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A theoretical model is developed for treating molecular dynamics at the nematic-smecticd 
(NS, ) phase transition, which is frequently second order. This model is motivated by 
electron-spin-resonance (ESR) spin-relaxation studies of molecular probes. The critical 
dynamics of the hydrodynamic modes is described in accordance with dynamic scaling 
arguments of Brochard. Following Zager and Freed, the molecular dynamics of a probe 
molecule (governed by the molecular orientation and/or rotational diffusion) is assumed to 
couple to fluctuations in the smectic order parameter, because these molecular properties are a 
function of the precise location of the probe within the transient smecticlike layer. Two 
limiting cases of ( 1) (nearly) free translational diffusion of the probe across the smecticlike 
layer; and (2) expulsion of the probe to the aliphatic chains with highly hindered diffusion 
(i.e., jump diffusion) across the smecticlike layer are considered. The relevant spectral density 
shows critical types of divergence, where the exponent depends strongly on the details of the 
model. It is found that only the (near) zero-frequency spectral densities can show such 
divergences. It is pointed out that spectral densities available for spin relaxation do not truly 
diverge as the NS, transition is approached arbitrarily closely, because ultimately motional- 
narrowing theory will no longer be valid, and fluctuations begin to be frozen on the ESR time 
scale. This matter is briefly analyzed. Also considered briefly are the effects of anisotropies in 
the smectic phase and of fluctuations in nematic director near the N-S, transition. 

I. INTRODUCTION 

Studies of molecular dynamics at liquid-crystalline 
phase transitions present a unique opportunity to explore the 
molecular basis of these very subtle phase transitions. The 
nematic-isotropic (N-I) transition, which is very weakly 
first order, exhibits quasicritical fluctuations which may be 
studied by electron-spin resonance (ESR) with spin probes. 
The nature of the coupling of the molecular motions to these 
fluctuations has been well explored theoretically,“’ and we 
report on further detailed experimental studies in paper II.3 
The nematic-smecticd (NS, ) transition has been the sub- 
ject of theoretical and experimental studies, because of its 
unique properties. &I3 It is often second order, but can be 
weakly first order. Most of the studies are of the static behav- 
ior at the NS, transition, and they show that the correla- 
tion lengths for this transition exhibit an anisotropy and 
magnitude of their critical exponents that are not consistent 
with the existing theory for such a phase transition given the 
expected analogy to that for the lambda transition in helium. 

Molecular-dynamics studies at this phase transition are 
very few,‘“‘6 but they provide the opportunity to explore 
the transition from another vantage point. Of course, it is 
necessary to explore how the molecular dynamics couples to 
fluctuations in the smectic order parameter. Zager and 
Freed’* have already s u gg ested a mechanism consistent 
with their initial experimental observations. In this paper, 
we present a general treatment of the spin relaxation at the 
NS, transition in accordance with that initial work. The 

treatment of the critical dynamics is based upon the dynamic 
scaling arguments of Brochard.7 This theory is used for an 
analysis of extensive ESR studies reported in paper II.3 
While we restrict ourselves in this paper to a general theo- 
retical development and to simple limiting cases that can be 
treated analytically, we describe in paper II the numerical 
calculations required to more accurately compare theory 
with experiment. In the latter case, we are able to include the 
effects of anisotropies in the critical exponents as well as in 
the dynamic scaling, matters that are only briefly touched on 
in this paper. 

The theoretical model is based on the following observa- 
tion. ESR probes typically undergo partial expulsion from 
the orientationally well-ordered aromatic cores of the liquid- 
crystal molecules toward less-ordered aliphatic regions at 
the N-S’” transition. 17*” Molecular parameters affecting 
spin relaxation, such as the nematic order parameter of the 
probe, S, and/or its rotational correlation time rR, are them- 
selves affected by the precise location of the probe. The tran- 
sient formation of smectic layers (cybotactic clusters) as the 
transition is approached results in a variation of these molec- 
ular parameters as a function of probe location within the 
smectic layer. The smectic layer is described by the density 
function p( r,l), and near the transition it exhibits fluctu- 
ations which are observed to diverge, while its dynamics ex- 
hibits critical slowing. Such divergent behavior can then be 
mirrored in the spin relaxation given that the relevant molec- 
ular parameter(s) will depend upon p (r,t) . Of course, the 
probe molecule is diffusing, and if this occurs fast enough, it 
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can average out such effects. On the other hand, the probe 
diffusion in an anisotropic fluid will occur relative to a po- 
tential V(r) which itself should be dependent upon p( r,t), 
and this would lead to nonuniform averaging, which is a 
more formal way of representing the probe expulsion effect 
noted above. These effects on diffusion are only dealt with in 
limiting cases in this paper. 

The general formalism for calculating the spectral den- 
sities near the phase transition is based on our earlier paper,’ 
which dealt with quasicritical orientational fluctuations 
near the N-I transition. In the same spirit, we assume that 
there exists a different time scale, the slow cooperative mo- 
tions associated with the smectic density fluctuations and 
the rapid rotational motion of the spin probe. Unlike the N-I 
transition, the observed critical divergence in the zero-fre- 
quency spectral densities is rather weak (cf. paper II). This 
is expected in part, since the modulation of orientational 
fluctuations associated with probe expulsion 
( z AS * ~0.0025 ) is weaker than orientational fluctuations 
at the N-1 transition ( ~0.01). 

