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Electron spin-echo (ESE) and two-dimensional electron-electron double resonance (2D ELDOR) 
experiments have been performed as a function of director orientation and temperature in the smectic 
A phase of the liquid crystal S2 for the spin-probe PD-tempone(2 X 10-3 M). Over the entire 
temperature range studied (288-323 K) we observe significant 2D ELDOR cross peaks only for t:..M1 

= ± 1 indicative of 14N spin-relaxation and negligible Heisenberg exchange. From the angular 
dependent 14N spin-relaxation rates we obtain the dipolar spectral densities at the hyperfine (hf) 
frequency, whereas from a combination of ESE and 2D ELDOR we obtain the dipolar and Zeeman­
dipolar spectral densities at zero frequency. The angular dependent spectral densities were successfully 
decomposed into their basic components in accordance with theory. The angular dependent spectral 
densities at the hf frequency are not predicted by a model of anisotropic rotational diffusion in a 
nematic orienting potential, but are consistent with predictions of a model due to Moro and Nordio of 
solute rototranslational diffusion in a McMillan-type potential. The angular dependence also indicates 
that order director fluctuations in the smectic phase are suppressed at frequencies on the order of 10 
MHz. An additional contribution to solute reorientation due to cooperative hydrocarbon chain 
fluctuations is suggested to account for the behavior of the observed spectral densities at zero 
frequency. An evaluation of the relevance of several other dynamical models to this experimental work 
is also presented. 

I. INTRODUCTION 

A. Motional dynamics in liquid crystals 

NMR and ESR have been extensively utilized to study 
solute dynamics in liquid crystalline media. The solute spin­
probe experiences a potential associated with the anisotropic 
solvent-solute interaction. Rotational motion of the spin­
probe is strongly influenced by this potential, and this in turn 
significantly influences spin-relaxation. In the simplest 
model the probe experiences a static orienting potential due 
to the equilibrium potential of mean torque 1

•
2 in the liquid 

crystal. Spin-relaxation induced by the resulting restricted 
rotational diffusion of the probe molecule in the presence of 
this orienting potential may be used to probe the dynamic 
structure in the anisotropic medium. A somewhat more so­
phisticated model would include anisotropy in the viscosity 
of the solvent. 1•

2 More detailed models of solute dynamics 
also consider the translational diffusion of the spin-probe in 
the medium.3

-
7 In particular, if there is positional ordering 

of the liquid crystalline molecules, as in smectic phases, 
there will be a coupling between translation and rotation as 
the probe experiences different regions of the smectic layers 7 

or regions with different instantaneous properties ( e.g., fluc­
tuations5

). In other words, the probe experiences a continu­
ously variable local orienting potential, as it translates 
through the medium. 

In liquid crystalline phases one must consider cooperat­
ive phenomena, which can influence the rotational dynamics 
of the spin-probe. The mechanism which has received the 
most attention is the hydrodynamic model of order director 
fluctuations (ODF) suggested by Pincus. 8 ODF arise from 

•> Supported by NSF Grants Nos. DMR 86-04200 and CHE 8703014 and 
NIH Grant No. GM-25862. 

collective motions of the liquid crystalline molecules causing 
the director to fluctuate about its mean position. Many ob­
servations of nematic ODF have been reported9

-
16 based on 

the w 112 Larmor frequency dependence of the NMR T, that 
was predicted by Pincus and others. 3

•
8

•
10

•
17

•
18 In the case of 

ESR, Polnaszek and Freed 1 estimated some time ago that 
the contributions of ODF to the CW linewidth would be 
negligible for spin-probes in nematics. NMR measurements 
in smectic mesophases have been fewer in number and the 
conclusions have been rather conflicting. 12

•
16

•
19

•
20 The theo­

retical results ofBlinc et al., 19 Marqusee et al.,2' and Vold et 
al. 17 predict a linear dependence of nuclear T, on w as a 
result of restricting ODF to the plane of the layered struc­
ture, i.e., to two dimensions. The field cycling NMR experi­
ments of Mugele et al. on the smectic A phase of TBBA 
[terephthal-bis(butyl-aniline)] appear to support this pre­
diction, 12 although it is not clear that these expressions 
should apply to a multilayered structure such as TBBA. The 
linear dependence in w of smectic ODF is not so obvious 
from the more extensive theoretical work ofVilfan et al., but 
a marked deviation from nematic-like behavior is predicted 
at low frequencies. 18 Also important is the conclusion of 
Noack et al. that smectic ODF are significant only at fre­
quencies between about 1 and 100 kHz. 16 Extensions of the 
arguments of Polnaszek and Freed 1 indicate that smectic 
ODF should not be important for ESR. 

Another important mechanism is that of order param­
eter fluctuations ( 0 PF) discussed by F reed3 to explain some 
anomalies in ESR linewidth measurements22 near the nema­
tic-isotropic (NI) phase transition. The OPF model in­
volves critical types offluctuations in the orienting potential. 
OPF should not be significant away from the NI phase tran­
sitions. Anomalies observed in the ESR linewidths near the 
nematic-smectic A (NA) phase transition5

•
6

•
23

•
24 have been 
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interpreted in terms of a somewhat related model involving 
critical fluctuations of the smectic director which modifies 
the orientational relaxation of the spin-probe. 5•

23
•
25 It has, 

however, been proposed that away from such phase transi­
tions a somewhat related but noncritical mechanism of slow­
ly relaxing local structure1

•
3 (SRLS) is likely to be more 

relevant. In the SRLS model the slowly fluctuating compo­
nents of the anisotropic intermolecular potential are regard­
ed as a local structure, which persists for a mean time r x 

much longer than the rotational correlation time r R. SRLS 
appears to be important in smectics. 2•

26 It has also been sug­
gested that the smaller probes such as PD-tempone are ex­
pelled from the aromatic region of the layered structure in 
the smectic phase. 2•

27 In this case, SRLS may be associated 
with a dynamic cooperativity of solvent hydrocarbon chain 
motion28 sensed by the probe molecule. That is, the probe 
undergoes rapid reorientation in the locally ordered hydro­
carbon chain region of the mesophase, followed by much 
slower relaxation of the local order. In other studies it has 
been inferred that SRLS is important in nematics29 and in 
isotropic phases of nematogenic molecules above the NI 
transition. 30 

NMR experiments to elucidate the details of molecular 
dynamics in liquid crystals are currently being utilized in 
many laboratories. Multifrequency NMR and field cycling 
NMR 16 are proving particularly useful. The potential of 
ESR in studies ofliquid crystals has been realized to a much 
lesser extent, in part because of limitations of CW methods 
for spin-relaxation ( see below). One reason why ESR can be 
very useful in such studies is the substantially lower magnet­
ic fields required to polarize the electron spins. At the high 
magnetic fields typical of modern NMR spectrometers the 
liquid crystalline phases, characterized by molecules of sub­
stantial anisotropy in their diamagnetic susceptibility, align 
with the mesogen director parallel to the external field direc­
tion. Orientation dependent nuclear spin-relaxation mea­
surements in the smectic A and C phases are thus difficult. 
Nevertheless some proton T, and T1P measurements, 18

•
19 as 

well as 2H T1 measurements31 have been reported. As we will 
see in the following sections, such orientation dependent re­
laxation measurements can be routinely performed at the 
lower external magnetic fields of ESR, and in fact are found 
to be sensitive to the details of the molecular dynamics. 

B. Modern ESR methods 

In conventional ESR experiments, based upon contin­
uous microwave irradiation, one deduces aspects of the reor­
ientational process by simulating the spectral line shapes. In 
the motional narrowing regime one obtains several Lorent­
zian lines whose widths include contributions from the spec­
tral densities of the motion at zero frequency, the hyperfine 
frequency w0 , and the electron Larmor frequency we· '-3 We 
have previously pointed out that electron-electron double 
resonance (ELDOR) experiments32

-
34 combined with ESR 

linewidth and saturation studies would, in principle, be very 
useful to decompose the electron spin-relaxation data into 
the specific spectral densities occuring at we, wa, and 
w = 0.4

•
34

•
35 The additional data from ELDOR would there­

by permit a more critical test of the frequency dependence of 

the spectral densities than could be obtained from just 
linewidth data. This was illustrated by van der Drift and 
Smidt who worked with a specially constructed CW EL­
DOR unit and completed such experiments on PD-tempone 
in isotropic media36 and in the liquid crystalline solvent 
8CB.26 However, from an experimental point of view, the 
CW ELDOR technique, combined with CW linewidth and 
saturation suffer from possible systematic error due to ef­
fects of inhomogeneous broadening, although efforts are 
made to account for them. 

We have recently developed several modern time do­
main ESR techniques for the study of spin-relaxation and 
motional dynamics. Our initial plan was to apply electron 
spin-echo (ESE) techniques to spin-relaxation in liquid 
crystals because it would offer: ( 1 ) the ability to separate 
homogeneous from inhomogeneous contributions to the 
linewidths; ( 2) the ease of simultaneously performing T, 
measurements; ( 3) the possibility that special ESE tech­
niques could provide information on motional dynamics in 
addition to that from CW studies; and ( 4) the possibility of 
extending the range of study to slower motions. 

When an echo technique is applied to spin-probes with 
inhomogeneously broadened CW ESR lines ( e.g., due to un­
resolved-or partially resolved-proton super hf interac­
tions in the case ofnitroxides) the measured phase-memory 
time TM is equal to T2 , the homogeneous linewidth of a sin­
gle spin-packet. 37

-
39 Our past attempts at removing, or at 

least reducing, the inhomogeneous broadening were to uti­
lize deuterated spin-probes such as PD-tempone for this 
purpose, but it is inconvenient to have to perdeuterate all the 
spin-probes and -labels. A more serious problem occurs in 
the case of oriented liquid crystalline samples, where small 
amounts of disorder can lead to inhomogeneous broadening 
that is difficult to distinguish from motional broadening. 2 In 
fact, we have shown that standard well-oriented tube sam­
ples typically exhibit some orientation dependent inhomo­
geneous line broadening from residual "mosaicity," espe­
cially in the smectic phases, and it is very difficult to reliably 
deconvolute it from the CW line shapes. Plate samples can 
also cause a variety of problems in CW ESR. 35 

In order to realize the potential ofESR relaxation stud­
ies, we have developed pulsed ELDOR techniques.4

0-4
3 The 

most powerful of these is the two-dimensional Fourier 
transform ELDOR method (2D ELDOR).4

0-4
2 This has 

advantages over CW ELDOR in that: ( 1) relaxation rates 
are directly measured rather than just their ratios; ( 2) the 
effects of inhomogeneous broadening are canceled out; ( 3) 
the radiation fields (as well as the field modulation) are ab­
sent during the main evolution time of the spins; and ( 4) all 
of the ELDOR transitions, as well as the ESR transitions, 
are simultaneously obtained in a single 2D spectrum. Thus, 
( 1 ) removes the need for additional techniques; ( 2) suggests 
greater accuracy in data analysis ( even without having to 
resort to deuteration of spin-labels); ( 3) eliminates compli­
cating effects of finite irradiation fields in the analysis of the 
experiment; and ( 4) means greater efficiency in the data 
acquisition and greater reliability. Such a technique now en­
ables us to distinguish in much greater detail, and with high 
reliability, the various spin relaxation processes and their 
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associated spectral densities for our studies. 
The 2D ELDOR technique is first of all based upon 

Fourier transform (FT) ESR which was only very recently 
developed. This had posed a great instrumental challenge, 
but, because of new developments in microwave and digital 
electronics, it has been possible to obtain the broadband irra­
diation and detection required for ESR ( ~ 100 MHz for mo­
tionally narrowed nitroxides) at microwave frequencies, in­
cluding the nanosecond time resolution required.40

•
41 

In this paper we describe an extensive study of the dy­
namics of the nitroxide spin probe 2,2,6,6-tetramethyl-4-pi­
peridone-N-oxyl-d16 (PD-tempone) in the smectic A phase 
of the liquid crystal mixture, S2 ( cf. Fig. 1 ) performed by a 
combination of electron spin-echo T2 measurements, and 
2D ELDOR measurements. We also contrast these results 
with those obtained from CW ESR. These studies are per­
formed as a function of both temperature and sample orien­
tation in the magnetic field. We demonstrate the significant 
dependence of spin-relaxation on director orientation in 
smectics, and we utilize our orientation dependent data to 
investigate the relevance of several models of solute dynam­
ics in the smectic mesophase. 

