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Calculation of ESR spectra and related Fokker-Planck forms by the use of the 
Lanczos algorithm. II. Criteria for truncation of basis sets and recursive steps 
utilizing conjugate gradients•> 
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The complex symmetric Lanczos algorithm (LA) has proven to be a very efficient means of 
calculating magnetic resonance line shapes and spectral densities associated with Fokker
Planck forms. However, the relative importance of the various components of the basis set in 
an accurate representation of the spectrum and the proper number of recursive steps are not 
easily assessed in practice using the Lanczos algorithm. A systematic and objective procedure 
for the determination of optimal basis sets and number of recursive steps is developed using a 
generalization of the conjugate gradient method (COM) appropriate for the type of complex 
symmetric matrices occuring in these problems. The relative importance of the individual basis 
vectors is determined by using the COM to obtain the "solution vector" from the set of 
algebraic equations defining the spectrum. This is done at several values of the sweep variable 
(e.g., the frequency or the magnetic field). The maximum (over these values of sweep 
variable) for each component of the solution vector is taken to be a measure of the overall 
importance of the corresponding basis vector in the complete spectrum. Using this method 
signficant basis set truncation is conveniently possible. The number of recursive steps needed 
for an accurate representation of the spectrum is easily obtained by monitoring the residual in 
the approximate solution vector at the center of the spectrum and by recognizing the close 
relationship between the LA and the COM. It is this relationship that enables construction of 
the Lanczos tridiagonal matrix with the COM which can either be used to calculate the cw 
ESR spectrum directly or else the eigenvalues. The information obtained from the COM can 
be used to "turbocharge" the LA by taking advantage of the nearly optimal basis set and 
number of recursive steps. Significant savings in computation time are possible, and relative 
savings are greatest for the most difficult problems. This is illustrated with a variety of 
examples of slow-motional cw ESR spectra and of the new two-dimensional electron-spin-echo 
technique. In keeping with the greater sensitivity of the latter technique to motional dynamics, 
it is consistently found to require significantly larger optimal basis sets and number of recursive 
steps for an accurate representation. One of the most challenging problems for both types of 
spectroscopy is the case of macroscopically oriented samples where the macroscopic director is 
tilted at an angle relative to the applied static magnetic field, since this removes much of the 
symmetry in the problem. This case is found to yield to very significant truncation of basis sets, 
and a new symmetry-based decoupling of certain basis vectors was found in this study for the 
particular example of a 90" tilt angle. 

I. INTRODUCTION 

The stochastic-Liouville theory1 has provided a very 
useful framework for the analysis of ESR spectra. In this 
formalism, the intensity of absorption J(t,.{J)) is given by 

J(t,.{J)) = (1/1r) Re(vl[i(f,.{J)l - L) + r1- 1lv), (1) 

where d{JJ is "the sweep variable", Lis the Liouville operator 
associated with the spin Hamiltonian of the spin probe, and 
r is the diffusion operator for the stochastic variables that 
modulate the magnetic interactions. Also Iv} is the so-called 
"starting vector" constructed from the spin transition mo
ment averaged over the equilibrium ensemble. The vectors 

and operators are defined in the direct product space of the 
ESR transitions and of the functions of the stochastic vari
ables. (In ESR we usually have f,.{J) = {J) - {J)0 where {JJ0 is the 
Larmour frequency at the center of the spectrum and {J) is the 
angular frequency of the applied radiation field.) We may 
rewrite Eq. ( 1) as 
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/(t,.{J)) = (1/1r) Re(ulu(d{JJ)), (2) 

where ju(f,.{JJ)} is the solution of the equation 

A'lu) =Iv). (3) 

The matrix A' is defined as A' = itJ.{J)l + A where 
A = r - iL. Equation ( 1) can be solved either by inversion 
of A' ( f,.{JJ) for a range of values of d{JJ, or alternatively by 
diagonalizing A only once. 1 

Recently a new form ofESR spectroscopy, based upon 
the electron-spin-echo technique, has been developed. 2 It is a 
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two-dimensional technique, which we call 2D-ESE. This 
technique is found to be more sensitive than conventional 
ESR to motional dynamics.2 Although it requires expres
sions that are more complex than Eq. ( 1), once the matrix A 
is diagonalized, the 2D-ESE spectrum can readily be ob
tained.2 However, the increased sensitivity is reflected in the 
challenging computational problem to simulate 2D-ESE 
spectra. 2 In the present work we primarily address the accu
rate and efficient calculation of both types of ESR spectra. 

The matrix A is in general very large and sparse. The 
conventional methods1 for solving Eq. ( 3) by inversion or by 
diagonalizing A prove to be too cumbersome. One soon runs 
out of memory even on mainframe computers, and the solu
tion requires prohibitive amounts of computer time. To rem
edy this situation the Lanczos algorithm has been developed 
for complex-symmetric matrices, since A is typically of this 
form. 3•

4 It is an efficient method for tridiagonalizing A and is 
particularly suited to the solution oflarge-sparse matrices. It 
has previously been shown that it can lead to at least order of 
magnitude reductions in computation time, and it yields re
sults to the solution of Eq. ( 1 ) to a high degree of accura
cy. 3•

5 It was also pointed out that this Lanczos algorithm is 
appropriate for the general class of Fokker-Planck equa
tions which can be represented by a complex symmetric 
Fokker-Planck operator A. For such cases, Eq. ( 1) would 
be associated with the spectral density, which is the Fourier 
transform of the time correlation function of a dynamical 
variable v(t).3

•
4 In fact, more generally, it was possible to 

establish the close connection between the Lanczos algo
rithm based upon a scheme of projection operators in Hilbert 
space, and the Mori projection scheme in statistical mechan
ics.4

•
6 Thus, while applications to ESR spectroscopy will be 

our primary concern in this work, they may be regarded as 
prototypical of a wide range of applications in chemical 
physics. 

There are several advantages of employing the Lanczos 
algorithm (LA) for sparse matrices. These advantages in
clude the facts that: (i) only the nonzero matrix elements 
need to be stored, (ii) they are not altered during the opera
tions, and (iii) they are the only ones involved in the matrix 
operations. Another advantage is due to the fact that the LA 
tridiagonalization proceeds by recursive steps or projec
tions. If we let N be the dimension of the matrix, and n, the 
number of recursive steps needed to converge to an accurate 
spectrum, then in all cases we have studied we find n, <(N. 
This inequality becomes more dramatic the more complicat
ed the problem. In this sense, the Lanczos projections rapid
ly seek out, from an initial finite subspace of dimension N 
[ which is spanned by the starting basis set of orthonormal 
vectors: I Jj ) ,j = 1, ... ,N ] , a smaller subspace spanned by the 
Lanczos vectors (i.e., the basis vectors for the tridiagona
lized form of A, or Tn) written as Jct>k), k = l, ... ,n. When 
n = n, these Lanczos vectors are a sufficient basis for accu
rately representing the spectrum. We refer to this by noting 
that the LA constructs subspaces that progressively approxi
mate the "optimal reduced space" for the problem. These 
subspaces, spanned by the Lanczos vectors are related to 
Krylov subspaces,7

•
8 and are generated from the sequence 

Ak- 1Jv) fork= l, ... ,n. (That is, then dimensional Krylov 

subspace is spanned by the n linearly independent vectors 
A k -

1 Iv) . ) Thus, the choice of Iv) as the "starting vector" 
biases the projections in favor of this "optimal reduced 
space." It is easy to show that this Krylov subspace can only 
contain eigenvectors of A with a nonzero component along 
Iv). For computing cw spectra from Eq. (1 ), a continued 
fraction method3.4 can be used directly on T n, since Iv) is 
itself the first Lanczos vector. In general, the time required 
for the LA tridiagonalization goes approximately as n,N 
( 2n E + 21), where n E is the average number of nonzero ma
trix elements in a row of A. 3 

There have appeared, since I, 3 reports of computational 
methods for calculating ESR spectra based on Pade approxi
mants9 and on the Mori method, 10 which may be expected to 
be formally equivalent to the application of the LA. 3•

4
•
6 This 

matter has recently been studied in detail by Dammers, 11 

who finds that while all these methods are indeed formally 
equivalent, the LA is the most stable and efficient from a 
computational viewpoint. 

There are, however, disadvantages to the use of the 
Lanczos algorithm for numerical applications. Its main 
weakness is its loss of orthogonality among the Lanczos vec
tors \ct>k) which it generates from the Krylovset Ak- 1\v) by 
a kind of Schmidt orthogonalization. This is due to accumu
lation of numerical round-off errors. As a result the Lanczos 
steps can, in practice, be continued beyond the original ma
trix dimension (i.e., it is possible to haven> N). This leads 
to repeated eigenvalues as well as to spurious eigenvalues 
( due to introducing Lanczos vectors not contained in the 
rigorous Krylov subspace defined by A and Iv)). In general, 
the ESR spectra are determined by only a small subset of 
eigenvectors, in particular those associated with eigenvalues 
(a;) with weakest damping (i.e, smallest Re a;), and ap
proximations to these eigenvalues ( or "clusters of eigenval
ues", cf. I) are rapidly generated such that n, <(N for conver
gence to the spectrum, well before round-off error can accu
mulate to the point where it can significantly affect the com
putation. However, round-off error can become a problem if 
one works with an unnecessarily large basis set N and/or 
performs too many Lanczos projections, n in the interest of 
guaranteeing convergence to the correct spectrum. Such 
matters are more of a problem for 2D-ESE, since they re
quire significantly larger values of N and n, than cw-ESR to 
achieve convergence, as we show below. 