The theoretical formulation is presented in Sec. II, and 
some analytic limiting models appear in Sec. III. In Appen- 
dix A we discuss, from a multimode viewpoint, the relaxa- 
tion of the complex smectic order parameter. In Appendix B 
we consider the range of validity of a motional narrowing 
approach for ESR (or NMR) in the presence of critical 
slowing down of the collective fluctuations. Some of the ef- 
fects of anisotropy of the medium, including fluctuations in 
the nematic director,7 are discussed in Appendix C. 

tic bilayer. It thus represents the “gradual expulsion” effect 
discussed in Sec. I. Thus we regard U(r) to be functional of 
b(r): 

U= ~[(hp(r)l. (4) 
Then the dissipative hydrodynamic fluctuations inp(r) lead 
to a time-dependent “potential of mean force” experienced 
by the spin probe, which enhances its preference for the hy- 
drocarbon chain regions when a smectic cluster forms. This 
time-dependent Smoluchowski operator can be treated 
along lines previously developed.2 One treats the fluctu- 
ations in p( r ) as a random stochastic process. Thus, a more 
general diffusion-type of equation, a stochastic-Liouville 
equation, may be written for the composite or multidimen- 
sional Markov process including fluctuations inp( r) and the 
diffusion of the probe. This expression may be more conve- 
niently solved by invoking the different time scales for probe 
diffusion vs the much slower rate of fluctuations in p(r) 
[i.e., leading to a Born-Oppenheimer-type of separation 
such that the diffusion of the probe instantaneously adjusts 
to the fluctuations in p ( r ) 1. I9 

II. THEORETICAL FORMULATION 
We first assume that the magnetic and/or relaxation 

parameter Q (e.g., S or rR ) may be expanded as a Taylor’s 
series in the local density of the medium. That is, 

Q(r) = Q. + Q, hp(r) + Q2 [Ap( + -0-, (1) 
where 

AP(r) =p(r) -p,, =$Re[Y(r)e”‘] 

= !!$ I\u(r)I Re(eiq~[‘-““‘l). (2) 

Here, q, = 2n-/d, where d is the smectic interlayer distance 
and Y(r) is the complex order parameter with phase 
a(r) = q,u(r), where u(r) gives the displacement of the 
smectic layers in the z direction. Thus fluctuations in p(r) 
will lead to fluctuations in Q(r). We also assume that the 
translational diffusion of the spin probe obeys the modified 
diffusion or Smoluchowski equation: 

The dependence of U on Ap (r > may not necessarily be 
expandable in only lowest powers of AP (r) . Small density 
changes could lead to severe packing problems, but in the 
spirit of the mean-field (or Landau) theory near the phase 
transition we will make this assumption for simplicity. Deep 
in the smectic phase, when 1 Y, I> 0 and is substantial, one 
may even contemplate that the hydrocarbon chain region 
represents such a deep minimum in V( r ) that Eq. (3) could 
be replaced by an expression for “jump diffusion” along the z 
direction (with simple diffusion in the x and y directions still 
possible), i.e., it can only jump from the chain region of one 
smectic layer into the chain region of an adjacent layer. 
However, if U(r) were to diverge in magnitude then diffu- 
sion in the z direction would be prevented. This is analogous 
to the effect of a divergence (at the N-S, transition) in the 
viscosity ys which involves motion of the smectic planes rel- 
ative to the background liquid.4 In dealing with molecular 
motions it is sounder to attribute such effects to a U(r) rath- 
er than to a D,, +O (i.e., we have D,, proportional to the 
noncritical portion of the viscosity7*’ ). Thus, near the transi- 
tion we shall write for U, 

U/kTzu,Ap(r) + a2[40(r)12+ ***. (5) 
We may regard this potential as related to the difference 

in free energy (more precisely the chemical potential) for 
the probe between the nematic phase and a “smectic phase” 
(cybotactic cluster) with order parameter IY I. To obtain 
this free-energy contribution, we must average U(r) over r 
within a cluster, using Bq. (2), to obtain 

GYr,,t) 
dt = 

- V-D-@ + [VU(r,,t)]/kT>P(r,,t), (3) 
4 Q(r) =O (6) 

and 

where D is the diffusion tensor, diagonal in the lab frame 
such that the z axis is parallel to the mean nematic director ii. 
The components of D parallel and perpendicular to this axis 
are D,, and D, , respectively. The appearance of the potential 
U(r) in this expression represents the “preference” of the 
probe to be located in the lower density regions of the smec- 

u2 f+(r) I’ = fu2pi M2. (7) 

We thus see that the leading term in the free-energy differ- 
ence is quadratic in IY I, as it is for the pure solvent as re- 
quired by Landau theory. [Note also that we may relate 
U(r) to the pair correlation function of the probe, g(r), as 
lng(r) = - U(r)/kT.” ] 
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Let us now first consider the limit where the effects of 
the potential of mean force V(r) on the diffusive motion may 
be neglected, so the only effects of critical fluctuations will 
arise as a consequence of Eq. ( 1). Then spin relaxation 
Will depend upon the correlation function 
(AQ(r,,t)AQ(r,,t = O)), which in turn depends upon the 
correlation function for the fluctuations in the smectic order 
parameter Y: 

(AQ(r,,t)AQ(r,,t = 0)) a (Y*(r,,t)Y(r,,O)) + .-.) 

(8) 

where -** denotes higher-order terms, rB is the location of 
the probe, and AQ = Q(r) - Q, . For a nondiffusing probe, 
we can use the result of Jiihnig and Brochard (JB) for the qth 
mode of fluctuation:8 

N*(q,GY(q,O)) = (IY(q)lZ)e-“r~, (9) 

where Y (q,r) is the Fourier transform of Y (r,t). The relaxa- 
tion time rq is expected to obey a scaling equation of the form 
79 -’ =.$~fcq,,~l,,ql{l) withl,,--f, =c andzz33/2. For 
q& 1, rq is independent of c and f- (46) - 3’2. JB intro- 
duced a simple interpolation formula for rq that satisfies 
dynamic scaling: 

rq = 7-m/( 1 + d.57 + &Ti 1”. (10) 

In Eq. (9), the mean-square displacement in order pa- 
rameter is 

k,T 
(‘y’(q)‘2) = 2A 

1 -‘. (11) 
(1 + q$$: + &&?$ Y-“q 

Also, g,, and cI are the coherence lengths parallel and per- 
pendicular to the z axis (referring to the nematic director ii), 
respectively, and q,, and qL are the respective components of 
q. V is the sample volume, while A is the coefficient in the 
term quadratic in Y(r) in the Landau expansion of the smec- 
tic free energy. 21 Using the analogy to the R transition in 
helium,“’ one expects lL and g,, to diverge similarly as 
ca (T- TNsA) -2’3; also, A CC~ -*+v (~~0.04), and 
rrnal 3’2a (T- TNsA)- ‘. According to dynamic scaling 
arguments,7*8*22 one must have x = 3/4 in Eq. ( 10). Al- 
though the actual case for the N-S, transition is more com- 
plicated, exhibiting anisotropic exponents, we utilize the he- 
lium analogy in this paper for convenience in presentation, 
but in paper II for comparison with actual experiment we 
take all these complications into consideration. 

