
Downloaded 26 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Dynamic effects of pair correlation functions on spin relaxation 
by translational diffusion in two-dimensional fluids 

J.-P. Korba> and M. Ahadib> 
Laboratoire de Physique de la Matiere Condensee, Groupe de Recherche N°38 du Centre National de la 
Recherche Scientifique, Ecole Polytechnique, 91128 Palaiseau, France 

G. P. Zientara 
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139 

J. H. Freedc> 
Department of Chemistry, Cornell University, Ithaca, New York 14853 

(Received 11 September 1986; accepted 20 October 1986) 

The dynamic effects of pair correlation functions (pcf) on spin relaxation by translational 
diffusion in infinite two-dimensional fluids are considered explicitly through a Smoluchowski 
equation, for the usual conditional probability, with appropriate boundary conditions, 
especially at the contact separation of the interacting pair of molecules. The solution of this 
equation by finite difference techniques permits the calculation of time correlation functions, 
spectral densities, and spin-relaxation rates associated with a dipolar relaxation mechanism 
between the spin-bearing molecules. Comparison of the two-dimensional spin-relaxation 
results obtained with different pcf is presented. The spectral densities and spin-relaxation rates 
are indeed found to be significantly altered by the pcf. For example, for a nonuniform pcf, the 
two-dimensional spectral densities, at ( and above) the Larmor frequency m0 , are greater for 
translational correlation times r, that are an order of magnitude faster than r, = m0-

1 which 
provides the maximum spectral density in bulk theory. This fast motion result is consistent 
with the two-dimensional dynamical results found by other techniques. Moreover for a 
nonuniform pcf and a single translational correlation time, two well-defined minima are found 
in the variation of the spin-lattice relaxation time with the diffusion coefficient. This could be 
very useful for interpreting the spin-relaxation data of diffusing complexes in clays, 
intercalation compounds, and bilayers. 

I. INTRODUCTION 

The usual theories of spin relaxation by translational 
molecular diffusion whether for three-dimensional 1 

•
2 or two­

dimensional 3·
4 systems do not properly include the pair cor­

relation function (pcf) into the dynamical description of the 
spin-bearing molecules. Hwang and Freed5 have included 
the radial pcf in the molecular dynamics through a Smolu­
chowski equation for the usual conditional probability with 
appropriate boundary conditions, especially at the contact 
separation of the interacting pair of molecules. They have 
solved such an equation by finite-difference techniques and 
have shown a significant enhancement of di polar correlation 
functions and spectral densities for bulk liquids in compari­
son with previous treatments. 

For two-dimensional systems, inclusion of the pcfin the 
spin-relaxation calculations becomes absolutely necessary 
owing to the additional steric hindrance that the interacting 
molecules pose to their diffusive motions at short intermole­
cular distance and the enhanced reencounter probabilities 
which drastically increase the effective period of interaction. 
In order to take account of such a pcf in two-dimensional 
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planar systems we apply, in this paper, the method of Hwang 
and Freed for bulk liquids. This enables us to calculate the 
dipolar correlation functions and spectral densities for uni­
form and nonuniform pcf. The spectral densities and spin­
relaxation rates are indeed found to be significantly altered 
by the pcf. For example, for nonuniform pcf, the two-dimen­
sional reduced spectral density at and above the Larmor fre­
quency m0 is greater for translational correlation times 
r, = 0.1/m0 than for r, = 1/m0 contrary to the usual three­
dimensional results. This is consistent with the interpreta­
tion given in a previous work on spin relaxation and quasi­
elastic neutron scattering of heterogeneous systems 
physisorbed on solid surfaces. 6 Moreover, at high frequency, 
i.e., ( ;;;,m0 ), such a two-dimensional spectral density spreads 
effectively over a larger band for fast motions than for slow 
motions, which is just the opposite of the three-dimensional 
case. Another consequence is that the low frequency loga­
rithmic divergence predicted in previous works3 ca>-