Another limitation of the Lanczos algorithm as devel
oped in I, is the lack of a convenient and objective criterion 
for determining n,. One typically calculates the spectrum 
repeatedly for a sequence ofLanczos steps until convergence 
is confirmed. This is time consuming, and also it can ulti
mately lead to substantial accumulation of round-off error as 
n becomes large. 

Finally we note the truncation problem: the ESR spec
tra can be calculated to a good approximation by finite ma
trices of large enough dimension N; one wishes to truncate 
the space so as to minimize N consistent with the accurate 
computation of the spectra. This is referred to in I as the 
minimum truncation scheme (MTS). Knowledge of the 
MTS can greatly speed up calculations. In I simple empirical 
rules were established for some of the simpler ESR spectra 
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( i.e., those of comparatively small dimension). These had to 
be obtained by trial-and-error calculation of spectra with 
different basis sets in order to specify which types of basis 
vectors were important. This scheme is very time consuming 
as well as incomplete. In actual practice one tends to work 
with sets of basis vectors significantly larger than the MTS, 
since the latter has not been convenient to determine. This 
problem is exacerbated for 2D-ESE, since the MTS is al
ready very large. 

Thus it would be desirable to have convenient and objec
tive criteria to determine first the MTS and then the mini
mum Lanczos steps, n. consistent with it. This would ( 1) 
greatly reduce computation time; ( 2) guarantee that the re
sults have converged; and ( 3) minimize potential difficulties 
from computer round-off error. 

It is in this context that we explore the method of conju
gate gradients (CG) for the solution of Eq. ( 3). This meth
od was first proposed by Hestenes and Steifel 12 for solving 
linear equations, and practical conjugate gradient proce
dures exist for symmetric positive definite matrices A'. 7 In 
fact, for symmetric positive definite matrices it is possible to 
establish a formal equivalence between the CG method in 
solving Eq. ( 3) and the LA. 7•

8 In this work we shall consider 
this equivalence for the complex symmetric matrices that 
arise in the ESR (and general Fokker-Planck) problems, 
and then use the equivalence in a practical algorithm which 
can ( 1) tridiagonalize AN ( the N-dimensional representa
tion of A), ( 2) estimate at each recursive step the magnitude 
of an appropriately chosen residual, so that the recursive 
steps can be terminated when n = n., and (3) establish the 
MTS for the problem. This is possible by utilizing the CG 
method because it can directly solve for ju), and it can also 
be used to tridiagonalize AN through its connection to the 
LA while it simultaneously provides an estimate of the resid
ual. Thus the CG method can be applied to turbocharge the 
LA by first determining the MTS and the n. for typical val
ues of the relevant physical parameters, and then in subse
quent calculations, the turbocharged LA can be employed. 
This can greatly speed up the comparison of theoretical to 
experimental spectra in order to fit these physical param
eters. 

In Sec. II we review the LA and the CG method and 
consider their equivalence. We discuss their applicability for 
the relevant complex symmetric matrices, and we develop 
the algorithm, which provides the residual at each recursive 
step. We also outline in this section our procedure for deter
mining the MTS. In Sec. III we present the results of our 
computer studies on calculating cw ESR and 2D-ESE spec
tra including new rules that emerge in estimating the MTS. 
A summary appears in Sec. IV. 

II. LA AND CG FOR COMPLEX SYMMETRIC MATRICES 
A. The Lanczos algorithm 

We briefly summarize the Lanczos algorithm, which is 
known to be an application of the method of moments in 
Hilbert space. We first identify the starting vector Iv) as the 
first Lanczos vector j 4>1). Then a kind of Schmidt orthogon
alization on the Krylov sequence Ak- 1jv) fork= l, ... ,n al
lows one to iteratively generate the set of orthonormal Lane-

zos vectors jcl>k) according to 

f3k+1lcl>k+1>=(1-Pk)Ajcl>k), (4) 

where /3 k + 1 is the normalizing coefficient such that 

(cl>k+llcl>k+l>=l (5) 

and Pk is the projection operator on the Krylov subspace 
spanned by the lcl>i) given by13 

k 

Pk= L l4>i}(cl>1 1, k<.n. (6) 
j=I 

Equation ( 4) leads to a three term recursive relation for 
generating the I 4>1 ) : 

f3k+1lcl>k+1> = (A-ak)l4>k)-/3kl4>k-1), (7) 

where 

(8) 

and 

(9) 

It may easily be shown that A has a tridiagonal representa
tion, T,. in the basis of Lanczos vectors I 4>1 ) such that 

(cl>k IAlcl>j) = 0 if k =I= j,Ff· 1 (10) 

while Eqs. ( 8) and ( 9) give the nonzero matrix elements. 
That is, given the vectors jcl>k) in terms of their components 
x1,k in the original basis set, I Jj ) , j = 1, ... ,N, 

lcl>k) = L xJ,k lfj), 
j 

xJ,k = (Jj lcl>k) , 

(Ila) 

(llb) 

then the column vectors xk form the orthogonal matrix Q,. 
such that Q:Q,. = 1,. and 

(12) 

We have described the conventional Lanczos algorithm for 
real symmetric ( or Hermitian) matrices A such that Eq. ( 5) 
involves the usual norms in Hilbert space. 

For our present applications to ESR (and Fokker
Planck equations) for which A is complex symmetric ( or 
else can be transformed to complex symmetric form3

•
4

•
6

) 

Moro and Freed3
•
4 showed that one must introduce the Eu

clidean pseudonorm. That is, first consider the general non
Hermitian case. One must introduce a biorthonormal set of 
functions cl>i and 4>1 such that 

(cl>ljc1>1)=8M (13) 

or alternatively (letting xl and x1 be their column vector 
representations): 

(14) 

However, for the case of (nondefective)8 complex symmet
ric matrices A, it is possible to let 

x1 =x; (15) 

such that Eq. ( 14) becomes 

(16) 

and then the recursion method of Eqs. ( 4 )-( 10) remains 
applicable with Eq. ( 16) defining the Euclidean pseudon
orm, whereby the bra vectors are defined without the usual 
complex conjugation in a Hilbert space. 
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Finally we note that the complex symmetric tridiagonal 
matrix T n can easily be diagonalized by one of several meth
ods. 8·

14 While this is not necessary for cw ESR spectra (or 
for simple spectral densities from Fokker-Planck equa
tions), it is needed for 2D-ESE spectra. 

B. The conjugate gradient method 

The conjugate gradient method of Hestenes and Stei
fel 12 is for solving equations of form Aj u) = jv) with Aareal 
symmetric positive definite (RSPD) matrix. The starting 
point of the CG method is to consider this equation in the 
form 

(17) 

where juk) is the kth approximant to ju), and Irk) is the 
residual vector associated with juk). [This Irk) is easily 
seen 7 to be the vector which gives the negative gradient of the 
functional f(uk) =½(uklAluk) - (uklv) provided A is 
RSPD, so that a minimization of/( uk) is equivalent to solv
ing A I u) = Iv).] Equation (17) is solved by successive itera
tions which do not minimize along Irk) fork= l, ... ,n (that 
would be the method of steepest descent), but instead mini
mize along a set of "conjugate directions" I Pk) k = l, ... ,n 
(which keeps the successive minimizations from spoiling 
those along previous conjugate directions) such that 

lrk+i>=h)-akAIPk) (18) 

and 

IPk+1> = lrk+i> +bklPk), 
where the ak and bk are given by 

(19) 

ak = (rkh)l(PklAlpk), 

bk= (rk+1 lrk+1)l(rkjrk), 

(20) 

(21) 

and where the Irk) are easily shown to be mutually orthogo
nal (but they are not normalized), while the set of I Pk) are 
"A conjugate," i.e., 

(22) 

The I Pk) is the closest vector to Irk) that is A conjugate to 
the IP1) ... IPk- 1 ).

15 It is also true that (pjlrk) =0 for 
j = l, ... ,k- 1. Also, the k + 1 approximant juk+ 1) is ob
tained from I u k ) as 

iuk+1> = luk) +akjpk). (23) 

These equations permit one to iteratively obtain the higher 
order approximants. That is, let 

lr1) = Iv) -Alu1) (24) 

and 

(25) 

where ju1) is the initial guess of ju), then fork= 1, ... ,n - 1 
one calculates successively ak, juk+ 1 ), jrk+ 1 ), bk, and 
lh+ 1) according to Eqs. (18), (19), (20), (21 ), and 
( 23). 16 At each step the norm of h): 

lhl12 = (rkjrk) (26) 

is a measure of the extent of convergence to the final solution 
ju). 

