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Static and dynamic properties related to the internal configurational motions have been 
calculated for the alkyl chains of phospholipid molecules in a membrane environment in the 
liquid crystal phase. The calculations have been performed for the chain 1 of 1,2-dipalmitoyl 3-
sn-phosphatidylcholine (DPPC), a typical constituent of phospholipid membranes. Under the 
assumption of fixed bond lengths and bond angles, the internal dynamics of the chain is 
described in terms of 15 dihedral angles. The time evolution of the angular variables is assumed 
to be diffusional in character, and a master equation for transitions among the stable 
conformers is constructed from the energetics and hydrodynamics of the chain. This method is 
an extension to the time domain of the rotational isomeric state (RIS) approximation, which 
has been widely used to compute static properties of the chains. After calculation of the 
suitable correlation functions, effective rate constants relevant for spectroscopic and kinetic 
observables have been computed, and the results have been compared with those obtained by 
recent Brownian dynamics (BD) calculations. The position dependence of the rate constants 
along the chain has been examined with special reference to understanding the effects resulting 
from cooperativity in the conformational transitions. The overall spinning and tumbling of the 
chain has also been described by a diffusive model. The calculated spectral densities for the 
composite motional process have been used to rationalize the behavior of the relaxation times 
T1, T2, and T 1P measured in deuterium nuclear magnetic resonance (NMR) experiments. 

I. INTRODUCTION 

The calculation of the dynamical properties in molecu­
lar systems with many degrees of freedom is a formidable 
task even when the most advanced computer facilities are 
available. In the order of decreasing complexity, three meth­
ods can be employed: molecular dynamics (MD), Brownian 
dynamics (BD), and the master equation (ME) for confor­
mational transitions. 

MD requires the full calculation of trajectories for a sta­
tistically significant number of molecules, and it cannot be 
pushed to time scales longer than nanoseconds even for alkyl 
chains of hexane size. 1•

2 In this way, the range of characteris­
tic times for most configurational transitions is practically 
beyond the capability of the method. 

BD remains a good alternative for molecular systems of 
the complexity of phospholipid chains, where it has been 
recently applied with good success. Pastor, Venable, and 
Karplus3

a have, in fact, performed a BD calculation on 
chain 1 ofDPPC, the other chains being assumed to partici­
pate in the effective interactions exerted by the surrounding 
medium. An extended atom model was assumed for the 
chain, with only the skeleton carbons, and not the hydrogen 
atoms, being explicitly considered. A systematic attempt 
was performed to fit the field parameters, related to the in­
ternal energy and the mean field interaction with the lipid 
environment, by comparing calculated and experimental or­
der parameters. The actual number of computational steps 

in the simulations allows one to follow motions on the nano­
second time scale, at the cost of computational times of the 
order of a week. Besides the heavy requirements of computa­
tional time, BO shares with MD the problem of degradation 
of the numerical results when the technique is used to inter­
pret processes occurring at long time scales. 

In a second paper, Pastor, Venable, Karplus, and 
Szabo3

b used these results to calculate NMR T1 relaxation 
times. To do so, fast axial rotation and slow diffusive wob­
bling in a cone of the chain axis were superimposed on the 
internal motions. The motions were considered uncoupled, 
and the correlation functions for internal motions, obtained 
from the trajectory points, were fitted with a sum of a few 
exponentials. 

The ME method is an extension to the time domain of 
the rotational isomeric state (RIS) approximation.4 In the 
last 20 years, this approach was taken by numerous authors 
at different levels of sophistication. Wallach5 assumed the 
multiple internal rotations to be completely factorized. 
Levine et al. 6 considered the anisotropy of the diffusion but 
adopted a single phenomenological rate constant for the in­
ternal motions. London and Avitabile7 explicitly considered 
the energetics of the trans-gauche isomerism, while 
Wittebort and Szabo8 abandoned the assumption of decou­
pled rotations but still used phenomenological transition 
rates. Edholm and Blomberg9 first realized the necessity of 
applying Kramers theory for calculating the rates of chemi­
cal reactions to the specific case of conformational processes. 
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Helfand and Skolnick, 10 on the basis of a mathematical treat­
ment proposed by Langer11 for the solution of the multidi­
mensional diffusion equation, emphasized the role of coo­
perativity effects in minimizing the frictional drag during the 
saddle point crossing, thereby avoiding the need to consider 
crankshaft or kink motions that, although energetically un­
favored, appeared likely to occur for hydrodynamical rea­
sons. 12

•
13 Ferrarini, Moro, and Nordio14

•
15 used the concept 

of localized functions to project a multivariate diffusion 
equation in continuous torsional variables into a master 
equation for transitions among discrete sites, thereby giving 
the prescriptions for the evaluation of energetic and fric­
tional terms without resorting to phenomenological param­
eters. The time evolution of the specific properties was ex­
pressed in the language of correlation functions, which leads 
quite naturally to the definition of effective kinetic con­
stants. 

In this work, we shall adopt the ME procedure to de­
scribe the conformational processes occurring in the alipha­
tic chains of phospholipid molecules and to interpret the 
NMR relaxation data available for these systems. 

To appreciate the reasons which motivate our choice, a 
deeper comparison of the BD and ME methods is now in 
order. BD is a description of the dynamical processes suf­
fered by a single probe molecule in a thermal bath. The meth­
od consists in the sampling of trajectories for the collection 
of particles constituting the molecular probe, subjected to a 
specified force field and to a rapidly fluctuating force that 
takes into account the interactions with the bath. The sto­
chastic force is generally chosen in such a way as to repro­
duce diffusional regimes, i.e., conditions in which inertial 
effects are quenched by rapid thermalization of the momenta 
coordinates. 

The BD method is an effective technique which aver­
ages many trajectories of the Langevin equation to obtain 
correlation functions instead of solving the multidimen­
sional diffusion equation for the same system of particles. 
Numerical results identical to those offered by the BD meth­
od could, in principle, be obtained by a basis function expan­
sion of the corresponding diffusion operator. In practice, 
however, eigenfunction expansions can be applied to diffu­
sion equations with only a few coupled variables, because of 
the memory requirements for storing the matrix. Modem 
efficient algorithms which take full advantage of the matrix 
sparsity can greatly improve this situation. Nevertheless, it 
might appear that dynamical studies of molecules with many 
degrees of internal freedom could be tackled only with BD 
simulations. However, the presence of large potential bar­
riers which hinder the conformational motions allows one to 
reduce the size of the matrix representation of the diffusion 
operator to the number of stable conformers. As mentioned 
above, a special set of functions, called localized functions, 
because they refer to equilibrium states of specific con­
formers, is suitable to generate the ME representation, by 
means of a projection procedure. Indeed, we do find that the 
ME method leads to a very rapid algorithm for the solution 
of these problems. Thus, the calculations described in this 
work take only 1-2 h of computer time. This great computa­
tional efficiency that we have been able to achieve clearly 

indicates the future potential in dealing with complex prob­
lems in molecular dynamics. 

It should be stressed that the resulting ME is no longer a 
phenomenological equation but an asymptotic approxima­
tion to the starting equation with respect to the height of the 
potential barriers. Its range of validity is the same as that of 
the Kramers theory for activated processes, since it is implic­
itly assumed that the small amplitude motions inside the 
potential wells have a negligible effect on the long time be­
havior, determined mainly by the conformational transi­
tions. Comparison with the complete solutions of one- and 
two-dimensional model systems shows that the ME method 
works nicely when the barrier heights are of the order of at 
least a few kB T. 16 Therefore, when detailed potential sur­
faces are available, like those adopted in the BD simulations, 
they could be used to implement the ME method, and the 
results of the two techniques should be equivalent, except for 
the different degrees of accuracy noted below and for the 
validity of the asymptotic approximations. 

Even though the ME method and BD simulations are 
based on the same diffusion equation, they should not be 
considered as alternative computational tools to be chosen 
simply according to their efficiency. They are, more correct­
ly, complementary techniques providing information of a 
somewhat different nature. In principle, BD simulations 
provide a very detailed picture of the dynamical processes 
occurring in the system. In practice, however, the quality of 
the information obtained fades at long times. For example, 
the average kinetic rates for the g + _. t and the g _ _. t transi­
tions at fixed positions of the chain, that should be identical 
for symmetry reasons, differ up to 45% in the calculations of 
Pastor et al. (see Table VIII of Ref. 3a), in spite of the very 
long computational time. The ME treatment renounces the 
description of the short time behavior of the system dynam­
ics, focusing its attention on the relatively rare events of bar­
rier crossings, i.e., to the kinetic regime of the conforma­
tional processes. Within the theoretical framework of the 
model, one can calculate very accurately the spectral densi­
ties, and so the multiexponential character of the decays to 
equilibrium can immediately be exhibited. In fact, it is these 
spectral densities that are needed in analyzing spin-relaxa­
tion data. 

Furthermore, the ME method should be considered not 
only as a computational tool, but also as a theoretical meth­
od to gain more insight into the dynamical processes. For 
example, the calculation of the ensemble of the elementary 
transition rates entering in the master equation represents an 
intermediate step relating the molecular ingredients of the 
model ( the potential and the friction matrix) to the physical 
observables of the system. The features of the model which 
are essential in determining the macroscopic behavior of the 
system, such as the potential curvature at the saddle points, 
or the frictional coupling between reactive and nonreactive 
modes that leads to a cooperative picture of single bond tran­
sitions, are easily recognized. This gives one the opportunity 
to select in the calculations only the relevant factors of the 
problem, and to disentangle the effects on the observables 
due to the various ingredients of the model, without having 
to deal with minor details. ( Given that modem methods lead 

J. Chem. Phys., Vol. 91, No. 9, 1 November 1989 



Downloaded 26 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Ferrarini et al.: Phospholipid dynamics in membranes 5709 

to a very efficient algorithm for the ME approach, it becomes 
fairly easy to repeat calculations to test the effects of modify­
ing various features of the model.) Previous work on alkyl 
chains in isotropic media have indeed shown that the ME 
approach allows a parametrization of the potential in terms 
of a few quantities with a direct physical meaning, 14 and 
substantial agreement has been found by comparison with 
NMR relaxation data. 17 We shall follow the same approach 
in treating the phospholipid chain dynamics in the mem­
brane environment. 