3<d> is 
now found to be significantly reduced in importance. Final­
ly, we present the theoretical variation of the spin-lattice 
relaxation time with the translational diffusion coefficient D, 
for different orientations f3 of the normal to the plane of 
diffusion relative to the constant magnetic field, in cases of 
both uniform and nonuniform pcf. The presence of a highly 
nonuniform pcffor f3 = 1r/2 induces two pronounced mini­
ma in these variations, with a single translational correlation 
time, which could explain the magnetic resonance observa-
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tions of diffusing complexes in solid electrolytes 7 and inter­
calation compounds. 8 

II. DIPOLAR RELAXATION IN INFINITE TWO• 
DIMENSIONAL SYSTEMS 

In infinite two-dimensional ~pin systems the 
anisotropic pairwise dipolar autocorrelation functions 
o<q>(r)(qe{0,1,2}), which describe the persistence of the 
fluctuating dipolar energy modulated by the two-dimension­
al diffusion of the spin-bearing molecules, and the spectral 
densities J <q> (m ), can be expressed as 

o<q>(r) =n1 J d 2 p 0 J d 2 pEiq>(0) 

(la) 

(lb) 

where n1 is the number of spins I per unit area, and Pis the 
usual conditional probability whose form depends on the 
model chosen for the molecular dynamics. The E iq> ( r) are 
the fluctuating dipolar terms expressed in the laboratory 
frame L with a zL axis parallel to the applied constant mag­
netic field B0. These terms can be conveniently expressed in 
the planar fixed axis system M where the zM axis is parallel 
to the normal n to the planar surface 

Eiq>(r)= L E<,;\r)d<,;j(/3), qe{-2,2}, 
m=0,±2 

(2) 

where 

Ef}>(r) =a0'}'ilfp(r)-3, Ei/ 1>(r) =0, 

E il 2> ( r) = - a2'J'ilfp( r)-3 e - E2iq,Cr>, 
(3) 

with E= ± 1, a 0 = 1/211'(3/2), anda2 = 3/4. Here ( p,<p) 
are the cylindrical coordinates in the Maxis system of the 
vector p between the two interacting spins, and d <,;j ( /3) are 
the well-known Wigner rotation coefficients. 9 

In order to represent the dynamics of the interacting 
molecules we use a Smoluchowski equation. 10 This implies 
the well-known restriction that the oscillatory-type behavior 
due to the motion in the presence of short range intermolecu­
lar forces is overdamped. Then the molecular dynamics is 
properly described for times long compared to the inverse of 
the friction coefficient. It would be possible, in principle to 
include such oscillatory type behavior through a generalized 
Langevin equation11

•
12 or by a generalized Smoluchowski 

equation. 13 

Within the framework of the Smoluchowski equation 
we consider the molecular motions relative to an average 
force field due to the intermolecular interactions. Assuming 
that the two interacting molecules have similar size and mass 
and that the average force F (p) between them is related to an 
effective radial potential U( p) and a radial pcf g( p): 

F( p) = - VU( p) = kTV Ing( p), (4) 

one thus approximates P, in Eq. ( 1), as the solution of a 
Smoluchowski equation given in cylindrical polar coordi­
nates by 

aP(p;;Po,O) = D [rp + r <p/p2 ]P(p,rlPo,0), 

with the initial condition 

(5) 

lim P(p,rlp0,0) = 0(p - p0 ). (6a) 
r-0 

This Smoluchowski equation has the property that 
lim P(p,rlp0,0) = g( p0 ). (6b) 
r-oo 

In Eq. (5) D = D 1 + D2 is the coefficient for the relative 
translational diffusion and the radial r P, and orientational 
r <p operators are given, respectively, by 

rpP(p,rlpo,0) =p- 1 _!_ {p _!__P(p,rlpo,0) 
ap ap 

-plF( p) llkT P(p,rlpo,o>}. (7a) 

a2 
r 'PP(p,rlpo,0) = --2 P(p,rlpo,0). 

a<p 
(7b) 

An application to two-dimensional systems of the same 
procedure proposed by Hwang and Freed5 for bulk liquids 
leads, after some algebraic manipulations using Eqs. ( lb)­
( 7b), to the following spectral density given in operator 
form as 