II. THEORETICAL BACKGROUND 

A. The smectic A phase 

All nematic and smectic A phases have orientational 
order. That is, orientational order parameters (9 iM ( n)) 
defined by 

(9iM(!l)) = ~ f d!l exp[ - U(!l)/kT]9iM(!l), 

(1) 

are nonzero, where Z is the normalization constant given by 

Z = f d!l exp[ - U(!l)/kT], (2) 

9 iM ( n) are the Wigner rotation matrix elements and 
U( n) is the intermolecular potential. In the well known 
Maier-Saupe molecular ( or mean) field description of un­
iaxial nematics44 this potential is of the form 
S9'fxi (!l) = SP2 (cos /3), where the order parameter Sis de­
fined by S= (9'fxi (!l) ). In the case of solute probe ordering 
Polnaszek and Freed define the potential U( n) as a poten­
tial of mean torque, 1•

49 given in uniaxial phases by 

(3) 

The terms in Eq. ( 3) for which K ¥- 0 arise from any lack of 
axial symmetry of the solute spin probe. For simplicity, one 
often only considers the leading term €6 9 'fxi ( n) in Eq. ( 3), 
which has the angular dependence of the Maier-Saupe po­
tential, but does not depend explicitly on S, since it is not a 
mean-field expression. 

In the smectic phase, unlike in the nematic phase, there 
is also translational order, evidenced by the organization of 

liquid crystal molecules into layers. The Maier and Saupe44 

description of the nematic phase was extended by McMil­
lan45 and Kobayashi46 to describe the smectic A phase. 
McMillan introduced an additional order parameter to de­
scribe the positional ordering of the molecules in the layered 
structure of the smectic A phase. The Maier-Saupe and 
McMillan models have in common that the intermolecular 
potential may be replaced by a mean-field potential for a 
single molecule. 47 In the smectic A case this potential is also 
a periodic function of z/ d, where z is associated with transla­
tion along the director and d is the bilayer thickness, i.e., 
U = U(!l,z/d). Specifically, one can write the McMillan 
form for the mean-field potential as48 

U(/3,zl d) = Uo + U1 y cos( 
2
;z) 

+ [ W0 S+ W1acos(
2
;z)]P2 (cos/3), (4) 

where S, y, and a are the mean-field order parameters asso­
ciated with orientation, position, and the coupling of orien­
tation and position, respectively. More generally, one can 
utilize the functional form of Eq. ( 4) with respect to z and 
9'fxi (!l) as the leading term in an expansion of the "poten­
tial of mean force and torque" without invoking the mean­
field approach in which U depends explicitly on the mean­
field order parameters ( cf. below) . 7.49 

B. Spin-relaxation in the motional narrowing regime 

Spin-relaxation in the motional narrowing regime is de­
termined by the reduced correlation function 

(&"'1 (!l,t)&"'f (!lo,t = 0)) - (&"'1 (!l)) (&"'f<!lo) ), (5) 

where &°1 ( n) is the time dependent part of the spin-Hamil­
tonian given by50 

&"'1(!l) = I ( - l)K§~KM(!l)F~(L.K)A~L.M>_ (6) 
L,K,M 

where the p•<L.K> and A <L,M> are irreducible tensor compo-µ µ 

nents of rank L, with F' in molecule-fixed coordinates, while 
A is a spin-operator in the laboratory axis system. The Euler 
angles n = (a,/3,y) refer to the orientation of the principal 
axis system of the diffusion tensor ( the molecule frame) 
with respect to the laboratory frame. More generally we 
have 

&"'1(!l,'I') = L ( - l)K§~KM' (!l)9t,.M('I') 
L,K,M,M' 

X pdL,K)A (L.M) 
µ µ ' 

(7) 

where the Euler angles n = (a,/3,y) refer to the orientation 
of the molecular frame with respect to the director frame, 
whereas the Euler angles 'I' = ( O,0,<p) denote the orientation 
of the director with respect to the laboratory frame. We as­
sume for the time being that the angles 'I' are time indepen­
dent so that Eqs. (5) and (6) apply. Since the time depen­
dence of JY' 1 ( n) is then carried entirely by the 9 ~ K.M ( n), 
we need only consider the correlation functions of the 
9L_ K,M (!l) given by 
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C - K, - K',M,M' (t) = (ii) ~l~f ( n )ii) ;_;i;tt, (!lo)) 

- (ii) f~ ( !1)) (ii) ;_;itt, (!lo)). ( 8) 

The spectral densities are Fourier-Laplace transforms of the 
correlation functions ofEq. (8), i.e., 

jK,K',M,M' (w) = Re L"' dt CK,K',M,M' (t)e - iwtt,M,M'' (9) 

where {jM,M' appears because for a uniaxial phase M = M'. 
Although the fundamental spectral densities important for 
spin relaxation are indeed given by Eqs. (8) and (9), it is 
convenient to define spectral densities directly from Eqs. ( 5) 

and ( 6) for ease of relating to observables. Thus, we obtain 
the measurable spectral density 

Jµv(liJ) = "' p12,Kp12,K'*j' , , (liJ){j , M £., µ v K,K ,M,M M,M , (10) 
K,K' 

whereµ and vindicate the magnetic tensors associated with 
the particular interactions. 

In general the spectral densities of Eq. (9) are derived 
from a stochastic time evolution operator r via the resolvent 

jK,K',M,M' (eu) = Re{ ([jD },:Ml (ieu + n-l IPeq{jDi'M') }, 
(11) 

where Peq is the unique equilibrium probability distribution 
obeying the relation 

rPeq = 0 (12) 

and the bra (t,D iM I is defined by 

({jD iM l!l) =D iM (!1) - (D iM (!1) ). (13) 

Thus, {JD iM denotes the deviation from the thermal average 
(D iM). In the following sections the spectral densities are 
given explicitly or they are derived from a stochastic opera­
tor r utilizing Eq. ( 11 ) . 

For a single nuclear spin of I we have for the dependence 
of T2 on the z component of nuclear spin M 1 

T2CM1)- 1 =A +BM1 + CM;, (14) 

where1 

A-A'=..!_l(l+ l)y; L DKD-K.{jK,K',o(Cue) 
3 K,K' 

+ 3jK,K',I (Cua) + 6jK,K',2 (eu, )} 

li2y; 
+--·-2 L FKF-K,{4JK,K',0(0) 

16/3 e K,K' 

+ 3JK,K',I (we)}, 

C = Ye L DKD _ K'{8JK,K',O (0) 
3 K,K' 

- jK,K',O (eu.) + 6JK,K',l (w.) 

- 3}K,K',1 (Cua) - 6}K,K',2 (Cue)}, 

(15) 

(16) 

(17) 

where the DK and F K are the spherical tensor components of 
the electron-nuclear dipolar (END) and Zeeman tensors in 
the diffusion tensor principal axis system,51 and where the 
li)a = (1/2)alr.l ±wn, with li)n the nuclear Larmor fre­
quency. In the case of PD-tempone, they axis of the magnet­
ic tensor principal axis system is coincident with the z axis of 
the diffusion tensor principal axis system, and the probe is 
said to be "y ordered." In Eqs. (15 )-(17) and below, we 
have removed the redundant M' subscript on the spectral 
densities. In terms of measurable spectral densities [ cf. Eq. 
( 10) ] we obtain 

A -A'= 2 JfD(Cua) + jJgD(eu,) + 4JfD(eu,) 

+ iJgG(0) + 2 JfG(eue ), 

B = lfJgG(0) + 4JfG(eu, ), 

C = iJ gD(0) - J fD(Cua) + 2J fD(eu,) 

(18) 

(19) 

- {J gD(eu,) - 2 J fD(eue ). (20) 

A 'in Eqs. ( 15) and ( 18) includes all other nuclear-spin inde­
pendent line-broadening mechanisms, which in the case of 
ESE Ti's is predominantly spin-rotation 1•4•51•52 for low con­
centrations of probe, whereas Heisenberg spin-exchange be­
comes important for higher concentrations. 34 For the nu­
clear spin-transition rate 2 Wn we have 

2Wn =JfD(eua) =re L DKD-K.jK,K',1(Cua) (21) 
K,K' 

and for the terms involving electron spin-transitions we ob­
tain26,34 

w. (M1) = w~R + 2 JfG(eu.) 

+4JfG(eue)M1 +2JfD(eu,)M;, (22) 

Wx,=iJgD(Cue), (23) 

Wx, = 4J fD(Cue ), (24) 

where Wx, and Wx, are the cross-relaxation rates associated 
with S ±I+ and S ±I± , respectively. 

Equations (15)-(24) are applicable when the director 
is aligned parallel to the magnetic field. If the director is 
tilted by an angle 0 with respect to the magnetic field we 
replace the spectral densities in these equations by: 

A + 2 

]K,K',M (w,0) = L Id~.~· (eu) l
2
JK.K',M' (eu ), (25) 

M'= -2 

or alternatively 
+2 

L (26) 
M'= -2 

where the d ~.~· ( 0) are the reduced Wigner rotation matrix 
elements of rank two, which can be evaluated in terms of 
their Clebsch-Gordon series expansions, 53 

ld~lt,(0)12= ( - l)M-M' L C(2,2,l;M,-M) 
I= 0,2,4 

XC(2,2,/;M', -M')d~(0). (27) 

The spectral densities in Eq. (26) have the property1 that 

J~(eu) =P~M(eu) (28) 

and hence the angular dependence ofJ~(w,0) is fully de-
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scribed by the spectral densities J~v(w), Jfv(w), and 
J!{v(w ). In this version of the motional narrowing theory, 
the 14N spin is assumed to be quantized along the laboratory 
z axis. Luckhurst and Zannoni54 point out that the form of 
Eq. (26) is accurate only when the orientational ordering of 
the probe is weak ( e.g., S<0.3), such that the axis of 14N spin 
quantization does not deviate substantially from the labora­
tory z axis. Thus we have for the orientation dependent Wn 
in the case of weak probe ordering 

2Wn(0) =~cos2 0sin2 0JgD(wa) 

+H(l-2cos2 0)2+cos2 0]JfDCwa) 

(29) 

and in general we have 

J0 (w,0) = !Cl - 3 cos2 0) 2J0 (w) + 3 cos2 0 sin2 0 J1 (w) 

+ ~ sin4 0J2 (w), 

J1 (w,0) = ~ cos2 0 sin2 0 J0 (w) 

+H0-2cos2 0) 2 +cos2 0]J1(w) 

(30) 

+ !Cl - cos4 0)J2 (w), (31) 

J 2 (w,0) =jsin4 0J0 (w) +!(1-cos4 0)J1(w) 

+ H (1+cos2 0) + 4 cos2 0 ]J2 (w). (32) 

Thus, the orientation dependent spin relaxation rates such as 
the Wn (0) yield with the application ofEqs. (30)-(32) the 
three spatial densities Jf;D(w), JfD(w), and JfD(w). We 
will see in the following sections that an experimental deter­
mination of these three spectral densities allows for a much 
closer comparison of theoretical models of the dynamics 
with experiment than is possible without the orientation de­
pendent data. 

C.2D ELDOR 

The general theory for 2D ELDOR has been outlined 
previously.41 In the case of nonnegligible Heisenberg ex­
change ( wHE ) and 14N spin-relaxation ( Wn ) we obtain six 
equations in the two unknowns wHE and Wn from which to 
determine the two relaxation rates from the volumes of six 
2D ELDOR cross peaks relative to the three autopeaks. A 
detailed examination of these expressions and their general­
izations for nonnegligible nuclear-spin dependent nonsecu­
lar terms ( e.g., cross relaxation) is given in Appendix A. In 
the special case where nuclear-spin dependent nonsecular 
terms as well as Heisenberg exchange are negligible, then 
only cross peaks for which 6.M1 = ± 1 are typically ob­
served ( with the 6.M = ± 2 cross peaks typically much 
weaker), and we obtain the very simple expression ( in the 
notation of Ref. 41 and Appendix A) 

A 

I 
(

2Q . Vr2 + V r 2 ) 
6 wn . = T In m1 1 ~ A m "' ' 

Vmr2,,. QmJ Vjr2j 

(33) 

which applies to the two cross-peaks for which m = ± 1 and 
j = 0, where Tis the mixing time, Q is the normalized matrix 
of 2D ELDOR peak volumes, and the products V;r2, are 

determined from the peak areas obtained from a single mi­
crowave pulse experiment, (cf. Appendix A). Under these 
conditions, Eq. ( 33) enables a rapid determination of Wn 
directly from two of the four cross peaks obtained in the 2D 
ELDOR spectrum. [The other two cross peaks, i.e., m = 0, 
j = ± 1, also provide information about Wn, but the expres­
sions are somewhat more complicated than Eq. ( 33) ( cf. 
Appendix A.)] 