More precisely, we have 

(AQ(r,,t)AQ(r,,O)) aQ?C(t) + -.-f 
where 

(12a) 

c(t) = (40(rB)40(rB,o )>/d 

=i (Re[Y(r,)e’9~“8]xRe[Y(r,,)eiq“‘~”]), (12b) 

where we have let rs be the position vector of the probe at 
time r and rs,O its position at t = 0. Also, q, = q,k. This may 
be written as 
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piC(O = P,(400 ),rg) I 
XP(+(r, ),rB,o Ihp(r),rd)) 

x&b NWko )dr,dr,,dhp(r)dhp(r,), 
(13) 

where 

P,(4% )~~,~)--P,(hp(r~ )Peq,App(ro) (rao 1 (14) 
is the joint equilibrium distribution function for the density 
fluctuations in the fluid and for the location of the probe 
molecule. The approximate form* assumes that the probe 
does not significantly perturb the density fluctuations, but 
the location of the probe is, in general, sensitive to the instan- 
taneous value of the density fluctuations. The joint condi- 
tional probability density for density fluctuations and probe 
locations obeys in our “Born-Oppenheimer-type” approxi- 
mation 

P(hp(r, Lrg,01&(r)9rgA 
--P(hp(ro 1 I&(r),WA,,,, hd4rgJA (15) 

where the conditional probability that the probe is located at 
ra at time t given it was at rao at t = 0 is again dependent 
upon the instantaneous hp(r). In the absence of density 
fluctuations we have 

P(rB,OIrB,f) = C Ir,,,a> exp[ - (D,,qi + D,qf)f ] 
q 

X (r,,ql 

+ I 41rB,od exp[ - (Dllqp + D,d It ] 
X (rdd, 

where the ket Irs,q) is given by 

Ir,,q) = e-i4”8/v1’2 

and 

(16) 

(17a) 

IPe4,rEI) = Ir,,q=O) = Y-l’*. (17b) 

Equation (16) is the solution to Eq. (3) with U = 0. 
When Eq. (5) is used for Eq. (3)) then the conditional prob- 
ability for rrr becomes a function of Ap (r) . Rather than at- 
tempt a complete solution of this equation at present we shall 
first take Eq. ( 5) to lowest order in Ap (r ) . Then we shall 
utilize a “strong-collision type” of approximation* to write 

P eq,Apcr,)(rao)~Pe4(rB.0)[1 - u,&(r,,) + *.*I (18) 

and 

P A@) (rB,0kB9t) =p(rB,0bB9t) 

~[l--,Ap(r,)+**.], (19) 

where the probabilities on the right-hand side of Eqs. ( 18) 
and (19) are given, respectively, by Eqs. (17b) and (16). 
While Eq. ( 19) cannot be regarded as rigorous, it does indi- 
cate the magnitude of the contributions of the density fluctu- 
ations to the dynamics of the probe diffusion, in the limit of 
small density fluctuations. 
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Now p(&( r. ) 1 b(r) ,t) is a multidimensional joint 
probability distribution for the values of & at each r. This is 
best transformed to the equivalent normal-mode distribu- 
tion in q space. This is accomplished, in the usual manner, by 
Fourier transforming the order parameter Y(r). However, 
since Y(r) is complex, one may consider it as a two-compo- 
nent order parameter consisting of Re Y(r) and Im Y(r). 
J&rig and Brochard’ invoke the simplifying assumption 
that the real and imaginary parts of Y (r) are uncorrelated in 
their fluctuations. We follow a different approach here. We 
first consider Y(r) as a two-dimensional vector in the com- 
plex plane. Then we transform its components as 

Y,(q)=+ [Re Y(r)]e-““dr=(Re Y(r)jr,qj), (20a) 

VII(q)=+ 
s 

[Im Y(r)]eWi~‘dr=(Im Y(r)lr,qj), (20b) 

and we let 

y* (Q)--vI,(q) +zY,(q). (21) 

Now from Eq. (2) we have 

Q(r) = s [Y + (r)e”“’ + Y*_ (r)e-iq”] 

=!$Rez\y+ (q)e-i’qfq”‘r, 
9 

where we have used 

wits> =Y,( -s), (23a) 
Y?(q) = *I( - 91, (23b) 

which follows from the fact that both Re Y(r) and Im Y(r) 
arerealquantities.WenowletY* (*q) = jY(q)le*i+‘q’. 
It also follows that Yy (q) = Y _ ( - q) . We then consider 
that since (IY(q)l*) = (Y + (q)Y _ ( -q)), and is given 
by Eq. ( 11) , while the phase factor ( 1 qs u (q) I’) = 0 above 
the phase transition, then it will be sufficient to allow 
4, = tan - ’ [ Im Y + (q)/Re Y _ (q) ] to be random. Thus 
the fluctuations of the real and imaginary components of the 
vector Y(q) may be regarded as a diffusion in the complex 
plane consistent with Eq. (9), and such that it is a one-sided 
Gaussian with respect to I Y (q) 1, but all values of $( q) are 
equally probable. This is developed in Appendix A. We find 
that each independent q mode obeys the following condi- 
tional probability: 

wo (Q) P(crM) = ,c, I Ytw(a))) 

Xexp( - w~NMGWo(q))l. (24) 
Equation (24) expresses the conditional probability in terms 
of eigenkets I Y F(Y (4))) given by Eq. (AlO) and eigenval- 
ues WM q,N given by Eq. (A15). An expression for the equilib- 
rium probability distribution, P,(Y (q)) is given by Eq. 
(A12). Then, the complete probability distribution involv- 
ing all the independent q modes, i.e., P(Y (q) ,f) is given by 

P(Y(q),t) = j-J P(Y(qM). 
4 

Wd 

Thus Eq. ( 13) becomes 

r (P 
qit N&f 

,,(r,)l[(P~q(40(r))140(ra)Ir,,q,)e-’Dlld+D’”:’f~ jy%y(d))] 
Q 

Xe - w2Nt [ (YiWo (q))I(rB,,,qk (25) 

In writing Eq. (25) we have considered only the leading 
term in Eqs. ( 18) and ( 19) in the spirit of obtaining just the 
lowest-order contribution in Ap (r) to C(t) . We now use the 
Fourier inverse of Eqs. (20) to write 

Ap(rg) = $- Re C Y + (q)ei(q+qs)arB 
4 

v PO - 
-03 2vT s 

I*(q) lei+(q)eicq + qs”rBdq + c.c. 

