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The method of dynamic imaging of diffusion (DID)-ESR (electron spin resonance) has been 
utilized to study the anisotropy of translational diffusion of spin probes in the smectic A phase 
of a eutectic liquid crystal, S2. In particular, the nearly spherical perdeuterated-TEMPONE 
(PDT) and the rigid and elongated cholestane spin label (CSL) molecules were studied. 
Whereas D1 (the coefficient of diffusion perpendicular to the nematic director) showed simple 
Arrhenius dependence for both probes, diffusion parallel to the director displayed two different 
temperature regimes with a changeover of D,, at t*~26-27 “C. The regime above (below) t* is 
characterized by weak (strong) translational ordering. For CSL the ratio D, /D,l < 1 above t* 
which indicates nematiclike behavior, but below t* the behavior is more smecticlike, i.e., DI / 
Dll > 1; for PDT Dl /D,l > 1 over the whole temperature range. A free volume model is 
developed to interpret the activation energies associated with Dl and Dll (i.e., El and El, ) in 
terms of the orientational and translational order parameters for the smectic phase and those for 
the spin probes. Also included are the variation of the compressibility across the smectic layer 
and the length of the probe relative to that of the thickness of the smectic layer. The fact that 
above t* Eli /El is unity for CSL but a little greater that unity for PDT is interpreted as due to 
the weaker coupling of the larger CSL molecule to the weak translational ordering and com- 
pressibility variation. Below t*, El, /El becomes 1.52 and 1.80 for CSL and PDT, respectively, 
which may be interpreted in terms of enhancement of these smectic features. The free volume 
model may be used to analyze El, and EL for self-diffusion and for a wide range of spin probes, 
including such very small probes like methane, as a function of the key parameters. 

I. INTRODUCTION 

Studies of translational diffusion were pioneered by 
Svedberg at the beginning of this century.‘s2 His many 
studies included the mass transport of an impurity (m- 
nitrophenol) in the ordered nematic phase of a mixture of 
p-azoxyanisole and p-azoxyphenetol, for two principal ori- 
entations of the nematic phase, i.e., parallel (11 ) and per- 
pendicular (1 ) to the nematic director. The amount of the 
impurity which had diffused was determined by chemical 
means. His major finding was that diffusion of nitrophenol 
in the nematic phase is anisotropic, the ratio of diffusion 
coefficients for both geometries being Dll /Dl = 1.41.’ 

These studies were not followed up until the late six- 
ties, when there was a rapid development of many tech- 
niques for measuring translational ditTusion.3-‘3 These 
techniques divide into two distinct categories. On the one 
hand, there are macroscopic (macro) methods which in- 
volve measurements of diffusion over distances several or- 
ders of magnitude larger than molecular dimensions, and 
are derived from the original idea of Svedberg of monitor- 
ing translational diffusion of impurities into the well pre- 
pared sample. These include radiotracers, optically active 
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molecules,4 charge carriers,5*6 NMR with pulsed gradi- 
ents,’ and spin probes.819 On the other hand, there are 
microscopic (micro) methods which are based on moni- 
toring translational diffusion of molecules over distances of 
the order of molecular lengths. Typical examples are quasi- 
elastic (QNS) lo or inelastic (INS)” neutron scattering, 
the frequency and temperature dependence of T,, TID, 
and T,, in NMR,” and ESR (electron spin resonance) 
measurements of Heisenberg spin exchange (HE) between 
colliding radical pairs.9V’3 

The most extensive review of data on translational dif- 
fusion in liquid crystals was by Kruger more than 10 years 
ago. l4 A principal techniques for measuring diffusion in 
liquid crystals has been and remains NMR with pulsed 
gradients. Although results on smectic phases were sparse, 
only a few more recent studies have appeared,i5-I8 since 
Kruger’s review. In summary, the following is currently 
known about translational diffusion in the smectic phase. 
In most S, systems, Dll < D, , although in systems which 
exhibit a significant nematic range, one may either observe 
Dll > DL ,18 or inversion from DII > DI typical for nem- 
atics to Dll < Dl on decreasing the temperature. *4*15119 For 
the smectic A phase a better parameter to characterize the 
anisotropy of diffusion may well be the anisotropy of the 
activation energy. It appears that El, is always greater than 
El . However, the ratio El, /El is usually much larger for 
tracers than for self-diiTusion.t4*r5 In one instance, diffusion 
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of methane in 40.6, a negative activation energy was ob- 
served. I5 

In recent years we have explored in our laboratory two 
approaches for studying translational diffusion of probes 
by ESR methods: HE between colliding spin probesI and 
dynamic imaging of diffusion (DID) of spin probes. The 
DID employed either standard CW-ESR imaging meth- 
ods’ or spectral-spatial ESR imaging.’ HE provides an av- 
erage relative microscopic diffusion coefficient, while DID 
can provide the macroscopic diffusion tensor. DID has 
proved to be a very reliable technique, and it is applicable 
to a range of problems, from the anisotropy of diffusion in 
liquid crystals,20-22 to transverse (or lateral) diffusion in 
lyotropic liquid crystalline model membranes.23724 The in- 
troduction of spectral-spatial ESR imaging of diffusion in 
model membranes combines both the HE and DID-ESR 
methods to simultaneously measure micro (spectral) and 
macro (spatial) diffusion in the same system.’ The recent 
development of Fourier-transform and two-dimensional 
Fourier-transform ESR imaging methods, may in the fu- 
ture greatly enhance the accuracy of such studies.” 

The present paper reports on the first application of 
DID-ESR to the study of translational diffusion in the 
smectic phase. This study is partially motivated by our past 
work on molecular dynamics in liquid crystals by ESR 
techniques. * 3*26-34 Most of the past work concentrated on 
rotational diffusion of spin probes in nematic and smectic 
phases. However, molecular dynamics at phase transitions 
has more recently received attention.‘3p28*32-34 Theoretical32 
and experimental33 studies of the linewidth divergence at 
the N-I and NS, phase transitions have shown a signifi- 
cant coupling of the orientational dynamics of spin probes 
to the critical fluctuations in the nematic and smectic order 
parameters, respectively. At both transitions translational 
diffusion can play a significant role in these phenomena. 
This is especially true for the N-S, phase transition neces- 
sitating a better understanding of translational mobility of 
spin probes in the smectic phase. This need was also evi- 
denced by our two-dimensional electron+lectron double 
resonance (2D-ELDOR) study of spin probe dynamics in 
smectics,29 which was successfully analyzed in terms of a 
model of rototranslational diffusion.35 

We decided to study S2, an eutectic mixture of three 
cyanobiphenyls [4-cyano4’-n-octyl biphenyl (8CB, 50% ), 
4-cyano-4’-n-decyl biphenyl ( lOCB, 39%), and 4-cyano- 
4’-n-decyloxy biphenyl ( lOOCB, 1 l%)] for three reasons. 
First it was utilized in our 2D-ELDOR study. Second, 
estimates of the microscopic translational diffusion coeffi- 
cient are available for comparison.“*29 Third, S2 exhibits a 
smectic phase over a wide temperature range (- 1 to 
48 “C) near room temperature. 