At this stage the LA and CG appear to be very different 
algorithms, the former tridiagonalizes A (or A'), while the 

latter solves Eq. (3) (with aw= 0) iteratively for ju). We 
shall discuss their equivalence below. For now we consider 
the applicability of this CG method to complex-symmetric 
matrices. The standard CG method requires that7

•
8

•
17 A be 

RSPD. Nevertheless, one may first note that the CG method 
is a special case of the method of conjugate directions. 17 It is 
not hard to show, from this more general approach that for 
nondefective (i.e., diagonalizable), and nonsingular com
plex symmetric matrices, the above CG method applies pro
vided only that we use the Euclidean pseudonorm [ e.g., Eq. 
( 16) ] in our Hilbert space. This is just as we found for appli
cation of the LA to complex symmetric matrices, and the 
analysis is similar. However, for the CG method, we do have 
the additional requirement that A or A' be nonsingular. Let 
us consider replacing A by A'in the above equations recalling 
( cf. Sec. I) that the complex symmetric matrix A will have 
complex roots: the real parts give the damping and the 
imaginary parts the resonance frequencies. Since all the rel
evant eigenmodes of A will experience some damping, then, 
in general, both A and A' will be nonsingular and Eqs. ( 17 )
( 26) can apply for either matrix. Nevertheless, it is conven
ient to replace iaw by iAw + Ti - 1 where T 2 -

1 is a very 
small width parameter ( cf. below). 

There is, however, only one place where we relax the use 
of Euclidean pseudonorm: that is in the norm of Irk), given 
by Eq. ( 26), which is used to estimate the extent of conver
gence. Given Irk) that is determined from Eq. ( 18), then we 
have considered two specific forms of the norm, Eq. (26) 
which we write in terms of its components yj,k in the original 
basis set [ cf. Eqs. ( 11 ) ] : 

(i) /'i,ps = I ~YiJ I · (27) 

(ii) l'i,H = L IYkJl
2 

• (28) 
j 

whereas letting h,true) = jv) -A'juk) [cf. Eq. (17)] at 
each iterative step we have a third norm: 

(iii) l'i,true = L j Ytrue,k,j 1
2 

• (29) 
j 

For a complex symmetric matrix, only the second and third 
norms are equal in exact arithmetic and are guaranteed to be 
real. The first norm is, however, consistent with the Euclid
ean pseudonorm required in our CG algorithm for complex 
symmetric matrices, but the (unnormalized) jrk) vectors 
would yield a complex value for 1'i,ps unless the absolute 
value is specified as in Eq. (27). In practice, we do find that 
the norms (ii) and (iii) are equal in finite precision arithme
tic to just about the limit of double precision accuracy 
(llrll::::: 10-u on the PRIME 9955 computer we use), while 
(i) is always smaller. Once this limit is reached, any further 
attempt to improve the calculation by iteration is, of course, 
unsuccessful, and l'Yc,true remains constant as k is increased. 
However, the other two forms of II rlJ [ ( i) and ( ii) ] continue 
to decrease and are of no further value. But ( i) and (ii) are 
readily available during each iteration, while (iii) requires 
extra calculation. We have used rf.n as our criterion for con
vergence, so we shall henceforth call it r 2 • On the other 
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hand, it is advisable to occasionally use rltrue to check if 
round-off has become a problem. 

Thus, we have found that the CG method can be used to 
solve for I u) in Eq. ( 3) which then permits a solution of the 
ESR spectrumJ(&v) from Eq. (1). We have gained a spe
cific criterion, rf,e to determine when convergence has been 
achieved. However, in this form, one must solve I u ( &v)) for 
each value of the sweep variable, a decided disadvantage 
compared to the LA from which a single tridiagonalization 
permits l(fi(J)) to be calculated by the continued fraction 
procedure. 3 The deficiency of CG is more serious for predict
ing 2D-ESE spectra, since one must obtain eigenvalues of A. 

To proceed further with the CG method we must recog
nize its equivalence to the LA, a matter which is not general
ly appreciated by the scientific community. Before discuss
ing this equivalence, we first wish to point out that the 
orthogonal set of vectors h) and the conjugate set I Pk) are 
contained in the same Krylov subspace of A k -

1 
j v), 

k = l, ... ,n as are the Lanczos vectors l<I>k ). 17 

C. Equivalence of CG and LA 

The equivalence of CG and LA is discussed in several 
places for the case ofRSPD matrices A.7

•
8 In particular Go

lub and Van Loan 7 give an explicit expression for the con
struction of the Lanczos tridiagonal matrix T n by the CG 
method for a RSPD A which is valid at each stage of the 
iteration. They show that 

Tk =A,; 1 B~d'k Bk4,; 1
, 

where d' k is the diagonal matrix with elements: 

d'k;ii = (P;IAlp;), i= 1, ... ,k 

and ..:1 is also diagonal with elements: 

( )

1/2 
ak,ii = llr;II = ,tY;/ = P;, i = l, ... ,k 

while Bk is an upper bidiagonal matnx with elements 

(30) 

(31) 

(32) 

Bk;ii = 1, Bk;i,i+ 1 = - b;, i = l, ... ,k (33) 

with b1 given by Eq. (21). Furthermore, the unnormalized 
residual vectors I r1 ) are collinear with the orthonormal 
Lanczos vectors jct>;). More precisely 

jct>;)=+ (p;)- 1 jr;), i= l, ... ,n. (34) 

Since the signs of the Ir;) are well-defined by Eq. ( 17), we 
see that the Lanczos vectors, which are normalized to within 
an arbitrary + sign ( for Euclidean norms) bear the sign 
ambiguity. 18 It follows from Eqs. (30)-(33) that theak, the 
diagonal elements of T n , and the /3 k, its off-diagonal ele
ments, are given by 

ak = (PklAIPk)lpi + (pUpL1 ><Pk-1 IAIPk-1) 
(35) 

and 

/3k= -(pklPL1><Pk-1IAIPk-1>· (36) 

Thus the ak and /3 k are readily obtained by CG at each 
iteration, so this approach may be used to tridiagonalize A. 
Also one must start with Ir 1) = Iv) which implies I u i> = 0 
from Eq. (24), in order to obtain Eq. (34) and thus to 
achieve correspondence between CG and the LA. 

We turn now to the applicability of this approach for 
nondefective, nonsingular, complex symmetric matrices. 
Again we find that it is appropriate for such cases provided 
we use the Euclidean pseudonorm. This means that p; as 
defined by Eq. (32), is a complex quantity [we choose the 
principal value of the square root in Eq. ( 32) ] . 

We have verified this equivalence to the LA for our com
plex-symmetric matrices A with the use of the Euclidean 
pseudonorm by numerical calculation. We find that the T n 

obtained by the LA [Eqs. (8) and (9)] and that from CG 
[Eqs. (35) and (36)] agree numerically in magnitude to at 
least six significant figures. However, there are sign differ
ences between the/3k's ofEqs. (9) and (36), which are at
tributable to the arbitrary sign in the normalization of the 
I ct>; ) [ cf. Eq. ( 34) ] . Such sign differences do not matter in 
calculating / ( &v) or in the eigenvalues. 

We ran into one problem in our use of CG. Because of 
the structure of our matrix representation of A and of Iv), a 
division by zero can occur in the first CG step. A simple 
remedy is to use a small but finite value of "intrinsic 
linewidth" in all diagonal entries (i.e., we add a constant 
matrix to A which is diagonal). It can simply be subtracted 
from all the eigenvalues, once they are computed, if desired. 
(In fact, an "intrinsic linewidth" is normally added after 
tridiagonalization or full-diagonalization.) 

Thus we conclude that the CG procedure can be applied 
to our complex-symmetric matrices A to obtain the Lanczos 
tridiagonal matrix from which spectra may be calculated. In 
the CG method we have an objective criterion, Eq, (28), of 
the extent of convergence at each iteration. Finally, we note 
that CG can be used to directly solve the linear equation 
problem of Eq. ( 3) when desired. In fact, this will serve as 
the basis of our approach to the determination of the MTS, 
as we describe next. 

D. Minimum truncation scheme 

As we discussed in Sec. I, it would be highly desirable to 
have an objective and convenient criterion for selecting the 
minimum basis set for representing A, which still guarantees 
convergence to the desired accuracy. We make use of the CG 
method to calculate I u ( &v) ) for different values of the 
sweep variable, ll.w. Since the spectrum is determined by the 
scalar product (vlu(ll.w)) [cf. Eq. (2) ], then we expect that 
a knowledge of the vector I u (aw)) in terms of its compo
nents zi = ( .lj I u ( ll.w)) in the original basis set, I Jj) 
j = l, ... ,N [cf. Eq. (11) ], for a sample set of sweep posi
tions, would provide an accurate assessment of the impor
tance of each basis vector I Jj ) in determining I u (Aw) ) . 

Consider thejth componentzi, then from Eq. (3): 

zi(ll.w) = (.ljlA'- 1 lv) = L (.ljlt/lm)a'(Aw),;;- 1
( t/lmlv), 

m 

(37) 

where, in the last equality ofEq. (37) we have introduced 
the eigenvectors of A' [or A] as the set It/Im), and a'(Acv)m 
[or a(ticv)m] are their eigenvalues. This last expression in 
Eq. (37) is a product of three quantities. First, the scalar 
product ( t/lm Iv), which is the projection of the mth eigen
vector on the transition moment vector, is a measure of the 
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importance of this eigenvector in contributing to the spec
trum. Next, (Jj I 'Pm) is a measure of the importance of the 
jth basis vector in contributing to I 'Pm ) . Finally a;,. ( !:,.,.{J)) - 1 

expresses how the mth eigenvector contributes to the spec
trum, e.g., if it resonates far from the applied rf field, or, if it 
is very broad, then a;,. ( !:,.,.{J)) - 1 is very small. All these factors 
are needed to estimate the importance of I Jj) to the spec
trum. Since they are all included in zi, then zi ( !:,.,.{J)) can be 
used as a measure of the importance of I Jj) to the spectrum, 
provided only that we sample it at a sufficient number of 
positions in the spectrum (i.e., for sufficient number of val
ues of sweep variable !:,.,.{J)). This may be done by solving Eq. 
( 3) by CG for these positions. 