In Sec. II the RIS model applied to phospholipid chains 
is described. We also define there the time correlation func­
tions for populations and for orientations that we calculate. 
Computational methods are discussed in Sec. III. Our re­
sults are discussed in Sec. IV. These include equilibrium 
properties such as order parameters and conformational 
populations, internal dynamical properties such as average 
isomerization rates and correlation functions of the angular 
variables, and also NMR relaxation. Our conclusions and 
comments appear in Sec. V. Therein we stress that the prin­
cipal features of the results are determined by only a few 
microscopic parameters. Nevertheless, where comparisons 
with the BD calculations of Pastor-Venable-Karplus are 
appropriate, there is good agreement, and this strongly sug­
gests that the ME approach is satisfactory, thereby provid­
ing simple physical insights into the nature of the internal 
configurational motions. 

II. THE THEORETICAL MODEL 

In Ref. 14 the time-dependent RIS model has been de­
rived for an alkyl tail attached to a massive rigid core. We 
shall summarize here the main features of the model in order 
to illustrate its application to phospholipid chains in mem­
branes. The structure of 1,2-dipalmitoyl-3-sn-phosphatidyl­
choline (DPPC), a typical membrane phospholipid, is rep­
resented in Fig. 1. As in the BD simulations of Pastor et al.,3 
we shall explicitly treat only chain 1. The carbon atoms of 
the chain are numbered from 1 to 16, starting from the car­
bonyl group. Since the torsional dynamics of the terminal 
methyl group will not be examined, the set 
a= (a1,a2, ... ,a15 ) of 15 torsional angles represented in Fig. 
1 is required to specify the conformational state of the chain. 

As in the previous work, 14 we assume that conforma­
tional dynamics and overall motion are decoupled. In the 

I 

case of isotropic liquids, this hypothesis relies on the differ­
ent orders of magnitude of the friction opposing the overall 
rotation and opposing the conformational transitions. 18 This 
condition, however, is not necessarily sufficient in the pres­
ent case, because of the coupling that results from the con­
formational dependence of the mean field potential for the 
anisotropic interactions of the test molecule with the mem­
brane environment. 

Ifwe suppose that the position of the polar head is fixed 
with respect to the boundary of the bilayer, two independent 
contributions can be separated in the overall potential: the 
torsional potential V10rs, generated by the intramolecular in­
teractions, and the mean-field potential vmr, for the interac­
tions of the chain with the environment 

(2.1) 

In general, vmr depends on both the chain conformation and 
the orientation n of the polar head with respect to the bilayer 
normal. It is possible to separate the potential into a confor­
mational and an orientational term in the presence of very 
anisotropic interactions which strongly favor a given orien­
tation n0 . ( In the following treatment we shall assume the 
preferred orientation to be the one with the all-trans axis 
perpendicular to the bilayer surface.) More precisely, the 
potential V will be written as a sum of two terms: the internal 
contribution 

Vi"\a) = viors(a) + vmr(a,no) (2.2) 

describing the potential acting on the molecule in the orien­
tation n0, and the external one 

vexica,n) = vm\a,n) - vmr(a,no), (2.3) 

accounting for the increase of potential energy induced by 
fluctuations with respect to the preferred orientation. As 
long as vext is a steeply rising function of on = n - n0, the 
weak dependence of vext on the torsional angles can be ne­
glected. Therefore, the potential becomes factorized as 

(2.4) 

Note that this separation of variables is implicitly assumed 
whenever one factorizes the order parameter along the chain 
as a product of internal and external contributions. 19 Under 
the decoupling condition, the internal dynamics can also be 
treated independently of the overall rotational motion, as is 
usually done. 20

•
3 

CHa - (CH2)u - COO~ I 2 

CH - CH2 - 0 CH2 

14 16 

+ / I~ X ';/.. / 
(CH3 )aN - (CH2)2 - P04 - CH2 1a1 CO a2 a3 CH2 

rigid core 

FIG. I. Structure of the DPPC molecule. 

I 1 3 

mobile chain 
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If/=/( a) is a property depending on the 15 torsional 
variables a, its average value is calculated according to the 
RIS approximation4 by means of the equation 

l = 2JJ QJ, c2.5) 
J 

where J is an index denoting a stable configuration of the 
chain,/J = /( aJ ) is the value of the function for the J th state, 
specified by the set aJ of torsional angles, and QJ is the 
fractional population of the J th state, defined in terms of the 
"free energy" 21 EJ 

QJ = exp( - EJknT) (2_6) 

L exp( - EJlknT) 
J 

with 

EJ = Vt1 + kT In IDet(V}2l/21rknT)I. (2.7) 
2 

In this expression V11 is the internal potential of the J th 
configuration, i.e., V11= Vint(aJ), and vy> the correspond­
ing curvature matrix, i.e., the matrix of the second deriva­
tives of the internal potential with respect to the torsional 
angles. 

In Refs. 14, 15, and 17 the dynamics of the chain has 
been analyzed on the basis of a model assuming rotational 
diffusion around the bonds, by explicitly taking into account 
the coupling of the 15 torsional variables through both the 
potential and the frictional forces exerted by the surround­
ing viscous medium. By means of a projection procedure 
applied to the multivariate diffusion equation, a master 
equation is obtained for the time dependent conformer popu­
lations 

at 
(2.8) 

If multiple bond transitions are neglected (because of their 
unfavorable activation energy1°), then a parabolic expan­
sion of the potential about the saddle points leads to the 
following form of off-diagonal elements of the transition ma­
trix: 

(2.9) 

if the configuration J is reached from J' through a single 
rotation of a torsional angle, otherwise WJJ, is set equal to 
zero. In the above equation Es is the free energy of the saddle 
point, calculated by analogy with Eq. (2.7) and ,1, 1 is the 
unique negative eigenvalue of the product matrix Ds V;2> / 
kn T, where Ds is the 15 X 15 diffusion matrix and V; 2

> the 
curvature matrix, both calculated at the saddle point. The 
physical meaning of this procedure can easily be understood: 
the diagonalization of Ds V;2>, appearing in the diffusion 
equation after a parabolic expansion, leads to the determina­
tion of 15 normal modes, but only one of them, correspond­
ing to the negative eigenvalue ,1, 1, can be identified with the 
reaction coordinate, along which the transition rate is calcu­
lated. 

The relation ( 2. 9) holds for the off-diagonal elements of 

W; the diagonal terms are calculated from the off-diagonal 
ones on the basis of the "detailed balance" condition 

Wu= -QJ-I L WJJ'QJ, (2.10) 
J','J 

so that a stationary solution ofEq. (2.8) is given by the array 
Q, having for elements the fractional populations QJ. 

Thus, static and dynamic properties can be calculated 
given the geometry and the energetics of the chain. In addi­
tion, a model is required to specify the frictional forces exert­
ed by the environment. 

A. Geometry of the chain 

The chain geometry is characterized by fixed bond 
lengths and bond angles. The values are, respectively,4

•
22 

o A A 

lc-c =l.53A, C;_ 1 C;C;+i =112°, HC;H=l09°. 
l 1+1 

By analogy with the central bond in the butane mole-
cule, the rotation around the ith bond is assumed to be sub­
jected to a torsional potential with three minima, respective­
ly, at a; = 0° (trans) and a; = ± 120° (gauche± ).4

•
22

•
23 

Then, according to the RIS approximation, a stable con­
former can be identified by an ordered sequence of symbols 
specifying the conformational states of all the C-C bonds; 
e.g., the sequence (tg+g_tt • • • ) represents a configuration 
having the first bond in trans, the second in gauche+, the 
third in gauche_, and so on. 

At the saddle points between two configurations, J and 
J ', connected through a rotation about the ith bond, all of the 
nonreactive bonds are assumed to be in a stable conforma­
tional state (t,g + ) , while the rotating segment is character­
ized by a value of the torsional angle a; which is intermediate 
between the starting and the final one. 

Moreover, the chain is described by an "extended atom" 
model. That is, each methylene group is described as a 
sphere with radius r0, centered on the carbon atom. 

B. Energetics of the chain 

All the variables from a 3 to a 15 are assumed to be sub­
jected to the same butane-like torsional potential. The para­
metrization for the two remaining angles a I and a 2 is less 
straightforward; in agreement with Karplus and co­
workers, 3 instead of a potential giving a realistic description 
of the rotational hindrance around these bonds, an effective 
one has been introduced, which reflects the contributions of 
the whole headgroup, and gives values of the equilibrium 
properties of the chain in agreement with the experimental 
data. The following parametrization has been used: a I is sub­
jected to the usual butane-like torsional potential, while for 
a 2 the torsional potential has three equivalent minima at 
a 2 = 0° and ± 120°. 