J Cq> ( {3,m) = 41rn1 yjli4 Re I Id <,;j ( f3)12a~ 
m=0,±2 

X loo p-2 dp{ -D [rp - m2/p2] 

- fm}-lp-3g( p), (8) 

where am is given in Eq. (3 ). The action of the operator in 
brackets in Eq. ( 8) can be evaluated in matrix form using the 
finite difference technique. This implies giving discrete val­
ues for the intermolecular distances pi starting from the dis­
tance of minimal approach,p0 =d, to the assumed maximal 
distance PN• according to: Pi+ 1 = p 1 + llpi for ie{0, ... ,N} 
where the relative increments llp1 satisfy llp;ld ~ 1. Differ­
ent possibilities exist for such discretization. Due to the pres­
ence oflarge amplitude oscillations in g( p1 ) for values of p1 

up to a few times the distance of minimal approach d (Fig. 
1 ) , we distinguish the p space according to the two following 
regions: (i) The region d<.p1<.pM, whereg( Pi) =/-1; (ii) the 
region p M <Pi <p N where g( Pi) = 1 and F( Pi) = 0. With 
such a grid, one can transform the differential operator r P, 

defined in Eq. (7a), as a finite difference operator and the 
integral over p as a summation over the index i. Introducing 
now the dimensionless variables: 

y1 =pJd, ayi =/lp;/d, f (i) =dF(i)/kT, (9) 

one can write Eq. ( 8) in a matrix form as 

J<q> ( /3,m) = 41rn1 yjli4 L Id <,;j ( /3) l
2a~ 

m=0,±2 

X ( - r,ld4) L ay/yf[ {w(m)2 

i=O,N 

+ m2r,l}-lw(m){g( Y; )/yn ];. (10) 

In this equation r, = d 2/D is the translational correlation 
time, I is the diagonal (N,N) unit matrix, {g( Yi )lyn is a 
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FIG. 1. Comparison of the pcf, g( p) (dotted line), described in the text 
with the Monte Carlo computation of a two-dimensional system of particles 
interacting with a Lennard-Jones potential (points from Ref. 17 ). The bold 
vertical marks indicate the position of the first three shells of neighbors in a 
perfect hexagonal lattice at the same reduced density A,. T, = kT /Eis a 
dimensionless parameter which simulates the ratio of kinetic energy over 
the maximum value E of the harmonic potential of the particles relative to 
their average position in each site. 

(N,l) column vector, and wcm> is the tridiagonal "transi­
tion probability" (N ,N) matrix between discrete values of Pi 
previously introduced by Pedersen and Freed14 for three di­
mensions and Zientara and Freed for two dimensions, 15 

whose dimensionless elements are given in Table I. 
We have chosen for the elements given in Table I: 

liy = 0.025, YM~6,yN~60 which gives N~2500 for the 
size of the matrix W. This value for the unique increment Ay 
of the grid gives a sufficient precision on the pcf in its highly 
oscillating region limited by YM· Thus a criteria of conver­
gence for the numerical summation, given in Eq. (10), is 
that one notes no variation when decreasing Ay for a given 
YN· The choice of the quasi-infinite size of the gridyN ~60 is 
arbitrary and corresponds to an intermolecular distance for 
which the calculated value ofEq. ( 10), for a given frequency 
( #0), does not vary when increasing YN• However, there is 
a slight sensitivity ofEq. ( 10) to tµe maximal size of the grid 
(YN) at zero frequency. The presence of an outer absorbing 
boundary condition for the translational part of the last diag­
onal elements, W N,N = 0 in Table I, greatly reduces this size 

TABLE I. Transition-probability tridiagonal matrix elements. 

j=O 
wg;;> = - [2/Ay2 + y,f(l)/Ay] -m2 

wg;» = (2/Ay - /(0)/Ay] 
with Ay0 = Ay/2 

O<j<N 
WJ_j~ 1 = {1/Ay ± [2y/Ay]-'[1-yJ(j) ]} 
WJ,j> = -{2/Ay2+ [2y1Ay]-'[h.ifU+ I) 

-y1_,f(j- I)]+ (m/y1)2} 
with Ay1 = Ayand/(j) = 0 forj>M, 

W~':'.L 1 = 2/ Ay2 
W~':'J = - (m/Ay) 2 

W~m_21,N =0 
with AyN = Ay/2. 

j=N 

dependence. The translational parts of these matrix elements 
( without the diagonal m2 terms) are naturally required to 
satisfy the conservation of total probability given by the rela­
tion 

L J;.liy;W}.';i> =0, jE{O, .. ,N}, (11) 
i=j-1,j,j+ 1 

which becomes equivalent to a reflecting-wall boundary 
condition at p0 = d. 