Our approach therefore requires that a basis set larger 
than the MTS, but containing the latter as a subset, be uti
lized initially. Nevertheless, in most applications, wherein 
calculations are compared to experimental spectra, it is nec
essary to vary theoretical parameters and to repeat the com
putation many times, so the initial efforts at selecting the 
MTS can often be worthwhile. As problems become larger, it 
is usually possible to estimate a starting basis set that is not 
excessively large by extrapolation from an empirical set of 
rules derived from the MTS obtained from smaller, but 
closely related problems. 19 Then the final search for the 
MTS for the larger problem is less time consuming. Our 
examples below, illustrate this. 

Given that Eq. (37) is a good criterion for determining 
the MTS, an alternative way to proceed would be to diagona
lize A by the LA but to store the transformation matrices to 
obtain the (/jl'Pm) and the ( 'Pm Iv). Unfortunately it would 
destroy the great efficiency of the LA to keep track of the full 
transformation matrix. 7•

8 Consequently Cullum and Wil
loughby8 recommend an inverse iteration procedure to ob
tain the eigenvectors once a set of converged eigenvalues 
have been obtained by the LA. However, the spectra are 
extremely well approximated well before the actual eigenval
ues have converged. 3 Thus, much more effort is required in 
implementing the LA in order to achieve accurate enough 
eigenvalues to permit estimates of (Jj I 'Pm) by inverse iter
ation, than is required to obtain our converged spectra. 
(This is perhaps less true in the case of2D-ESE spectrosco
py). On the other hand, the basic CG algorithm successfully 
delivers the needed information to determine the MTS as 
discussed below. 

Ill. COMPUTER RESULTS 

A. Slow-motional ESR spectra 

This is the application to which Moro and Freed in I 
first applied the LA. We have applied the CG method dis
cussed in Secs. II B and II C for the calculation of slow
motional ESR spectra ( cf. Fig. 1 ) to obtain the relevant tri
diagonal matrices Tn and residuals ,i (i.e., r 2 calculated for 
!:,.,.{J) = 0). The spectra given by Eq. ( 1) could then be solved 
directly by the continued-fraction approach used in I. There 
is only a marginal increase in computation time ( ~ 5%) for 
the CG algorithm vs our LA. 

We find, in general, that ,i behaves like a damped oscil
lator as a function of n, i.e., it oscillates, but its local averge 
value decreases as n increases. In general, the cw spectra 

converge very rapidly; typically a value of,i z 10-3-10-4 is 
more than adequate to obtain a good cw spectrum. We rec
ommend, as a conservative criterion, that the iterations be 
terminated when ,i z 10-4

, even though for most of the 
spectra a surprisingly low value of ,i z 10-2 is sufficient. ( A 
consideration of the relationship between ,i and the actual 
error in the spectrum is given below.) We therefore take as 
n, the value of n when ,i first reaches a value of 10-4

_ 

The slow-motional ESR spectrum depends upon a num
ber of theoretical parameters viz: the hyperfine and g ten
sors, the rotational diffusion tensor R, and, for oriented 
fluids ( e.g., liquid crystals or membranes) one must specify 
the mean orienting potential as well as the orientation ( 'Ip) 
of principal axis of macroscopic alignment (the director) 
relative to the applied static magnetic field. 1•

20 For conven
ience in the present studies we have let R be isotropic with a 
rotational diffusion coefficientR, and we have let the dimen
sionless mean potential to be of the simple form: 
- U(0)/kT = li.P2 (cos 0) [ where P2 (cos 0) is the Le
gendre polynomial of order 2 and 0 is the angle between the 
principal molecular axis and the director]. Also, when li, =f:. 0 
we have let 1/1 be either o• or 90°. 

As the motion slows down (i.e., R decreases) one re
quires larger dimensional representations of A (i.e., in
creased N), and also there is an increase in n,. This is true no 
matter which algorithm is utilized. In all cases n, <Nin 
agreement with previous results. However, we do find that 
n, increases more slowly than N, so the advantage of the LA 
or CG becomes relatively greater, the larger N becomes. 
Some typical results reflecting these features are shown in 
Table I. In obtaining the results in Table I we have used 
values of N significantly larger than the MTS to ensure con
vergence, as is usually done in applications of the LA. 2,20-23 

However, in one case we compare with a smaller value of N 
that more closely corresponds to the MTS. In this case we 
find that n, is only decreased by a factor of 1.34 when N is 
decreased by a factor of 4.1. This is an example of the more 
general phenomenon of how the LA seeks out an approxima
tion to the "optimal reduced space" already discussed in I. 

In the absence of an objective criterion of convergence 
from the LA itself, Moro and Freed in I utilized the follow
ing definition of the error in the cw spectrum as 

an= J:00 IIR({J))-In({J))ld{J), (38) 

where IR is the "exact absorption spectrum" (actually some 
very good approximation ofit), and In ({J)) is the spectrum 
obtained after n iterative steps. Both are normalized to unity. 
[In Eq. ( 38) we take(JJ as our sweep variable for simplicity.] 
Then n, was defined as the minimum number of steps satis
fying the condition an,;;;; 10-4, which is an accuracy better 
than can be achieved experimentally. We find from several 
examples [ using as IR ( {J)) the spectrum obtained for r l 
= 10- 10 and the same basis set used for In ({J))] that an rl 
z 10-4 corresponds to a an z 10-1 to 10-s with the smaller 
an corresponding to smaller N ( e.g., 429) and the larger for 
N::=8000. [Forrlz 10-2

, an z2.4X 10-5
.] Note, however, 

that while an is a measure of the actual error in the spec
trum, it does not serve as a practical indicator of convergence 
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TABLE I. Typical values of iterative steps required for convergence to a 
given residual for diff"erent basis sets. 

Matrix 
N" rlb n,c Cased elements• 

1743 10-2 60 A' 32 917 
10-• 104 
10-10 172 

429 10-2 49 A' 7 701 
10-• 77 
10-10 128 

3543 10-2 76 B 70 399 
10-• 159 
10-10 315 

7503 10-2 89 C 288 085 
10-• 170 
10-10 326 

8196 10-2 57 D 667 965 
10-• 80 
10-10 143 

• N is the dimension of the matrix defined by L ~, L :_.., Km.,,,, and M mu, 

and symmetries given in Refs. 1 and 20. 
brl is the residual squared [cf. Eq. (28) ), calculated at the center of the 
spectrum. 

0 n, is the number of CG iterations. 
dCase A is for "Tempone" magnetic parameters (cf. Table II) and 
R = 1<>6 s- 1

; case Bis also for tempone parameters but R = 10' s- 1
; case 

C is for "CSL" parameters ( cf. Table II) and R = 10' s - 1. Case D is for 
tempone parameters but with a strong potential (,l, = IO), R = 1<>6 s-', 
and director tilt ,fl= 90'. Also (r, Ti )- 1 = 1 G. 

• Number of nonzero matrix elements for the full matrix A counting the real 
and imaginary parts separately. 

'N = 429 corresponds to approximate MTS, cf. Table III entry 5, while 
N = 1743 represents a typical larger basis set co=only utilized in 2D
ESE simulations by LA. 

during the calculation. One must already have a very good 
approximation to the spectrum to calculate An! On the other 
hand, rJ is readily obtained, and, we find it serves as a useful 
measure. 

A comparison of entries C and Din Table I brings out an 
important point. The matrix in case D has larger dimension 
and about 2.3 times as many matrix elements as those of case 
C. Yet to reach a value of~::::: 10-10 we need less than half 
the number of steps in case D than for case C. This shows 
that specification of rt is a much better criterion for conver
gence than specification of the number of recursive steps. 
For a new matrix it is not possible to guess correctly the 
value of ns, while one can readily obtain r /. Availability ofr 2 

at each step of iteration is a tremendous advantage of CG 
over LA. 