D. Anisotropic rotational diffusion and anisotropic 
viscosity 

Anisotropic Brownian motion in the presence of a static 
orienting potential is described by the rotational analogue of 
the Smoluchowski equation.55 The Smoluchowski operator 
is given by 

I\1 = M·R·M + [M·R·(MU) ]/2kT + T·R•T/(2kT) 2
, 

(34) 

where Mis the generator of infinitesimal rotations about the 
molecular axes and R is the diffusion tensor for the molecule 
and is diagonal in the molecular coordinate system. 2 Note 
that I\1 is written in the symmetrized form obtained from 
rn by the symmetrizing transformation56 

i\1 = Po 112 (ll)rnP612 (ll). (35) 

The external torque T experienced by the molecule is related 
to the potential of mean torque U( n) by 

T = i MU(ll). (36) 

Polnaszek and Freed account for anisotropies in the vis­
cosity of the solvent with the addition of a Smoluchowski 
operator to Eq. ( 34) which is diagonal in the laboratory 
coordinate system. 1 This operator may be obtained from Eq. 
( 34) by replacement ofM in Eqs. ( 34) and ( 36) with N, the 
generator of infinitesimal rotations about the laboratory 
axes, and the replacement of R with a diffusion tensor R 
whose principal axes coincide with the laboratory axes. Pol­
naszek and Freed did not consider a cross term between rota­
tional diffusion (RD) and anisotropic viscosity (AV). Such 
a cross term may be important if the time scales for reorien­
tation about the laboratory axes and the molecular axes are 
comparable. An expression applicable in the hydrodynamic 
limit has been derived by Moro and Nordio by relating the 
diffusion tensor to the anisotropic friction tensor via the Ein­
stein relation. 57 The Polnaszek and Freed expression cannot 
be derived from hydrodynamic arguments, but merely mod­
els the effects of combined RD and AV with a diffusion oper­
ator separable into two parts: one diagonal in the molecular 
frame and one diagonal in the lab frame. Further aspects of 
combined RD and AV are considered by Lin and Freed.2 

E. Order director fluctuations 

Pincus suggested that fluctuations in the orientation of 
the director with respect to the magnetic field may be an 
important mechanism of spin-relaxation in nematics. 8 

Doane et al. introduced the notion of a finite cutoff frequen­
cy of the Fourier modes used to characterize these fluctu­
ations. 10 The amplitude of the mean square fluctuations of 
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the director for the qth mode and its decay time 7 a ( q) have 
been derived by Schaetzing and Litster.58 The presence of 
order director fluctuations (ODF) implies a time depen­
dence of the Euler angles 'II in Eq. (7), in addition to the 
usual time dependence of the Euler angles n. The combined 
effect of the time dependent n and 'II on spin-relaxation in 
nematics has been considered by Ukleja et al. 9 and by Freed. 3 

Freed obtains the following expression for the spectral densi­
ties applicable in the nematic phase: 

. K(K,M)rR 
lK,M(w) = 1 2-2 +w TR 

+2.s 2 ..w"o O [ [i__ u(wlwc) 
2 K,O M, ± I '1 2 ✓w 

( 

7
R ) 2 1/2] (37) 

- 1 + (JJ2~ .[ii- (JJC ' 

where1
•
10 

(38) 

and where S = (iil'&i ( n)) is the orientational order param­
eter defined in Eq. (1). In Eq. (38) we is the cutoff frequency 
given by we = Kq~/17 that is introduced because the hydro­
dynamic theory should break down for wavelengths 
Ac = 21rlwc comparable to molecular dimensions, with K 
the average elastic constant [involving splay (K1 ), twist 
(K2 ), and bend (K3 ) deformations47

] in the one constant 
approximation, and 17 the average viscosity. We define the 
cutoff wave vector qc by qc = 21r/l, where I is a molecular 
dimension; Zientara and Freed present a more detailed theo­
retical discussion of the hydrodynamic cutoff wave vector.59 

Also in Eq. (38) K(K,M) is the correlation function for an­
isotropic rotational diffusion and ..cf' is defined as 
..w"=k T 112/21r 312K 312 Thus for small wlw B 71 • C' 

j0_ ± i(w) ~w- 1/
2

• For large wlwc, u(wlwc )--+O and the 
ODF spectral densities are suppressed, hence the choice of 
cutoff frequency is crucial in determining the importance of 
ODF to the spin-relaxation for large w. Assuming typical 
values for a nematic of K = LOX 10-6 dyn, 1J = 0.5 P, and 
1 = 30X 10-s cm, we obtain for the cutoff frequency we 
= 8.8 X 108 s- 1 or about 140 MHz. The difference between 

the Ukleja et al. treatment and the Freed treatment is that 
the former did not properly formulate the ODF /anisotropic 
diffusion cross term. The result is that the Ukleja et al. cross 
term remains nonzero even as the orientational order param­
eter (and hence the ODF) goes to zero in the isotropic limit, 
and is of the wrong sign. Recent NMR results have been fit 
successfully with the Freed formulas including the cross 
term but are inconsistent with the Ukleja et al. cross term. 60 

To obtain an expression for the order parameter from hf 
splittings the usual expression S = ( § &i ( n)) n is renor­
malized with respect to director fluctuations giving3 

S= (iil'&iC!!))n"' 

= f d!l f d'II /eq ('ll)Peq."' (fi)iil'&i (0), (39) 

where /eq ('II) is the equilibrium probability distribution 
function for the director fluctuations and Peq,'I' ( n) is the 
probability distribution in orientation n for an arbitrary val­
ue of the director 'II. Plomp and Bulthuis61 obtain the expres­
sion relating S to Sin the lowest order approximation 

S=S{l - 3/2(IE)i2),v}, (40) 

where (IE>i2)"' is the mean-squared amplitude of the ODF 
and is proportional to w!12• A similar treatment may be 
found in the work of Warner. 62 Thus, the nematic order pa­
rameter obtained from the hf splittings is to lowest order 
expected to be less than the actual orientational order pa­
rameter S. 

The expressions for smectic ODF are complicated by 
the coupling of ODF modes to the (complex) smectic order 
parameter63 t/J = lt/Jle;,t,' and the absence of elastic deforma­
tions whose wavelengths exceed the dimension of a uniform­
ly oriented domain. A proper theoretical account of smectic 
ODF may be found in the work of Vilfan et al. 18 Although 
they find a marked deviation from nematic-like behavior in 
both the frequency dependence of T1 and the orientation 
dependence of T1P, the orientation dependence of T1 does 
not deviate in form from what is predicted by Eq. (37) and 
the ODF are suppressed at wave vectors beyond the cutoff 
qc. Assuming an average viscosity64 'T/ = 100 P, an average 
elastic constant K = LOX 10-5 dyn, and d = 30X 10-s cm, 
where d is the bilayer thickness, we obtain we = 4.4 X 107 

s-• or about 7 MHz, with we defined as in Eqs. (37) and 
(38). Note that the smectic ODF cutoff is substantially low­
er than that obtained in the nematic phase. The smectic 
ODF measurements ofMugele et al. 12 suggest a substantial­
ly lower cutoff wave vector qc consistent with a length of 
about 3 X 10-6 cm below which the hydrodynamic theory 
should break down. 

F. Slowly relaxing local structure 

Freed and co-workers 1-
3 developed a model of slowly 

relaxing local structure or SRLS, to explain some anomalies 
in ESR line shape data. SRLS is characterized by the pres­
ence of a local order tensor 

(41) 

where fi is the instantaneous director whose components 
na ,n13 are referred to the lab z axis and S1 is the local order 
parameter. Alternately in irreducible tensor notation we 
have3 

(42) 

and local order parameter fluctuations described by the cor­
relation function 

C - K,M. - K',M' (t) = S7(0D ~~- ('llo)DD ~.M ('II) )oK,oDK',O,. 
(43) 

In this expression the local order parameter S1 is assumed 
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static. If we do not assume S1 remains constant, then it must 
be replaced by the mean square value (1S112 ).

3 On a short 
time scale the probe dynamics is governed by simple aniso­
tropic rotational diffusion in the presence or absence of an 
orienting potential. On a longer time scale the local structure 
relaxes according to the correlation function of Eq. (43). 
Hence the slowly fluctuating components of the anisotropic 
intermolecular potential are regarded as a local structure. 
The Freed derivation assumed that the D 6,M ( q,) relax iso­
tropically with correlation time T x ► TR and hence 

(oD 6~· ('l'o)OD 6,M ('I')) = e - tlr,oM,M'. ( 44) 

Upon incorporating the effects of a static orienting potential 
one obtains for axially symmetric ordering3 

. K(K,M)TR 1 2 2 iKM(w) = 2 2 +- [5K(0,M)] oK,o(ISil) 
1 + (JJ TR 5 

[ 
Tx TR ] 

X 1 + w2-r; - l + W2TR2 ' 
(45) 

where TR - 1 =Ti' 1 + T x- 1 
~Ti' 

1
• The generalization of Eq. 

( 45) to nonaxial molecular ordering may be found in Lin 
and Freed. 2 They also point out1 that the Tx modes may in 
general beM dependent, i.e., that the correlation function of 
Eq. (43) need not be a single exponential decay. Van der 
Drift and Smidt suggest that this M dependence may be con­
sidered due to anisotropic viscosity of the liquid crystalline 
medium.26 These authors have observed deviations from a 
linear dependence of PD-tempone TR on TJITin several ne­
matics using CW ESR and have attributed these observa­
tions to the presence of a local structure giving rise to a SRLS 
effect. 26 Nishida et al. have made analogous measurements 
using 2H and 14N NMR and have obtained good fits to the 
data with a SRLS model. 65 It is important to note that the 
local structure may persist and thus the local order param­
eter S1 may be nonzero even as s ...... o, i.e., in the isotropic 
limit. Zager and Freed66 considered such a model in inter­
preting anomalies in CW linewidth parameters for PD-tem­
pone in several isotropic solvents. When the orientational 
order parameter is nonzero, S must be renormalized as for 
ODF to obtain the measurable order parameter S. In the 
SRLS case an expression analogous to Eq. ( 40) would be 
obtained, but with ( IE)i2) replaced with ( 1S112 ). 

G. Rototranslational diffusion 

Moro and Nordio have solved the diffusion equation for 
solutes in smectic phases subjected to a McMillan-type po­
tential7 (cf.Sec. II A). They write for the diffusion operator 

r = M•R•PMP- 1 
- V•DT•PVP- 1, (46) 

where Pis shorthand for P(r,!l) defined by 

P(r,!l) = exp[ - U(r,!l)/kT], (47) 

V is the gradient operator referred to the laboratory frame, 
and DT is the translational diffusion tensor. The potential 
used by Moro and Nordio in this model is given by 

U(/3,zld)/kT ={A+ B cos(21rz/d)}iiJ6o (/3) 

+ C cos(21rz/d), (48) 

where the angle /3 is obtained from fl= (0,/3,0) and z is 
associated with translation along the smectic director fi. 
There are thus three order parameters associated with the 
three potential parameters A, B, and C ofEq. ( 48); they are, 
respectively, 

s = (iiJ6o (/3) ), 

u = (cos(21rz/d)iiJ6o (/3) ), 

r= (cos(21rz/d)). 

(49) 

(50) 

(51) 

Note that this potential has the symmetry of the McMillan 
potential [ cf. Eq. ( 4)]. However, the parameters A, B, and C 
in Eq. ( 48) do not represent the mean-field quantities ap­
pearing in McMillan's expression. The Moro-Nordio form 
for the potential is rather a combination of a potential of 
mean torque and a potential of mean force, as well as a cross 
term. The Moro and Nordio treatment of solute diffusion in 
smectics is hence a logical extension of the theory for solute 
anisotropic diffusion in nematics. A generalization of this 
expression to apply both to fluctuations at the NA transi­
tion5 and to rotational-translation coupling deep in the 
smectic phase has been proposed by Freed. 6 

There are several important implications of the poten­
tial ofEq. ( 48). The Moro and Nordio form for the potential 
accounts for the existence of translational order, which van­
ishes in the nematic and isotropic phases, and of orienta­
tional order, which persists throughout the smectic and ne­
matic phases and vanishes in the isotropic phase. As a result 
of the coupling between orientation and position, the orien­
tational order parameter is nonuniform across the smectic 
bilayer. Thus, the z-dependent local orientational order can 
be substantially larger for the probe located in the aromatic 
core region vs the more isotropic hydrocarbon region of the 
bilayer. That is, P(/3,zld) defined by Eqs. (47) and (48) 
indicates a nonuniform distribution of probe along the smec­
tic director, consistent with the observed preferential loca­
tion of PD-tempone in the hydrocarbon region of several 
smectics.2 Also important is the effect of translational diffu­
sion of the probe parallel to the z direction. This motion has 
the effect of modulating the intensity of the orientational 
pseudopotential acting on the probe, and hence influencing 
the rotational motions. Typically, the rotational reorienta­
tion is more rapid than the translational diffusion across the 
bilayer. This mechanism of spin-relaxation is analogous to 
SRLS (cf. Sec. II F) in that rotational diffusion governs the 
short time behavior whereas relaxation of the local struc­
ture, resulting in this case from translation of the probe mol­
ecule, governs the longer time behavior. It is distinct from 
SRLS in that it requires solute diffusion to produce a modu­
lation of S, the orientational order parameter, as opposed to 
local order fluctuations of the solvent. That is, SRLS does 
not necessarily require translational diffusion to produce the 
modulation. 