It is certainly more convenient to solve Eq. (10) by a 
single diagonalization instead of directly inverting the ma­
trix for each frequency w. For that we have used a method 
which transforms the matrix wcm> into a symmetric and 
diagonal form Cm> by a similarity transformation T 5

: 

c<m> = Twcm>T- 1. (12) 

Equation (10) then becomes 

JCq>( /3,w) = 41rn1,11i4 L Id }.;j( /3) l2a~ 
m=0,±2 

X ( - r,/d 4
) L AyJy:T;; 1{CJt>1 

i,j,k=O,N 

[ ( C }ml )
2 + W2'T;] }T;kg( Yk )lyf. (13) 

And the well-known expressions for T 1-
1 and T 2-

1 are 
then2 

T 1-
1

( /3) = 2/3/(J + 1 )li- 2 [J 0 >( /3,w0) + 4J<2>( /3,2w0)], 
(14) 

T2-
1(/3) =l(l+ l)li- 2 [J(0)(/3,O) 

+ 5/3Jm( /3,Wo) + 2/3J<2>( /3,2w0) ], ( 15) 

with the spectral densities given by Eq. ( 13). 

Ill. DISCUSSIONS OF THE PAIR CORRELATION 
EFFECTS 

In order to calculate the spectral densities given in Eq. 
( 13 ) , we need an expression for the pcf in two-dimensional 
fluids. Lado has proposed a numerical solution of the Per­
cus-Y evick equation but only for two-dimensional hard 
disks. 16 For a Lennard-Jones potential there are only Monte 
Carlo computations of the pcf, at various densities, 17 which 
show a surprisingly "long range" local order close to the 
hexagonal packing (see the points in the Fig. 1). For that 
reason we have used a simple analytical expression for the 
pcf as a superposition of normalized Gaussians centered on 
the successive neighboring sites, from a reference molecule, 
in a perfect hexagonal lattice at the reduced density A, 
= (2/v'3 )/(<Td 2 ) (by comparison with the closed packing 

density where A, = 1 ), ubeing the particle number density. 
In this expression the Gaussians are multiplied by the num­
ber of neighbors in each shell, and their widths are depen­
dent on the degree of molecular mobility, which is assumed 
to increase progressively with the index of the shells. As 
shown in Fig. 1 our expression, which is normalized to one at 
long range ( p►d), follows relatively close to the values ob­
tained from the Monte Carlo pcf. 17 

In Figs. 2(a) and 2(b), we have displayed the time de­
cays of the normalized di polar correlation functions G co> ( 1") I 
G co> ( 0) and the dispersion curves of the reduced spectral 
densitiesj <0>(wr, )/1", for /3 = 0 and three different cases of 
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FIG. 2. ( a) Semilogarithmic plots of the calculated variation of the normal­
ized di polar correlation functions o<0l( r)/G 10l(O) vs r/r, (wherer, = d 2

/ 

D)for P = 0 and different pcf, namely, (i) the pcfofFig. l; (ii) the Lado's 
pcffrom Ref. 16; (iii) the uniform pcf. (b) Logarithmic plots of the calcu­
lated variation of the reduced spectral density j 101 ( OJr, ) Ir, vs @r, for P = 0 
and the same pcf described in the legend of Fig. 2 (a). 