In summary, if the torsional potential of a trans and a 
gauche state is assumed to be O and Vg, respectively, the 
torsional contribution to the potential of the J th chain con­
figuration can be written as 

V~ors= viors(aJ) = ng Vg, (2.11) 

where ng is the number of gauche bonds in the chain, with 
the exclusion of the second bond. 
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Interactions among atoms separated by more than three 
bonds, which are not accounted for by the purely torsional 
potential, are considered at the level of excluded volume, i.e., 
by eliminating those configurations for which there is a su­
perposition of the spheres representing the extended atoms. 
A given configuration is accepted only if the distance be­
tween any pair of carbon atoms separated by more than three 
bonds is larger than two extended atom radii. We have cho­
sen r0 = 1.85 A, a value which agrees with the van der Waals 
radius of the extended atoms assumed in trajectory simula­
tions of hydrocarbon chains. 2•

3 In this way, all the configura­
tions containing adjacent gauche states are excluded. This 
may be too restrictive a choice for free chains, because it 
strongly reduces the number of available configurations. 
However, it seems to be adequate to represent phospholipid 
tails in a membrane environment, because it makes the fold­
ed configurations by far less probable than the extended 
ones. Note that, because of the exclusion of adjacent gauche 
states the so-called "pentane effect" does not need to be ex­
plicitly considered. The effect of the bilayer surface is taken 
into account by eliminating configurations with part of the 
chain bent behind a plane passing through C1 and orthogo­
nal to the all-trans axis. With these choices, the number of 
allowed configurations is reduced from 315 = 14 348 907 to 
37 225. 

The orienting effect of the bilayer environment on the 
chain has been described by a mean-field external potential, 
which depends on the conformation. According to the treat­
ment ofphospholipid chains by Marcelja24 and that offlexi­
ble mesogens in nematic phases by Emsley, Luckhurst, and 
Stockley, 25 the dispersive interactions of the chain with the 
environment are described by a mean field potential given by 
a sum of contributions, each relative to a segment. The 
pseudopotential acting on the J th configuration is written as 

15 

Vt= - € L P2(cosP kCH), (2.12) 
i=1 

where Eis a parameter giving the strength of the potential, P2 

is the second Legendre polynomial, and P kcH is the angle 
between the normal to the HC; H plane and the all-trans 
axis. 26 

In addition, in order to calculate static and dynamic 
properties of the chain, knowledge of the curvature matrices 
in the stable configurations Vf l and at the saddle points V!2l 
is required. In principle, the curvatures can be obtained from 
the analytical form of the internal potential; however, we 
have adopted a simpler parametrization procedure. Both 
matrices are assumed to be diagonal with respect to the dis­
placements of the torsional angles a;. In particular, in the 
stable configurations there is a unique positive curvature 
V ~;i so that V(2) = 1 V ~;i. The same positive curvature V ~;i 
characterizes the nonreactive bonds at the saddle points, 
while a negative curvature V ?i is associated with the "reac­
tive mode"ak modified by the single bond transition. 

The free energy of the saddle points is calculated by 
assuming that each of them is characterized by the same 
increase AEs with respect to the highest value at the two 
connected configurations; that is, the energy at the saddle 
point for a transition J-+ J' is given by 

(2.13) 

C. Hydrodynamics 

The diffusion tensor Ds is written as kT( g•) - 1
, and the 

friction matrix t• is calculated by hydrodynamical methods. 
The torsional degrees of freedom are assumed to be uncou­
pled to the overall rotation of the molecule because of the 
strong forces acting on the headgroups of the phospholipid 
chain. The rotation about the Ck_ 1-Ck bond causes transla­
tions of all the spheres following the k th one, and the ele­
ments of the friction matrix can be calculated as14

•
15 

16 

sL=so L [zk_1X(rm -rd]•[z;_1X(rm -r;)], 
m=m' 

(2.14) 

where m' is the larger of the integers (k + 1) and (i + 1 ), 50 

is the friction opposing the translational motion of a single 
sphere, zk _ 1 is a unit vector along the Ck_ 1 - Ck bond, 
and rm the position vectbr of the mth carbon atom. 

D. Dynamical properties 

A given bond is characterized by a variety of g-+ t and 
t-+ g transition rates, depending on the conformation of all 
the other bonds. However, the dynamical results can be ra­
tionalized in terms of average isomerization constants. The 
average kinetic rate for the g ± -+ t transitions of the ith bond 
is defined as15 

- * /* k~_, = L WJJ' QJ' L QJ, 
JJ' J 

(2.15) 

where the asterisk denotes that only transition matrix ele­
ments between states connected by a g ± -+ t conformational 
change at the ith chain segment are retained in the summa-

tion. The average rate constant k ;_g is defined in an analo­
gous way. 

Alternatively, the dynamics can be analyzed by means 
of some relevant correlation functions. Given the function 
f =/(a), the correlation function for its deviation from the 
equilibrium average is defined as 

(2.16) 

In this expression S is a diagonal matrix with elements 
SJJ = QJ, and 8f is a vector whose J th element 

(2.17) 

is the deviation of the value of the function for the J th config­
uration from its mean value. Actually, instead of the correla­
tion functions, the corresponding spectral densities, i.e., 
their Fourier-Laplace transforms, are calculated by the fol­
lowing expression: 

(2.18) 

In particular, it is possible to define effective decay rates as 
the inverse of the properly normalized time integrals of the 
correlation functions 

K = F(0)/F(O). (2.19) 

We have considered two different kinds offunctions, popu­
lation functions and angular functions. The first group in-
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eludes functions describing the excess of trans population 
and the unbalanced gauche population at a given site; the 
components of the corresponding vectors are defined as 

( &; )J = OJ;,t (2,2Oa) 

and 

(2.2Ob) 

where J; gives the conformation of the ith bond in the J th 
state. In the case of a molecule with one internal degree of 
freedom, the decay constants for these functions can be relat­
ed to the rate constants associated with the g-> t and the t ..... g 
processes, kg_, and k,_g. In this case o&, and o& g are 
eigenvectors of the transition matrix, corresponding respec­
tively to the eigenvalues 

K, = kg_, + 2k,_g, 

Kg= kg_,. 
(2.21) 

In fact, it turns out that, if the rate constants in Eq. ( 2.21 ) 
are replaced with the average kinetic rates defined by Eq. 
( 2.15), analogous relationships are approximately satisfied 
for more complex chains despite the couplings deriving from 
the configuration-dependent friction, the excluded volume 
interactions, and the mean field potential, provided that they 
are not too strong. 14 

The angular functions we have considered are 
D ~0 ( nmol,F;), components of Wigner rotation matrices of 
rank 2 having for argument the Euler angles for the transfor­
mation mol--+F;, where F; is a local frame, centered on the 
ith carbon, with the z axis along a C;-H bond. The confor­
mation-independent molecular frame denoted by mol is cen­
tered on the acylic oxygen at the fixed end of the chain, with 
the Z axis along the all-trans direction, and the X axis in the 

A 

plane bisecting the HC;H angles in the all-trans conforma-
tion. 

These functions have been chosen because of their phys­
ical meaning, since they are the suitable functions to describe 
the time evolution of axially symmetric tensors of rank two 
with the symmetry axis along the C;-H bonds; ( examples of 
interest in the case of hydrocarbon chains are the magnetic 
interaction tensors in 2H and 13C NMR experiments). Actu­
ally, the experimental observables can be expressed in terms 
of the Wigner functions D 7,o ( n,ab,F; ) ' with n,ab,F; the Euler 
angles relating the principal axes of the tensorial interactions 
to the laboratory frame, chosen according to the conventions 
of Rose. 27 By making use of the addition theorem for the 
Wigner functions, these functions can be factorized as 

2 

D 7,o ( nlab,F;) = L D ;m ( nlab,mol )D ;,,o ( nmol,F;)' 
m= -2 

(2.22) 

where 0 1ab,moi represents the Euler rotations, from the labo­
ratory to the molecular frame. Then given ( 1) the hypothe­
sis of decoupling of internal and overall motion, ( 2) the 
average lipid conformation is axially symmetric about the 
all-trans axis, ( 3) that the external potential V ext is only a 
function of the angle /3 between this axis and the director, 
and ( 4) that the overall motion is also axially symmetric, the 
correlation function G ~ ( t), for the deviation of D ;,o ( n,ab,F;) 

from its average value, can be decomposed as14 

G~(t) = L {Cpm(t)[g~(t) + 1s~12
] 

m 

(2.23) 

In Eq. (2.23), g~ (t) and Cpm (t) are the correlation func­
tions, respectively, for the deviations of D ;,,0 (Omoi.F) and 
D ;m ( n,ab,moI ) from their equilibrium values, denoted by S ~ 
and by S0. [ Given our assumptions, only the average value of 
D 6o ( n,ab,mol ) is different from zero.] 

Ill. COMPUTATIONAL METHODS 

The computations have been performed on an IBM 
3090 supercomputer at the Cornell National Supercomputer 
Facility, according to the following scheme: 

( 1) generation of the allowed conformations and calcu­
lation of the equilibrium averages; 
(2) calculation of the transition matrix; 
( 3) for each relevant function, calculation of the corre­
sponding vector of and of the spectral density through 
the Lanczos Algorithm. 
We now consider these steps. 
( 1) All possible configurations are generated. The con­

figurations are examined and the sterically hindered ones are 
rejected according to the criteria introduced above. Also a 
check must be performed in order to eliminate all the config­
urations which cannot be connected with the all-trans by a 
sequence of single bond transitions. This is because there 
would be problems in the calculation of the dynamic proper­
ties without this check, due to slightly nonergodic features 
for finite times. It is important to note that this operation 
does not introduce artificial effects because of the small 
number of "bad" configurations ( only 44) and their low 
statistical weight (0.002% on the partition function). The 
final number of retained configurations is 37 181 (Ne). 