The spectral densities appropriate for NMR and ESR 
are obtained numerically from the matrix representation of 
the diffusion operator Eq. ( 46) in a truncated basis of prod­
uct functions 

q,jpq,m = exp(21rmiz/d)iiJ~q (a,/3,y), (52) 

J. Chem. Phys., Vol. 90, No.10, 15 May 1989 



Downloaded 26 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Gorcester, Rananavare, and Freed: Solute dynamics in smectics 5771 

where the notation of Ref. 7 is used for the Wigner functions 
in which q and p refer to body-fixed and space-fixed axes, 
respectively. Spectral densities defined in Eq. ( 11) are ob­
tained with the use of the Lanczos algorithm by the method 
of Moro and Freed. 67 An important manifestation of transla­
tional order and translational diffusion in this model is a 
substantial enhancement at low-frequency of certain spec­
tral densities in comparison with those obtained from the 
pure rotational Smoluchowski operator given in Eq. ( 34). In 
particular, only those spectral densities associated with the 
iiJ iM whose orientational average is nonzero are modified 
by translation. In the present case this means that the only 
self-correlation function that is modified by translation is 
(iiJ&i ( n) iiJ&! ( 0 0)). This results from the fact that probe 
reorientation occurs much more rapidly than translation, 
such that at any given z a full orientational average is 
achieved. 

Ill. EXPERIMENTAL 

A. Sample preparation 

The liquid crystal S2 is a eutectic mixture of three cyan­
obiphenyls: 4-cyano-4' -n-octyl biphenyl ( 8CB, 50%); 4-
cyano-4' -n-decyl biphenyl ( lOCB, 39%); 4-cyano-4' -n-de­
cyloxy biphenyl ( lOOCB, 11 % ) . S2 was purchased from 
BDH Chemicals and used without further purification. The 
structures of the three component molecules are shown in 
Fig. 1. The nitroxide free radical 2,2,6,6-tetramethyl-4-pi­
peridone-N-oxyl-d 16 (PD-tempone) was synthesized by E. 
Igner and is shown in Fig. 2. Differential scanning calori­
metry (DSC) indicated two phase transitions in the neat S2 
over the temperature range 0-50 °C: one at 45.99 •c (NA) 
and the other at 47.65 •c (NI). The transition temperatures 
were found to be invariant with spin probe concentration 
over the range 0-2 X 10-3 M. Solutions of PD-tempone in S2 

smectic smectlc A 

-11 

CN 50% 

CN 

CN 

IN I Isotropic 

+46 +47.5 

39% 

11% 

FIG. I. Composition of the liquid crystal S2. 

0 N-•-o 

FIG. 2. Perdeuterated 2,2,6,6-tetramethyl-4-piperidone N-oxide (PD-tem­
pone) showing the principal axis system for the magnetic tensors. 

were prepared by stirring the mixtures overnight with the 
temperature maintained just above the nematic-isotropic 
phase transition. Solutions were transferred to 3 mm o.d. 
glass sample tubes or 8 mm o.d. glass NMR tubes and deoxy­
genated with at least four freeze/thaw cycles. Sample tubes 
were sealed under a vacuum and the samples were aligned in 
the 2 T magnetic field of a Jeol 90 NMR spectrometer. 

B. Pulsed ESR spectrometer 

Pulsed ESR measurements were performed on the 
home-built 2D Fourier transform ESR spectrometer de­
scribed previously.41 CW ESR linewidth measurements 
were performed on a Varian E-12 spectrometer using 10 kHz 
field modulation. Orientation dependent relaxation mea­
surements were performed with 3 mm sample tubes mount­
ed on a goniometer. The temperature in the active region of 
the cavity was controlled with a home-built fluid-flow sys­
tem consisting of a mineral oil reservoir regulated by a 
NES-LAB RTE-210 constant temperature circulator. The 
temperature was monitored with a copper-constantan ther­
mocouple placed just below the active region of the cavity 
within the mineral oil reservoir and referenced to an ice/ 
water mixture. The thermoelectric voltage was measured 
with a Hewlett-Packard 3457 A digital multimeter after cali­
bration with a Hewlett-Packard platinum resistance ther­
mometer. 

C. CW ESR measurements 

Homogeneous linewidths were obtained from the inho­
mogeneously broadened CW ESR lineshapes by an iterative 
method described earlier.2 This method is based on the as­
sumption that the only significant source of inhomogeneous 
broadening is super hf structure associated with the methyl 
deuterons of the PD-tempone spin-probe. The experimental 
line shape is compared to a theoretical line shape calculated 
using an estimated intrinsic derivative peak-to-peak width 
and hf splitting constant for the deuterons. An iterative pro­
cedure yields the intrinsic derivative peak-to-peak width: 
2 J Ye IT 2-

1 
( 3) - 112 from which T2 is easily obtained. PD­

tempone magnetic parameters were obtained from Lin and 
Freed2 for the smectic A phase of 8CB and modified in ac­
cordance with the observed isotropic hf splittings66 for S2 
yielding gxx = 2.0092, gyy = 2.0057, gzz = 2.0016, Azz 
= 5.57 G, Ayy = 4.98 G, Azz = 33.47 G. 
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D. Electron spin-echo measurements 

Electron spin-echo (ESE) measurements were per­
formed with a ferromagnetic metallic object placed between 
the magnet pole faces in order to reduce the de magnetic field 
homogeneity. Homogeneity reduction was necessary in 
these experiments in order to eliminate FID components 
following the second pulse of the 1r/2--r-1r--r Hahn echo 
pulse sequence or the third pulse of the 1r/2--r-1r/2-T-
1r/2 - -r stimulated echo sequence. The T2 for each hf line 
was obtained from the-rdependence of the Hahn echo ampli­
tude by nonlinear least-squares parameter estimation. Esti­
mates of Wn, li)HE, and w. were likewise obtained from the 
T dependence of the stimulated echo amplitude. 

E. 20 ELDOR measurements 

Electron-electron double resonance measurements 
were performed on 2.05 X 10-3 M PD-tempone in S2 by the 
2D ELDOR method described previously.40

•
41 Details of the 

experiment and a sample 2D ELDOR spectrum are shown 
in Fig. 3 and its caption. Heisenberg exchange was found to 
be unimportant, as established by the absence of any signifi­
cant 6.M1 = ± 2 2D ELDOR cross peaks ( cf. Fig. 4) over 
the entire temperature range investigated, irrespective of di­
rector tilt.42

cb> [This contrasts with our previous 
2D ELDOR study of PD-tempone( 1 X 10- 3 M) in the 
much less viscous solvent toluene, where the predominent 
exchange mechanism is Heisenberg exchange as demon­
strated by the fact that the 6.M1 = ± 2 cross peaks are com­
parable to the 6.M1 = ± 1 cross peaks41

.] The present re­
sults are consistent with CW linewidth measurements of 
Heisenberg exchange for PD-tempone in the smectic A 
phase of a mixture of related oxycyanobiphenyl based liquid 
crystals.23 

-52.2 -41.1 -30.0 -18.9 -7.8 3.4 

w2/21t (MHz) 

Volume integrals of the pure absorption 2D Lorentzian 
line shapes were obtained from the 2D ELDOR spectra with 
the application of the 2D LPSVD method previously de­
scribed. 42 The 14N spin-relaxation rate 2 Wn was derived 
from the 2D ELDOR volume integrals with the application 
of Eq. ( 33). Nuclear-spin dependent nonsecular terms 
could be neglected ( see below). 2D ELDOR spectra at three 
different mixing times were collected at each temperature 
for the 0° and 90° director tilt experiments to facilitate statis­
tical analysis. Orientation dependent experiments were per­
formed at seven temperatures and typically involved seven 
tilt angles in the range 0°-90° and one mixing time. Sample 
rotations were achieved with a goniometer mount and any 
offset of the actual sample orientation from the intended ori­
entation was corrected by fitting the observed orientation 
dependent hf splittings to the expression2 

14.5 

(a)=aN+!x(3cos2 0-1). (53) 

F. Computation 

Spectral densities were calculated from analytical ex­
pressions or were obtained numerically from the stochastic 
time evolution operator r utilizing Eq. ( 11). Linewidths 
and Wn 's from the model of anisotropic viscosity were com­
puted with slow-motional ESR line shape programs. All 
computations were performed on a Sun Microsystems 3/60 
workstation. 

IV. RESULTS AND DISCUSSION 

A. Electron spin transitions 

w. was determined from the time evolution of the stim­
ulated echo (SE) amplitude (cf.Appendix A and Table IV). 

25.6 36.7 

FIG. 3. Absolute value 2D ELDOR spectrum of2.05 X 10- 3 M PD-tempone in S2 at 35.5 ± 0.5 •c obtained with the smectic director aligned parallel to B11; 
tP = 12 ns; M, = 7 ns; t:,.12 = 5.86 ns; 128 samplings int,; eight step phase alternation sequence with 128 averages per step; dead time int, of66 ns; dead time 
in 12 of 145 ns; mixing time T = 5.48 X 10- 7 s; 256 complex data points per FID extending to 1.5 µs; acquisition time 51 min. 
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FIG. 4. 2D ELDOR contour map of the spectrum of Fig. 3. Note that ab­
sence of cross peaks connecting the two outer hf lines, indicative of a 14N 
spin-relaxation mechanism. 

The W,'s obtained for 2.0X 10-3 M PD-tempone in S2 at 
22 °C from SE( + 1) and SE(0) (where the value in the 
parentheses gives the M 1 of the hyperfine line studied) at 0° 
tilt are 4.57 ± 0.04 X 105 and 4.58 ± 0.05 X 105 s- 1

, respec­
tively, and from SE( + 1) at 90° tilt We = 3.82 ± 0.03 X 105 

s- 1 thereby indicating some angular dependence to We. Nu­
clear spin dependent nonsecular terms were neglected in the 
analysis, so that one obtains a sum of either two or three 
exponentials, depending on the hf component, which 
include effects of wn, WHE• and we.68

-
70 [The wn and WHE 

obtained from SE( + 1) and SE(0) at 0° tilt are 2 Wn = 0.89 
±0.16Xl06 s- 1

, wHE = -0.01 ±0.18Xl06 s- 1
; and 

2 wn = 1.12 ± 0.04 X 106 s- 1 (if WHE is set to zero), respec­
tively, and from SE( + 1) at 90° tilt 2 Wn 

= l.18±0.12Xl06 s- 1
, and wHE = -0.09±0.14Xl06 

s - 1
. These values are in agreement with 2D ELDOR ( cf. 

below), and they show that Wn is substantial, whereas wHE 

is negligible.] 
The neglect of nuclear spin dependent nonsecular terms 

is supported by our observed agreement between the SE and 
2D ELDOR methods of determining Wn and wHE• since 
they are based upon different methods of analysis, and there-

fore should be differently affected if the neglect of these non­
secular terms were unjustified. We shall also show later in 
Sec. IV, that the fits of our data to appropriate models of 
molecular dynamics provide a postieri justification, because 
they lead to the prediction that such terms are too small to be 
observed experimentally. 

On the other hand, in a general sense, we wish to point 
out that the equality of the W, 's obtained from the SE( + 1) 
and SE(0) would be insufficient, in itself, to unequivocally 
demonstrate that nuclear spin dependent nonsecular terms 
are unimportant. After all, if they were important, then the 
analysis of the SE experiment should be regarded as a force 
fit of the signal to a sum of two or three exponentials when, in 
fact, there are five due to the five normal modes which are 
linear combinations of W, ( + 1 ) , W, ( 0), and W, ( - 1 ) , as 
well as wn, WHE• wx,• and wx, [70] [cf. Eqs. (22)-(24) 
and Appendix A). Thus, the simplified analysis imposes the 
constraint W, ( + 1) = W, ( - 1) = W, (0) = W, rather 
than demonstrating it. (It would seem unreasonable to ex­
pect to accurately measure the effects of the sum of five expo­
nential decays from each SE). Also in a general sense, we 
wish to point out that 2D ELDOR is less susceptible to mod­
el-dependent problems with the analysis as discussed more 
fully in Appendix A, and our experience has shown it to be 
more reliable than SE in extracting values of Wn even when 
the simplified analysis, in which the neglect of nuclear spin 
dependent nonsecular terms, is justified as in the present 
work. 

B. Temperature-dependent relaxation 

Using standard CW methods we obtained the orienta­
tional order parameter S as a function of temperature for 
cholestane spin-probe (CSL) in S2. The orientational order 
parameter of PD-tempone in S2 was determined from the hf 
splittings obtained by Fourier transformation of the FID's. 
The CSL molecule is known to report on the overall or 
"backbone" ordering of the liquid-crystalline 
phase. 24

•
28

•
35

•
71

•
72 Temperature-dependent orientational or­

der parameters for CSL and PD-tempone in S2 are illustrat­
ed in Fig. 5. As expected, the CSL order parameter is sub­
stantially greater than that of PD-tempone throughout the 
smectic A and nematic phases. 