Two different spin probes were selected for the study, 
the globular shaped PD-Tempone (PDT) and a rigid 
cigarlike cholestane molecule, CSL( 3-doxyl derivative of 
cholestan-3-one). This choice offers two limiting cases of 
coupling between the smectic structure and the tracer. As 
our earlier studies have shown, the former spin probe is 
expelled from the higher density regions formed by the 
orientationally ordered aromatic cores of the liquid crystal 

molecules toward less ordered aliphatic regions.27730 On the 
other hand, the rodlike and elongated CSL probe is ex- 
pected to be more easily included in the hard-core regions. 
It is, therefore, of interest to learn about the molecular 
dynamics of both tracers along and across the smectic lay- 
ers, and this is the second main goal of the present work. 

In Sec. II we give a short outline of the theory of the 
DID-ESR experiment, as well as a description of the ex- 
perimental procedure. The experimental results are pre- 
sented in Sec. III and discussed in the light of existing 
theoretical models in Sec. IV. These results stimulated us 
to develop a theoretical approach to diffusion in the smec- 
tic phase, based on the free-volume model we explored for 
diffusional studies of CSL spin probe in model mem- 
branes;24 the theory is outlined in Appendix A, and dis- 
cussed in Sec. IV. 

II. EXPERIMENT 

A. Principles of DID-ESR 

The basic concept of DID-CW-ESR is to monitor the 
time evolution of a nonuniform concentration of probes 
(spin probes) in one dimension. The time evolution of the 
concentration profile results from the translational diffu- 
sion of spin probes in a sample in which they are (initially) 
inhomogeneously distributed, as they tend to a (final) ho- 
mogeneous state. A diffusion coefficient can then be deter- 
mined from changes of the spin-probe distribution in time. 
The spin probe can be used as a marker for imaging the 
diffusion only if the shape of the ESR signal is independent 
of the concentration. It is, therefore, very important that at 
any time during the experiment, the concentration of spin 
probes at any point in a sample be low enough that the line 
broadening from HE can be neglected. It is also desirable 
that the concentration of spin probes is low enough for the 
translational diffusion to obey Fick’s second law36 

acw 
at=D 

~c(x,t) 
ax2 9 (1) 

where D is the (concentration-independent) diffusion con- 
stant. 

DID-ESR takes advantage of the fact that the concen- 
tration profile is a convolution of the initial distribution 
with a Gaussian (broadening) function.’ Following the 
convolution theorem,37 the diffusion equation for one di- 
mension in inverse wavelength space (k space) is given by8 

In QY(k,t)=-42 Dt*k2+ln ‘X,(k), (2) 
where Vo(k) and 55’ (k,t) are FT distribution functions at 
the beginning of the experiment (t= 0), and at time t, 
respectively. 

The DID-ESR experiment simply monitors the com- 
ponent of diffusion in the direction of the magnetic field 
gradient, even though the sample is three dimensional. The 
ESR spectrum in the presence of a uniform magnetic field 
gradient is the convolution of the spectrum in the absence 
of gradient with the concentration profile. Thus again uti- 
lizing the convolution theorem,37 one obtains in k space’ 
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~g(k,t) =s (k~Wo(k), (3) 

where X,(k) and XJk,t) are the m gradient-off and 
gradient-on ESR spectra. 

Given spectra at two different times, ti and tj, Eq. (2) 
and Eq. (3) yield 

(4) 

where Atij = ti- tj . 
Although the principles of DID-ESR are simple, the 

experimental noise is a crucial constraint limiting the range 
of useful k modes that provide accurate data on the diffu- 
sion coefficient.’ The lower limit of useful k modes, kMIN, 
is at the point where the difference in the magnitude of the 
two paired spectra starts to overcome the experimental 
noise. On the other hand, the amplitude of the Fourier 
transformed ESR spectrum does decrease with increase of 
k, so it will reach the noise level at sufficiently high k, and 
this determines the upper bound of useful k modes, km,. 
A basic requirement for a successful measurement is, of 
course, kMIN < kMAX . 

provided uniform field gradients either parallel or perpen- 
dicular to the main static field, with gradient uniformity 
better than 0.2% over 1.0 cm in the center of the cavity. 
The magnitude of the field gradient was continuously 
changed by varying the current through the coils. 

The Lewis Coils were driven by a Sorensen DC Power 
Supply either model DCR150-10A or SRL20-25. Typi- 
cally, when connected for the parallel field gradient, the 
Lewis Coils produced a gradient of 200 G/cm at a current 
of about 10 A. For the perpendicular arrangement, the 
gradient was 100 G/cm at a current of about 15 A. 

Data from the Varian El2 were collected on a Leading 
Edge model D PC interfaced to an HP 3457 multimeter, 
which monitored the analog signal going to the XY re- 
corder of the ESR spectrometer. All spectra were digitized 
to 1024 points. 

A more rigorous discussion and estimation of optimum 
experimental conditions shows that both kMIN and FCMm 
depend on the signal-to-noise ratio, Atij, the rms width of 
the concentration profile at the beginning of experiment, 
oi, and the ratio between the rms width of a “Gaussian” 
ESR line in the absence of a field gradient, Ag, and the 
magnetic field gradient V,B. 

To image along either direction, standard sample 
mounts and temperature controlling Dewars for each cav- 
ity were used. Temperature dependent studies were always 
performed by increasing the temperature. Each sample was 
used for three to five temperatures, chosen so as to cover 
much of the temperature range of interest. The tempera- 
ture settings were different from sample to sample so as to 
ensure uniform coverage of the whole temperature range, 
and good statistics. 