One cautionary note is in order. Our calculation of r 2 

for the above has been at the center of the nitroxide spectrum 
(i.e., rrJ). In general, the results for r 2 will be a function of 
Aw [ cf. Eqs. ( 17) and ( 28) ] . However, our above compari
son between rt at the center of the spectrum and An, which 
measures deviations across the whole spectrum, shows that 
this is a sufficient test for the class of spectra considered. This 
is, perhaps, no surprise considering the success of the LA 
itself in these spectral problems. In other cases it could be 
necessary to choose Aw in A' to correspond to the region of 

poorest convergence in implementing CG, so that the r 2 test 
reflects such a region. (Alternatively computations at sever
al values of A(I) might be needed to perform the CG calcula
tion and to obtain the needed r 2 results. ) 

B. Two-dlmenslonal ESE spectra (20-ESE) 

We have also used the CG method to study 2D-ESE 
spectra. We have used the approximate expression of Mill
hauser and Freed2 to predict the signal: 

T2· 
S(w,w')cclcJ ,1 exp[-(w'-(l).)2/A2

], 

i 1 + w2T 2 
• ' 2,J 

(39) 
where for thejth "dynamic-spin packet" (i.e., thejth normal 
mode solution 11/Ji) to A corresponding to eigenvalue ai), we 
have T2,i - I = Re ( ai) as its Lorentzian width and wi 
= Im(ai) its resonant frequency. Also 

cJ = ( ¢ii lv) 2 :::::Re( 'Pi jv) 2
, ( 40) 

where the approximate equality is valid only in the very slow 
(i.e., for R < 1()5 s- 1

) motional region for which Eq. (39) is 
approximately valid. The 2D-ESE spectrum is inhomogen
eously broadened ( with respect to the w' sweep variable) by 
convolution with a Gaussian distribution of half-width A. 
For purposes of testing the computational method we have 
utilized Eq. (39) with the approximate form for cJ in Eq. 
( 40) even when the motion is taken as too fast for these 
expressions to accurately represent the experiment. This en
abled us to extrapolate convergence schemes to the very slow 
motional cases for which Eq. ( 39) is applicable before we 
performed the very time-consuming calculations required in 
these cases. 

It is clear from Eq. ( 39) that it is necessary to obtain 
estimates of the eigenvalues ai which contribute appreciably 
( i.e., for which I ( 'Pi Iv) I 2 is not negligible). This was done by 
diagonalizing the tridiagonal matrix T n utilizing standard 
procedures.3

•
14 The l¢'i) are then, in principle, obtained in 

terms of their components ( <I>k I 'Pi) in the Lanczos basis set. 
However, only the components along l<1>1) = jv) are need
ed, and they form a vector of dimension ns, which is easily 
obtained during the procedure. 1

•
3

•
14 

Because the 2D-ESE spectra require significantly more 
accurate estimates of the eigenvalues ai and the weights cJ, 
we find that convergence with respect to LA or CG steps 
occurs only after achieving a residual that is much smaller 
than what is required for the corresponding cw spectrum. In 
particular we find that~::::: 10-8-10- 10 is sufficient for 2D
ESE spectra [by visual comparison of normalized contours 
( cf. Fig. 2) in several cases], whereas the cw spectra have 
already converged for rrJ> 10-4

_ This much more severe re
quirement for rt fortunately does not require very many 
more iterations as illustrated by the results summarized in 
Table I. 

Again we must comment that the r 2 test has been per
formed only for the center of the spectrum. However, our 
visual comparisons noted above indicate that it should be 
sufficient for nitroxide-type spectra. 

In order to study the convergence further, we introduce, 
by analogy to Eq. ( 38) the following definition of the error in 
the 2D-ESE spectrum: 

J. Chem. Phys., Vol. Bb, No. 2, 15 January 1987 



Downloaded 26 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

654 Vasavada, Schneider, and Freed: ESR spectra by the Lanczos algorithm. II 

A20,n = s: 
00 

d(J) s: 
00 

d(J)'JSR ((J),(J)') - Sn ((J),(J)') J , 

(41) 

where SR ((J),(1)
1
) is the normalized "exact 2D-ESE spec

trum" or some very good approximation to it, and Sn ((J),(J)') 

is the normalized spectrum obtained after n iterative steps. 
Both SR and Sn are calculated from Eq. (39). We find from 
several examples that an rl-z 10-to corresponds to a A20,n 
,z0.007 to 0.02 [ where we utilized for SR ((J),(J)') an ,g 
= 10- 12 and the same basis set]. 

Finally it should be noted that we have checked the CG 
eigenvalue method against the exact EISP ACK routine ( for 
complex general matrices) for the case where N = 177. The 
2D normalized contours match exactly. As expected the EI
SPACK routine takes much more time than the CG method. 
The CPU times on the PRIME 9955 computer were 1118 
and 15 s, respectively. 

Before we discuss the MTS below, we wish to show that 
our use of Eq. ( 37) to estimate the importance of each basis 
vector I/;) is reasonable for the 2D-ESE spectrum. We first 

J • 
set (J) = O in Eq. (39). Then using Eq. (40) we can rewnte: 

(42) 

where A(J). = (J)' - (J) .. Thus the contribution of I fk) is given 
J J 

by 

(vl/k) I, (fklr/J)T2,j exp[ - (A(J)j)2/A2]( r/ljlv) 
J 

<(vl/k) I, (/kl rpj)[Rea'(A(J)')j]- 1
( r/11 lv) (43) 

j 

since [Re a'(A(JJ')j 1- 1 = T2,j/[l + (A(J); T2,1 )
2

] (i.e., a 
Lorentzian of width Ti:/) which will be greater than the 
modified Gaussian expression: T2,1 exp[ - (Awj) 2/A2

], 

since in general, A► T 2-:/ (i.e., relatively large inhomogen
eous broadening). The inequality in Eq. ( 43) is to be "un
derstood" in the sense of applying separately to the magni
tudes of the real and the imaginary parts on each side. If we 
now assume ( ¢· Iv) is essentially a real quantity according to 
Eq. ( 40), and r~all ( cf. above) that ( fk Iv) is chosen real, it 
readily follows that ( rpj I fk) must be real. Thus the right
hand side of the above inequality can be rewritten as (vi fk) 
XRezk(Aw'). It thus follows from the discussion in Sec. 
II D thatzk (Aw') [or more precisely Rezk(Aw')] may be 
used to estimate the importance of I fk) to the 2D-ESE spec
trum. 

C. Minimum truncation schemes 

1. Basis set 

We have used as our basis set, I Jj) the standard set uti
lized for these problems in the high-field approxima
tion. 1•

3
•
20 They may be characterized by a set of five indices 

or quantum numbers as 

JL,K,M,p,q) = l~Dt-K(O),p,q). 

The D itK ( 0) are the generalized spherical harmonics ( or 

Wigner rotation-matrix elements) and fi represents the 
Euler angles between the molecular frame and the lab frame, 
while M and K are ;;..O and K is even for the cases studied 
here. They are the eigenfunctions of the rotational diffusion 
operator for an axially symmetric diffusion tensor R in an 
isotropic fluid. The quantum numbers p and q are defined as 
p = m' - m" and q = m' + m" where m' and m" are the 
nuclear spin projection quantum numbers for the initial state 
and final states. Thus p = 0 ( p,f0) for an allowed (forbid
den) ESR transition. Our calculations were performed spe
cifically for 14N nitroxides with nuclear spin/= 1, so m', 
m" = -1,0, + 1. Thus p = 0, + 1, +2 and q = -Q, 
- Q + 2, ... ,Qwhere Q = 2 - I Pl• In isotropic fluids, and in 

ordered fluids where the tilt angle rp = 0° there is consider-
able symmetry of A such that p = M, so M = 0, l, or 2. (The 
latter require also that the nuclear Zeeman term be neglect
ed.) These symmetries help to reduce the basis set and con
tribute to the sparsity of A. When rp:/;0° the cylindrical sym
metry in the lab frame is destroyed and the problem becomes 
more complicated. 20-

22 We take the z axis in the lab frame to 
be along the director. This axis plus the direction of the static 
magnetic field ( which is rotated relative to this z axis) define 
the x-z plane in the lab frame. For rp = 90° these axes become 
the lab z and x axes, respectively. In these cases the index M 
is no longer restricted, sop and M can take on their full range 
of values. Also the sparsity of A is reduced. As the motion 
slows down this requires immense basis sets, and N -z 103 

-

la4 is possible. This problem is exacerbated for 2D-ESE giv
en that larger basis sets are required for this more sensitive 
type of spectroscopy. Thus, it is especially important to 
minimize such basis sets in order to make the problems trac
table. 

2. Determining the significance of each basis vector 

We have studied the problem of the MTS by utilizing the 
method discussed in Sec. II D, viz. the determination of the 
coefficients zj (A(J)) for a particular set of values of the pa
rameters (R).,etc.) by solving Eq. ( 3) with the CG method 
for several values of the sweep variable in the range of the 
spectrum (say Aw/re of - 50to + 50Gaboutthecenterof 
the spectrum). We find that 10-20 are sufficient for slow
motional ESR spectra. In performing the sweep by CG it is 
useful to use as the initial vector [ cf. Eq. (24)] at the mth 
sweep position Ju 1 (A(J)m)) the solution to the previous field 
position [i.e., lun(Awm_ 1 ))] to accelerate the conver
gence. Also, it is sufficient for present purposes, which are 
just to estimate the importance of the I Jj ) , to use weaker 
convergence criteria for r 2 (e.g., -z 10-2 for cw spectra and 
-z 10-6 for 2D-ESE spectra). [Note that unlike the ,g test 
used to terminate the recursions at n, (cf. Secs. IHA and 
IIIB), in the present case the r 2 test is applied to each spec
tral position calculated by CG.] One can get an idea of the 
computer time required from the following example. For a 
matrix of dimension N = 1743, the eigenvalue determina
tion (with ,g = 10- 10

) took 215 son a PRIME 9955 com
puter, while sweeping using 21 spectral positions (with 
r 2 = 10- 10

) took 818 s after A had been preconditioned (cf. 
Sec. III D). In general, we find that solving for I u) at one 
spectral position is about five times faster on average than 
the diagonalization of A. This is because signficantly fewer 
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iterations per spectral position are required when the initial 
approximate solution vector is the solution at the previous 
spectral position. Also, preconditioning speeds the conver
gence up somewhat ( cf. Sec. III D). 