Figure 6 illustrates the temperature dependent 14 N re­
laxation rates 2 Wn of 2.0 X 10- 3 M PD-tempone in S2 ob­
tained for tilt angles of 0° and 90°. From the 0° tilt angle 
measurements we obtain the dipolar spectral densities 
Jf0 (wa ), whereas from 2Wn at 90° tilt we obtain the mean 
of Jf0 (wa) and Jf0 (wa). A nearly linear dependence of 
ln 2 Wn on 103 IT is obtained if one neglects the data very 
near the smectic A-nematic (NA) phase transition, where 
there is a substantial deviation from linearity. In the linear 
region (below 42.3 °C) we obtain for 0° tilt an Arrhenius 
activation energy Ea = l 0.49 ± 0. 79 kcal mol - 1 and for 90° 
tilt, Ea = 10.60 ± 0. 72 kcal mol- 1

. The deviation from lin­
earity as one approaches the NA transition is due in part to 
the reduction in orientational order. Quasicritical fluctu­
ations may also be significant in this region,3

•
5 but we have 

not pursued this matter further in the present work. 
Figure 7 illustrates the T 2 (M1 ) obtained by electron 
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spin-echoes as a function of temperature in the smectic A, 
nematic, and isotropic phases of S2. The linewidth param­
eters A, B, and C were obtained from the electron spin-echo 
Tz's with the application of Eq. (14). In the absence of nu­
clear spin dependent nonsecular terms the Zeeman-dipolar 
spectral densities J gc ( 0) may be obtained directly from the 
Tz's and the dipolar spectral densities JgD(0) may be ob­
tained from a combination of T2 and ELDOR measurements 
via the expressions 
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(54) 

and 

(55) 

In Fig. 8 we illustrate the temperature dependence of 
Jgc(0) andJgD(0). Weobtainfor -Jgc(0) overthetem­
perature range 20.5-42.3 °Can Arrhenius activation energy 
Ea = 12.46 ± 0.37 kcal mo1- 1 with a preexponential factor 
A= 4.83X 10-4 s- 1

, whereas for JgD(0), Ea= 12.40 
±0.38 kcalmol- 1 and A=l.32Xl0- 3 s- 1

. The ratio 
- J gc(0)/J gD(0) is nearly constant over this temperature 

range at a value of0.40. This ratio is indicative of a smaller g 
tensor than END tensor contribution to (IJ¥"1(!l)i2). The 
ratioJ gD(0)/J fD(wa) is about two at 20.5 °Cand decreases 
to slightly greater than one near the NA transition. 73 
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C. Orientation-dependent relaxation 

Orientation-dependent 14N spin-relaxation rates mea­
sured at seven temperatures between 15 and 45 •care illus­
trated in Figs. 9 and 10 ( 20.25 ± 0.08 •c not shown). Super­
imposed on these data are the curves obtained from Eq. ( 29) 
with nonlinear least-squares estimates of the di polar spectral 
densities Jgv(w

0 
), JfD(w

0 
), and JfD(w

0
) (cf. Table I). 

These spectral densities are the fundamental spectral densi­
ties associated with electron-nuclear dipolar relaxation, 
since they arise from the END part of the time-dependent 
spin-Hamiltonian [ cf. Eq. ( 6)]. Figure 11 illustrates the 
temperature dependence of the dipolar spectral densities. 
J fD(w 0 ) appears to be small throughout the smectic A 
phase (cf. Table I), indicative of the fact that ODF are sup­
pressed at this frequency, and thus is consistent with the 
conclusions of Mugele et al. 12 

The qualitative trend of the orientation dependence of 
Wn ( cf. Fig. 9) is not consistent with anisotropic rotational 
diffusion of the solute. A typical result obtained with that 
model is illustrated in Fig. 12. The predicted orientation de-

TABLE I. Dipolar spectral densities of2.0X 10- 3 M PD-tempone in S2. 

T["C] 

15.45 ± 0.25 
20.25 ± 0.08 
26.15 ± 0.06 
30.95 ± 0.11 
34.30 ± 0.13 
37.86 ± 0.26 
42.60±0.07 

1.397 ± 0.363 
1.658 ± 0.254 
1.199 ± 0.316 
1.274 ± 0.288 
1.217 ± 0.194 
1.036 ± 0.171 
0.423 ± 0.060 

0.641 ± 0.112 
0.685 ± 0.103 
0.810 ± 0.100 
0.503 ± 0.068 
0.627 ± 0.051 
0.494 ± 0.029 
0.349 ± 0.014 
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FIG. 10. Orientation dependence of W., for PD-tempone in S2 at (a) 
34.30 ± 0.13; (b) 37.86 ± 0.26; (c) 42.60 ± 0.07 °C. 

pendence of Wn in the anisotropic diffusion model does de­
pend on details of the intermolecular potential, e.g., on the 
orientational order parameter Sand any asymmetry; how­
ever no choice of ordering succeeds in fitting the actual data 
( even for values not consistent with the observed hyperfine 
splitting). In attempting to fit the orientation dependent 
data to a SRLS model, we utilized Eq. ( 45) and the pertur­
bational expressions of Polnaszek and Freed56

•
74 for the 

K(K,M) in terms of the order parameters75 (D~) and 
(D 6o ) . We could not obtain the observed ratios of M-depen­
dent dipolar spectral densities with a SRLS model utilizing 
Eq. ( 45), irrespective of the mean-square local order param­
eter. We have not investigated the effects of incorporating an 
M dependence of the -r x in Eqs. ( 44) and ( 45), 2 thus we 
cannot exclude a SRLS mechanism in general. The aniso­
tropic viscosity model was successful in predicting the gen­
eral appearance of the orientation dependence of Wn, how­
ever the magnitude of the orientation dependence was 
several orders of magnitude too small, i.e., the observed ra­
tios J gv(w0 )/J fD(w

0
) and J fD(w

0 
)IJfD(w

0
) were close 

to unity. This result was obtained only when :;-R (obtained 

1.727 ± 0.237 
2.093 ± 0.169 
1.531 ±0,195 
0.744 ± 0.210 
0.677 ± 0.119 
0.671 ± 0.086 
0.633 ± 0.030 
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from R) was roughly the same as ,,-R, a regime in which a 
cross term between anisotropic diffusion and anisotropic vis­
cosity, which was neglected in our calculations, could be 
important. Thus, we cannot exclude a model of anisotropic 
viscosity which includes the cross term. However we have no 
a priori reason to believe that such a model would adequately 
predict our observations. Pretransitional fluctuations5

•
23

•
25 

are probably not significant, except perhaps for the 42.6°C 
data. In any case they should have negligible spectral density 
at {i) a• 5,23,25 

The model most in agreement with our observed orieq_:­
tation dependence of the Wn is the Moro and Nordio model 
of rototranslational diffusion. The parameters A, B, and C of 
the potential given by Eq. ( 48) were chosen to fit the ob­
served M-dependent spectral densities, and to be consistent 
with preferential location of the probe molecule in the ali­
phatic region of the bilayers. We imposed as additional con­
straints that ( 1 ) the translational order parameter r is con­
stant with temperature; ( 2) the maximum local 
orientational order parameter ( call it SMAx ) is equal to the 
order parameter for cholestane ( call it ScsL ) obtained from 
the orientation dependent hf splittings; and ( 3) the rota­
tional diffusion anisotropy (i.e., D f ID f) is temperature in­
dependent. The approximation that r is constant with tem­
perature is likely to be incorrect in the region close to the NA 
transition, but otherwise seems to be reasonably consistent 
with McMillan's mean-field expressions deep in the smec­
tic.45 The second constraint is based on our assumption that 
the CSL ordering is dominated by coupling to the aromatic 
core region of the smectic bilayer irrespective of tempera­
ture, and that a rather similar potential of mean torque is 
experienced by PD-tempone when it is located in the aroma­
tic core region. The first part of this assumption is reasonable 
considering that the CSL molecule is comparable in size to 
the solvent molecules and is highly ordered. The second part 
may not be entirely satisfactory, considering the different 
structures of the two probe molecules, but is consistent with 
our experience with predictions from the Moro-Nordio 
model. For example, we find that if we use instead the con-
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FIG. 12. Simulated orientation dependence of W,, in the anisotropic rota­
tional diffusion model with r R = 1.29 X 10-"' s; R

11 
I R1 = 0.8; S = 0.23. 

straint that SM,N, occuring at the aliphatic tails, is approxi­
mately zero, then the fits to the model predict an SMAx ap­
proximately equal to ScsL ( cf. below). The rotational 
diffusion anisotropy was chosen to be D f / D f = 0. 8 and 
temperature independent in order to obtain agreement with 
the observed CI B ratios and our past experience with this 
spin-probe. 1

•
4

•
5

•
23

•
66 Once these constraints are imposed, a 

unique fit to the data may be obtained as follows: ( l) choose 
the sum A + B that predicts SMAx equal to ScsL; ( 2) choose 
C such that r is equal to the desired constant value; ( 3) 
choose the difference A - B that predicts the observed ratio 
JfD(wa )IJfD(wa ); (4) choose 'TR such that JfD(w

0
) is 

equal to the observed value; and ( 5) choose D;, such that 
J gD ( w O ) is equal to the observed value and J 'i}D ( 0) is not 
much larger than J 'i}D ( w 

O 
) • This procedure guarantees a 

unique fit to the data for a predetermined rand D O ID f = N, 
i.e., we have the three independent observables 
J'i}D(w

0
}, JfD(w

0 
), and JfD(w

0 
), and the three param­

eters A - B, ,,-R, and D;,. The strategy employed here was to 
investigate the model's ability to fit the data at all observed 
temperatures, under the assumption that r is temperature 
invariant. Because r has not been measured, the estimates 
that we obtain for the varied parameters cannot be taken too 
seriously, i.e., a completely new set of parameters would be 
obtained for a different y. However, we do find that for large 
r ( r=0.75) the predictedJ 'i}D(w0 ) is much smaller than the 
observed value, irrespective of D;,. Thus, we have reason to 
believe that yshould be small (e.g., r < 0.5 ). Also we find for 
yc::0.75 that Smin > 0.3 and that u is large in magnitude 
(u~0.27 at 15.45 °C) relative to that obtained with 
r = 0.294 (u = 0.042 at 15.45 °C). Such a large value of u, 
such as that obtained with y;::;;0.75, is inconsistent with mo­
lecular ordering measurements near the NA transition ( cf. 
Fig. 5) which have shown an absence of enhancement of the 
orientational order on the smectic A side of the transition. 
This absence of enhancement in S, due to smaller values of u, 
is consistent with the Landau-de Gennes 76 and molecular 
field45 theories of the NA transition. It should also be noted 
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that the value of S required to predict the observed ratio 
JfD(w0)/JfD(w0) does not change very much upon in­
creasing y. 

Estimates of the potential parameters A, B, and C, and 
the diffusion coefficients D (i, D f, and D;, obtained by 
simulation are tabulated in Table II along with the order 
parameters obtained with Eqs. ( 49)-(51 ). The precise defi­
nitions for these order parameters are: 

S = Z - 1 ld dz l1T sin /3 d/3 P(/3,zl d)P2 ( cos /3), ( 56) 

u = Z - i ld dz l1T sin /3 d/3 P(/3,zl d)P2 ( cos /3)cos ( 
2
;z). 

(57) 

r= -z- 1 
fod dz l1T sin/3d/3P(/3,zld)cos(

2
;z). (58) 

with 

Z = ld dz l1T sin /3 d/3 P(/3,zl d). (59) 

These expressions were evaluated numerically using Simp­
son's rule. [The 34.30 °C data could not be fit under the 
constraints outlined above because of the anomalously small 
ratio J fD(w0 )/J fD(w0) obtained at this temperature. The 
D;, required to properly estimate J gD(w0 ) at 42.6 °C is 
anomalously large, and hence the 42.60 °C results should not 
be taken seriously. The estimated order parameters and the 
rR at 42.60 °C do, however, seem reasonable in comparison 
with the other temperatures.] 

At the lower temperatures the order parameter Sin Ta­
ble II is larger than that obtained from the hf splittings, but 
as the temperature increases the two quantities approach one 
another. We demonstrate this behavior in Fig. 13 where the 
two estimates of the orientational order parameter are plot­
ted along with the orientational-translational order param­
eter u. Also apparent in Fig. 13 is the opposite temperature 
behavior of S vs u obtained from the Moro and Nordio mod­
el. Similar to the behavior of the two estimates of orienta­
tional order parameter illustrated in Fig. 13, Sand u appear 
to merge as the temperature increases. ( Such a temperature 
dependence of uis inconsistent with mean-field theory, but it 
appears consistent with the model of probe expulsion toward 
the aliphatic chains as Tis lowered.) 

At first glance at Table II it would appear that the pre­
dicted translational diffusion coefficients are in reasonable 
agreement with what is measured by NMR pulsed field gra-
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FIG. 13. Orientational order parameters obtained from hf splittings (solid 
boxes) and from the Moro--Nordio model (solid circles). and the orienta­
tional-translational order parameter a ( open circles). 

dients77 and ESR imaging78 on related mesophases. Closer 
examination of the theory reveals, however, that we should 
not make judgments, based on D;,, of the agreement 
between our simulations and the field gradient experiments. 
What the field gradient experiments measure is the actual 
transport coefficient D

11
, whereas what we obtain from Eq. 