(26) 

We evaluate Eq. (25) by first noting (letting q’ = q + qs ) 

(P,, (rB 1 leiq”rEIrg,qk) 

=+ 
s 

d3r, exp[ - i(q, -q’).r,] 

=L+(,, -q’), (27) 

I 
and then by using the limiting integral form of Eq. (26) to 
obtain 

4C(Q = c c ‘(YWCclk - cL))Y(Sk - e> 
q,, NM 

x Icw(~, - %)))I’ 
xexp[ - ( WE-q,N +D,,d,,, +D,d,df]. 

(28) 

It follows from the property of the Y f functions (see Ap- 
pendix A) that only the term of M = 1, N = 0 contributes 
for each qk . Then we obtain (dropping the subscript k) 

C(t) = c c, (t) = JL s (2P)3 0 
‘c,(t)d3s, 

9 
(2%) 

where 

4Cq(t) =a,--‘,exp[ - (T~--‘~,+D,,~~ +D,qf)t]. 
(29b) 
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III. LIMITING MODELS 

The form of C(t) and the associated spectral density 

I 

m 
J(w) = Re C( t)e - ‘“‘dt (30) 

0 

is complicated. We therefore consider two limiting cases 
here, and defer to paper II the numerical solution of Eq. 
(29). In the first we use a “one-constant” or isotropy ap- 
proximation such that {,l = L$~ = 5 and we let x = 1 in Eq. 
( 10) while Dll = D, = D, but we ignore averaging by diffu- 
sion through the smectic layer by letting qs -0 (i.e., 
D,I h-m -0). Then the integrals are readily evaluated (in 
the limit qc + CO ) to yield 

where M = (24g ‘> - ‘, and 

4C(t) = 
Mk,T r; - - e - f’Tm”(t - l/2 _ (T,r, ) l/2 
46j2 I$ 

x (e+ t/r, 1 erfc[ (t/r, )“‘]I, (31a) 

Mk,T r,,, 1 l/2 
U(w) = -- 

41/2~ c 1 + [ 1 + (wr, )*I”* 
(31b) 

for the case of D = 0. (The result for 11, #& is considered in 
Appendix C.) For finite D, these expressions become 

- f/7, 

J;T --e Dt’52 
6 

erfc( t/r& ) “* 
I (32a) 

and 

D{l -m[(l +w*r$ )“*+ l]“*}+ (w~*/~)~[(l+w*r~)“*- 1]“2 

o~~$~+D’ 
, (32b) 

where 

G = 27, (33a) 
and 

zm(l +Dr,/{*)-*. (33b) 

Under the above approximations, the role of diffusion is 
confined to the motions which carry the probe from one 
smecticlike cluster to another. It is seen that the deviation of 
z from unity is a measure of the importance of translational 
diffusion. In fact, we can regard the ratio Or, /l 2 in z to be 
equal to r, /t, , where t5 is the time a Brownian particle will 
take to diffuse a distance equal to $6, i.e., to diffuse out of 
the pretransiiional smectic cluster (see also Appendix C). 
When DrM/g 2, 1 (i.e., z( 1) this is the dominant relaxa- 
tion; When Dr,,,/g *( 1 (i.e., zz 1) the relaxation of the 
smectic cluster itself, governed by r,, is dominant. 

If we now let wr, -0, Eq. (32b) becomes 

(34) 

Thus when z--r 1, J( 0) a r,,, /c a c “2, which is in agree- 
ment with the experimental results (cf. paper II). When, 
however ~(1, then 4J(0)r(MkbT/47rD){a11, which 
shows a stronger divergence. 

When we let w ) r ; ‘, D/g *, one has 

I’* 
g-1. (35) 

Thus, the behavior of the high-frequency limiting form 
ofJ(w) given by Eq. (35) also depends upon z. In the limit 
z=:l,J(o) ar!//~a~ -1’4, so that it goes to zero slowly as 
T- TNS,. In the other limit, z4 1, 

I 

Mk, T 
‘Ww) zz (oD) - l/2 

and it shows no significant critical behavior. This important 
difference between J(0) which can diverge, and J(w) for 
high frequencies which does not, also emerges from the de- 
tailed numerical calculations (cf. paper II). 

When we introduce higher-order terms in the expansion 
of the relaxation parameter [ Eq. ( 1) ] or else in the probabil- 
ity distributions Eqs. ( 18) and ( 19) for probe diffusion, then 
the next order terms will involve the time correlation func- 
tion of [ 40 (r ) ] *. This is examined in Appendixes A and C 
where terms of this order are found to make a contribution to 
J(0) which goes to zero approximately as 6 - “*, and are 
thus unimportant. Thus, to the order considered here, it is 
the lowest-order term, and the (near)-zero frequency spec- 
tral density at that, which can be effective in producing a 
critical divergence for this limiting case. 