pcf. For the nonuniform pcf one has a longer persistence of 
the dipolar correlations at long time than obtained with the 
uniform pcf [ Fig. 2 (a) ] . This is due to the additional steric 
hindrance that the interacting molecules pose to their diffu­
sive motions at short intermolecular distance. This pair cor­
relation effect persists even at long time owing to 
the enhancement of the reencounter probabilities in two di­
mensions 18 which drastically increases the effective period of 
interaction. Corresponding to this the reduced spectral den­
sities for the nonuniform pcf are increased at low frequency, 
i.e., wr1 < 1 [Fig. 2 (b)]. This figure shows the sensitivity of 
our calculations to different models of pcf. For example, the 
significant differences observed betweenjL~1 (wr1) computed 
with the pcf of Ref. 16 and j co> ( wr1 ) computed with the pcf 
of Fig. 1 (both calculated with the same reduced density 
A,), are mainly due to the shift in the positions of the first 
maximum of the pcf in the two models. In Lado's work, 
restricted to the hard-disk approximation, 16 this position 
corresponds to the distance of minimal approach p = d. In 
our calculations, which take into account the molecular in­
teractions, this position corresponds top= d v' A, which is 
greater than d. Basically this has the effect of significantly 
enhancing the magnitude of jL~> ( wr1 ) at high frequency 
(wr1;;;, 1), since the most effective modes of relaxation in this 
frequency domain reflect the shorter range interactions at d. 

On the other hand, one notes a enhancement of the magni­
tude ofjC0>(wr1 ) in a lower domain 0.l<wr,<1, since the 
shorter range interactions are now shifted at d v' A,. How­
ever, due to the reflecting-wall condition, dP I dp IP= d = 0, 
all the different models of pcf give the same w - 2 dependence 
at a sufficiently high level of frequency. 

To clearly separate the frequency w and dynamical r 1 

variables in the dispersion curves of j co> ( wr1 ) , either for a 
uniform or a nonuniform pcf, we have displayed in Figs. 
3(a) and 3(b) the frequency dependence ofj coJ( v) for two 
different values of r" say 1/w0 and 0.1/w0 (w0 being the 
Larmor frequency characterized by a bold vertical arrow in 
the figures). The results for uniform three- and two-dimen­
sional fluids, shown in Fig. 3(a), confirm the very large di­
mensionality effect especially at zero frequency where 
A7:J ( 0) is greater thanjl~ ( 0) by at least two orders of magni­
tude. As is well known in bulk theory, 1

•
2 A7:;(v0) is much 

greater for r 1 ~ 1/ w0 than for r, ~ 0.1/ w0. This is not the case 
for uniform two-dimensional fluids where these twoA7J ( v0) 
values are of the same order of magnitude and the associated 
curves almost merge [ Fig. 3 (a) ] . The same effect is evi­
denced for A'IJ ( v0) ( q = 1,2), thus indicating a very swallow 
minimum in the temperature variation of the spin lattice 
relaxation time T 1. In presence of a nonuniform pcf [Fig. 
3 (b)], these two latter curves are well separated. Now 
A~(v) at and above v0 is greater for r, ~0.1/w0 than for 
r, ~ 1/ w0 . This is consistent with the fast motion interpreta­
tion given in a previous work on proton NMR relaxation 
studies of heterogeneous systems physisorbed on solid sur­
faces. 6 

One important consequence of this pair correlation ef­
fect is to create well-defined minima in the variations of T1 

[ Eq. ( 14) ] with the diffusion coefficient D, as shown in Figs. 
4(a) and 4(b). These variations are symmetrical around a 
single minimum for fl= 0 [Fig. 4(a)], either for a uniform 

10-? 10- 7 

g(r)=1 g(r) 