( 46) is a microscopic quantity, associated with the time 
scale over which the probe moves across the spatially nonun­
iform bilayer. Moro and Nordio7 obtain the following 
expression relating D;, to D

11 
in the case of a spherical probe: 

D; =D
11 
ld dz[PT(z))- 1, (60) 

where P T ( z) is defined by 

PT(z) = z- 1 l1T sin /3 d/3 exp[ - U(/3,zld)/kT]. (61) 

In the nematic phase P T(z) should be independent of z and 
D;, = D

11 
. In the smectic, however, translation along z is 

progressively more hindered as P T(z) becomes more sharp­
ly peaked and hence D

11
/D;<l. The PT(z) obtained at 

15.45 °C is illustrated in Fig. 14. This reduced distribution 
function shows the preference of the probe molecule to be 
located in the hydrocarbon chain region, consistent with the 
tendency of PD-tempone to be expelled from the aromatic 

TABLE II. Parameters obtained from orientation-dependent W,, simulations with the Moro and Nordio mod-
el of solute dynamics in smectics. 

T[°CJ A B C TR [ps] D;,[cm2 s- 1J• s St,IAX a r 

15.45 -3.40 - 2.73 2.205 131.5 l.14X 10-6 0.453 0.823 0.042 0.294 
20.25 - 3.20 -2.60 2.073 143.4 1.41 X 10-6 0.434 0.812 0.048 0.294 
26.15 -2.60 -2.55 1.820 130.4 3.42X 10-6 0.337 0.785 0.105 0.294 
30.95 - 2.27 -2.40 1.630 76.0 3.08Xl0-6 0.294 0.759 0.119 0.294 
37.86 - 1.70 -2.57 1.426 67.8 5.47Xl0- 6 0.185 0.732 0.184 0.294 
42.60 - 1.52 -2.39 1.299 59.2 >2sx10- 0 0.167 0.704 0.177 0.294 

"Obtained with a bilayer thickness d = 3.0X 10- 1 cm. 
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FIG. 14. The reduced distribution function P 1 (z) obtained from the Moro­
Nordio potential with A= - 3.4, B = - 2.73, and C = + 2.205. 

core. The D
11 

computed from the D ~ according to Eq. ( 60) 
are reduced by about 15% in comparison with the D ~. fall­
ing in the range 0.97xl0- 6 cm2 s- 1 -4.57Xl0- 6 

cm2 s- 1
. These are reasonable values for diffusion coeffi­

cients but are somewhat greater than the NMR results of 
Kruger for parallel diffusion of, e.g., trichlorotrifluoro eth­
ane in the smectic phase of C1r BAA. 77 We obtain for D

11 
an 

Arrhenius activation energy Ea = 12.61 ± 2.16 kcal mol- 1 

with a preexponential factor A = 2981 cm2 s- 1 and for 
rR, Ea= 6.29 ± 1.95 kcal mo1- 1 with A= 2.83X 10- 15 s. 
The results ofKriiger did demonstrate that the self-diffusion 
coefficients in the smectic phase vary greatly from one meso­
gen to another. Since Kruger did not present data on PD­
tempone in S2 or even a closely related mesogen, we cannot 
utilize his results to determine the accuracy of our predic­
tions. In any case a more directly relevant experiment is 
translational diffusion by ESR imaging78 in which we would 
obtain D

11 
for PD-tempone in S2. The results of such an ex­

periment would help to provide a better test of the Moro­
Nordio model. A recent result on PD-tempone at 20 °C in 
the nematic phase of MBBA is of the order of the present 
estimate of D

11 
in S2, but roughly half as large. 

From the coefficients of the potential given in Table II 
we obtain the spatial variation of the local orientational or­
der parameter with the expression 

S r(z) = (!.7J~ (/3) \ 1 (z) 

l lTr = -- sin /3 d/3 
p T(z) 0 

xexp[ - U(/3,zld)lkT]!.7J~ (/3), (62) 

where () n denotes an average over the equilibrium distribu­
tion of orientations. Figure 15 illustrates the spatial variation 
of (!.7J~ (/3) )n for the 26.15 °C data. Note the near absence 
of orientational order for the probe located in the hydrocar­
bon region of the bilayer ( as mentioned above). We observe 
the same phenomenon throughout the smectic A phase. The 
general appearance of Fig. 15 is similar to that obtained by 
2H NMR measurements of the segmental order parameter 
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FIG. 15. Spatial variation of the orientational order parameter predicted by 
the Moro and Nordio model. 

Seo as a function of deuteron location along the hydrocar­
bon chain of alkyloxy-cyanobiphenyls (NOCBs) 79 and al­
kyl-cyanobiphenyls ( NCBs). so 

We can hope to gain additional insight into the solute 
dynamics by studying the orientation dependence of the zero 
frequency spectral densities obtained from the linewidth pa­
rameters B. The orientation dependences of Band Cat 31.3 
and 38.5 °Care given in Figs. 16 and 17. At both tempera­
tures there appears to be little orientation dependence of B 
and C. Nevertheless we proceed to fit the orientation depen­
dent B 's to the model independent expression for the angular 
dependence ofJ0 (eu,0) [cf. Eq. (30)]. This procedure yields 
the Zeeman-di polar spectral densities J f;G, J fG ( 0), and 
J fG(0) tabulated in Table III. The observed trend 
- J f;G(0) > - J fG(0) < - J fG(0) is predicted by the ro­

totranslational diffusion model with the parameters of Table 
II; however the magnitudes of the J ft° ( 0 )'s obtained from 
the rototranslational diffusion model are less than the ex-
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FIG. 16. Orientation dependence of - B (open circles) and C (solid 
boxes) for PD-tempone in S2 at 31.34 ± 0.05 •c. 
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FIG. 17. Orientation dependence of - B (open circles) and C (solid 
boxes) for PD-tempone in S2 at 38.50 ± 0.20 'C. 

perimental values. In addition, the degree of orientation de­
pendence, which is reflected in the ratio of J2 to J 1, is sub­
stantially different at the frequencies zero and ma. Also listed 
in Table III are the dipolar spectrai densities J1;,f(O) ob­
tained from the orientation dependent C's and Wn 's via Eq. 
( 55). These spectral densities were obtained upon evaluat­
ing the model independent expression for JfD(ma,0) [cf. 
Eq. ( 31)] at seven orientations between 0° and 90° utilizing 
the least-squares estimates of the J 11,t(ma) tabulated in Ta­
ble I. They do not appear consistent with the trend 
J0 >J1 <J2 observed with theJ1;,f(ma) and theJ1;,f(O). We 
cannot be certain if this behavior is due to artifacts or is a 
manifestation of some K dependence of the spectral densities 
[cf. Eq. ( 10)) different from what has been incorporated 
into our analysis based on the Moro-Nordio model ( e.g., 
due to a lack of axial symmetry of the probe). The rototrans­
lational diffusion model fit with the parameters of Table II 
predicts a virtually identical magnitude and M dependence 
of the J 11,t(m) over the frequency range m = 0 to ma. Thus 
the agreement of this model with the experimental J 11,f(O) is 
less than satisfactory. 

The very weak angular dependence of the Tz's (and 
hence the linewidth parameters) is an especially surprising 
result considering that: ( 1 ) inhomogeneous linewidths ob­
tained from the FIDs for the same sample are orientation 
dependent; and (2) most models (rotational diffusion as 

well as the rototranslational diffusion model) predict sub­
stantial angular variation for PD-tempone.2

•
7 Lin and 

Freed2 do predict an orientation dependent T! (i.e., inverse 
linewidth including inhomogeneous contributions) upon 
simulating the effects of a static distribution of director ori­
entations with a magnetic field pulling effect and with an 
underlying orientation independent T2. If there is, in fact, a 
static distribution of directions, we should expect the appar­
ent "homogeneous" linewidths obtained by the CW meth­
ods described in Sec. III C to differ from those obtained di­
rectly by spin-echoes. In Fig. 18 we illustrate the results of 
both experiments as a function of temperature. We see in 
Figs. 18(a) and 18(b) that T2 ( + 1) and T2 (0) obtained by 
CW methods in the ordered phases are consistently smaller 
than those obtained by ESE, whereas in the isotropic phase 
the two methods are in better agreement. The discrepancy in 
T2 ( 0) indicates that A (CW) > A (ESE), and is presumably 
due to a nuclear spin independent inhomogeneous broaden­
ing contribution to A ' (CW). This additional broadening 
does not manifest itself significantly for the M 1 = - 1 hf 
line [ cf. Fig. 18 ( c) ] , presumably because the homogeneous 
width of this hfline is about twice that of the other two lines, 
and is therefore not as susceptible to distortion by small in­
homogeneities. The additional broadening in the CW line 
shapes is the anticipated result of a static distribution of di­
rectors. The CW homogeneous linewidth estimation proce­
dure ( cf. Sec. III C and Ref. 2) does not account for any 
sources of inhomogeneous broadening other than shf struc­
ture, and hence incorrectly attributes the broadening result­
ing from a static distribution of directors to a homogeneous 
broadening. The most dramatic lack of agreement between 
CW and ESE measurements is at the low field (M1 = + 1) 
line. The differing extent of agreement of CW and ESE re­
sults at the low field (M1 = + 1) line vs the high field 
(M1 = - 1) line is suggestive of the CI B anomaly observed 
in nematics in the incipient slow-tumbling regime, 1 wherein 
the low field CW ESR line shape deviated dramatically from 
the theoretical prediction based on isotropic Brownian diffu­
sion in an orienting potential. The connection, if there exists 
one, between this observation with S2 and those of Polnas­
zek and Freed with phase V and Lin and Freed2 in other 
smectics underscores the importance of further investigation 
of these materials with the electron spin echo technique. 

Although the rototranslational diffusion model can pre­
dict the observed J fl(O) or the observed J 11,t(ma), it ap­
pears that it cannot simultaneously predictJ 11,f(O), J t0 (0) 

TABLE III. Dipolar and Zeeman-dipolar spectral densities of PD-tempone in S2 obtained from T2 and w. 
results. 

T['C] -J{;G(0) [l06 s- 1] -J?0 (0) [l06 s- 1
] -Jfa(0) [10°s-'] 

31.34 ± 0.05 0.314±0.oI5 0.308 ± 0.020 0.407 ± 0.023 
38.50 ± 0.25 0.236 ± 0.008 0.211 ± 0.010 0.248 ± 0.010 

T['C] J{;n(0) [l06 s- 1] J~n(0) (10°s-'J JfD(0) [106 s-'] 

31.34 ± 0.05 0.778 ± 0.018 1.023 ± 0.023 1.007 ± 0.024 
38.50 ± 0.25 0.599 ± 0.092 0.766 ± 0.012 0.669 ± 0.012 
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FIG. 18. Ti's estimated from CW ESR (solid boxes) and measured by ESE 
methods (open circles) forPD-temponeinS2: (a) M, = + I; (b) M, = O; 

(c) M, = - I. 

and J ft(w 0 ) with a unique set of parameters. The distinc­
tions between Jft(O) and Jft(w0 ) are twofold, first, as 
stated above the magnitude of the orientation dependence at 
zero frequency is less than at w 0 ; and second, the spectral 

densities at zero frequency appear for the most part to be 
larger than those at w a • This is suggestive of a second d ynam­
ical mechanism which selectively enhances the spectral den­
sities at zero frequency [ the rototranslational diffusion sim­
ulations givejM(O)<::<jM(w0)]. Such a mechanism would 
have to be relatively slow in order to affect predominantly 
jM(O), and might be associated with a SRLS effect due to 
fluctuations of the aliphatic chain. Given the poor probe or­
dering in the hydrocarbon chains ( predicted by the roto­
translational diffusion model), we expect to observe an ori­
entation dependence of the j M ( 0) which is weaker than that 
anticipated from the order parameter S obtained from hf 
splittings. These properties motivate a closer examination of 
the hydrocarbon SRLS mechanism. 