The procedure we followed to estimate the significance 
of each basis vector I /j ) was to first determine the z1 ( !uu; ) 
j = 1, ... ,N at the ith spectral position. Then we computed the 
relative contribution to the spectrum/j,; as 

/j,; = lz1 (luu;) 1/1 (vlu(Aw;)) I 

= lz1 (Aw;)(l~x1,1z1 (Aw;)I, i= l, ..• ,m (44) 

[ cf. Eqs. ( 2) and ( 11 ) ] . This is repeated for all m spectral 
positions. As the spectral positions are scanned, only the 
maximum value for each I /j) is stored, so at the end, one has 
a vector of N entries:Jj,max, which give the global maxima for 
each I /j). Then we determined which basis vectors have val
ues of /j,max ( that we give in percentages) at or above the 
level of say 3%, 1 %, 0.3%, etc. These were then used to 
simulate spectra. We were thus able to determine from a 
number of examples that retaining basis vectors for which 
/j,max > 3% would guarantee convergence for cw spectra. 
However, for the more sensitive 2D-ESE spectra, we found 
from our examples that it is necessary to retain basis vectors 
for which/j,max > 0.06% to 0.03%. We have examined these 
results in the lightoftheerrorcriteriaofEqs. (38) and ( 41 ). 
We find that for entries 5 of Tables II and III [ with an origi-

TABLE II. Truncation parameters for cw spectra. 

No. 

1 
2 
3 

4 

5 
6 
7 
8 

9 
10 
11 
12 

Spin• 
probe 

Tempone 
Tempone 
Tempone 
(90' tilt) 
Tempone 
(90' tilt) 
Tempone 
Tempone 
Tempone 
Tempone 
(90' tilt) 
Tempone 
Tempone 

CSL 
CSL 

101 
101 
101 

106 
106 
106 
106 

0 
10 
1 

10 

0 
5 

10 
10 

0 
0 
0 
0 

L~axd 

6 
10 
6 

14 
12 
10 
12 

30 
54 
14 
30 

£:U.x d 

3 
none 

3 

9 

7 
3 

none 
11 

13 
15 
7 

13 

2 
2 
2 

4 

6 
2 
0 
6 

10 
10 
14 
30 

2 
2 
6 

4 

2 
2 
2 
6 

2 
2 
2 
2 

nal basis set of N = 1743 and rJ = 10- 10 to determine 
IR (w) and rJ = 10- 12 for SR (w,w') anfj,max ::::::3% yields a 
An ::::: 3 X 10-4

, thus corresponding closely to the criterion 
used in I for convergence of the spectrum. Also an /j,max 
::::::0.03% yields a An :::::4X 10-s and a A20,n ::::::0.01. 

We therefore can suggest as a conservative estimate of 
the MTS those basis vectors for which /j,max > 3% for cw 
ESR and/j,max > 0.03% for 2D-ESE. Of course, in prelimi
nary simulations, one can use less stringent conditions to 
obtain rough approximations to the spectra. 

In general, one expects that the convergence required 
depends on the degree of spectral resolution as represented 
by the extra or "intrinsic width" T 2 -

1
• Its role can be in

ferred from Eq. (37) for the z1 (Aw). An increase in this 
intrinsic width will decrease the magnitudes of the inverse 
eigenvalues a' (Aw);;; 1 without affecting the other terms on 
the right-hand side. Thus, in general, fewer basis vectors 
would be needed if the same criteria for the MTS as given 
above are used. Also, it might be that, due to reduced spec
tral resolution resulting from a larger intrinsic width, the 
above criteria [ obtained with ( r, T 2 )- 1 = 1 G] could be 
more stringent than necessary. 

3.Generalobservatlons 
We summarize in Tables II and III our respective re

sults for cw-ESR and 2D-ESE in determining the MTS 
based upon these two criteria. In actual fact, we first used 

N" 

42 
63 

288 

822 

171 
78 
33 

1779 

543 
990 
231 
762 

N'• 

34 
26 

134 

129 

108 
54 
30 

533 

285 
549 
174 
522 

33 
26 
74 

69 

100 
42 
29 

245 

256 
447 
162 
474 

"Valuesofg and A tensors are: Tempone: g"" = 2.0088,g" = 2.0061,g., = 2.0027,A= = 5.8,AYY = 5.8,A., 
= 30.8. CSLg...,. = 2.0021,gyy = 2.0089,g., = 2.0058,A...,. = 33.44,A" = 5.27,A., = 5.27. Static magnetic 

field= 3300G. <r. r; )- 1 = 1 G. 
b Rotational dift'usion coefficient. 
0 Potential strength parameter. 
d L :;..., L :;..., K...,., and M,... are the maximum values of Leven, L_, K, and Mrequired at the level of/;.max 

=3%. 
• N is the dimension of the matrix if all the states up to the maximum values of L •, L 0

, K, and Mare included. 
'N mm is the size of the minimum truncation scheme for basis vectors at the level of 3% or larger contribution. 
• N' is the dimension of the matrix after the look-up table is applied to the N-dimensional basis set given in 
footnotee. This lookup table specifies an Mm;,, and an Mmax for each important pair of L andK. For 1/, = 90" 
the new selection rules discussed in the text were also utilized. 
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TABLE III. Truncation parameters for 2D-ESE spectra.• 

Spin R 
No. probe (s- 1) ,l, L:;,.,. L~.x Km.,. Mm.,. N N' Nmin 

1 Tempone 107 0 10 7 6 2 123 94 92 
2 Tempone 101 10 16 7 2 2 108 81 76 
3 Tempone 101 1 10 7 6 10 1440 752 586 

(90" tilt) 
4 Tempone 101 10 16 15 6 6 2601 931 607 

(90" tilt) 
5 Tempone 106 0 22 17 10 2 429 317 307 
6 Tempone 1Q6 5 20 15 8 2 333 223 209 
7 Tempone 106 10 16 11 4 2 168 131 120 
8 Tempone 106 10 20 19 10 12 8196 3804 2835 

(90" tilt) 
9 Tempone lo-5 0 44 37 18 2 1485 1010 971 

10 Tempone 1()4 0 88 71 28 2 4614 2706 2506 
11 CSL 106 0 22 19 22 2 600 503 485 
12 CSL lo-5 0 46 37 46 2 2310 1877 1815 

"Parameters have the same meaning as in Table II. Unlike Table II, however, all states contributing at least 
0.03% are included for the sensitivity required to simulate 2D-ESE spectra. 

basis sets significantly larger than the MTS as has been the 
normal procedure. 20-

23 Then we determined a simple set of 
truncation rules corresponding to the maximum values of 
indices: L •, L 0

, K, and M that are consistent with our results 
for the MTS yielding a basis set of dimension N, which is 
given in the Tables. [Note that we distinguish between even 
and odd L values by superscripts e and o.] The actual N min 
corresponding to the MTS is always smaller than this. 

Some general observations are that the values of N and 
N min are consistently several times greater for 2D-ESE vs cw 
ESR as one might anticipate from the greater sensitivity of 
the former (i.e., ./;,max of 0.03% vs 3% ). In the cases for 
isotropic fluids or for ordered fluids with 1P = 0° (i.e., no 
tilt), N min < N, but N min is at most about a factor of 2 smaller 
with the largest differences for the slowest motions. This 
implies that the simple truncation rules of defining an L ~ax, 
L ~ax• Kmax• andMmax in Tables II and III yield most of the 
pruning of basis vectors for the relatively faster motions. Yet 
substantial further pruning can be realized in the cases of 
very slow motions. On the other hand, cases with 1P = 90°, 
which yield much larger matrices, are characterized by val
ues of N min that are much smaller than the values of Nob
tained by the simple truncation rules. 

Our calculations, summarized in Tables II and III are 
for two classes of nitroxide problems. In the first class we 
assume that the hyperfine tensor A is axially symmetric, and 
we can choose the principal axis of diffusion to be parallel to 
the principal (cylindrical) axis of A so thatAzz >A"" =Ayy• 
This would be possible, for example, if the rotational diffu
sion tensor R were isotropic. Since this is frequently the case 
for the small TEMPONE (2,2,6,6-tetramethyl-4-piperi
done-l-oxyl) probe, we shall nominally refer to the first class 
as TEMPONE parameters. 

In the second class, the principal axis of an axially sym
metric tensor R is taken to be along the principal x axis of the 
A tensor. Such would be the case for the long rigid probe 

CSL21 (cholestane), which normally exhibits anisotropic 
diffusion, so we nominally refer to this class as CSL param
eters. For both classes we consider the limiting case of iso
tropic R, since this usually implies the largest MTS. We see 
from Tables II and III that the choice of CSL parameters 
leads to larger MTS, as would be expected for the reduced 
symmetry. (Note that the g tensor used in these tables is not 
axially symmetric as in the case for nitroxides. ) 

4. Truncations In the absence of orienting potential 

The best understood calculations are those for the cw 
ESR line shapes for the TEMPO NE class. The maximum L, 
K, and M needed for an adequate representation of the cw 
ESR spectra of this class may be found in Tables II and III 
for a sequence of diffusion rates. The important trends to 
note are that L ~ax increases by a factor of2 for every order of 
magnitude decrease in diffusional rate, and that L ~x and 
Kmax follow a similar pattern except they seem to remain 
almost constant for diffusion rates slower than 1 a5 s - 1

. 