For the second case, we only solve for w = 0, but retain 
the asymmetries and finite qs. Also, the effects of a finite qE 
are included. In particular, we set the maximum in lql I as 
ql,=, while qll,= is taken to be of order qs. We again let x = 1. 
We then consider the limiting case, which becomes valid 
close enough to the phase transition, of 

DlrJ6f, Dllrd6f 41, (36) 

i.e., the terms on the left-hand side of Eq. (36) go to zero as 
r, /{ * a g - “*. One can write [cf. Appendix C, Eqs. (C2) ] 

4J(w) z kbTrm 
427d*Gf, 

Re $” dP,, r” P,dP, 
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- &?sD,, r??J,, 45,, 1 - I- (37) 
One can show that for the second inequality in Eq. (36)) that 
(2q,D,, rmP,, /g,, ) 4 (P f + 4fD,, r, ) over the full range of 
values of P,, . So we ignore this term in the integration. We 
now let qs{,, and ql,c~l + CO and we obtain 

4J(o) = M,k,Trm 477 - 1 

461 
, 

c 
(38) 

where 

c = dD,, rm (39) 
and 

M,‘=2Agf. (40) 

Equation (38) is for the case when we ignore relaxation by 
diffusion from one smectic cluster to another. Instead, it re- 
tains the averaging effect through the smectic layer, as mea- 
sured by 

c = (2n)*D,,r~/d2~2n2r,/t,, 

where td is the time it takes to diffuse through the smectic 
layer of thickness d, vs the relaxation of the smectic layers. 
As c-+0, one has 

I/Z 
45(O) z (M,k,T/8r)~,/~,, a S , 

which is equivalent to the case of Eq. (34), in the limit that 
the dominant averaging is by relaxation of the smectic clus- 
ters. Asc+co, 

so it goes to zero as T+ TNA . Clearly, rapid averaging by 
probe diffusion through the smectic layer removes the sensi- 
tivity to the density variation within the smectic layer within 
our lowest-order theory. 

It is difficult to predict analytically the simultaneous 
effects of diffusional averaging both through the smectic lay- 
er and from one smectic cluster to another, as well as the 
effect of anisotropies in diffusion tensor and in correlation 
lengths and exponents (as well as an x = 3/4), but the nu- 
merical calculations in paper II show that for realistic values 
of the parameters the effect of diffusional averaging through 
the smectic layer does suppress the critical divergence. 

There is, however, another point of view, or limiting 
case that dramatizes the expulsion effect which has not 
played a significant role to lowest order of U in p (r ) . It was 
briefly noted in Sec. II, and is the case when the probe is 
confined to the chain region, where it can only jump from the 
chain region of one smectic layer into that of an adjacent 
layer. In this case, there can be no averaging of diffusion 
across the smectic layer, since P,q,aP(,O, ( rB,O ) [cf. Eq. ( 14) ] 
is heavily weighted in the chain region even for very small 
hp(r,). In this case, Eqs. (31)-(35) constitute the correct 
solution. [Another way to look at this limit is to recognize 
that the parameter Q(r&) depends only upon whether the 
probe is in the transient smectic cluster or not. If it is, its 
position rapidly readjusts to the hydrocarbon region. The 
measure of smectic layering is just \I, (r) and not b(r). 
Thus one is interested in the correlation function 
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(Y(r,t)Y(r,O)) rather than Eq. (12b). However, the two 
become equivalent in the limit qs .-+ 0. ] This case is consid- 
ered in detailed numerical calculations in paper II, and, for 
realistic values of the parameters, yield significant critical 
exponents for J(0) that depend significantly on diffusion 
tensor, coherence length, and exponents, as well as dynamic 
scaling of r, and the associated anisotropies. Values for the 
critical exponent for J( 0) range from about - l/3 to about 
- l/2 for this model for a range of relevant values of the 

parameters. 
Clearly, a model that is intermediate between complete 

diffusional averaging and no such averaging through the 
smectic layer would be worthy of further study. Some partial 
averaging would be expected to reduce somewhat the critical 
exponents obtained in the limit of no averaging. 
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APPENDIX A: DIFFUSIVE RELAXATION OF THE 
FOURIER COMPONENTS OF A COMPLEX ORDER 
PARAMETER 

Jiihnig and Brochard* assumed a simple relaxation be- 
havior of the order parameter in Fourier space, and then 
applied dynamic scaling arguments. We shall consider this 
relaxation in a form appropriate to obtain the dynamical 
averaging that is needed in the present work. Thus we recog- 
nize that above T *, the collective mode Y(q) is constrained 
to perform fluctuations with mean square given by Eq. ( 11)) 
but the phase 4, =qsup is arbitrary. We wish to express this 
by a diffusion equation for Y(q) = 1 Y (q) 1 eiqsUq. We regard 
this as a diffusion in the complex plane with polar coordi- 
nates p-+(Y(q)l and 4+up; i.e., we let P(Y (q),t) obey a 
diffusion equation subject to the collective potential 
v(ly(q) I). That is, 

W~caM) = _ I- 
at 

Y(q,P(wl)9t). 

Here, 

r ‘y(q) = - D,(,, [V” + V*(V^vcq,)l, t-42) 

where 

^vh) = f’W ’(d 1)/b T, (A31 

and V* and V are expressed in planar polar coordinates. The 
diffusion operator becomes 

- rwq, = 4w a2+lA+ 
aP2 P JP 

(A41 

Note that Eq. (Al ) neglects streaming terms which should 
lead to propagation effects in the smectic phase. This will not 
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be important at the NS, phase transition, cf. Ref. 2 1. Deep- 
er into the smectic phase, the propagation of second sound 
becomes significant, but should be much less important (cf. 
paper II) for spin probes than the expulsion effect that cou- 
ples to the fluctuations of Y (r,t), which is the basis of our 
present model. Now in accordance with Eq. ( 11) [or more 
precisely, using the free-eyrgy terms quadratic in I Y (q) I 
(cf.Refs.7and8)],welet V(q) =a,~Y(q)l*=a,p*.Then 
we have 

- rp = b(q) ( %~~+2aqpL+4aq -M2 
dp2 P + dP P2 > 

(A51 
after separating out the 4 dependence. This diffusion opera- 
tor can be symmetrized by the transformation 

Fp = ea* P’Rrp e - up P2/2 
b46) 

and becomes 

- T,YYP) 

= kw d’+lL-MZ-2aqp+&yq 
dp2 P dp P= 

(p). 