The SRLS effect associated with slow collective motions 
of the hydrocarbon chains, which persist for a mean time r x, 

could enhance the relaxation dispersion at zero frequency, 
thereby contributing to the jM(O) while having a lesser ef­
fect on thejM(w0 ) (i.e., w!-r; > 1 ). In addition, the SRLS 
modes should suppress the orientational order parameter 
that is obtained from the hf splittings in an analogous fashion 
to ODF [ cf. Eq. ( 40)]. In other words, the measurable order 
parameter Sis less than S. Let us assume for simplicity ( see 
below) that the Plomp and Bulthuis expression for S in 
terms of S [ cf. Eq. ( 40) ] may be adapted for SRLS by re­
placing ( IE>i2) with ( IS, 1

2). Then we obtain the expression 

(63) 

relating the mean-squared amplitude of the local structure 
fluctuations to the order parameters Sand S obtained from 
hf splittings and Moro-Nordio model simulations, respec­
tively. Figure 19 illustrates the behavior predicted by Eq. 
( 63) of the mean-squared local structure fluctuations with 
temperature. We see that the local structure fluctuations de­
cay with increasing temperature until reaching zero mean 
squared amplitude at about 38.5 •c [cf. Fig. 8 vs Fig. 6(a)]. 
This behavior is roughly consistent with the observation that 
the ratio J gn(O)/ J fD(w

0
) decreases from a value of about 

two at 20 •c to about one at 38.5 •c, due presumably to a 
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deterioration of the SRLS modes, which enhance predomi­
nantly j(O). It does not explain, however, the observation 
that at 38.5 °C there is very little orientation dependence of 
the linewidth parameters. At this temperature ( 1S112 ) ~0 
and the B parameter is predicted by the rototranslational 
diffusion model to have some orientation dependence. This 
is not borne out in our 38.5 °C data. This discrepancy be­
tween model and experiment warrants further investigation. 
However until we obtain further experimental data of a dif­
ferent nature ( e.g., diffusion coefficients by ESR imaging 
and x-ray determination of smectic order parameters of the 
solvent) an explanation of this ob_servation would be too 
speculative. In consideration of the other data, we suggest a 
model in which the Tz's are affected by a slowly relaxing 
local hydrocarbon structure, which has appreciable local or­
der that is averaged out over a longer time scale, and the 
Wn 's are dominated by the rototranslational diffusion of the 
probe molecule in the spatially nonuniform smectic. 

In order to describe such a composite process involving 
both rototranslational diffusion and cooperative hydrocar­
bon chain fluctuations, we must recognize an important in­
gredient that is not correctly accounted for in our analysis. A 
correct description would require the incorporation of coop­
erative hydrocarbon chain distortions,28 wherein the hydro­
carbon chains are tilted with respect to the z direction by fl', 
with some short range but no long range order in fl'. Trans­
lational diffusion of the probe perpendicular to the z direc­
tion will lead to a SRLS mechanism, wherein the tilt fl' of the 
local ordering changes with time as the probe moves through 
the bilayer. Furthermore, an isotropic averaging over all ori­
entations !l' of tilt, would be the appropriate sources of the 
renormalized order parameter such as is expressed by Eq. 
( 63). In the Moro-Nordio model, no such tilt was intro­
duced, for simplicity. ( Another generalization of the Moro 
and Nordio expressions of some physical importance would 
be to account for the spatial variation of microscopic viscos­
ity parallel to the z direction with the incorporation of a z­
dependent r R.) 

Although we do not claim to have exhausted all plausi­
ble models of the microscopic dynamics (indeed we have 
not), we do believe that the Moro-Nordio model provides a 
satisfactory physical picture of solute diffusion in the smec­
tic A phase. It accounts for translational diffusion of the 
spin-probe perpendicular to the plane of the layers, and for 
the lack of spatial uniformity of the torques experienced by 
the probe as it translates. It accounts for the positional order­
ing of the solvent molecules in the smectic phases. It predicts 
the expulsion of the spin-probe molecule from the aromatic 
core region of the bilayers, as suggested by several investiga­
tors. 2

•
30 It does not account, however, for the observed weak 

orientation dependence of the T2's. 
We have a few additional comments. First of all, 

throughout the analysis of 2D ELDOR spectra we have ne­
glected nuclear spin dependent nonsecular terms arising 
from motional averaging of the electron-nuclear dipolar in­
teraction ( cf. Sec. IV A). However, there is no evidence in 
the 2D ELDOR data that such terms are significant. [Nu­
clear spin dependent nonsecular terms are predicted by theo­
ry to influence the pattern of 2D ELDOR cross peaks ( cf. 

Appendix A).] Furthermore, given the results of the rota­
translational diffusion simulations, we find an a posteriori 
self-consistency in that such terms, which depend solely on 
the spectral densities at the ESR frequency w,, are reduced 
by a factor of 20-30 with respect to the spectral densities at 
w a. Thus they should be too small to detect within our pres­
ent experimental uncertainty. 

Finally, we recall that throughout the analysis we have 
neglected the effects of nuclear spin quantization on the 
theoretical treatment of the angular dependences. 54 One 
would conclude from the weak orientational ordering de­
duced from the hf splittings ( cf. Fig. 5) that neglect of such 
effects is fully justified. However, if one considers the spatial 
variation of S predicted by the rototranslational diffusion 
model, then the effects of 14N spin-quantization might be 
significant when the probe experiences the strong local or­
dering near the solvent aromatic core. In the present work 
we note that the probe is found to have a low probability of 
location near the aromatic core, and that when averaged 
over the bilayer the orientational order parameters obtained 
from simulation are still not very great, especially at high 
temperature. The motional narrowing theory therefore 
seems adequate for the interpretation of our data. A com­
plete theoretical treatment of the problem would, however, 
have to properly account for the full effects of spin quantiza­
tion. 

V.SUMMARY 

Utilizing electron spin-echo and two-dimensional 
Fourier transform ESR techniques we have obtained homo­
geneous linewidths and 14N spin-relaxation rates for the ra­
dical PD-tempone as a function of temperature and director 
orientation in the smectic phase of S2. We find that the esti­
mated homogeneous linewidths obtained by CW ESR meth­
ods are systematically larger than those obtained directly by 
ESE in the ordered phases, whereas in the isotropic phase the 
two methods are in better agreement. We attribute these ob­
servations to a static distribution of director orientations as­
sociated with a distribution of uniformly oriented domains 
which broadens the CW ESR linewidths. We observe a 
strong orientation dependence of the Wn 's throughout the 
smecticA phase, whereas the T2 parameters are only weakly 
orientation dependent. We find that a model of rototransla­
tional diffusion in a McMillan-type potential accurately pre­
dicts the observed magnitude and orientation dependence of 
the Wn 's, which however is not consistent with the homoge­
neous T2 parameters. We attribute some of the inconsistency 
to an additional dynamical process described by a slowly 
relaxing local structure model of cooperative hydrocarbon 
chain motion and reorientation. The composite process can 
be described as one in which the linewidths are influenced by 
rotational diffusion of the probe modulated by a slowly re­
laxing local hydrocarbon structure, which has appreciable 
local order but when averaged over the sample is isotropic, 
whereas the Wn 's are dominated by rototranslational diffu­
sion of the probe molecule in the spatially nonuniform smec­
tic. 
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APPENDIX A: THE ANALYSIS OF 20 ELDOR 

For a nitroxide with three well-separated hf lines the 
time evolution of the instantaneous electron spin state popu­
lations is governed by34

'
69 

!!_ iU) = - Wi(t), 
dt 

(Al) 

where the matrix W is the transition probability matrix, 
whose a/3th element for a=f/3 is just minus the transition 
probability from state/3 to state a. The vector i(t) of popu­
lations and the matrix W are defined in the "eigenstate 
space" of dimension A= (21 + l) X (2S + l ).34 

Let us partition W according to Ms = ± l/2, then 

(x+<t)) = -(w +.+ 
j_(t) W __ + 

(A2) 

We now define new subvectors x ± ( t) of dimension A /2 by 

(A3) 

and transform Eq. (A2) to obtain the matrix W defined in 
the x± basis 

- (w W= rr 
(A4) 

where 

2w = cw+.+ + w _. _ + w +. _ + w _. + ) , (AS) 

A 

2W=(W+.+ +w ___ )-(W+.- +w __ +), (A6) 

2'lf"=(W+.+ -W ___ )+(W+.- -W_.+). (A7) 

The solution ofEq. (A2) in this new representation is given 
by 

(A8) 

or equivalently (for A = 6, i.e., a nitroxide) 

6 

X;(T) = L [exp( -WT)Lxk(0) 
k=I 

6 

= L od,jiexp(-T/rj)Od,jkxk(0). (A9) 
j,k = l 

The 3 X 3 matrix Q ( T) of volume integrals obtained from 
the 2D ELDOR spectrum is proportional to the matrix par­
tition of [exp( - WT)] associated with the population dif­
ferences, i.e.,41

•
70 

6 

= € L od,j,(m + 3) od,j,(n + 3) exp( - T /rj ), 
j= I 

(AIO) 

where£ is a spectrometer constant. [The matrix Q is defined 
such that Qmi is the volume integral of the cross peak located 
at coordinates ( w i,li.12 ) = ( wj ,w m ) • ] Hence a full analysis of 
2D ELDOR nitroxide spectra in the case of three well-sepa­
rated hf lines requires that we solve the "inverse transform" 
ofEq. (AIO), i.e., we need the normal modes, given by the 
vectors O d,i ( with components O d,Ji) and their eigenvalues 
ri in terms of the observables Qnm ( T). 

1. Negligible nonsecular terms 

Let us examine the case in which nuclear spin dependent 
nonsecular contributions (e.g., electron-nuclear dipolar 
cross relaxation34

) may be neglected (as is often the case for 
nitroxides). Then the submatrix 'II"" in Eq. (AS) vanishes 
and hence the population differences evolve independently 
and are governed only by the 3 X 3 submatrix W. This results 
in a particularly simple form for the matrix of 2D ELDOR 
volume integrals in that we obtain. 

Q(T) = £[exp( -WT)]. (All) 

In order to evaluat~ the exponential we utilize the eigenvalue 
decomposition of W given by 

and 

2 
2-1/2 

(Al3) 

7 2- l = 2We + 2W,, + li.lHE• (A}4) 

73-
1 = 2We + 6W,, + li.lHE (Al5) 

and we can write analytical expressions to obtain W,, and 
li.lttE· Note that in Eq. (A12) we have relabeled the rows of 
the relevant part of the partitioned matrix, 0 d according to 
M 1 value. Now let us solve Eq. (All) for the elements ofW, 
which we rewrite as matrix elements: 

A -I 
[exp(-WT)J,,m =€ Q,,m(T). (Al6) 

The matrix elements appear in Table IV. To eliminate the 
unknown constant£ we normalize Q ( T) by forming volume 
ratios;..._i.e., we define a normalized matrix of volume inte­
grals Q(T) by 

A Q,,m ( T) [exp( - WT) lnm 
Qnm (T) = -- = ,,.._ , (Al7) 

Q22( T) [exp( - WT) 122 

or equivalently, 

[exp( - WT) 1nm = Q,,m ( T) [exp( - WT) b- (Al8) 

Thus we generate a set of eight independent equations from 
which to extract the elements ofW. 

In order to account for off-resonance effects and for the 
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TABLE IV. Matrix elements: c'Q.m(T ).0 

Autopeaksb 

E"-IQ± 1,± I: 

E-'Qo,o= 

{exp[ - Tlrd + !exp[ - T/r2 ] + iexp[ - T/r3 ] 

Jexp[- T/ri] +jexp[- T/r3 ] 

Cross peaks 

E"-'Qo,+1 = E"-'Q+,.o: Jexp[-T/r,] -{exp[ -T/r3 ] 

E"-'Q±,,+1' Jexp[ -T/ri] -{exp[ -T/r2 ] +iexp[-T/r3 ] 

• This is the case of negligible nonsecular terms. 
bThese apply both to 2D ELDOR and to stimulated echoes from the three hyperfine lines (cf. Sec. IV A). 

effects of spectrometer dead time we generalize Eq. ( A 18) to 
obtain 

vn V;,,r1.,,r2,,[exp( - WT) 1nm 
A ) A 

= Qnm (T) V2r1,r2, [exp( - WT) lw (Al9) 

where the V; account for rotation of the ith hf line by less 
than rr/2 41 and where r1 and r2 are dead time reduction 
factors. [In the case of Lorentzi~n (inhomogeneous) line 
shapes, such as we observe for PD-tempone in S2, the reduc­
tion of observed peak areas due to dead times int I and 12 time 
domains are given by 

r1, = exp( - rd/Tt), (A20) 

r
21 

= exp( - rdJTl), (A21) 

where rd, and rd, are the dead times in 11 and 12. Equations 
( A20) and ( A2 l ) follow from the more detailed expressions 
for 2D ELDOR such as given by Eqs. (26) and (27) in Ref. 
41.] WhenEq. (Al9) is appropriate (i.e., when nuclear spin 
dependent nonsecular terms are negligible), it is convenient 
to use the related expression 

Vnr2,,[exp( - WT) 1nm 

Qnm ( T) V [ w"' T)] =---- mr2 exp( - mm 
Qmm (T) "' 

(A22) 

which linearizes Eq. (Al9) with respect to the V; and elimi­
nates r, [ cf. Eq. (A20)]. Hence with the utilization of Eq. 
(A22), no explicit knowledge of the dead times in t 1 and t 2 is 
required for the analysis, only the products V;r2,, which are 
easily measured (see below). To utilize Eq. (A22) we form 
the volume ratio of the cross-peak at coordinates 
(li),,li)2 ) = (li)m,li)n) to the autopeak at (li)m,li)m ). 