The useful range of k modes is monitored by analyzing 
the data in two steps.8 First, the diffusion coefficient for 
each time pair is calculated from In IIg,(k,ti)/lg(k,tj) 1 vs 

@At, [cf. Eq. (4)] for arbitrary km,, (i.e., the k modes 
less than k,,, are taken into account). Then, the first step 
is repeated for a range of values for k,, , and D( km,,) is 
obtained by averaging the values from all time pairs for 
each k,, . D( km,) exhibits a plateau over a limited range 
of k modes (for which kMIN< k,,,,,< kw ) , and the plateau 
region corresponds to the minimum rms error in the cal- 
culated diffusion coefficient, (cf. Figs. 4 and 5 of Ref. 8). 
Therefore, the D value at the plateau region is a reliable 
value of the diffusion coefficient. 

The progress of diffusion was monitored in the usual 
manner.’ For each temperature, a series of ten consecutive 
gradient-on spectra, IJ BJ), were collected effectively ev- 
ery 100 s. Then, the concentration profile was allowed to 
develop over a period of to=2000 to 4000 s and the series 
of ten measurements was repeated again. Both series were 
used for producing ten sets of time pairs to determine D, in 
the manner described in detail in Ref. 8. 

C. Sample preparation 

B. DID-ESR instrumentation 

The liquid crystal S2 is an eutectic mixture shown in 
Fig. 1. It has transition temperatures, 320 (NI), 3 19 (SN), 
and 272 K (KS). It was purchased from BDH Chemicals 
and used without further purification. The two nitroxide 
free radicals PDT and CSL were obtained from MSD Iso- 
topes and Syvar, respectively. Their full names as well as 
their chemical structure are shown in Fig. 1. 

The DID-ESR experiments were carried out at X band 
in a Varian model El2 spectrometer, with a TE1c2 narrow 
flange microwave cavity for DI measurements, and with a 
TMllo cylindrical cavity for Dll measurements. The stan- 
dard first derivative mode with 100 kHz modulation and 
microwave powers of about 5 mW was used for recording 
spectra. The modulation amplitude was kept the same for 
the gradient-on and gradient-of spectra. A typical signal- 
to-noise ratio during DID-ESR was approximately 50; the 
sweep range was 100 G, and the sweep time was 60 s. 

A pair of George Associates Lewis Coils, model 502 
were employed to generate a linear magnetic field gradient 
across the cavity. Each of the Lewis Coils consists of a 
figure-eight coil. By appropriate connections between the 
electric terminals of each half of figure-eight coils, the coils 

To obtain a quasi-one-dimensional sample, special 
sample holders were used. The sample holder consisted of 
two capillary sections joined by a piece of polyethylene 
tubing, see Fig. 2. A borosilicate glass capillary with an i.d. 
of about 1.1 mm ( 100 ,ul FISHERbrand Disposable mi- 
cropipete) was cut in small sections, with special care to 
obtain perfectly cut edges perpendicular to the capillary 
axis. Some of the sections were later sealed on one end, cf. 
Fig. 2, to form the end of the holder (A). The capillary 
o.d. was matched with the i.d. of polyethylene tubing 
(Clay Adams’s Intramedic, i.d. 1.57 mm) for a perfect 

joint seal (B) . The length of section (A) was usually about 
7 to 15 mm, the polyethylene joint a few mm, and the 
length of section (C) varied depending on the geometry of 
the experiment; for Dll measurements (TM cavity) the 
holder length was limited by the larger dimension of the 
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Acrutrym 

PD-Temponc 

CSL 
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NUVE 
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(3’,3’-dimethyloxazolidinyl- 
N-my 2’,3-5a-cholestane 

Eutectic mixture of: 

50% 4-cyan0 4’.a-octylbiphenyl (8CB) 

39% d-cyan0 4’-n-decylbipbenyl (IOCB) 

11% 4-cyan0 4’.n-decyloxybiphenyl (IOOCB) 

- 

- 

CmHa -0 w,, 

FIG. 1. Structures of spin probes and eutectic mixture S2. 

sample hole of the TM cavity, about 15 mm; for the DL 
section (C) served as a support arm. 

All samples were prepared in the same manner. First, 
a stock solution of spin probe in S2 was prepared. Typical 
concentrations for PDT and CSL were 2.5 and 3.5 mM, 
respectively. At these concentrations there was no evidence 
of HE. (A DSC study of the stock solutions showed just 
the expected phase transition temperatures for the 
isotropic-nematic, nematic-smectic, and smectic- 
crystalline transitions.) Then, samples with initial inhomo- 

A 

L B 
lmm_> 

f 
C 

I ii iii iv 

FIG. 2. Schematic details of the sample preparation. The sample holder 
consisted of (A) and (C) capillary sections joined by (B) a piece of 
polyethylene tubing. (i) through (iv) correspond to consecutive steps in 
the sample preparation as described in text. 

geneous distributions of spin probes were prepared in the 
following five steps: 

(i) The end-sealed section of the capillary was filled 
with the pure liquid crystal nearly to the rim with the 
aid of a syringe, leaving a small space between the 
liquid surface and the capillary rim, ca 0.5 to 1.0 mm. 
(ii) This space was filled with a small amount of the 
spin labeled material. Any excess material above the 
ridge was wiped away with the aid of a razor edge. 
(iii) A small section of polyethylene tubing was pulled 
onto the open end of the capillary, and more pure 
material was added above the labeled material. The 
second layer of pure material usually filled about 3 to 4 
mm of the polyethylene tubing. 
(iv) Another open-ended section (C) of capillary was 
inserted into the tubing and pushed towards (A) to 
form a firm joint of capillary section rims, cf. Fig. 2. 
(v) To obtain the ordered smectic phase, the sample 
was heated, immediately after preparation, to a tem- 
perature a few degrees above the clearing point and 
was placed in a strong magnetic field (above 0.8 T) for 
either parallel or perpendicular orientation. Subse- 
quently it was slowly cooled down to ambient temper- 
ature. The quality of alignment was checked optically, 
and we found that one thermal cycle was sufficient to 
produce a good quality alignment. 
The sample was then transferred to the spectrometer 

and the experimental run initiated. 
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temperature [“Cl 
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FIG. 3. Temperature dependence of diffusion constants of (0,O) CSL 
and (A,A) PD-Tempone in the smectic phase of S2 liquid crystal, for the 
two principal geometries of the experiment, i.e., (open symbols) perpen- 
dicular and (full symbols) parallel to the director. The error bar corre- 
sponds to the standard deviation typical for all experimental points. 

III. RESULTS 

A summary of the studies of diffusion vs. temperature 
for both spin probes and for both principal geometries is 
given in Fig. 3 and Table I. 