(A7) 
Instead of solving for the eigenfunctions yM of this oper- 

ator, we solve for functions Y(P) = p”‘y(p), which yields 
the standard differential form: 

d2v l--M2 
dt + 422 

j-2--&=Ev, (-48) 

where we have let z = ali/2p, with eigenvalue E. Its solutions 
are in terms of generalized Laguerre polynomials,23 L y(2), 
leading finally to the eigenfunctions: 

y:(p) = [za,N!/(N+ IM~)!]“2e-“‘p*‘2 

x (arp) IM IL p1(aqp2). (A9) 
The solution to the symmetrized FVutq, including the 4 

dependence is 

Y,“(Y(q)) =y~(Y(q))eiM’(2n)“*, 

and its eigenvalues are 

(A101 

WM - 9. .N - (7; ‘1: = 2a,%,, (2N+ [Ml), N>O. (All) 

The equilibrium probability distribution function is 

P,(Y(q))= [Y~(Y(q))]2=~e-“:“‘q’l’, (A12) 

and the conditional probability distribution is 

P(Y, (q) lyu(d,t) = 1 I YiW(q)))e- “rNf(Y3yo (s))l 
NM 

(Al3) 
[which is Eq. (24)]. 

The requirements that these expressions yield Eqs. (9 )- 
( 11) are found from the derivation [cf. Eq. (27) ] to yield 

(r p ‘1; = 2c1,D,~,, = r qP I, (A14) 
where r q- ’ is given by Eq. ( 10). Thus 

Wz=rq-‘(2N+ (Ml). (A151 

The dynamical properties of the complex order param- 
eter Y(q) are thus seen to be similar, but not identical, to a 
simple order parameter which can be represented by a Gaus- 
sian distribution and Hermite polynomial eigenfunctions.2 

Utilizing these expressions, it is now possible to calcu- 
late general correlation functions of type 

wheref,(Y (r)) is some function of Y (r) at time t. The calcu- 
lation wheref,(Y(r))=Y(r) and [Y(r)] have been dis- 
cussed in Sets. II and III. They require calculation of the 
matrix elements of Y (r), which have been given elsewhere in 
a slightly different context. 24*25 By similar means we can cal- 
culate the correlation function of IY (r) I*. The correlation 
functions in Sec. II involve just the single excitation M = 1, 
N = 0 [cf. Eqs. (28) and (29) ] for each q. The correlation 
function for I Y (r) I* involves such a single excitation in two 
separate modes as well as a “double excitation” in one q 
mode. The former are of order nq ( nq - 1) in number, 
whereas the latter are of order nq (where nq is the number of 
q modes). Since n, is a very large number, we can safely 
neglect the “double excitations.” Then, we obtain 

p~CQ(t)-Upf(r)&i$(r)) = [&C(t)]’ (A161 
with C(t) given by Eq. (3 la). We can then write for the 
quadratic spectral density Je (w >, 

Je(w) = Re 
s 

&w, )&w -0, )dw, (Al7) 

with](w) = j’;C(t)e-‘“‘dt [note that Rel(ti) = J(w) of 
Eq. (30) 1. Equation (A17) is evaluated in Appendix C. 

APPENDIX B: CRITICAL DYNAMICS AND SLOW 
MOTIONS IN ESR 

Previously, we suggested criteria for the validity of the 
motional narrowing approach for spin relaxation due to slow 
cooperative fluctuations.* This becomes especially relevant 
in the critical region when there is critical slowing down of 
the modes. First, we note the important role played by the 
coherence length 6. A finite { prevents a divergence in the 
spectral densities J( w ) as w -0 as evidenced by Eqs. (3 1 b) 
and (32b) and previously discussed. There is another physi- 
cally unrealistic divergence in J(w) occurring when r, -+ 00 
as the critical point is reached. That is, J(0) given by Eq. 
(31b) goes as r,/ga< 1’2 which is diverging near the criti- 
cal point. However, spectral densities available for spin re- 
laxation do not diverge. Instead, the motional narrowing 
theory loses its validity and the critical modes no longer pro- 
vide a mechanism for relaxation. The fluctuations become 
frozen on the ESR time scale and would lead to static or 
inhomogeneous line broadening. A sufficient condition for 
Fotional narro%ng theory in the present context is that the 
T, Qr,,, , where T, is the contribution to T, due to the criti- 
cal fluctuations. This is perhaps too severe, and it was point- 
ed out previously2 that in the model of independent q modes 
a more detailed analysis could be made if we required for the 
qth mode that T<ql-lIH~,qjrq<rg ‘, where H,,, is the 
component of H, (Y), which is modulated by the qth mode 
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of the fluctuations and r ; ’ is given by Eq. ( 10). This would 
then be a condition for validity of the motional narrowing 
theory for the contribution of the qth mode. In the present 
case we can write 

031) 
where f measures the extent of coupling of the probe to the 
critical modes and w, is the magnitude of the typical terms in 
the spin Hamiltonian. Thus, the crossover mode from those 
contributing fast to those contributing slow motion should 
come at 

k,T f2&-k 
1 = IH:,qjr:z- 

2Av (1 +q262)‘+2”. 
032) 

[Notethat IHt,,I is estimated from the expression for C, (t) 

given by Eq. (29b) which shows that it is proportional to 
a;Jqs. ] This criterion thus appears to depend upon the sam- 
ple volume V which does not appear useful or realistic. In- 
stead, if we now recognize this coherence in fluctuations per- 
sists only over lengths of the order of 6, one might expect that 
V-g 3, i.e., this is the natural volume within which to con- 
sider the fluctuations. 

A more rigorous analysis of this matter could be per- 
formed by using a more complete slow-motional theory. Pre- 
liminary results utilizing the partial time-order cumulant 
(PTOC) method26*27 were outlined previously.* A great 
simplification occurs if we (i) ignore the non-Gaussian fea- 
tures of fluctuations in a complex order parameter Y (cf. 
Appendix A), and (ii) ignore the fact that, for perturbations 
which do not commute with H,, , the generalized cumulants 
which ensue do not exhibit “generalized Gaussian” behavior 
even if the fluctuations in Y did. We will assume instead that 
the overall process involving the superposition of all the 
many q modes will approximately satisfy the central limit 
theorem and thereby appear Gaussian. (This is suggested in 
part by the vanishing of the higher-order simple cumulants 
involving cross terms between the different q modes.) In this 
limit, the line shape is completely determined by just the 
second cumulant K, (t). We illustrate with just the secular 
terms. Thus 

co 
I(~) = Re 

I 
e-i(“-“O)f-K2(f)dt, (B3) 

0 

where I( w ) is the line shape. Now K2 ( t) is given by 
f 

s s 

f’ 
K2(t) = - dt’ dt”K2(t’,t”). (B4) 

0 0 

Here ~~ = m2, the second-order time correlation function 
for the process. That is, 

m2 =Cm2,q7 
0 

0354 

m2rq((f,)“) =aq-1e-cr’-““rqf2,~. (B5b) 
When we consider the individual q modes, we see via Eq. 
(B2) that those for which q2g24 1 do approach the slow- 
motional condition as ( T - T, ) - 4’3, but those for which 
#g *) 1 cannot be brought to the slow-motional condition 
[since the right-hand side of Eq. (B2) goes as ( T - T, ) ‘1. 