In the simple case where W" is negligible and Heisen­
berg exchange is the only source of magnetization transfer 
we utilize Eq. (A19) to obtain 

jVmr2m exp(-2WeT)[l-exp(-li)HET)] 

= jfmj ~r2, exp( - 2 we T) 

X [1 + 2 exp( - li)HE T)], (A23) 

wherefmj=Qm/Q». The We factor conveniently drops out· 
(so a knowledge of We is not needed nor obtained) after 
which some algebra leads to the expression 

1 (2fmj~r21 + Vmr2'") li)HE = - In ------- . 
T Vmri,,, -fmj~r21 

(A24) 

The products V;r2, are determined by measuring the normal­
ized peak areas obtained from a single pulse FID collected 
under the same conditions (i.e., same dead time, pulse 
length, microwave frequency, cavity tuning, etc.) as the 2D 
ELDOR spectrum. 84 Since we obtain a direct measurement 
of the V;r21 for each hyperfine line i, there is no requirement 
that the inhomogeneous line shapes be Lorentzian, or even 
that the line shapes be of a known functional form, in order 
to utilize the above expressions for the determination of W" 
and li)HE. One can easily show ( see Appendix B) that the 
peak areas necessary for the determination of the V;r1 , ~r2 , 
and the matrix Q ( T) are invariant to the nature ~nd the 
extent of inhomogeneous broadening, provided that the hy­
perfine lines remain well separated. 

Notice that Eq. (A24) predicts that all six cross peaks 
equivalently reflect the exchange process, and hence that six 
independent measurements of the exchange rate li)HE are ob­
tained from a single 2D spectrum. The equivalence of the six 
cross peaks is a manifestation of the lack of a selection rule 
for the exchange mechanism,8 1 i.e., both t!.M1 = ± 1 and 
t!.M1 = ± 2 transitions are equally probable. In the more 
general case of nonnegligible W" we obtain eight equations 
analogous to Eq. (A23) which are linear in the two unk­
nowns Wn and li)HE. In this case a linear least-squares proce­
dure may be utilized to determine the minimum two-norm 
estimates of wn and li)HE. The wn mechanism and the ex­
change mechanism may usually be distinguished in these 
spectra as a result of their different selection rules. Unlike 
exchange, the Wn mechanism obeys the selection rule t!.M1 

= ± 1 and thus gives rise predominantly to cross peaks 
connecting only adjacent hf lines ( cf. Fig. 3), but see below. 
Thus the geometrical pattern of the spectral contours may be 
utilized to obtain information regarding the mechanism of 
magnetization transfer prior to the application ofEq. (A23) 
or its analogues for Wn #0. If we consider, for example, a 
case where only cross peaks for which AM1 = ± 1 are ob­
served, we can utilize Eq. ( 33) to obtain Wn directly from 
two of the four cross peaks. The expression for the other two 
cross peaks ( i.e., m = 0, j = ± l), is somewhat more com­
plicated in that it depends on terms both linear and cubic in 
exp( - Wn T), as can be seen by straightforward application 
of Eq. (A22). These cross peaks nevertheless do directly 
yield W", provided exchange is absent. The full set of linear 
equations applicable when li)HE # Wn #0 and when nuclear 
spin dependent nonsecular terms may be neglected is then 
given by 
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(2I+1,o + V+1'2+,)c= (V+1'2+, -1+1,o), 

(2I-1,o + V_1r2_, )c = ( V_1r2, -l-1,0 ), 

~(lo,+ 1 V+1'2+, )b + (1 + !lo.+ 1 V+1'2+, )c 

= (1-lo.+1 V+1'2+,), 

~(lo._ 1 V_ 1r2_, )b + (1 +½lo._ 1 V_ 1r2_, )c 

= (1-10,-1 V_1r2_,), 

½<V+1'2+, +1+1,-1 V_1r2_,)b 

+i<l+1,-1 V_1r2_, - V+1'2+,)c 

=!(V+1'2+, -l+1,-1V-1r2_,), 

!(V_1r2_, +l-1.+1V+1'2+,)b 

+ i<I- 1,+ 1 V+1'2+, - V_1r2_, )c 

=!(V_1r2_, -l-1.+1 V+1'2+, ), 

(A25) 

(A26) 

(A27) 

(A28) 

(A29) 

(A30) 

whereb=exp[-(2Wn +wHE)T] andc=exp[ - (6Wn 
+ wHE ) T] . Thus, upon solving the overdetermined system 

of linear equations we obtain Wn and wHE from the expres­
sions 

2 W = -
1 

In(.!!..) 
n 2T C 

(A31) 

and 
1 

wHE = - (Inc - 3 ln b). (A32) 
2T 

The presence of cross-peak intensity at t::..M1 = ± 2 does not 
necessarily imply the presence of Heisenberg exchange; the 
Wn mechanism may also contribute intensity to these peaks 
by a small amount, but only for sufficiently long mixing 
times T, i.e., when WnT > 1, (cf. Table IV) whereas in the 
present work Twas selected to maximize the other peaks, 
and this led to Wn T < l. The absence of t::..M1 = ± 2 peaks 
for Wn T < l is easily shown by expanding Q ± 1, + 1 given in 
Table IV to lowest power in Wn T. [As a final note, we first 
recall that in nitroxides, the effects of the 14N electric qua­
drupolar interaction are insignificant. 1 However, if they 
were not, they could be distinguished from the electron­
nuclear dipolar contributions to Wn by their different selec­
tion rules82 (i.e., l::..M1 = ± 2 is allowed) in cases wherewHE 
is negligible, e.g., low concentrations of spin-probe.] 

2. Perturbational treatment of nonsecular terms 

When the nuclear spin dependent nonsecular contribu­
tions cannot be neglected, the eigenvalue problem of Eq. 
(Al) should be solved, followed by substitution of the re­
sulting Od,ij andr1 intoEq. (AlO). Ifthesenonsecularterms 
are small compared to 2 We we may treat them as perturba­
tions. The six unperturbed (zeroth order) eigenvalues are 

E\0
) =0, 

EiO) = 2Wn + (()HE• 

E ~0) = 6Wn + (()HE• 

EiO) = 2We, 

E~O) = 2We + 2Wn + (()HE• 

(A33) 

(A34) 

(A35) 

(A36) 

(A37) 

ElO) = 2We + 6Wn + WHE• (A38) 

where We= We (M1 = 0). E 1 = 0 insures conservation of 
probability. 

The zeroth order eigenvectors are defined by 

(t/!\ol, ... ,1hoi)=(~d iJ, (A39) 

where the 3 X 3 matrix partition Od is defined in Eq. (A 12). 
Using standard methods83 we find the first order corrections 
to the eigenvalues 

E\ 1l=O, (A40) 

Efl = W//2, 

Efi = 3W//2, 

Efl = 4W //3 + 2Weo+ /3, 

(A41) 

(A42) 

(A43) 

Efi = W//2 + Weo+, (A44) 

Ell)= W / /6 + Weo+ /3, (A45) 

where W / = ( Wx, + Wx,) and o+ = [o( + 1) 
+ o( - 1)]. Wx, and Wx, are the cross-relaxation rates as­

sociated with I+ S ± and I± S ± , respectively, whereas 
o( + 1) and 8(-1) (where o(M1 ) = [We(M1 ) 

- We ( 0) ]I We ( 0)) are the corrections to We at the M 1 

= ± 1 hf lines arising from electron-nuclear dipolar 
(END) terms and Zeeman-dipolar cross terms in the spin 
Hamiltonian.34 We see from Eqs. (A40)-(A45) that the 
conditions W //We< 1 and o+ < 1 are necessary for pertur­
bation theory to apply. Because of the additional nuclear 
spin independent contribution to We arising from the spin­
rotation mechanism34

•
52 

( call it W!R), this first-order treat­
ment is expected to be fairly accurate for nitroxides for 
which W!R is substantial. Note that the first order effects of 
the perturbation on the eigenvalues depend only on the mean 
of Wx, and Wx, and of o( + 1) and 8( - 1) (and not their 
differences) . 

The first order corrections to the eigenvectors are 

(A46) 

(A47) 

(A48) 

(A49) 

(ASO) 

J. Chem. Phys., Vol. 90, No. 10, 15 May 1989 



Downloaded 26 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Gorcester, Rananavare, and Freed: Solute dynamics in smectics 5785 

1 ( Weo- ) <o> 
+ ..[3 E ~o> - E 10> 'Ps ' 

(A51) 

whereo-=[0(-1)-o( + l)]andwx-=<Wx, -Wx,>· 
One may note that the mixing of the zeroth order eigenvec­
tors by the perturbation depends not only on the mean values 
of Wx, and Wx, and of o( + 1) and O( - 1) but on their 
differences as well. Hence it might appear that one could 
determine all of the relevant relaxation rates experimentally 
by fitting the 2D ELDOR spectrum according to Eq. (AlO) 
while utilizing the perturbed transformation matrix and nor­
mal modes described in Eqs. (A39)-(A51 ). Unfortunately 
this is not the case in general ( e.g., when all of the nonsecular 
terms are important), because of the invariance of Eq. 
(AlO) to a permutation of indices m and n. In other words 
the 2D spectrum is symmetric about the diagonal w 1 = w2 

(neglecting off-resonance effects) and there are only three 
distinct normalized cross-peaks and two distinct normalized 
autopeaks, in terms of their dependence on the normal 
modes. Hence a single 2D spectrum is not sufficient to deter­
mine the seven relaxation rates we' wn' WHE' wx, ' WX,' 
o ( + 1 ) , and o ( - 1 ) ( nor the six that remain after factoring 
out We ) . However, all seven relaxation rates can in principle 
be determined, with the combined analysis of two ( or more) 
2D ELDOR spectra taken at different mixing times T. This 
is a result of the fact that the matrix of normalized volumes 
Q ( n will be different for the two ( or more) spectra, but the 
transformation matrix ofEq. (A39) will not. Such an analy­
sis would, in general, require the implementation of a nonlin­
ear least-squares algorithm which iterates throughout the 
parameter space of the seven relaxation rates and satisfies 
some best fit criterion (usually x2

) between Q( D and the 
right side ofEq. (AlO). This iteration scheme could easily be 
combined with a matrix diagonalization routine to compute 
the transformation matrix and the normal modes needed for 
each state of the fitting. [Alternatively, for isotropic liquids, 
one could impose the well-known34 theoretical relations be­
tween Wx,• Wx,, o( + 1), and o( - 1) in terms of just 
J DD(we) and J ba(we) to reduce the unknown parameters 
to be fit to just five.] 

APPENDIX B: INHOMOGENEOUS BROADENING 

A successful double resonance experiment such as 2D 
ELDOR requires the accurate determination of population 
differences between spin states. If the longitudinal magneti­
zation is detected by conversion into transverse magnetiza­
tion, e.g., via a tr/2 microwave pulse, then the population 
differences are reflected in the amplitudes of the Fourier 
components of the free induction decay, or alternatively in 
the areas under the resonance lines. In two dimensional spec­
troscopy these amplitudes are usually obtained by measure­
ment of volume integrals ofautopeaks and cross-peaks. The 
objective of this appendix is to assess the effect of inhomo­
geneous broadening in the estimation of peak areas and vol-

ume integrals and hence relaxation rates in the motional nar­
rowing regime by 2D ELDOR and related experiments. Let 
us assume a signal of the form 

3 

s(t) = L ( 0 1i )
2 exp( - iw/)exp( - t /T2i ), (Bl) 

j=I 

where the matrix elements 0 1i = 11../3 are obtained from Eq. 
( A 12). We can incorporate a normalized inhomogeneous 
weighting function H(t) to reflect the static local fields from 
unresolved superhyperfine structure in the motional nar­
rowing regime ( as well as static distribution of directors in 
the case of smectogens). We obtain for the observed time 
domain signal s(t) the product of H(t) and s(t) 

s(t) = ..!_ ± H(t)exp( - iw/)exp( - t /T2), (B2) 
3 j= I 

which upon Fourier transformation with respect to time 
yields the convolution 

X 2i { 
r- 1 

} 

[ W - (wa +Cui) ]2 + T 2J 2 ' 

(B3) 

where h(wa) = Y{H(t)},,,,· Integrating thejth hyperfine 
component of the spectrum with respect to w gives the 
expression for the peak area ( after some rearrangement) 

} Joo A=- dwa h(wa) 
3tr - 00 

X dw 4 Joo { T - I } 

-oo [w-(wa+wi)] 2 +T21
2 

' 

1 Joo 1 =- dwa h(wa) =-, 
3 - 00 3 

(B4) 

which is precisely the result obtained in the absence of inho­
mogeneous broadening. This result is easily generalized to 
multiple dimensions. Thus an accurate determination of in­
stantaneous population differences is not influenced by the 
presence of inhomogeneous broadening in the resonance 
lines, irrespective of its functional form. 
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