Also, symmetry restrictions require Mmax ,2. 
The difference between N and N min is due primarily to 

the fact that the M = 1 and 2 ( therefore the singly and dou
bly forbidden spin transitions) are not important for large 
values of K, and the maximum value of K depends on the 
particular value of L. Thus, it would be insufficient to specify 
a single Kmax, as in the Tables, to achieve a basis set of dimen
sion close to N min. The maximum value of K needed usually 
occurs for L < Lmax, and the full tensorial basis is needed up 
to this point. The maximumK for L > Kmax then decreases as 
L increases. This phenomenon, together with the fact that 
the larger M values are not important for large K, suggest 
that the discrepancy between N and N min could be signifi
cantly decreased if a maximum (and minimum value) for 
the M index for evey important value of K and L could be 
incorporated into the definition of the basis set. We therefore 
constructed a lookup table which lists each set of L and K 
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values that contributes one or more basis vectors to the 
MTS, and for each such set it lists the maximum and mini
mum value of M. The value of N ', the dimension of the basis 
set determined with the aid of the lookup table is much closer 
to Nmm than is N (cf. Tables II and III) indicating that the 
development of new truncation rules would be valuable even 
for these relatively simple problems. 

The basis sets required for 2D-ESE spectra of the TEM
PONE class are much larger but qualitatively quite similar 
in character to the basis sets needed for cw ESR calculations. 
The major difference in the pattern of important basis states 
is that L :..X is closer to L !.ax for 2D-ESE calculations, and 
the fact that the L ::,.,. dependence is more along the lines 
expected from the results in I, which suggested an inverse 
cube root dependence of Lmax on R. The pattern of dimin
ished importance of the states with large M and K indices 
and states with large L and K seen for cw ESR is also ob
served here. (It should be noted that only the two slowest 
diffusion rates shown in the tables are slow enough for the 
simplified 2D-ESE theory to be strictly valid.) The ratio of 
N' to N min is roughly the same for cw ESR and 2D-ESE. 

The CSL class of spectra require a substantially larger 
basis set for the same diffusion rate as mentioned previously. 
A comparison of the basis sets for the two classes of probes 
show that L ::,.,. and L ::.U. are nearly identical for both cw 
ESR and 2D-ESE spectra. In contrast, in all cases Kma:r. 
= L !.ax for CSL calculations while for TEMPONE, Kmax 
< ( 1/2) L !.ax. The major qualitative differences between the 
basis sets needed for TEMPONE and CSL classes for the 
same diffusion rate are that for the latter, states with large L 
and small values of Kare less important, whereas the M> 1 

3250.0 3300.0 

GAUSS 

states are important for large K but not for small K. The 2D
ESE results for the CSL class of parameters show patterns 
similar to the cw ESR results. Note also the effectiveness of a 
lookup table defining an Mmin and Mmax for each Land K as 
demonstrated by the close agreement of N' and N min for the 
CSL case. 

For a case illustrated in Tables II and III we have plot
ted cw spectra and 2D contours. In the figures we exhibit 
two representative examples to show the type of spectra we 
are considering. In Figs. 1 and 2 the cw derivative spectrum 
(entry 10, Table II) and the 2D contours (entry 10, Table 
III) are shown, respectively. 

5. Truncations In the presence of orienting potential but 
no director tilt 

The introduction of a potential into the diffusion opera
tor qualitatively changes the truncation problem because of 
the introduction of large off-diagonal real matrix elements. 
For very slow motions, a strong orienting potential can actu
ally decrease L ~, L ~"", and Kmax. Because of this phe
nomenon, the agreement between N and N min is much better 
than in other slow-motional cases. The increase of L :'nax for 
R = 107 s- 1 appears consistent with earlier observations on 
cases of faster (but still slow) tumbling. 1 

6. Truncations In the presence of orienting potential 
and 90° director tilt 

Calculations involving both an orienting potential and a 
nonzero director tilt were done only for the TEMPONE 
class. The trends of larger Lmax and Kmax for smaller R de-

3350.0 

FIG. 1. cw ESR derivative spectrum. Pa
rameters correspond to entry 10 in Table 
11. An "intrinsic linewidth" of I G has 
been added. 
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FIG. 2. Normalized 2D contours and the w = 0 slice obtained from 2D
ESE spectra (cf. Ref. 2). Parameters correspond to entry 10 in Table III. 
An "intrinsic linewidth" of 1 G has been added. 

scribed previously are clearly evident here. In addition, the 
nonzero director tilt breaks the M = p restriction, thus Mmax 
> 2 is allowed and is required to adequately represent the 
spectrum. 

There are, however, some rather surprising facts that 
emerge from a detailed study of the important basis vectors. 
For instance, there are large classes of basis vectors which 
are not coupled to the starting vector. Since the starting vec
tor for the case of a cylindrically symmetric potential con
tains nonzero elements only for states with even L and 
K = M = p = 0, only the states which are coupled to these 
by the stochastic Liouville operator are important. The only 
interaction term included in these calculations which can 
couple states with different Mand p indices is the A (hyper
fine) superoperator. However, because of the special sym
metry of the ,{I = 90° problem, the states with 

(1) evenL,M = 0,p = 1, andq = ± 1, 
( 2) odd L,M = 0, p = 2, and q = 0, 
(3) all£, evenM,p = 0, and q = 0, ± 2 

are found to be decoupled. This decoupling does not depend 
on the approximation of axial symmetry for A. It appears 
that this decoupling is a result of the properties of the Wigner 
rotation matrices, d ~.m• (,{I), for tp = 90° which occur in the 
definition of the spin Liouville superoperator matrix ele
ments. (Investigations on other symmetry-related simplifi
cations of the 90° tilt problem are in progress.) 

The large difference between N and N min underscores 
the importance of further truncation. The introduction of 
the simple lookup table of the type described above improves 
the agreement, but clearly does not completely resolve the 
discrepancy. The remaining difference between N' and N . mm 
is due to the fact that not all symmetry-allowed values of p 
and q are important for large values of L. The elimination of 

these states will require a more complete lookup table and/ 
or more extensive truncation rules. 

7. Comments 
The estimation of the MTS is a very difficult problem to 

describe in general terms because of the large number of 
input parameters needed to define the problem. Only a frac
tion of the full range of these parameters has been considered 
here. It appears that there are three ways to proceed in defin
ing a lookup table appropriate for a given problem; ( 1 ) to 
use a large database containing all the quantum numbers 
associated with each important basis vector for a wide range 
of input parameters; ( 2) to develop semiempirical rules, as 
illustrated above and in I, to handle the complicated trends 
observed in this work which involves more complicated 
cases than considered in I, and ( 3) a hybrid of the two pre
vious methods. 

The database approach is straightforward in many re
spects. One would simply generate lists of important quan
tum numbers for each given set of input parameters ( and 
truncation criterion) and add these lists to the database. The 
items in the database could then be cross-referenced accord
ing to type of magnetic tensor parameters, diffusion con
stants, tilt angles, etc. To do a calculation, one would search 
through the database for a closely related problem that was 
done previously. The major problem with this approach is 
defining "closely related" and managing the very large 
amounts of data needed to make a useful database of this 
type. On the other hand, this approach would be very effec
tive in cutting down computation time if a very closely relat
ed problem was previously catalogued. In fact, the spectra 
themselves could be included in such a database. This might 
be valuable in choosing an initial set of input parameters for 
the fitting of a new experimental result. 

A second approach, based on the development of em
pirical rules to determine an appropriate M min and M max for 
each important L and K is also possible. In many ways this 
approach is more appealing, because it attempts to organize 
the very large amount of information along physically plau
sible lines. This approach suffers from the necessity of pro
ducing a complicated set of rules that could deal with the 
entire body of knowledge at once by finding useful patterns. 

The third method, a hybrid, is based on the use of a 
database in the initial stages from which a reasonable set of 
empirical rules could be found. This would allow one to split 
up the problem into many smaller subproblems which could 
be studied individually. For instance, the importance of the 
individual elements of a block of states with a given L value 
could be studied as a function of input parameters. The pat
terns found for each L block could then be compared to give 
an overall scheme. The database could be assigned a second
ary role once truncation rules are established and verified. 19 

D. Direct calculations of spectra and spectral densities 
by conjugate gradients 

We have already employed CG to calculate the cw ESR 
spectrum for several values of the sweep variable in order to 
determine the MTS. It is, of course, possible to employ this 
direct approach to compute the entire cw spectrum from Eq. 
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( 3 ) . In our previous discussion ( in Sec. III C) we estimated 
that the calculation at one field position is about five times 
faster on average than the diagonalization of A. This would 
mean that for a complete spectrum, for which typically 200 
values of the sweep variable would suffice, the direct method 
would take 40 times longer. 