Furthermore, the condition g{ 2 ( 1 is fulfilled by fewer q 
modes as { diverges. Clearly, this problem of fast vs slow 
motion is a complex one deserving of further study. 

If we consider the rigid limit in the above-noted Gaus- 
sian approximation, we have 

K;?(t) = -C,{a;‘rt[t/rq - 1 +exp( -t/rq)]}f2& 
9 - VW 

+ (27-43 s &a;‘ri[t/rq - 1 +exp( - t/rq)]. 

The fast-motional limit applies when the 8rst term in the 
square brackets is dominant for times of interest.*’ By analogy 
with simple single mode cases,* we may specify this condition 
as 

v-w: qc 
s (2zq3 0 

dqa;‘ri<l 

3908 Jack H. Freed: Liquid-crystalline phase transitions. I 

(B7) 

(i.e., the second term in the square brackets is small). This 
yields (letting x = 1 for convenience) 

k,T f*o.&-~ 
--~-‘=Mk,Tfzo,2rK/32~~g1 2A (32~) 038) 

(which is valid for qC ,$ - ‘). The crossover to slow motion 
should come when this quantity equals unity. This condition 
applies to the overall line shape, i.e., the resultant of all the q 
modes. A breakdown into the effects of the individual q modes 
could, in principle, be made by retaining the sum over q in 
K2 (t) [cf. Eq. (B6) ] and by replacing the sum which would 
ensue in the exponent of Eq. (B3) by a product of exponentials. 
This is important for a quantitative theory, because the higher q 
modes could still contribute to motional narrowing, while the 
lower q modes are “slow motional.” 

IfwenowcompareEq. (B2) (withx = 1) withEq. (B8), 
then we see that the criterion of Eq. (B2) would become equiv- 
alent,ifweletti-+{ -“inEq. (B2) andthenlet VinEq. (B2) 
be a sphere of radius r = 31’3g. This is consistent with our no- 
tion that the relevant volume is of order c 3 (not the total sam- 
ple volume as incorrectly utilized in Ref. 2). It also suggests that 
a typical or “mean” q mode is that for which $ = g - *. 

Now when we recall r “, a 6 3, we see that the left-hand 
side of Eq. (B8) diverges as {‘a (T- TC)-(4’3). Thus, a 
slow-motional condition should be achieved as one approaches 
T, close enough. In the experiments reported in paper II, the 
smallest values of ( T - T, )/T, studied were 3 x 10 - 4, which 
for the values estimated there could imply incipient slow-mo- 
tional behavior, but the uncertainty in magnitude of key pa- 
rameters renders this matter uncertain. 

Now in the rigid limit one has in this Gaussian approxima- 
tion 

K,(t)-+ -$ ~a;~*&= -GA2, 039) 

where 

A*=f *w;k, TqC/2r?(2A)c2 =fzw;Mk, TqJ22 

(and it was assumed that d %g - 2, corresponding to Gaus- 
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sian inhomogeneous broadening of rms width A, which would 
only very weakly approach zero as Ma 6 - q’* where 77 = 0.04. 

Note that in the above discussion we have neglected the 
eifkct of finite ditksion. Our results in Sec. II lead to the sugges- 
tion that we replace r,,, in the present expressions by r,!,, = zr,,, 
[cf. Eqs. (33)]. 

APPENDIX c: EFFECTS OF ANISOTROPY IN THE 
MEDIUM 
1. fluctuations in the smectic order parameter 

If we include anisotropy in ,$-$,, and &, and in D+D,, 
and Dr, then J(w) [cf. Eqs. (29)-(30)] becomes [where we 
let x = 1 in Eq. (10) for simplicity] 

d3q 

x[l+d~:+(4,,-q45)2~fl-1 
XCiw+r,‘X[l +dG? +47,1 
+ (q,, -qs)*iT; +~q,GI1~-‘* 

Now let 

p: =dkz +arm) 
and 

Pi = (41, -qs,>*(l; +q,rm). 
Then,ifwelet~+ooand~=O, 

(Cl) 

(C2a) 

(C2b) 

J(w) = $p: +m,M~ +q,rJ”*]-’ 

X[iw+r,‘(l +P*)] --. (C3) 
Now if r m -6 3’2 it then follows that DL r,,J ;* and 

D,,r,g,i-*gotozeroas{- . l’* If we ignore these terms, then 
we may write 

J(w) - k, T7, 
s WW36:6,, 0 

* d3P[u2rk + (1 +P2)2] --* 

(a) 
We may let Al: = (2M,) - ’ and consider J(0): 

J(O)- d”P(1 +P2)-2 

rx~1’2M~,~o~4”cx(T- T,) --o.~‘, (C5) 

which may be compared with Eq. (3 lb). A more general anal- 
ysis of anisotropy of the medium appears in paper II. 

