian motion (i.e, 
N= 1). (a) R

11 
=R1 =5Xla3 s-• and the magnetic parameters are: 

Kx 2.0084, Ky = 2.0060, g, = 2.0022, A. = 5.5 G, Ay = 5. 7 G, A, 35.8 
G. (b) The magnetic parameters and diffusion tensor are identical to those 
of Fig. 2 (a) but g, = 2.0022 is utilized instead of 2.0021. 
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ies with 15N labeled nitroxides to be fully confident of avoid­
ing such accidental near degeneracies (in addition to the 
other sensible reasons for such experiments). 

IV. CONCLUSIONS 

We have demonstrated the considerable value of linear 
prediction methods in enhancing the spectral resolution in 
two-dimensional electron-spin-echo spectroscopy. Theim­
proved S/N and the removal of a dead-time artifact enabled 
a much better comparison between theory and experiment. 
The resulting 2D contours obtained for tempone in glycerol/ 
H 20 solvent are found to clearly show the variations across 
the spectrum that are predicted for a model of Brownian 
motion. Also, the predicted sensitivity of 2D spectra to sub­
tle variations of magnetic tensor components in special cases 
(i.e., isotropic diffusion) provides further evidence for the 
potential sensitivity and power of the 2D method, although 
care must be exercised to accurately produce the theoretical 
predictions. Further improvements in data gathering, pro­
cessing, and S/N may be anticipated as a result of new devel­
opments, such as the use of nonselective pulses to irradiate 
the whole spectrum, 11 thereby permitting Fourier transform 
techniques to replace the need to sweep through the spec­
trum. 12 Such improvements in spectral enhancement should 
enable 2D-ESE techniques to provide more detailed infor­
mation on molecular motions and dynamics. 
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