One might, however, hope that as the CG calculation is 
performed for smaller increments of the sweep variable, then 
even fewer iterations per sweep position would be required 
when the initial guess is the solution to the previous sweep 
position. We have performed some numerical experiments 
for a matrix of N = 1743 to test this. For example we find 
that if we increase the number of sweep positions from 21 to 
201 (i.e., by a factor of9.57) the computer time required to 
complete the calculation increases by a factor of 5.47 (for 
r 2 = 10-4 termination) and by a factor of 3.61 (for 
r 2 = 10-2 termination). This indicates that one does im
prove the efficiency of the calculation in this manner espe
cially when a larger r 2 is used. It should be mentioned, how
ever, that if a larger r 2 (e.g., 10-2

) is used for field sweeping, 
some smoothing procedure and/ or extrapolation methods 
(cf. below) will be necessary. Based upon our numerical 
experiments we expect that further efficiency could be 
achieved by letting the increment in sweep variable to be 
variable so that calculations are performed with smaller 
(larger) increment in regions where the spectrum is rapidly 
(slowly) changing. 

Another way in which we have speeded up the direct 
calculation (in the above) is by preconditioning the A' ma
trix. Preconditioning is a device to improve the convergence 
of an iterative solution to a matrix problem [ e.g., Eq. ( 3)]. 
Given a symmetric positive definite matrix A' = M - N, 
one finds that the CG method can be accelerated utilizing M 
as a preconditioner provided M is symmetric and positive 
definite. 7 In our case of complex symmetric matrices, if we 
let M = r + r;- 11 and N = i(L- amt), then M can be 
made symmetric and is positive definite. The preconditioned 
problem one solves is 

A'(M112 lu)) = M- 1121v), (45a) 

where the preconditioned matrix A' is 
(45b) 

Forisotropic rotational diffusion, where the eigenvalues 
of the diffusion operator are proportional to L (L + 1), the 
stochastic-Liouville matrix becomes dominated by the real 
parts of the diagonal elements for large L. The effect of the 
preconditioning is to set these real parts equal to unity for all 
diagonal elements and to scale the other matrix elements 
accordingly. For more general cases ( including a potential), 
in order to keep the calculation of M-112 simple we have just 
let M be diagonal and containing just the diagonal elements 
ofr+r;- 11 

In general, we do find that the preconditioned CG algo
rithm 7 does speed up the convergence of the calculation. For 
example, a case with N = 1743 required 104 CG steps to 
reach r 2 = 10-4 before preconditioning, but after precondi
tioning it required only 45 steps. Unfortunately, because pre
conditioning is not a similarity transformation, it cannot be 
used to diagonalize A for purposes of calculating spectra. We 

employed the faster preconditioned algorithm for the results 
reported in Tables II and III. 

Based upon these results we believe that tridiagonaliza
tion by the turbo-LA is the more efficient method for cw 
ESR, and we recall that the direct method does not even 
apply to 2D-ESE. However, there are some cases where dia
gonalization methods are not so suitable. These include ( 1 ) 
ESR on transition metal ions which require a wide range of 
sweep of the static magnetic field, 24 and ( 2) ESR in the pres
ence of strong saturating radiation fields. 25

•
26 In the former 

case the contribution of the g tensor in the stochastic-Liou
ville equation ( SLE) ( which is dependent on the static mag
netic field) is itself varying considerably, so one would have 
to diagonalize the spectrum for many different values of the 
static magnetic field. In the latter case, it is no longer possible 
to factor out the sweep variable from A' as a constant matrix 
as was done in Sec. I. For such cases the direct method by 
CG should be useful. 

Further enhancement of the speed and efficiency of the 
direct CG method can be made by acceleration of the con
vergence by extrapolation methods. We may expect that 
only the first several recursive steps of CG actually provide 
new information; later steps merely remove undesirable 
"transients." An effective means of improving the conver
gence rate of a sequence is the Shanks transformation. 27 For 
the present case, let us define the spectrum obtained after n 
CG steps at sweep position am; from Eq. (2) by/ ~0> (m; ). 
Then the Shanks transformation in its simplest form would 
provide a new approximation I~ 1 > (m; ) given by 

]Cm) (m )/<m> ('·') J<m>(m )2 
J<m+l)(w.) = n+I i n-1 "'i - n ; 

n ' /~~\ (W;) + /~~\ (m;) - 2/~m>(w;) 

(46) 

for m = 0. An ( m + 1) th order approximant can be ob
tained by iterating this expression m + 1 times. Equation 
( 46) can be generalized to a k th-order Shanks transform by 
employing 2k + 1 members of the sequence I~~ k (m; ), 

I~~k+ 1 (w;), ... , /~~\(m;),27
•
28 We have made a prelimi

nary study of the generalized and iterated Shanks trans
forms, and we find they are quite effective in accurately esti
mating /(w;) utilizing only n $ 20, in some cases. Thus, 
while the full power of such methods has not been fully ex
plored, they do show substantial promise. 

IV.SUMMARY 

We have found that the conjugate gradient method 
(CGM) may readily be extended to the complex symmetric 
matrices found in ESR spectral problems. These examples 
are also prototypical of Fokker-Planck forms. While the 
CGM can be used to calculate spectra by solving for the 
spectrum at each value of the sweep variable, its lesser 
known equivalence to the LA leads to an algorithm which 
provides the Lanczos tridiagonal form from which cw spec
tra can be computed by continued fractions, while 2D-ESE 
spectra can be computed after diagonalizing the tridiagonal 
matrix. This CGM also provides the residual rl at each re
cursive step, which serves as a "built-in" objective criterion 
to determine when convergence to the desired accuracy has 
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been achieved. Such a convenient criterion is lacking in the 
conventional LA. We find that an r l ~ 10-4 is a conservative 
estimate of convergence for cw ESR spectra, but an r l 
~ 10- 10 is appropriate for 2D-ESE spectra, thereby also em
phasizing the greater sensitivity of the latter type of spectros
copy. 

The same CGM, but utilized in the format for calculat
ing spectra, may be applied at several key spectral positions 
to directly determine the importance of each original basis 
vector in contributing to the spectrum at each of these posi
tions. A simple criterion of relative importance may then be 
utilized to determine the minimum truncation scheme 
(MTS). We estimate from our studies that a basis vector, 
which contributes at least 3% at any cw-spectral position be 
included in the MTS, whereas for 2D-ESE it is advisable to 
retain basis vectors which contribute at least 0.03%, again 
emphasizing the greater sensitivity of the latter experiment. 

In past applications of the LA it was usually necessary 
to choose significantly larger basis sets than the MTS or al
ternatively to repeat a calculation with basis sets of different 
size in order to guarantee convergence because of the ab
sence of an objective procedure to determine the MTS. We 
have found from a variety of examples of cw ESR and 2D
ESE spectra that simple rules for truncation may be devel
oped utilizing our method. Such rules facilitate the selection 
of basis sets that are reasonable approximations to the MTS. 
This is especially true for ESR problems without an orient
ing potential, or with a potential but where the macroscopic 
director associated with this orienting potential is aligned 
parallel to the static magnetic field B to preserve the cylin
drical symmetry in the lab frame. When this symmetry is 
destroyed by tilting the director at an angle ¢ with respect to 
B, then, in general, many more basis vectors are required, 
and the dimension of the problem is vastly increased. This is 
one of the most challenging problems in the simulation of 
ESR spectra. An important observation that we have made 
in this work, is that such cases can be severely truncated 
beyond those provided by the simple rules useful for the 
¢ = o• case. Based upon our objective determinations of the 
MTS for cases where¢= 90°, we determined a new set of 
truncation rules that could not be forseen given the compli
cated structure of the SLE when ¢-I= 0°. We even found a new 
selection rule applicable to the case of t/J = 90°, which had 
not previously been appreciated. As a result, the "tilt" case 
of t/J = 90" is now rendered a much more tractable problem, 
and future work along these lines should lead to the MTS for 
the range ofO"<r/J<.90". The fact that the matrix structure of 
the SLE becomes so complicated probably means that the 
implementation of the MTS would require a combination of 
simple truncation rules along with a computer-generated 
"lookup" table with a listing of the relevant basis vectors. 

Once the MTS and the required number of recursive 
steps have been determined for a given range of the relevant 
physical parameters it is possible to greatly speed up further 
calculations by the LA. This is expected to be particularly 
useful in fitting experimental results to these parameters by 
(nonlinear) least squares methods which necessarily involve 
many computations of the spectrum in the course of a single 
fitting. 

Finally we note that a combination of selection of the 
MTS, plus the use of rl to determine the needed number of 
Lanczos recursions, is expected to provide, in complicated 
problems, more reliable calculations that will not be masked 
by round-off error, since ( 1) the rl test can be used to deter
mine when round-off error has become a problem, and (2) 
only the minimum number offtoating point arithmetic oper
ations will be required once the MTS is used. 

In a more fundamental sense, we recall from previous 
work the close connection between the Lanczos projection 
operator and the Mori projection operator in statistical me
chanics. 4•

6
•
13 Our analysis of the COM and its correspon

dence with the LA also appears to lead to a further clarifica
tion of the relation between these methods and that of 
Mori. 15 

These above features can be expected to make the turbo
LA approach an extremely efficient procedure for calculat
ing ESR (and NMR) spectra as well as other Fokker
Planck forms. 
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