10-a 10-a 

3~ O> 
-, ~7 

Gt 10-9 "Ct 10-9 

10-1 
1/Wo 

10-1 
/ 

/ 

1/Wo 
410- 1 410- 1 

0 1O0-"2·uu-300 0 100 200 300 

v/Mhz v/Mhz 

FIG. 3. (a) Semilogarithmic plots of the calculated variation of the reduced 
spectral density J!01 (v) vs v(MHz) for a uniform pcf. The continuous lines 
correspond to the two-dimensional case for P = 0 and the dashed lines cor­
respond to the three-dimensional case ( from Ref. 19). In each case, we pres­
ent the results for two values ofr,, II @0 and 0.1/@0 , with the chosen Larmor 
frequency v0 represented as a vertical arrow. (b) Semilogarithmic plots of 
the calculated variation of the reduced spectral density J 10l( v) vs v(MHz) 
for the nonuniform pcf described in the text. The continuous lines corre­
spond to the two-dimensional case for P = 0 and the same values of r, dis­
cussed above. 
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FIG. 4. Logarithmic plots of the calculated variation of the spin-lattice re­
laxation time T 1 ( /3 = 0) vsD(cm2/s) in the uniform and nonuniform (see 
Fig. 1) cases of pcf. Here U = <nry'lfl(l + 1 )n1d -•, v0 = 30 MHz, 

d = 6.5 A. (b) Logarithmic plots of the calculated variations of the spin­
lattice relaxation time T1 ( /3 = 1r/2) vs D(cm2/s) in the uniform and non­

uniform cases ofpcf. In the insert we see the influence of the T, parameter, 

used in Fig. 1, on the amplitudes of oscillations of the pcf described in the 
text. 

or a nonuniform pcf. This is different for /3 = 1r/2 [Fig. 
4(b)] where these variations are highly unsymmetric 
around a single minimum, for g( p) = 1, and around two 
well-defined minima for g(p):f:l. These two minima be­
come more and more pronounced when increasing the am­
plitude of the oscillations of g( p), as shown in the insert of 
Fig. 4 (b). The observation of two minima of Ti with a single 
translational correlation time when one includes the pcfinto 
the molecular dynamics is certainly the most striking result 
of this work. This could explain the proton relaxation studies 
of benzene in intercalation compounds in terms of a single 
translational correlation time of one type of molecule, in­
stead of two, as it was considered in Ref. 8. This theory could 
also be useful in other infinite two-dimensional systems like 
the superionic conductors which present such wiggles in 
their temperature variations of Ti. 7 

Finally we show, in Figs. 5(a) and 5(b), the anisotro­
pies of the spin relaxation rates T 1-

1 
( /3) [Fig. 5 (a)] and 

T 2-
1 

( /3) [Fig. 5 (b)] for uniform and nonuniform pcf and 
fixed values of w0r,. Here again the pcfincreases significant-
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FIG. 5. (a) Angular variation of the spin-lattice relaxation rate T 1-
1 vs/3 

(degree). Here U' = {61ry'frJ(l + 1 )n1d- 4r,}X 1011
• The first three 

numbers ( 1-3) stand for the uniform pcf with the corresponding values of 
fuoT, :0.1, 0.03, 0.01, respectively. The last three numbers ( 4--6) stand for the 

nonuniform pcf described in the text with the following values of w0r,:0.1, 

0.03, 0.01, respectively. (b) Angular variations of the spin-spin relaxation 
rate T 2-

1 vs/3 (deg). See the legend of Fig. 5(a) for the indices used in this 

figure. 
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ly the magnitude of these relaxation rates and profoundly 
alters their angular variations [ see the curves 1 and 4 in Fig. 
5 (a)]. 

IV. CONCLUSION 

We have studied the dynamic effects of pair correlation 
functions (pcf) on spin relaxation by translational diffusion 
in infinite two-dimensional fluids. This has been considered 
through a Smoluchowski equation with appropriate bound­
ary conditions, especially at the contact separation of the 
interacting pair of molecules. Finite difference techniques 
have proven useful to solve this equation and to calculate the 
time correlation functions, the spectral densities, and the 
spin-relaxation rates associated with a dipolar relaxation 
mechanism between the spin-bearing molecules. Compari­
son of the relaxation results obtained with different pcf has 
been presented. The pcf alters significantly the variation of 
these relaxation results, with the frequency and the diffusion 
coefficient. For instance, in the presence of a nonuniform pcf 
and a single translational correlation time, two well-defined 
minima have been found in the variation of the spin-lattice 
relaxation time with the diffusion coefficient. 

The method proposed could be useful for interpreting 
the relaxation experiments of diffusing complexes in clays, 
intercalation compounds, and bilayers. 
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