For diffusion perpendicular to the director axis, i.e., 
parallel to the smectic layers, the diffusion coefficients for 
both spin probes show typical Arrhenius dependence on 
temperature across the whole temperature range studied, 
i.e., D(T)= Do exp( -E,/RT) (cf. Fig. 3). Both are 
characterized by a similar activation energy and prexpo- 
nential factor (cf. Table I), although the value of the dif- 
fusion coefficient for the small PDT is nearly four times 
greater than that of the cigarlike CSL, cf. Fig. 4. 

For diffusion perpendicular to the smectic layers (par- 
allel to the director) two different temperature regimes are 
present. In each regime the log D vs. l/T plots show 
Arrhenius behavior, but with different values of EC and Do, 
(cf. Fig. 3 and Table I). At high temperatures the activa- 
tion energies are comparable to those for DI , but at low 
temperatures they become more than 1.5 times greater. 
The ratios of activation energies, Eli /EL , for PDT and 
CSL are, respectively, 1.28 and 0.98 at high temperatures, 
and 1.80 and 1.52 at low temperatures. Interestingly, the 
values and the temperature dependence of Dll converge at 
low temperatures for both probes, cf. Figs. 3. 

temperature [“Cl 
0 10 20 30 40 
, ,,.‘,,‘.‘,“,,,,,“,.,,, 6 

I . .PDT 1 4 . . N. . . 
..-I. 

$ -- 2 - _ CSL - - - -. -- --__ -.- -._ - - _ _ _ _.-. - - - - - _ 
4 

d 1 ---A 0 ---- -_- _______ 
------------- 1 

FIG. 4. Temperature dependence of D, /D,, (top) for PDT and CSL 
and of DpDT/DcsL (bottom) for longitudinal (11 ) and translational (1 ) 
diffusion calculated from data in Fig. 3. The error bars correspond to a 
typical standard deviation resulting from the spline smoothing. 

The anisotropy of diffusion is different for CSL and 
PDT, [cf. Fig. 31. Plots of D, /D,, vs temperature for both 
probes are shown in Fig. 4. For PDT, the ratio is always 
greater than one, i.e., diffusion of the globular PDT within 
smectic layers is always faster than traversing them. The 
opposite is observed for CSL: the ratio is less than one for 
most of the temperature range studied, but it increases to 
values above unity in the low temperature range of the 
smectic phase. Thus the cigarlike CSL shows greater abil- 
ity to penetrate through the layers, than to move within 
them. For each probe the plot of DI /D,, vs T shows a 
nonlinearity that reflects a transition in Dll from its low 
temperature to high temperature behavior, (cf. Figs. 3 
and 4). 

IV. DISCUSSION 

Our results clearly demonstrate significantly different 
translational dynamics of PDT and CSL probes in the 
smectic phase of S2. But the most striking result is the 
rather abrupt change in the activation energy of D,, for 
both spin probes at a temperature around t*=26-27 “C, 
and this requires separate consideration. To aid in the in- 
terpretation of the present results, we have developed a 
model for the translational diffusion based upon the free 
volume concept. The discussion is divided into subsections. 

TABLE I. Arrhenius law parameters and their standard deviations for translational diffusion of CSL and PD-Tempone in S2 and of methane in 8CB 
(.I& in kcal/mol, Do in cm*/s). 

Geometry 4 

High T 

Dll 

LowT 

Spin probe EL f”E 
CSL 9.2hO.l 
PD-Tempone 8.4hO.l 
Methane 4.7hO.4 

Do1 h”D 
0.36*0.04 
0.33 kO.03 

El1 *UE DOll *OD 
9.OhO.8 0.4hO.2 

10.8*0.5 10.3 f 3.5 
11.9kO.4 Ref. 15 

EII *UE DOI/ *uD 
14.OhO.2 (1.7850.3) x lo3 
15.1*0.3 (12.6*3.3) x 10’ 
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First, we discuss the relative differences in the diffusion 
coefficient with respect to probe size and solvent orienta- 
tional order. Second, the temperature dependence of the 
diffusion coefficients is addressed, including the anomalous 
behavior of Dll . The last subsection summarizes the main 
predictions of the theory, and how they relate to the ob- 
servations. 

A. Anlsotropy of diffusion coefficients 

Given the very sparse information on translational dif- 
fusion in S2, we will compare our results with other results 
obtained in related cyanobiphenyls. It does not seem un- 
reasonable to expect that the smectic A phase of the eutec- 
tic mixture S2, that is half 8CB with the other half a mix- 
ture of the related 1OCB and lOGCB, to demonstrate many 
of the features characteristic of the pure cyanobiphenyls. 

The diffusion coefficients measured by DID-ESR lie in 
a range that is similar to what is estimated from INS stud- 
ies for self-diffusion in S2 and 5CB,‘“*‘1 and from our 2D- 
ELDOR and ESE studies of Dll for CSL diffusing in S2.29 
However, Moseley and Loewenstein’5V’7 obtained results 
on the diffusion of methane in 8CB by NMR, that are an 
order of magnitude faster. Similar differences between self- 
diffusion and probe-diffusion coefficients were also found 
for other liquid crystal~.‘~*” 

We begin with a comparison of the diffusion of the 
globular methane and PDT molecules, since both are more 
or less spherical, and their coupling to the medium should 
be qualitatively similar. From Eq. (5) it follows that for a 
spherical probe diffusing in a nematic solvent the diffu- 
sional anisotropy measured by the DL /DII ratio is deter- 
mined just by the solvent anisotropy (i.e., Ti). If two 
probes (labeled “1” and “2”) are diffusing in the same 
geometry, one finds from the appropriately modified Eq. 
(5) that 

Dl,/&,j a adal, j=Il or 1 , (8) 

Methane is to a very good approximation a spherical 

Let us first address the differences in the magnitude of 
D observed for CSL, PDT, and methane. It is convenient 
to consider the transverse diffusion (i.e., DJ. ), which is 
least influenced by the smectic order,’ i.e., there is no sig- 
nificant change of DL at the N-S transition, so any differ- 
ences in D, for different probes should be associated with 
probe size and orientational order rather than with the 
smectic layer structure. 