At this step of the computation, fractional populations 
of the stables states and equilibrium properties, given, re­
spectively, by Eqs. (2.6) and (2.5), are evaluated. 

( 2) Because of the convenience of working with sym­
metric operators, the transition matrix is used in its symme­
trized form W whose elements are defined as 

W- Q - 1/2 W Q 1/2 
JJ' = J JJ' J' • ( 3.1) 

By using the parametrization suggested in Sec. II B, the ma­
trix elements can be expressed as 

- w { IEJ - EJ, I} 
WJJ' = -\µJ exp -

2
kB T , (3.2) 

whereµ 1 is the unique negative eigenvalue of the matrix 

M = cv?> - 11V;2 >1 )ts;~of~c- (3.3) 

Because of the 1V;2 >1 scaling of the V?> matrix, only the 
knowledge of the ratio p of the curvatures for the reactive 
and the nonreactive modes 

(3.4) 
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is required, instead of their absolute values. The parameter w 
appearing in Eq. (3.2) is defined as 

v?> { l:l.Es} w=----exp --- . 
21rncso kBT 

(3.5) 

If the free energy increment l:l.Es is assumed to be the same as 
for the butane molecule, w has an immediate physical mean­
ing, corresponding, apart from a geometrical factor, to the 
butane g- t isomerization rate. _ 

The calculation of the transition matrix W for the 15-
bond chain is a difficult job, because of the time and space 
requirements. In principle, N; elements should be comput­
ed and stored; fortunately, this number can be noticeably 
reduced, if use is made of the properties of the matrix, in 
particular, of its sparsity. Actually, only a small fraction of 
states (a number less than 30, in this case) are connected 
with a given configuration by single bond transitions; direct 
conversion between gauche states is not allowed, because of 
the high energy barrier4 for all bonds with the exception of 
the second, for which, as a consequence of the threefold sym­
metric potential, any rotation of ± 120° is possible. 

For each off-diagonal nonzero element the scaled fric­
tion matrix ~slsof ~c is calculated; then the 15 X 15 real non­
symmetric M matrix defined in Eq. (3.3) has to be diagonal­
ized in order to obtain the negative eigenvalue µ 1• These 
tasks are efficiently accomplished by properly implementing 
Eq. (2.14) and by using the diagonalizing subroutine RG of 
the EISPACK package. 28 

At this stage of the calculation, with a very little addi­
tional computational effort, it is possible to obtain the aver­
age isomerization rate constants, defined by Eq. (2.15). 

In conclusion, the computation of the matrix required 
about an hour of CPU time. 

( 3) Given the sparsity of the matrix W it is natural to 
calculate the correlation functions and spectral densities by 
the Lanczos algorithm29

-
31 (LA), which allows the storage 

of the nonzero elements only. Two kinds of correlation func­
tion have been calculated, angular correlation functions and 
population correlation functions. For each correlation func­
tion, the starting vector was calculated according to Eq. 
( 2.17); for both kinds of functions this step required less 
than 30 s of CPU time. 

By applying the LA to the real symmetric matrix W 
with the different starting vectors corresponding to the var­
ious correlation functions, continued fractions were genera­
ted, which were stored and analyzed. The LA proved to be 
very efficient: in general, the zero frequency spectral densi­
ties calculated from the continued fractions converged at 
least to the fourth significant figure after about 45 steps. The 
time taken for 200 steps of the Lanczos algorithm was of the 
order of2 min. To fully apreciate the efficiency of the meth­
od, it should be remembered that at least five correlation 
functions must be calculated for each segment [ i.e., the three 
independent D ~o ( nmoI,F;) and the two 9 I and 9 ~ ] , and 
the time required by the Lanczos procedure ( proportional to 
15 X Ne X n L, where n L is the number of LA steps) should 
be compared with the time for conventional diagonalization 
techniques, which in this case would have been of the order 
of N~. 

IV.RESULTS 

A. Equilibrium properties 

In this subsection distributions of conformational states 
along the chain and some static properties directly related to 
experimental measurements, such as the order parameters 
will be discussed. Calculations have been performed with the 
energy parameters vg = VglkB T = 0.84 and E* = El 
kB T = 0.3; the first corresponds to a trans-gauche energy 
difference of 500 cal/mol4, and the second agrees with the 
value used by Emsley et al. 25 for liquid crystals. 

The parameter p has been chosen equal to 1, while w 
does not need to be specified, since all the dynamical quanti­
ties are given in units of w; ( in order to compare the calculat­
ed quantities with experimental ones, we will later assume w 
to be of the order of 32 1010 rad s- 1 

). The values used for the 
geometric parameters have already been specified. 

With the chosen value of r0, no more than eight bonds in 
the chain can be in a gauche state. In addition, the extended 
configurations are favored by the gauche-trans energy dif­
ference and by the external orienting potential. As a conse­
quence, it turns out that, on the average, more than eleven 
bonds are in a trans state. 

Figure 2 shows P;, the probability of finding a trans at 
the ith bond, and P ,ink, the probability, for the ith segment, 
of being the center of a kink (g± tg+ ); (note that P'ink is 
scaled by 10). Values of other quantities related to average 
conformations are given in Table I. The trans bonds are 
shown in Fig. 2 to be distributed rather homogeneously 
along the chain, with a slight odd-even effect, particularly 
evident near the head of the chain. (To compare, note that 
the value of P; for the butane molecule, with the same tor­
sional potential assumed in this calculation, would be 0.53.) 
By analogy to P;, Ptnk also shows a plateau over all the 
internal bonds. The exceptionally high value at the third 
bond is probably an artificial effect, introduced as a conse­
quence of the shape chosen for the torsional potentials at the 
first two bonds. However, the important result is that the 
probability of being the center of a kink is an order of magni­
tude lower than the probability of a trans in any position. 
This result, together with the fact that the fraction of config-
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FIG. 2. Plots of P; (circles) and P~,nk (triangles), probability of finding 
respectively a trans state and the center of a kink at the ith bond. P ~'"• is 
scaled by 10. 
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TABLE I. Equilibrium conformational distributions and chain distances. 

C, 0.764 
b 

pkink 0.117 
Pkink 0.571 

d z,. 13.76 A 
z,s 13.14 A 
Z16a.t. 19.03 A 

g z,,._._ 17.76 A 

• Average concentration of trans bonds in the chain. 
b Global probability of configurations containing only kinks. 
0 Global probability of configurations containing only kinks, in addition to 
other g ± conformations. 

d Average distance C,-C,6. 

• Average distance C,-C,5. 

roistance C1-C16 in the all-trans configuration. 
8 Distance C,-C,5 in the all-trans configuration. 

urations containing only kinks is less than 12% of the total 
( see Table I), clearly shows the inadequacy of a model con­
sidering only kinks, 12

•
13 at least for calculating the static 

properties. 
In Table II, the deuterium order parameter S ~o and the 

segmental order parameter S ~ are listed for the various posi­
tions in the chain. They are defined as 

( 4.1) 

and 

(4.2) 

i.e., they are the average values of the second Legendre poly­
nomials having for argument the cosine of the angles formed 
by,,.__the C;-D bond (/3 ~0 ), [ or by the perpendicular to the 
HC; H angle (/3 ~cH)], with the all-trans axis. In a rigid 
chain it would be S ~o = - 0.5 and S ~ = 1.0, and in gen­
eral, for an isotropic distribution of the polar angle defining 
the orientation of the all-trans axis in the local frame F;, the 
two parameters are related by 

S~0 = - S~/2. (4.3) 

Such an isotropic distribution is not actually required by 
symmetry considerations in the aliphatic chains, and in fact, 

TABLE II. Calculated C-D bond and segmental order parameters. 

S~D s~ 

2 -0.288 0.523 
3 -0.273 0.488 
4 -0.295 0.539 
5 -0.290 0.533 
6 -0.292 0.539 
7 -0.280 0.517 
8 - 0.275 0.508 
9 -0.263 0.484 

10 -0.256 0.470 
11 -0.242 0.443 
12 -0.232 0.423 
13 - 0.213 0.385 
14 -0.195 0.350 
15 - 0.149 0.259 

the calculated order parameters deviate slightly from the 
values predicted by Eq. ( 4. 3), as reported in Table II. It is 
interesting to note that a similar result is also reached in MD 
simulations, 2 despite the fact that the allowed fluctuations of 
the bond angles are expected to randomize more effectively 
the orientational distributions of the bond vectors. 

Because of the mean field potential described by Eq. 
( 2.12), the absolute values of both order parameters show 
the following typical behavior. There is a plateau for the first 
part of the chain, followed by a series of more rapidly de­
creasing values. It is interesting to compare these data with 
those for P ~- Although the fraction of trans states at a given 
site, which is a strictly local property, remains approximate­
ly the same for all bonds but the extreme ones, the order 
parameters decrease continuously, because they depend on 
the conformational freedom, not only of the segment to 
which they refer, but also of all the previous bonds along the 
chain. A slight odd-even effect, more pronounced near the 
fixed end of the chain, can be observed for both S ~o and S ~. 

The quantities S ~o can be compared with the observed 
order parameters derived from the quadrupolar splittings in 
2H NMR spectra33

•
34 and those obtained from the dipolar 

splittings of 13C NMR spectra, 35 while the order parameters 
derived from ESR spectra36

•
37 are functions of S ~, and those 

obtained from proton NMR38 can be expressed in terms of 
S~ andS~0 . 