We now consider the J(o) emanating from the quadratic 
correlation terms in k(r) [cf. Eq. ( 1) 1. We obtain from Eq. 
(A17) 

((3-Q 

JQbl = [~]*Re~k s &[(I +d,& +d:,,,it%Hl +d,& +&&)I -’ 

X [id +r;‘Gf +Dlrm)(cI: +d) + GC$ +o,,r,)(d +&:>I -‘a 
The same substitutions [i.e., Eqs. (C2) ] lead to 

2 

Jpb) = 
[ 

k,T 
8AGW3(~f + Qr,,, )kTi + Dllr,,, 1 l/2 1 7, 

+3e p3q + 1 +;kB;‘+ 1 +;;&)-’ 

E.1 
1 +&r&F2 

1 +P: +P: 
cd”r’, + (1 +P: +PZ) ’ 

((=7) 

I 

Thusas~-+oo, the zero-frequency spectral density Jp (0) goes J,(O) aM$r,/gi aM&$ - l/*a: (T- ~~)‘J5/3. (a) 
as Thus Jp (0) goes to zero as the critical point is reached, 

‘Q(‘)-+$ (&4~2 
and will not be important. We may, in a similar fashion, consid- 

1 II er correlations of the higher power terms in the expansion of 
Eq. ( 1) . They might be expected to go to zero more rapidly if 

x d3P, 
I s 

d3P2(l +P:)-‘(1 +P;)-’ 
we systematically ignore all but “single-excitation” terms (cf. 
Appendix A), However, this will no longer be valid for the 
general M th-order term (i.e., the ratio of number of terms con- 

X(1 +p: +p:rl. (C8) tributing more than single excitations to the M-tuple sum vs the 
number contributing to single excitations go as 

Then, we find that [ (nJ”(n, - M)!/n,!] - 1). 
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2. Fluctuations in nematic director 
We now consider Brochard’s proposed mechanism for nu- 

clear-spin relaxation.’ It is based upon fluctuations in the ne- 
matic director, which become suppressed as the force constants 
for twist and bend K, and K3 approach infmity near the smec- 
tic phase transition due to coupling between the nematic direc- 
tor and the smectic order parameter. One has that K, and 
K3 a 6, while ye is the twist viscosity a c “* (but see Mulvaney 
and Swil?29). 

so it goes to zero faster than J, (w ) . ( Brochard gives this expo- 
nent incorrectly. ) ( Mulvaney and Swift,*’ in their reanalysis of 
NMR relaxation based on a more modern treatment of critical 
exponents, ignore the role of molecular diffusion. Nevertheless, 
they also predict that the spectral densities will go to zero.) 
Furthermore, from the spin selection rules associated with the 
mechanism for director fluctuations,* this mechanism cannot 
contribute to secular relaxation (i.e., terms with no spin flips) 
that are needed to explain our experimental results.3*14 

One then employs the expressions for spin relaxation due 
to director fluctuations. These are two normal-mode compo- 
nents of S, in the x-y plane with mean-square fluctuations giv- 
en by 

(h,c,t2) =kt.T/(K,d +K3&)9 (ClOa) 

(b2,,1*> =kbT/&d +K34$ (ClOb) 
We now label the spectral densities from fluctuations in 

these components: J1 (w ) and J, (w ) , respectively. Then, 

Jl(w) = 
kt.T 

-Re 
cm3 s dq(K,d +K,d)-’ 

x [im + CD,, +K,/Y,)~ 

+ (0, +K,k)d] -I, (Cl11 
while J, (w) is obtained from J, (w) by replacing K, +K,. 
Now, we let 

P: =d(D, +K,&eL (C12a) 

pi = 4 CD,, + K3be). (C12b) 

. (NotethathereP~andP~areinunitsofs-’.)Then, 

J, (a) = - kbT [to,, +K,&e)U’, +K,/ye)] -’ 
Ye cm3 

X 
J -?!?-- [(1 +D,,y,/K,)-‘co&’ 

O12+P4 

+ (1 +D,y,/K,)-‘sin*O]-‘, (Cl3) 

where co2 8 = Pi/P’ and sin2 8 = Pt/P2. 
Now, as l- co, D,, ye/K, + 0, but DL ye/K1 a < “2, SO 

Jl (a)- 
k,T 

s 
d3P 

(2d3(f&y, ,“*o, (cd2 + P4) cos2 l9 

al -3’4a (T- Tc)“‘. (Cl4) 

Thus, as Brochard points out, this spectral density goes to zero. 
It does not diverge. Similarly, 

kbT J2(w) =- 
3/e md3 

[(D,, + K&e)“*(D~ + K&,1] -’ 
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S. Ibnanavare, and J. H. Freed [J. Chem. Phys. 90, 5764 ( 1989) 1. Thus, 
near the phase transition, we may write to lowest order: 

UIhp(r),Rl=:u,hp(r) +A,O&,(s1) + wA&E%(Q) + .... 
One must then solve for the combined translational and rotational diffusion 
of the probe molecule subject to thii type of potential in order to obtain Ructu- 
ationsinS=fP,(~).@&,(~)dRinducedbyfluctuationsin~p(r) and/or 
fluctuations in the rotational relaxation of the probe from this same source. 
Our use of Eq. ( 1) and just Eq. (3) simpliies the analysis at the expense of 
introducing some imprecision into the mechanism whereby the spin relaxa- 
tion is affected by fluctuations in smectic order. 

X 
s 

* [(1+D,,ye,K3)-1cos2B 
w2+P4 

+ (1 +D,y,/K,)-‘sin2B]-’ 

k, Ty;j2 d3P 

=(2a)3(K:K,)1’2 w2+P4 s 

a!c -s'4a (T- T,)"", (Cl51 
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“‘L. P. Hwang and J. H. Freed, J. Chem. Phys. 68,4017 (1975). 
*’ In writing Eqs. (9 )-( 11) Jiihnig and Brochard (Ref. 8) point out that this 

ignores any propagating contribution in the critical region since this would 
lead to only minor effects on numerical constants. This must indeed be the 
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case, since the propagating mode known as second sound only becomes sig- 
nitkant deep in the smectic phase [cf. L Ricard and J. Prost, J. Phys. 42,861 
(1981)],butgoestozetonearT~s~.Infact,BBrochard[Ref.8(b)]made 
clear that second sound does not affect the relaxation in fluctuations of smec- 
tic order parameter Y (r,?) close to T,s”, since this is a purely dissipative 
viscdastic mode with rm = q/i/B, where ?J is the renormalized viscosity and 
3 is the rigidity coefhcient for compression of the smectic layers. Piiy, 
Jiihnig [J. Phys.36315 (1975) ] hasemphasized that therewillbeasymme- 
try of fluctuation effects about TNs*, so we can safely assume that the J&nig- 
Brcchatd theory for T> TNsA should also apply for T < TNs,, except for the 
fact that below TNsA, ‘4 will have a nonequihbrium value, ‘u, (Ref. 7). 
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