To estimate the diffusion coefficient we make use of the 
well-known Stokes-Einstein relation for a spherical mole- 
cule of radius u diffusing in an isotropic medium of viscos- 
ity 77, 

molecule with radius of about 1 A, but PDT is a slightly 
prolate axially symmetric ellipsoid with [b:b:c] 
=[3.8:3.8:5.6] A.42 However, since this anisotropy is not 
large, and since PDT is reorienting as it translates, we will 
consider it as spherical with an average equivalent radius 
of a&r~4.32. From Eq. (8) one finds that Dmeth,l / 
DPDTJ a a&T/ameth - -4.32, and this result deviates sub- 
stantially from the experimental finding at room tempera- 
tures, cf. Table I and Refs. 15 and 17. Significant 
discrepancies are to be expected given the nearly factor of 
2 difference in the activation energies for methane and 
PDT: 4.7 and 8.4 kcal/mol, respectively. Such a difference, 
in our opinion, reflects the different local environments 
both probes are residing in, and, therefore, the different 
viscosities they experience. Methane is probably located 
primarily in the highly fluid aliphatic region, whereas 
PDT, although (partially) expelled from the hard-core re- 

kT kT 
D=F=- 6qa ’ (5) 

gion is still significantly interacting with it, cf. next subsec- 
tion. 

The slow diffusion of CSL is expected, since this probe 
is a rigid body with a similar length to that of the fully 
extended cyanobiphenyls that constitute S2.43 The hydro- 
dynamic size of CSL is, therefore, significantly larger than 
for PDT, and this increases the viscous drag. CSL also 
experiences a noticeable anisotropy when diffusing trans- 
verse vs. parallel to its long axis, even in isotropic medium. 
In the perfect ordering limit, we can equate molecular I, t 
axes with the laboratory I] , 1 axes. Then the diffusion 
coefficients can be estimated from the modified Stokes- 
Einstein equation. Given the high ordering of CSL in S2 
(S=0.6-0.8),‘3 the use of this limit would appear to be a 
reasonable aproximation. 
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r] in Eq. (5) should be the component characteristic of the 
geometry of the diffusion, i.e., vi, i=I) or 1 . In the ab- 
sence of theoretical predictions, these two hypothetical vis- 
cosities should probably be associated with two of the 
Miesowicz viscosities,39A1 namely, T(n]l v) and 
7 (nil grad 1 v I ), respectively; n and v are the nematic di- 
rector and the flow velocity vector, respectively. 

where E is the friction coefficient. 
As described by Lamb,38 Eq. (5) also holds for an 

ellipsoid diffusing in an isotropic medium, but a has to be 
replaced by the equivalent hydrodynamic radius Ui. This 
radius depends on the orientation of the ellipsoid with re- 
spect to the direction of diffusion. Assuming that the asym- 
metric probe is a prolate ellipsoid with semiaxes [b:b:c](c 
> b) we Iind 

8 l-x 
Qf=3 * ~~(2-3~) + 1 “p (6) 

for diffusion transverse to the prolate long axis, and 

8 l-x 
=I=3 * x0(2--x)-2 ‘C* 

for diffusion parallel to the long axis; x= ( b/c)2 and x0 
=ln{[l+( 1-x)‘“]/[l-( 1-x)1’2]}/( 1-x)‘“. 

For the general case of a prolate molecule diffusing in 
a liquid crystalline medium with anisotropic viscosity, then 

Using Eqs. (6) and (7) to calculate the equivalent 
(7) radii for CSL with semiaxes [b:b:c]z[4:4:16] I%,~ we find 

that a,- 8.21, and al-6.37, and one can use these values in 
conjunction with Eq. (5) to estimate D in the smectic 
phase. With the aid of Eq. (5) we get DpDT,l /DaL,I 
=: 1.9, and this value is a factor of about 2 smaller than the 
experimentally observed 3 < DpDT,I /DaL,I < 4, cf. Fig. 4. 
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Again, we may argue that this difference results from a 
difference in the viscosities both probes experience, which 
also manifests itself in the slightly different activation en- 
ergies, cf. Table I. 

Since Dll /DL > 1 for CSL at high temperatures, a fea- 
ture characteristic of the nematic phase, whereas this ratio 
is less than one for the small probes, it is instructive to see 
if this can be explained by simple geometric considerations. 
From Eq. (5 ), for the isotropic viscosity case, one obtains 
~‘CSL,,, ~~&* ~0.8. However, we can correct this result 
for the anisotropic viscosity. For the nematic phase of 5CB 
and 80CB cyanobiphenyls, the Miesowicz viscosity ratio, 
~(n 1 v)/z$~ll grad(vl ), is about 0.5,45Y46 and we obtain 

1 
Df%m/D, nem = 0.4, which is in good agreement with the 
experimental findings in Fig. 3 and Fig. 4. 

over its length is about the same. This would mean that its 
orientational ordering is largely independent of its precise 
location relative to the hard-core region. However, the 
smaller methane and PDT, as well as the cyanobiphenyl 
molecules, because they are only partially rigid, would fa- 
vor a precise location within the layer structure, i.e., expe- 
rience a translational potential. The unique feature of CSL 
could disappear as the layer structure becomes better de- 
fined and CSL takes on a prefered location; this is what 
probably happens below t*. 

B. Temperature dependence of diffusion 

Note that a different method of estimating of DL /D,, 
was suggested by Chu and Moroi,47 which is based on the 
assumption that diffusion occurs in perfectly ordered clus- 
ters of molecules. Instead of using the Stokes-Einstein 
equation, they estimate the anisotropy ratio in the perfect 
order limit, L$ /Di z b/c, by calculating the frequency 
with which the probe finds its path through a unit area 
perpendicular to the direction of diffusion. Note, that this 
frequency plays the role of the a~ term in the denominator 
of Eq. (5). On transforming the diffusion tensor from the 
cluster frame to the laboratory frame they found for the 
nematic phase 

It is well known from previous studies,14 that insight 
into the role of smectic order on translational motions of 
probes, may be inferred from the temperature variations of 
the diffusion coefficients. Volino and Dianoux” and Moro 
et a1.51p52 have independently shown that the longitudinal 
diffusion of a small globular probe over times that are long 
compared to the time of traversing a single smectic layer, 
can be described as a random jump over the barrier of the 
hard-core region of the smectic layer. Since the transverse 
diffusion is not affected by the translational ordering with 
respect to the longitudinal direction, they found5’ 

(14>+(2+S)(@/D;; 1 
D1’D’i =(l+S)+2(1-S)(Dy /DF; ) ’ (9) 

where S is the order parameter. Eq. (9) was developed for 
the case of self-diffusion, but can be used for any probe, (cf. 
Ref. 47), if one takes b/c to be that for CSL, but the order 
parameter is that of S2, cf. Ref. 47. For S in the range of 
0.5 to 0.6, and b/c=O.25 we obtain from Eq. (9) DCsL,* / 
DaL,,, ~0.4, in agreement with the previous result. 