The behavior predicted by the calculations agrees, at 
least from a qualitative point of view, with the experimental 
results. To perform a quantitative comparison, one must re­
member that the experimental quantities are determined not 
only by the internal motions, but also by the overall rotations 
of the molecule, which contribute to change the mean orien­
tation of a given bond of the chain. If overall and internal 
dynamics can be assumed to be uncoupled, and the average 
lipid conformation is axially symmetric about the all-trans 
axis, the following relationship holds for the experimental 
order parameter19 S '~0 : 

(4.4) 

where S0 is an order parameter for the all-trans axis. Because 
of Eq. ( 4.4), all the calculated S ~o have to be rescaled in 
order to be compared with the experimental data. As an 
illustration, in Fig. 3 the scaled order parameters, obtained 
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FIG. 3. Scaled order parameters S;:;'0 obtained with S0 = 0.7. 
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assuming for S0 the reasonable value of 0. 7, 19
h,

3 are plotted 
as a function of the position in the chain. 

Other interesting quantities related to the rigidity of the 
chain are the mean projections of the positions of the carbons 
on the all-trans axis Z;. For the present model, the mean 
chain length calculated from the carbon C1, Z 16 , is 13. 76 A., 
which can be compared with the value for the extended 
chain, that is 19 .03 A.. The BD simulations of Pastor et al. 32 

give a value of 11.68 A. for the average position of C15 along 
the bilayer normal (Z is), in agreement with neutron scat­
tering data. 39 This datum can be related to the calculated 
Z 15 by means of the relation 

(4.5) 

where 0 is the angle between the all-trans axis and the bilayer 
normal, which can change because of the overall motion of 
the molecule. For small angles the power series expansion of 
the cosine function can be truncated at the second term and 
the following expression holds: 

Z 1 ~ -2 2+S0 15~ 15 ___ _ 
3 

(4.6) 

With S0 = 0. 7 a value ofO. 9 is obtained for cos 0 , and, after 
multiplication by the theoretical result Z 15 = 13.14 A, a 
value of 11. 83 A. for Z i 5 is computed. 

B. Dynamical properties 

The internal dynamics of the chain is reflected by the 
average isomerization rates, calculated for the various seg-
ments according to Eq. (2.15). In Fig. 4 log k ~-, (trian­
gles) and log k ;_g (circles) are shown for the various posi­
tions in the chain. Both isomerization rates show typical 
plateau values for the central bonds, which is a consequence 
of the expected cooperativity of the motions, explicitly taken 
into account by the dynamical model. The degree of cooper­
ativity depends on the shape of the potential Vint (a), in 
particular, on its curvatures with respect to the torsional 
variables, which, with the present parametrization, is ac­
counted for by the ratio p. A zero value of this parameter 

.5 
log k~-t/w l:,. l:,. 

l:,. l:,. l:,. l:,. 
l:,. l:,. l:,. l:,. 
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Oo log k!_9 1w 
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FIG. 4. Logarithmic plot of the average kinetic constants k ~-, (triangles) 
and k ;_. (circles). 

would imply sharp minima and flat maxima, so that a given 
rotation cannot be assisted by rearrangements around the 
other bonds; in this situation, where the segments are only 
coupled by frictional effects, both kinds of rate constants are 
increasing functions of the chain position, as a consequence 
of the decreasing friction. This behavior was already ana­
lyzed in detail in a series of calculations of the average rate 
constants by a Monte Carlo procedure. 15 By comparing with 
those results, obtained for the case of an isotropic medium, 
the important point emerges that, in contrast to the static 
properties, the rate constants are only weakly affected by an 
orienting potential. This agrees with the results obtained by 
Pastor et al. 3 in their BD simulations. 

In Fig. 5, the rate constants k ~-, are plotted together 
with the decay rates, K; and K ~ of the functions describing, 
respectively, the excess of trans population and the unba­
lanced gauche population at a given site. The relations 
(2.21) between the rate constants K; and K~ and the aver-
age isomerization constants k ~-, and k ;_g are no longer 
necessarily meaningful here because of the strong couplings 
among segments. On the other hand, it appears that in any 
segment the values of both decay rates (in particular, K ~) 
follow rather closely those of the kinetic constant for the 
g ± ---+ t transitions. 

A completely different behavior is found for the decay 
constants for the angular functions. Here the functions 
D ;,,0 ( nmoI,F;), ( components of Wigner rotation matrices of 
rank 2 having for argument the Euler angles for the transfor­
mation mol-F; ), are considered. In Fig. 6, the constants 
K~ defined for the different components (m = 0,1,2) by 
expressions analogous to Eq. ( 2.19) are plotted for the var­
ious positions. All these constants show a similar behavior, 
different from that of the k ~-,· In particular, they do not 
show any plateau. This result is particularly evident in the 
logarithmic plot displayed in Fig. 7, where the kinetic con-

stants k ~-, are compared with the average decay constants 
for the Wigner components K; defined as 

K;= [mt-2 (K~)-1gim(O)/mt-2g~(O)r1 

(4.7) 

4 0 

IZS1 
3 

9 
~ a 1: 2 

a©~e .. ... .. l:,. C l:,. l:,. □ 0 

~ 1 l:,. □ □ 0 ... l:,. l:,. □ oo .. ... D §8 0 

0 
2 3 4 5 6 7 8 9 101112131415 

FIG. 5. Comparison of the average kinetic constants k ~-, (triangles) with 
the decay rates for the unbalanced gauche population K ~ (squares) and the 
trans population K; (circles) at a given site. 
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FIG. 6. Decay constants K',,, of the components of the Wigner rotation 
matricesD:..O (0.mo,,F) with m = 0 (circles), m = 1 (triangles), and m = 2 

(squares). 

As already discussed in relation to the static properties, the 
reason is to be found in the fact that these rate constants are 
not just related to local properties, since the time evolution of 
a given D ~o ( nmol,F;) is determined not only by the dynam­
ics of the ith bond, but also by the motions of all the previous 
bonds in the chain. 

It is also interesting to look at the full spectral densities 
of the angular functions, to obtain information on the spread 
of the decay times. For this purpose the Cole-Cole14 plots of 
the spectral densities for functions located at positions C4 , 

C8, and C15 in the chain are shown in Fig. 8. In all cases there 
are large deviations from monoexponentiality, particularly 
for the components D io ( nmol,F;). 

In Table III the squares of the equilibrium averages of 
the functions D ~0 ( nmoI,F;) and the mean square values of 
their deviations from equilibrium (i.e., the initial time values 
of the corresponding autocorrelation functions) are given 
for the different C;-D bonds in the chain; they can be com­
pared with the values for an isotropic distribution, which are 
0 and 1/5, respectively. 

C. NMR relaxation 

It is tempting to relate the results of the dynamic model 
to those experiments sensitive to the mobility of the different 
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FIG. 7. Logarithmic plot of the kinetic constants k ~-, (triangles) and the 
average decay constants for Wigner components K; (circles). 

y• 

.2 

0-1------------------t 

.2 

'I 

/ 
I 

.,,. 
,,,,,,,, 

Ca 

.,,..,,. ----------

0-1------------------t 

.4 ·••••••·· 

.2 

0 -l------,1-----+----+-------t 
0 .25 .5 .75 

y' 

FIG. 8. Cole-Cole plots of the normalized spectral densities, 
Y=j',,, (w)/j',,, (0), for C4 , C8, and C 15 (- m = 0, --- m = 1, • .. m = 2). 

segments in the chain. Examples of such experiments, from 
which many interesting data have been derived, are mea­
surements of the NMR T1 and T2 relaxation times, especial­
ly for 13C and 2H. Unfortunately, the interpretation of the 
experimental data is not straightforward, even if a model for 
the internal motions is available, because the results depend 
not only on the internal dynamics, but also on other motion­
al processes, including overall orientational diffusion of the 
chain, collective fluctuations, and lateral diffusion that 
could induce reorientations of the chain axis. Because ofun-

TABLE III.Squares of the equilibrium averages of the Wigner components 
D :no ( O.mot,F,) and mean square values of their deviations from equilibrium. 

2 0.083 0.002 0.050 0.157 0.G75 0.253 
3 0.Q75 0.001 0.Q38 0.165 0.082 0.259 
4 0.087 0.000 0.057 0.154 0.074 0.248 
5 0.084 0.000 0.057 0.157 0.076 0.246 
6 0.085 0.000 0.061 0.157 0.Q75 0.243 
7 0.Q78 0.000 0.054 0.163 0.079 0.246 
8 0.076 0.000 0.053 0.166 0.080 0.246 
9 0.069 0.000 0.047 0.173 0.084 0.247 

10 0.066 0.000 0.046 0.177 0.086 0.246 
11 0.059 0.000 0.041 0.183 0.091 0.247 
12 0.054 0.000 0.037 0.189 0.094 0.247 
13 0.045 0.000 0.029 0.198 0.100 0.249 
14 0.Q38 0.000 0.022 0.205 0.106 0.250 
15 0.022 0.001 0.008 0.220 0.121 0.248 
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certainties in the theoretical estimate of the role of the two 
latter processes, only the overall motion of the chain will be 
explicitly considered in the following. 