D1 =D”, exp[ -El /kT], (10) 

Dll = Di (A/kT)exp[ - (I$ +A)/kTl, (11) 

where it is assumed that the translational potential due to 
the layering is of form: U(z) = - fh cos( 2rrz/d), where d 
is the layer spacing. Equation ( 11) expresses the fact that 
diffusion parallel to the director requires the small globular 
probe to overcome not only the viscous drag of the medium 
but also the potential barrier. Despite the simplifying as- 
sumption of a cosine translational potential, it does lead to 
a reasonable dependence of the activation energy for D,, 
on this potential. 

The nematiclike behavior of the diffusional anisotropy 
of CSL in S2 is also illustrated by the very similar activa- 
tion energies for D, and Dll at high temperatures, cf. 
Table I. Thus there appears to be no hint of any role of the 
smectic phase translational potential barrier to the activa- 
tion energy for D,, [cf. Eq. ( 11) below]. These results 
indicate that the CSL spin probe is only very weakly (if at 
all), coupled to the smectic bilayer structure for tempera- 
tures above t*. 

This inference raises a question about the equilibrium 
position of CSL in the smectic bilayer phase, especially 
given the high degree of orientational order of CSL in S2, 
guaranteeing that the probe is strongly coupled to the di- 
rector.” The bilayer structure of the smectic A phase of 
cyanobiphenyls is characterized by a spacing d 2: 1.41,l be- 
ing the molecular length, with a weakly defined hard-core 
region of the bilayer.48*4g Close to the smectic-nematic 
transition a hard-core region is hardly distinguishable, and 
this, together with the fact that the length of CSL is com- 
parable to 1, should result in CSL extending the length of a 
bilayer. Its center need not reside in any precise location 
relative to the ill-defined hard-core region, and it may ex- 
tend between two bilayers, but its environment, integrated 

To get further insight into the relation between smectic 
ordering, probe size, and the activation energy for diffu- 
sion, we developed a model based on the free-volume the- 
ory, which is presented in detail in Appendix A. The basic 
assumption of the model is that each molecule spends most 
of its time rattling inside a cage formed by its neighbors. 
Any substantial displacement of the molecule happens only 
after density fluctuations enlarge the cavity size suffi- 
ciently. Substantial translation occurs not as a result of an 
activation process in the usual sense, but rather as a result 
of the redistribution of the free volume within the liquid. In 
the model the cage expansion is related to the smectic 
phase free energy, the local compressibility k,, and the 
probe length, I, with respect to the interlayer distance, d, as 
measured by the ratio Z/d. The smectic potential used by 
the theory is of the McMillan type.53 In this way, the local 
diffusion coefficient, D(z), (i.e., the value of D when the 
probe has an instantaneous position of z along the normal 
to the layer), becomes sensitive to the smectic potential 
acting on the diffusing probe, and to the local compress- 
ibility. To facilitate the model development we made an 
assumption that the solvent and probe molecules are rigid 
rods with the same diameter. However, to the extent that 
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the hydrodynamic radius of the probe scales the magnitude 
[cf. Eq. (5)] and not the temperature dependence of the 
diffusion coefficient, the results of the free-volume theory 
would also be applicable to smaller probes. 

To obtain the macroscopic diffusion coefficient of in- 
terest, the local diffusion coefficient D(z), is averaged ap- 
propriately along the particular direction of diffusion. As a 
result, the activation energy for the macroscopic Dl is a 
function of the smectic phase order parameters: 
S= (P2( cos 0) ) (i.e., the orientational order parameter), 
u= (P,(cos f3)cos(2n-z/d)) (i.e., the orientational- 
translational order parameter), and y= (cos( 2?rz/d) ) 
(i.e., the translational order parameter), and is dependent 
upon where the probe prefers to reside within the layer 
(i.e., on the probe order parameters S,, up, and r,, and as 
well as the relevant average compressibility (k) ) . 

The derivation of the macroscopic Dll is based on a 
somewhat different approach from that of Moro and Nor- 
dio.5’*52 We consider continuous diffusion across the smec- 
tic layers, and the averaging of D(z) is done via estimation 
of the average friction coefficient Z (in units of kT) acting 
on the diffusing molecule, cf. Eq. (5). As a result, the 
dependence of the activation energy on the smectic order 
parameters of the solvent and the compressibility across 
the smectic layer is obtained, cf. Appendix A. 

Let us again first consider globular probes. We find 
that for transverse diffusion of PDT and methane in cy- 
anobiphenyls, the activation energy of Dl (T) for methane 
is nearly half that of PDT, cf. Table I and Ref. 15. This 
difference probably results from the fact that both probes 
reside in different parts of the smectic bilayer. Methane 
presumably resides mostly in the most fluid aliphatic part 
of the smectic layer,15V17 whereas PDT remains somewhat 
closer to the hard core of the bilayer due to dipolar attrac- 
tions; (both S2 and PDT are polar molecules). Steric in- 
teractions do tend to expel PDT from the hard-core re- 
gions, but nevertheless the probe exhibits some degree of 
orientational and translational ordering. Typical values are 
SPDT-0.2, apoT-0.15, and ~~~~“0.3 in S2.29 The ob- 
served difference in activation energies can be rationalized 
in terms of our free-volume model. For convenience, let us 
introduce the normalized “excess activation energy,” Ag, 
by which the activation energy for diffusion in the isotropic 
phase, a,, is augmented by the presence of the orienta- 
tional and translational order. For transverse diffusion, 
from Eq. (A26) we write 

AgL = (EL -P,Wo=W Ps,+~p~~p+&,yypl, 
(12) 

where subscript “p” refers to the probe molecule; Ap and ep 
are parameters of the smectic potential experienced by the 
diffusing probe [cf. Eq. (A5)]; (k) is the average com- 
pressibility of the smectic phase, and 6, is a factor propor- 
tional to the smectic potential depth, Uo, cf. Eq. (A16) 
and Ref. 53. 

We assume that methane has a negligible orientational 
order but significant translational order leading to its loca- 
tion in the aliphatic chain region (i.e., (z) zd/2). That is, 
s meth=-O, r7 methZO, and Ymeth < 0. It follows from Eq. ( 12) 

that A8 meth,l = (k) %xa&eth (0) yymeth < 0, i.e., a negative 
excess energy! This implies that E;neth,l should be smaller 
than the activation energy for diffusion in the isotropic 
phase, as indeed is observed experimentally, i.e., 4.7 and 
6.6 kcal/mol, respectively (cf. Table II of Ref. 15). For 
PDT on the other hand, typical values of all the order 
parameters are nonzero and positive, as given above, so 
AtFpDT,, > 0. That is, the smectic order enhances EPDT,I 
compared to the isotropic phase. Therefore, the experimen- 
tal finding of EPDT,I > Emeth,l (cf. Table I) is explained by 
the free-volume theory. 

Despite this difference in EL , the d~j%sional anisotropy 
for the small methane molecule and for the larger oblate 
PDT show similarities; compare the present Fig. 3 with 
Fig. 7 of Ref. 15. This is a consequence of the expulsion of 
both globular probes from the hard-core region. For both 
probes the diffusion within the smectic layers is faster than 
across them, with El <El, . Comparison of Dll and El, 
for methane vs PDT suggests that although 
Dmeth,ll +DPDT,II 3 the activation energies obey Emeth,ll 
> EPDT,,, . THUS since Emeth,l <&or,~ , it follows that the 
ratio El, /El is much larger for methane than for PDT. 
These findings are clearly associated with the structure of 
the smectic A phase. The excess activation energy for D,, 
is 

AgIl =(Ejl -PJ/Qo 

=K”aXC(l+~s)[~+~pcTl *q+‘&‘yI, (13) 

where K”“” is the compressibility of the hard-core region, 
and ,$, and fis denote, respectively, the mean order param- 
eter of the probe, and the amplitude of its variation across 
the layer, cf. Eq. (A27) and Appendix A. For typical val- 
ues of order parameters of methane and PDT one gets 
A%y% pax%thAmethy for methane, and A%p zz 
0.4/YaX (S + AroTa) + KnaxeporApor~ for PDT; (assuming 
S,= 1, i.e., PDT is completely decoupled from the orien- 
tational order when in the center of the aliphatic region29). 
E,,tt.&,th is probably somewhat larger than +uTApoT, 
since methane experiences a deeper translational potential 
well. Thus to the extent that the y-dependent term is the 
largest for A%‘rth, the excess activation energy of methane 
is expected to be slightly larger than or comparable to that 
of PDT, cf. Fig. 5. The experimentally observed values, 
vth N 11.9 kcal/mol, and EiDT = 10.8 kcal/mol (high 
temperatures) or 15.1 kcal/mol (low temperatures) agree 
reasonably with this estimation, cf. Table I. 

We note in this respect, that the anisotropy of electri- 
cal conductivity in cyanobiphenyls is qualitatively very 
similar to the diffusional anisotropy of PDT and methane. 
The conductivity, which is directly related to the charged 
impurity diffusion, (T- D/RT, was studied in 80CB by 
Mircea-Roussel et ai.,54 and in 8CB Jadzyn and 
Kedziora.” It was found in 8CB that a, >oll and EC,,, 
cL 19.6 and Eg,, 21 15.7 kcal/mol.55 The fact, that the acti- 
vation energies for conductivity are relatively high is prob- 
ably due to strong interactions between charge carriers and 
polar cyano groups of liquid crystalline molecules that en- 
hances the translational potential well (a larger eA factor). 
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It is somewhat surprising to find that the EL for CSL 
is only slightly higher from that for PDT, cf. Table I. 
However, consideration of excess activation energies re- 
sulting from the free-volume theory shows that for typical 
values of the smectic order parameters of S2 and both 
probes, such a situation is quite possible, cf. Fig. 5. For a 
long probe like CSL, because it is to a large extent decou- 
pled from the translational order, the AcsL is very small, 
and the dominant factor in the excess activation energy 
will be the SpaL term, cf. Eq. ( 12). For PDT, Apor must 
be significant since the probe is expelled from the hard-core 
region, but since order parameters are small, all terms in 
Eq. (12) are small and similar in magnitude. Results of the 
sample numerical calculation shown in Fig. 5 demonstrate 
that for reasonably chosen values of the parameters indeed 
A8 PDT1 ~A~CSLI can be observed. 

A pronounced’ change of the slope in the log Dll vs 
l/T plot around t* for either PDT or CSL diffusion is the 
most unusual feature of the present studies, cf. Fig. 3. It is 
not observed in Dl , which exhibits simple Arrhenius be- 
havior. The feature seems to be unique for S2 since it was 
not previously observed in any smectic phase.14 The ob- 
served abrupt change in Eli at t* does correlate with the 
results of our studies of the dynamics of PDT in S2 by 
means of 2D-ELDOR and electron spin echoes.29 We es- 
timated the temperature dependence of the rotational cor- 
relation time, rR, of PDT, and it also featured a noticeable 
change around t*, (cf. Table II of Ref. 29). Despite sub- 
stantial uncertainty in rR values, it was found that rR drops 
by about factor of 2 as the temperature decreases below t*. 

A possible explanation of these observations is as fol- 
lows. Transverse diffusion of PDT in S2 is dominated by its 
behavior in the aliphatic region. That is, at all tempera- 
tures in the smectic phase the effective DL results from 
diffusion in the aliphatic region, because even though PDT 
can have finite probability near the hard-core region its, 
DL (z) in that region is small. However, rotational reori- 
entation occurs effectively for all values of z even though 
rR=rR(z). Thus if there is some subtle change or rear- 
rangement in the hard-core region of the bilayer, the ob- 
served Dl would hardly be affected, whereas the observed 
rR would be. Dll would have to be affected because it 
necessarily involves passage through the hard-core region. 
Cyanobiphenyls are known to undergo dimer associations, 
especially as the temperature is reduced.56 We may assume 
that at high temperatures hopping through the layer is 
more frequent because the bilayer is poorly defined and the 
number of dimers is relatively low, yielding a smaller bar- 
rier. At lower temperatures, the hard-core of the bilayer 
packed with dimers becomes more dense and better de- 
fined, and this would augment the apparent barrier. In our 
free-volume model such an effect would correspond to 
changes first of all in A* and the compressibility, cf. below. 

D,, for CSL should also be affected by the same pro- 
cess leading to a similar change in activation energy. In- 
deed, CSL also exhibits a transition from nematiclike dif- 
fusion above rC (where Dll /D, > 1 ), to smecticlike 
diffusion (where Dll /DL > 1) below, as a result of an in- 
crease in activation energy comparable to that experienced 

by PDT. Thus DcsL,,, becomes somewhat similar to 
DpDT,ll , in their respective smecticlike behavior (cf. Fig. 3 
and Table I). 