The NMR relaxation frequencies for a quadrupolar in­
teraction tensor axially symmetric along a C;-D bond are 
given by40 

(T;)- 1 = ! (e
2

:Qr [/\ (wD) + 4/~ (2wD)] 

(4.8) 

and 

( T; )- 1 = _l_ (e2
qQ)

2 

2 
16 h 

X[9/~(0) + 15/\(wD) +6/~(2wD)], 
(4.9) 

where e2qQ is the quadrupole coupling constant, w D the Lar­
mor frequency of the 2H nucleus, and /\ is the spectral 
density for the deviation from the equilibrium value of the 
Wigner rotation function D 7o c nlab,F;), for nlab,F; the Euler 
angles relating the principal axis system of the magnetic in­
teraction tensor to the laboratory frame [cf. Eq. (2.22)], 
where the Z axis is parallel to the static magnetic field. In 
place ofEq. ( 2.22) we shall introduce a more general factori­
zation of D 7o c nlab,F;) 

2 

D 7o c nlab,F) = I D 7p c nlab,n )D ;m c nn,mol ) 
p,m= -2 

(4.10) 

where nlab,n' nn,mol' and nmol,F; represent, respectively' 
Euler rotations from the laboratory system to a frame having 
the Z axis parallel to the director, from the director frame to 
the molecular one, and from this frame to the local frame 
diagonalizing the magnetic interaction tensor. Then, it is 
possible to write 

2 
tr ~ [ 2 ]2 • ,:/ i = £., d Ip (/31ab,n) J~, ( 4.11) 

p= -2 

where J ~ is the spectral density associated with the correla­
tion function G ~ introduced in Eq. (2.23 ). In order to calcu­
late these quantities, a model for the overall rotation has to 
be introduced. This motion can be described as restricted 
diffusion in a uniaxial potential field which tends to align the 
long molecular axis to the normal to the bilayer. The poten­
tial vext has been chosen according to the Maier-Saupe the­
ory. 4 1.42 The diffusion tensor is assumed to be independent of 
the conformation of the chain; ( which can be justified be­
cause the aliphatic tail is attached to a massive core, the 
polar head and the other chain 18

), and is axially symmetric, 
with the symmetry axis along the all-trans direction. Follow­
ing standard procedures, the autocorrelation function 
Cpm ( t) may be calculated by expanding the diffusion opera­
tor in a basis of orthogonal functions. 41 

'
42 Here we shall use a 

simpler approach, which leads to a single-exponential 
expression. Because of independence of the mean field po­
tential on the Euler angles an,mol and Yn,mol• it is possible to 
write 

( 4.12) 

where cpm is a reduced correlation function depending only 
on the variable /3 n,mol • for which a single-exponential ap­
proximation has been found to be a satisfactory one20

•
43 

Cpm(t) =apm exp( -thpm). (4.13) 

In this expression 

( 4.14) 

where 8d ;m (/3n,mol) is defined as the deviation of the func­

tion d ;m (/3n,mol) from its equilibrium value d ;m (/3n,mol)' 

and 

rp-,,,1 = (M ;m Ir pm IP:~18d ;m > I [ 8d ;m (/3n,mol)] 2, 
( 4.15) 

where rpm is a reduced diffusion operator. Both apm and rpm 
can easily be calculated in terms of the chain order param­
eter S0 , which is the equilibrium value of D &i (!ln,moI ). Ifwe 
define 

( 4.16) 

( 4.17) 

withj:,, (w) the Fourier-Laplace transform of the correlation 
function for the internal motion im ( t). In conclusion, it can 
easily be shown that the experimental data can be interpret­
ed in terms of the three independent parameters S0 , D 

11 
, and 

D1 , all related to the overall motion of the system, in addition 
to the quantities for the internal motions already introduced. 

In the previous derivation, it has been assumed that the 
preferred orientation of the molecule is the one with the all­
trans axis normal to the bilayer surface. Actually, experi­
mental results44 just show that, in contrast with the gel, the 
liquid crystalline phase is characterized by axial symmetry 
on the time scale of NMR measurements. In principle, this 
does not necessarily imply that the all-trans axis tends to 
align with the bilayer normal, provided that a fast reorienta­
tion randomizes the polar angle of this axis in a frame having 
the Z axis along the bilayer normal. However, it should be 
pointed out that, as a first approximation, if the orienting 
field is assumed to obey some symmetry requirements, the 
results are almost independent of the particular model, 20 

since in general, the decay of the correlation functions can be 
approximated by single exponentials, and the only indepen­
dent parameters which enter into the calculation are S0 , D 

11 
, 

andD1 . 

In general, for a Larmor frequency of 10-50 MHz, all 
the contributions appearing in Eq. ( 4.17) have to be taken 
into account. Accurate analysis of experimental data, based 
on fitting procedures, should be performed in order to obtain 
detailed dynamical information. However, some general fea­
tures can be deduced from the expressions for the spectral 
densities and the theoretical values of conformational rates 
and internal order parameters. Experimental determina­
tions45

-4
7 show that the spin-lattice relaxation times T1 are 

longer than T2 for all the positions in the chain by two orders 
of magnitude or more. This can only be explained as the 
effect of a slow motion ( with a characteristic frequency low-
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er than w D ) , which makes the zero frequency spectral densi­
ties J~ (0), appearing only in the expression for TL larger 
than any other term. If the only relaxation mechanisms were 
the internal motions and the overall diffusion, the slow mo­
tion could be identified with the reorientation of the long 
molecular axis with respect to the bilayer normal, character­
ized by the diffusion coefficient Di. If this is the case, the 
terms depending only upon the overall motion are expected 
to prevail over the others in the expression for the zero fre­
quency spectral densities, because of the relatively large val­
ues of the typical frequencies for internal rotations. In partic­
ular, if the ratio D 11 / Di is sufficiently large, the decay 
constant r~ 1 becomes much smaller than rp, 1 and rP21, so 
that the dependence of the relaxation rates Ti - 1 on position 
is expected to follow that of the internal order parameters 
S~o-

Figures 9 and 10, respectively, show the T1 and T2 val­
ues that are calculated for a few choices of the motional pa­
rameters for the different positions of the chain. All the cal­
culations have been performed for wD = 0.03w, S0 = 0.7, 
(e2qQ /h) = 106 rad s- 1

, and/31ab,n = 90°. Actually, most of 
the available experimental data come from spectra of unor­
iented multilamellar dispersions, corresponding to a random 
distribution of director orientations; however, the promi­
nent features in deuterium powder-type spectra are the 
sharp edges corresponding to !3iab,n = 90°. In case (a), val­
ues of D 11 = 0.1 wand Di = 0.05w have been used. For such 
a low ratio of the diffusion coefficients, the calculated values 
of T\ and Ti are essentially the same. As mentioned above, 
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FIG. 9. Plot of 1/T,, calculated for /J,ab,n = 90°, D 11 = 0.lw and different 
values of D1 . (a) D1 = 0.05w. (b) D1 = 0.005w. (c) D1 = 0.0005w. For 
comparison with experiment let w be of the order of 1010 s- 1
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FIG. 10. Plot of I/T2, calculated for /J,ab,n = 90°, D 11 = 0.lw and different 
values of D1 . (a) D1 = 0.05w. (b) D1 = 0.005w. (c) D1 = 0.0005w. For 
comparison with experiment let w be of the order of 1010 s- 1

• 

the value of Di must be smaller than wD in order to signifi­
cantly affect the ratio T\ /Ti. This becomes evident in case 
(b), where a value of Di = 0.005w has been assumed. Be­
cause of the decreased value of Di, there is a larger contribu­
tion of the chain tumbling motion to the zero frequency spec­
tral densities. As a consequence, the T~ values become 
smaller, even if their general trend is still similar to that of 
the T\ 's. The spin-lattice relaxation times are less affected, 
except for the last positions of the chain, where the terms 
accounting for the overall motion have a relatively larger 
weight. In the extreme case ( c) a value of Di = 0.0005w has 
been used. As expected, the very slow reorientation of the 
long molecular axis now has a dramatic effect on T ~ ; the 
ratio T\ IT~ varies from 10 to 30 along the chain, going 
from the fixed end towards the free one. The variations of the 
relaxation time T~ along the chain indeed show the same 
behavior seen for the internal order parameters S ~0 . The 
spin-lattice relaxation times T \ are not so easy to analyze, 
because of the mixing of different contributions. It is possi­
ble, however, to deduce that the effect of the overall motion 
is larger as one moves in the direction of the free end of the 
chain. This is a consequence of the large increase of the inter­
nal kinetic parameters, which reduces the contribution of 
the internal motions to T\, compared to the decrease in in­
ternal order parameters, which reduces the contribution of 
the overall motion to T \ . 

Since, in principle, the full angular dependence of the 
relaxation times could be explored in oriented samples, cal­
culations have been performed at different values of the an-
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gle f3 tab,n. The results obtained for the same parameters used 
in case (b) are reported in Fig. 11, the three series of data 
referring to f3tab,n = O°, 30°, and 60°, respectively. It is inter­
esting to note the large effect on the T~ 's, whereas the T; 's 
are almost unaffected. Again, the explanation is found in the 
different weight of the contributions from overall and inter­
nal motions in the expression for the spectral densities. For 
QJ;,/=0 there is a predominance of the contributions resulting 
from the fast internal motions and described by the spectral 
densities fm. These values do not change very much with the 
index m for a given segment; as a consequence the spectral 
densities Ji also have a very weak dependence upon the in-

P 

dex p. On the other hand, at zero frequency there are larger 
contributions from the relatively slow overall motion, which 
modulates the residual segmental orderings not averaged to 
zero by the conformational kinetics, and these terms have 
markedly different effects on the different p components of 
the spectral densities J ~. It is important to point out that the 
above considerations hold in general for T1, whereas the be­
havior of T2 depends strongly on the choice of the param­
eters D II and Di, with no angular dependence being observed 
unless Di is of the order of QJD. It is interesting to note that 
attempts to measure the angular dependence of the spin­
lattice relaxation times on powder dispersion samples in the 
liquid crystal phase show that the T~ are indeed angle inde­
pendent within an error of 10%.48 This result has been ex­
plained as a consequence of a fast lateral diffusion, which 
would allow a rapid exchange of phospholipids among dif­
ferent orientations of the bilayer. On the basis of our calcula­
tion, the reason for the experimental observation would be 
the intrinsically weak angular dependence of the spin-lattice 
relaxation times. 
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FIG. 11. Plots of 1/T, and 1/T2 at various angles /3,.b,n (between the static 
magnetic field and the director) for the same conditions as case (b) of Figs. 
9 and 10. Note that the circles are for /3,.b.n = 0°, the triangles for 
/3,.b,n = 30°, and the squares are for /3,ab.n = 60°. 

Finally, it should be pointed out that the frequency de­
pendence of the relaxation times, which has attracted much 
attention in experimental studies, 3,

35.49 eludes any simple an­
alytical expression according to the present model, because 
of the many terms contributing and because of the complex 
frequency dependence of the spectral densities for the inter­
nal motions. 

V. CONCLUSIONS AND COMMENTS 

The salient features of the calculated macroscopic prop­
erties are essentially determined by only three parameters, 
all of which are well defined at a molecular level: v

8 
= V

8
/ 

kB T, the energy of the gauche state relative to the trans state; 
e* = e/kB T, the strength of the orientational pseudopoten­
tial, and p, the ratio of the curvatures for the reactive and 
nonreactive modes. This latter parameter accounts for the 
degree of cooperativity of the torsional motions. Note that 
the elementary gauche-trans isomerization rate w, defined 
by Eq. (3.5), appears as a scaling parameter, containing 
both the energy barrier and the effective viscosity of the me­
dium. Although the Pastor-Venable-Karplus potential 
used in the BD calculations is more detailed than the para­
metrized form adopted here, the static and dynamic proper­
ties calculated look very much the same. This implies that 
the basic ingredients are indeed contained in the ME meth­
od, and that special details not included in our model most 
likely do not alter the main picture that is obtained from the 
ME solutions. In particular, the close similarity of the posi­
tion dependence of the order parameters [ see Fig. 4 of Ref. 
3(a) ], indicates that the exclusion of configurations con­
taining adjacent gauche states ( as a result of the value of the 
van der Waals radius adopted here) has essentially the same 
effect as the repulsive part of the field proposed by Marcelja 
and included in the BD calculations. This view is also sup­
ported by the successful reproduction of the experimental 
chain length, discussed in Sec. IV A. However, the experi­
mental data do not provide unambiguous choices for all pa­
rameters, and in fact, it has been shown for a N = 10 chain 
that the van der Waal radius r0 can be substantially de­
creased, provided that the field parameter e is moderately 
increased, without appreciably altering both static and dy­
namic properties. 26 Given these observations, the use of the 
simplest model appears to be a most reasonable choice. 

There is one difference which concerns the order para-

meter, D ~0 , which were found to decrease faster along the 
chain in the BD calculations than in the RIS model [Table I 
of Ref. 3 (b)]. This is because these averages calculated ac­
cording to the RIS approximation do not fully take into ac­
count the complete distribution of torsional angles. How­
ever, whereas this result shows a limitation of the RIS 
approximation, it is not necessarily true of the dynamical 
ME approach. In principle, one could more accurately com­
pute the site values/J of any function/(a), by using their 
full definition provided by the projection procedure of the 
diffusion equation onto the subspace of the localized func­
tions [Eq. ( 10b) ofRef. 16(b)]. This is equivalent to consid­
ering the distribution of torsional angles about the location 

J. Chem. Phys., Vol. 91, No. 9, 1 November 1989 



Downloaded 26 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

5720 Ferrarini et al.: Phospholipid dynamics in membranes 

aJ of the potential minima, instead of using the simple RIS 
approximation JJ ~f(aJ ). We have not done this in the 
present case because it is our belief that the rapid rotations 
about the long chain axis wash out the contributions of the 
order parameters D ~o to the motional spectral densities. 

The kinetic constants calculated by the BD and ME 
methods are indeed very similar. This was already noticed in 
a previous work, where the results of a simple Monte Carlo 
procedure15 for the chain in isotropic environments were 
compared with Fig. 11 of Ref. 3(a). Therefore, one can safe­
ly conclude that multiple or concerted transitions cannot be 
of significance. Moreover, crankshaft and kink motions are 
definitely ineffective in causing NMR spin relaxation, both 
because of their low statistical weight and the fact that their 
time scale is slower than that ofthe~t transitions, at least 
in the plateau region where cooperativity makes the transi­
tion rates independent of the tail length. In agreement with 
the fruitful investigations started by Helfand and Skolnick, 10 

the cooperativity of the single conformational events defini­
tely rules out the relevance of multiple transitions in the 
chain dynamics. 

Finally, the average internal correlation times reported 
in Fig. 6 of Ref. 3 (b) are practically identical with those 
obtained by the ME procedure; ( the nonmonotonic behav­
ior along the chain in the BD calculations can be ascribed to 
poor statistics). For both techniques, the ratio of the average 
correlation times at the positions C2 and C15 is 39. This is a 
proof that the bending modes and the possible couplings of 
jiggering motions in the potential wells do not appreciably 
contribute to the chain flexibility. The basic assumptions of 
the ME treatment, namely that the conformational kinetics 
is unaffected by the high-frequency motions, can therefore 
be safely accepted. 

A general remark which emanates from the results of 
this work is that the same underlying physical processes may 
manifest themselves in different forms when different ex­
perimental techniques are used in the investigations. Thus, 
the theoretical calculations show that cooperativity in the 
torsional motions has the effect of leveling off the gauche­
trans transition rates in the various positions of the chain. 
Although these motions are responsible for the decay of the 
correlation functions for the Wigner matrices related to spe­
cific tensorial interactions, the position dependence of the 
effective correlation rates does not exhibit a flat region, be­
cause the rotational motion of a particular bond is affected 
by the rotations of all segments connecting that bond to the 
fixed end. A second point worth mentioning is that the con­
formational dynamics is relatively insensitive to the presence 
of an anisotropic environment, despite the fact that static 
properties such as segmental order parameters are drastical­
ly changed in going from the isotropic to the LC phase. 

If the theoretical results, obtained by considering both 
conformational motions and chain reorientations, are com­
pared with the experimental observations derived from 
NMR measurements, the behavior of the deuterium longitu­
dinal relaxation times is, in general, well understood. Relax­
ation effects measured on 13C are expected to be essentially 
similar, but they have not been explicitly considered here, 
because the experimentally available data with natural isoto-

pie abundance are unable to selectively distinguish the most 
interesting positions 4-13 of the chain. Except for the initial 
chain segments, the deuterium T1 relaxation times increase 
continuously along the chain towards the free end, and ex­
hibit only a weak angular dependence as the magnetic field is 
rotated with respect to the bilayer normal. The interpreta­
tion of T2 is more intriguing. The experimental data on T2 

may be rationalized within the framework of our model by 
requiring a relatively low value of D1 , thereby predicting 
Tz's much shorter than T1's. This is not the only mechanism 
that preferentially affects the near-zero ( or zero) frequency 
spectral densities. As we have already mentioned, slow col­
lective fluctuations, or slow rotations induced by lateral dif­
fusion in unaligned samples, may contribute to the zero fre­
quency values of the spectral densities, because of their 
frequency dispersion in the kilohertz regime. 49 In principle, 
the collective fluctuations might be distinguished from the 
slow chain tumblings by their different angular depen­
dences. 50

•
51 In fact, Watnick et al. 47 interpret their short Tz's 

as due to collective fluctuations, but we note that their ex­
periments appear to be characterized by orientation-inde­
pendent T2's. In that study T1P was also measured for a spin­
locking frequency of w'/21r = 50 kHz. It was found to be 
more nearly equal to T1 than to T2. Therefore, one can con­
clude that the slow process should have its characteristic 
frequencies less than this value of w'. We also note that there 
are fast motional processes, i.e., rapid fluctuations within the 
torsional potential wells, which could be affecting the NMR 
relaxation, and they might be detectable by techniques such 
as Raman or neutron scattering. 

There are, of course, complementary studies by ESR 
(including orientation dependence), which have been inter­
preted in terms of decreased ordering and increased motion­
al rates as one moves in the direction of the free end of the 
chain, 36

•
52 and this is consistent with our present model. ESR 

probes the dynamics on a faster time scale than NMR and 
can, therefore, supply complementary insights. It is believed 
that the ESR line shapes are particularly sensitive to the 
overall rotational dynamics,36

•
52 and that the collective fluc­

tuations are relatively unimportant. More detailed predic­
tions of ESR relaxation in the context of the present model 
await the results of a synthesis of the slow-motional theory of 
line shapes42 with the present theoretical model. In fact, be­
cause of the subtle mixing of spin degrees of freedom with the 
classical molecular dynamics in the slow-motional regime, 
one cannot simply use the classical correlation functions of 
the dynamics. This precludes the use ofBD, whereas the ME 
approach conveniently allows for the required synthe­
sis. 29,30,53 

A final interesting observation concerns the rapid con­
vergence in the computation of the spectral densities for all 
the correlation functions with the LA. That is, a very small 
number of steps, at most of the order of 10--20, is required. 
The low dimensionality of the optimal reduced subspaces 
generated by the LA, compared with the huge dimensions of 
the whole problem, clearly indicates the existence of a few 
dominant modes. Their determination would be of much 
interest to better understand the physical processes, and to 
aid in overcoming the computational complexity. At pres-
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ent, no complete analysis of this matter has been made. Nev­
ertheless, it is possible to gain some insight from the behavior 
of the different correlation functions. First of all, we note 
that the functions representing unbalanced gauche popula­
tions are approximately eigenfunctions in absence of the 
mean field potential; in an oriented phase this is no longer 
true, but the corresponding spectral densities converge 
much faster than those of any other function, viz. only about 
10 LA steps are sufficient to ensure an error less than 1 %. 
Accordingly, the frequency dependence of the spectral den­
sities for the functions 9 ~ does not deviate appreciably from 
monoexponentiality, the larger deviations being observed 
for the central bonds. The spectral densities for the functions 
9 i exhibit a somewhat slower convergence, and a· wider 
dispersion of relaxation rates. About 10-20 steps are re­
quired to yield convergence of the spectral densities for the 
angular functions, to the same error of 1 % . Their frequency 
dependence shows that there are contributions of several 
motions with different time scales for all the segments but 
the first ones. These observations suggest that the relevant 
modes should be local in character, since functions describ­
ing local properties exhibit the fastest convergence. This sug­
gests that the vectors 9 i and 9 ~ might be used individually 
as zero-order approximations for the evaluation of the kinet­
ic constants, or globally as a truncated basis for the calcula­
tion of orientational correlation functions. Such a hypothesis 
agrees with the results obtained for a simple model of a chain 
oflinear rotors, 15 where there is no conformational depend­
ence of the friction matrix, and the problem can be factorized 
for the single rotors. As a consequence, all the dynamical 
properties are immediately interpreted in terms of local 
modes. Clearly, it would be of some interest to identify the 
key normal modes for the various correlation functions, a 
matter that we plan to explore with current computational 
methods. 29

•
30

•
53 

ACKNOWLEDGMENTS 

A. F., G. J. M., and P. L. N. acknowledge the financial 
support of the Italian Ministry of Public Education and the 
National Research Council, through its Centro Studi sugli 
Stati Molecolari. R. H. C. and J. H. F. acknowledge the 
financial support of the National Institutes of Health ( Grant 
No. GM-25862), and the National Science Foundation 
(Grants No. DMR-86-04200 and No. CHE 87-03014). 
Computations were performed at the Cornell National Su­
percomputer Facility funded by NSF and IBM Corp. 

'J. H. R. Clarke and D. Brown, Mo!. Phys. 58,815 (1986). 
2P. vanderPloeg and H.J. Berendsen, J. Chem. Phys. 76, 3271 ( 1982); 89, 
3718 ( 1988). 

3 (a) R. W. Pastor, R. M. Venable, and M. Karplus, J. Chem. Phys. 89, 
1112 ( 1988); (b) R. W. Pastor, R. M. Venable,M. Karplus,andA. Szabo, 
ibid. 89, 1128 (1988). 

4P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New 
York, 1969). 

5D. J. Wallach, J. Chem. Phys. 47, 5258 ( 1967). 
6Y. K. Levine, N. J.M. Birdsall, A.G. Lee, and J.C. Metcalfe, J. Chem. 
Phys. 60, 2890 (1974). 

7R. E. London and J. Avitabile, J. Am. Chem. Soc. 99, 7765 ( 1977); 100, 
7159 (1978). 

8R. J. WittebortandA. Szabo, J. Chem. Phys. 69, 1722 ( 1978); R. J. Witte­
bort, A. Szabo, and F. R. N. Gurd, J. Am. Chem. Soc.102, 5723 (1980). 

90. Edholm and C. Blomberg, Chem. Phys. 42,449 ( 1979). 
'°J. Skolnick and E. Helfand, J. Chem. Phys. 72, 5489 ( 1980); E. Helfand 

and J. Skolnick, J. Chem. Phys. 77, 5714 ( 1982). 
"J. S. Langer, Phys. Rev. Lett. 121, 1668 (1961 ). 
12R. Kimmich, G. Schnur, and A. Scheuermann, Chem. Phys. Lipids 32, 

271 (1983). 
13H. Traiible, J. Membrane Biol. 4, 193 (1971 ). 
14A. Ferrarini, G. Moro, and P. L. Nordio, Mo!. Phys. 63, 225 ( 1988); in 

Chemical Reactivity in Liquids: Fundamental Aspects, edited by M. Mo­
reau and P. Turq (Plenum, New York, 1988); G. Moro, A. Ferrarini, A. 
Polimeno, and P. L. Nordio, in Reactive and flexible molecules in liquids, 
edited by T. Dorfmiiller (Kluwer Academic, Dordrecht, 1988). 

15 A. Ferrarini, G. Moro, P. L. Nordio, and A. Polimeno, Chem. Phys. Lett. 
151,531 (1988). 

16 (a) G. Moro and P. L. Nordio, Mo!. Phys. 56,253 ( 1985); (b) 57,947 
(1986); (c) Z. Phys. B64, 217 (1986). 

17F. Coletta, G. Moro, and P. L. Nordio, Mo!. Phys. 61, 1259 (1987); F. 
Coletta, A. Ferrarini, and P. L. Nordio, Chem. Phys. 123, 397 ( 1988). 

18G. Moro, Chem. Phys. 118, 167 (1987); 118, 181 (1987). 
19(a)N. 0. PetersenandS. I. Chan, Biochemistry 16, 2657 (1977); (b) R. J. 

Pace and S. I. Chan, J. Chem. Phys. 76, 4228 (1982). 
20A. Szabo, J. Chem. Phys. 81, 150 (1984). 
21 M. Karplus and J. N. Kushick, Macromolecules 14,325 (1981). 
22R. A. Scott and H. A. Scheraga, J. Chem. Phys. 42, 2209 ( 1965); 44, 3054 

(1966). 
23D. Steele, J. Chem. Soc. Faraday Trans. 81, 1077 ( 1985). 
24S. Marcelja, Biochim. Biophys. Acta 367, 165 ( 1974); Nature 241, 451 

(1973). 
25J. W. Emsley, G. R. Luckhurst, and C. P. Stockley, Proc. R. Soc. London 

Ser. A 381, 117 (1982). 
26A. Ferrarini, Ph.D. thesis, University of Padova, 1989. 
27M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New 

York, 1957). 
28EISPACK, Argonne Code Center, Argonne National Laboratory. 
29G. Moro and J. H. Freed, J. Chem. Phys. 74, 3757 ( 1980). 
30G. Moro and J. H. Freed, in Large Scale Eigenvalue Problems, edited by J. 

Cullum and R. A. Willoughby (North-Holland, Amsterdam, 1986). 
31 J. Cullum and R. A. Willoughby, LanczosAlgorithmfor Large Symmetric 

Eigenvalue Computations (Birkhauser, Basilea, 1985). 
32D. C. Knauss and G. T. Evans, J. Chem. Phys. 73, 3423 ( 1980). 
33 A. Seelig and J. Seelig, Biochemistry 13, 4839 ( 1974). 
34J. H. Davis, Biochem. Biophys. Acta 737, 117 (1983). 
35M. F. Brown, A. A. Ribeiro, and G.D. Williams, Proc. Natl. Acad. Sci. 

USA 80, 4325 (1983); M. F. Brown, J. F. Ellena, C. Trindle, and G.D. 
Williams, J. Chem. Phys. 84,465 (1986). 

36L. Kar, E. Ney-Igner, and J. H. Freed, Biophys. J. 48, 560 ( 1985). 
37M. A. Hemminga, Chem. Phys. Lipids 32, 323 ( 1983). 
38T. P. Higgs and A. L. McKay, Chem. Phys. Lipids 20, 105 (1977). 
39G. Zaccai, G. Buldt, A. Seelig, andJ. Seelig,J. Mo!. Biol.134, 693 ( 1979). 
40 A. Abragam, The Principles of Nuclear Magnetism (Oxford University, 

London, 1961 ) . 
41 P. L. Nordio and U. Segre, in The Molecular Physics of Liquid Crystals, 

edited by G. R. Luckhurst and G. W. Gray (Academic, New York, 
1979). 

42J. H. Freed, G. V. Bruno, and C. F. Polnaszek, J. Phys. Chem. 75, 3385 
(1971). 

43G. Moro and P. L. Nordio, Chem. Phys. Lett. 96, 192 (1983). 
44G. W. Stockton, C. F. Polnaszek, L. C. Leitch, A. P. Tulloch, and I. C. P. 

Smith, Biochem. Biophys. Res. Commun. 60,844 (1974). 
45J. H. Davis, Biophys. J. 27, 339 ( 1979). 
46C. Mayer, K. Muller, K. Weisz, and G. Kothe, Liquid Crystals 3, 797 

(1988). 
47P. I. Watnick, P. Dea, A. Nayeem, and S. I. Chan, J. Chem. Phys. 86, 5789 

(1987). 
48M. F. Brown and J. Davis, Chem. Phys. Lett. 79,431 (1981 ). 
49E. Rommel, F. Noack, P. Meier, and G. Kothe, J. Phys. Chem. 92, 2981 

( 1988). 
50P. L. Nordio and U. Segre, Gazz. Chim. Ital. 106,431 ( 1976). 
5 'J. H. Freed, J. Chem. Phys. 66, 4183 ( 1977). 
52H. Tanaka and J. H. Freed, J. Phys. Chem. 88, 6633 (1984). 
53D. J. Schneider and J. H. Freed, Adv. Chem. Phys. 73, 387 (1989). 

J. Chem. Phys., Vol. 91, No. 9, 1 November 1989 