The relative magnitudes of the activation energies ob- 
tained from the experiment are also consistent with our 
model. For the high temperature smectic phase we found 
El, for PDT being little greater than for CSL. For Z/d 
typical for PDT (0.2-0.3) and for CSL (0.6-0.8) one finds 
from Fig. 5, that such a relation between the A%‘11 can be 
obtained only for a “soft” smectic phase, (cf. curve -A- in 
Fig. 5). This supports our suggestion concerning the smec- 
tic phase above t*; for weak smectic order the free volume 
model predicts Elong,l N short,1 3 Elow II ~&ort 11 9 and 
L%,g,~~ -J%,~~J I < [E.h6,f-%,.~ I, k is ob&ed for 
CSL and PDT above t*, cf. Table I. 

Below t*, El, for PDT and CSL abruptly increase by 
factors of 1.40 and 1.56, respectively, presumably due to 
the better defined translational ordering. From Fig. 5, one 
can find, for example, that by moving from a case of a 
“soft” to “hard” smectic phase, cf. A vs A curves in Fig. 
5, the activation energy becomes larger, and this enhance- 
ment should be somewhat more pronounced for the short 
than for the long probe. From Table I we find that within 
experimental error, the difference in the activation energies 
below and above t*, are, however, comparable, i.e. 
[J&r,11 -@p#\,,l ]~[&g~,ll --&‘$J 1. But one still con- 
cludes that the low temperature smectic phase is more 
highly ordered. 

In the absence of other experimental evidence the cou- 
pling between diffusion and monomer-dimer association in 
the bilayer structure that is suggested above is a speculative 
one. However, we would like to point out that very similar 
deviations from Arrhenius behavior of transport and relax- 
ation coefficients such as shear viscosity, self-diffusion, and 
T, nuclear spin relaxation have been observed in polar 
liquids like picolines and pyridine, as well as toluene.57 It is 
interesting, that some of these deviations were not accom- 
panied by any specific heat anomalies, suggesting changes 
in dynamical processes without any sharp structural 
changes. Two different explanations were offered: (i) re- 
strictions of the freedom of rotation about some of the 
molecular axes; and (ii) various kinds of association of the 
molecules in the liquid state. The latter is very much in line 
with our suggestion. 

Finally we wish to address the fact that the sharp 
change in El, arround T * is accompanied by a dramatic 
change of the pre-exponential factor in the fit of an Arrhen- 
ius law. Although this behavior is common at phase tran- 
sitions, as witnessed in a variety of molecular dynamics 
studies, (e.g., for liquid crystals Refs. 14, 15, and 27), to 
our knowledge it has not been adequately addressed. In 
fact, the preexponential factor is usually merely considered 
as a scaling factor. While we are not able at present to 
clarify the matter, we do wish to note that the free volume 
theory might offer a solution to the problem. The pre- 
exponential factor in the free volume theory, cf. Eq. (A2), 
is a product of g( v*) a geometrical factor that depends on 
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the size of the critical free volume, v* sufficient for a sub- 
stantial displacement, and go, the in-cage diffusion con- 
stant. For a given system, any substantial changes in the 
preexponential factor are due to changes in g, since 9’ is 
diffusion in the absence of the cage. Note that g> 1, which 
accounts for the faster decay of the momentum autocorre- 
lation function in the cage-limited space, and the depen- 
dence of g on the cage size can be dramatic, by analogy to 
what is observed for spatially restricted rotational diffu- 
sion.” 

In developing the free volume theory along the lines of 
Cohen and Turnbull,” we did not consider any particular 
shape for the cage, assuming only that it is sufficient for a 
significant jump of the probe. Consequently, the cage shape 
and the value of g remain unspecified in the model. We 
believe that the dramatic jump in value of the preexponen- 
tial factor of Dll in Table I, can at least to some extent, be 
explained by a change in the value of g at t* due to a 
transition from a poorly to well defined bilayered structure 
of the smectic phase, a matter we wish to study in the 
future. 

C. Further predictions from the free-volume theory 

In the previous section we used our free-volume model 
to rationalize the ObSeNd differences in activation ener- 
gies for the different probes and for the two basic geome- 
tries of diffusion in the smectic phase of cyanobiphenyls. 
We now wish to consider some general predictions of the 
dependence of the activation energy on the ordering of the 
smectic solvent and of the probe, and of the ratio of the 
probe length to smectic interlayer distance, I/d. 

In order to get some insight, detailed calculations were 
performed for reasonable values of the smectic order pa- 
rameters, using results of our earlier studies of PDT and 
CSL in S2.29 Thus order parameters of the smectic phase of 
S2 were taken to be S=O.8, a=0.6, and y=O.75. The 
dependence of the probe order parameters on I/d were 
approximated by monotonic functions. For example, it is 
well known that the orientational order parameter, Sp of a 
probe increases with I/d. We took this functional depen- 
dence to be approximated by tanh[a( l/d-O. 1 )]. This 
yields S,,= 0 for Z/d = 0.1, nearly linear variation of Sp with 
Z/d in the range (0.2-0.8) and an asymptotic increase to 
unity for I/d+ 1. A value of a= 1.35 was chosen such that 
S,,O.2 for Z/d=O.2 and S,=O.8 for i/d=O.8, the values 
characteristic of PDT and CSL in S2, respectively.29 Sim- 
ilarly, the translational and rotational-translational order 
parameters, y and a, were approximated by arbitrarily cho- 
sen functions, normalized such that for l/d=O.2 (PDT) 
ap=0.15, and y,,=O.3, and for CSL probe with I/d=O.S, 
opz y=O. However, the latter choice is not crucial since 
the activation energy predicted for a long probe is not very 
sensitive to these order parameters, e.g., the activation en- 
ergy changes only slightly when their values are increased 
to up= yp=o.2. 

For simplicity, the functional form of Ap(l/d) was 
adopted following McMillan, who used it for modeling the 
phase transitions with somewhat different meaning of l/d, 
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FIG. 5. Calculated normalized excess activation energies for longitudinal 
(- - - -) and transverse (-) diffusion as a function of the ratio l/d, for 
S=O.8, and kc=(k) = 1. The curves correspond to the following sets of 
parameters: (open symbols) a=0.3, y=O.375, l P=O.5, &=2.0 and (full 
symbols) 0=0.6, y=O.75, eP=l.5, &=3.0. 

i.e., A*( l/d) =5 exp[ -q( Z/d)2],53 although we let /zp vary 
(but we set q = 1 for simplicity). 

In Fig. 5 we present a comparison of the excess acti- 
vation energies Agi vs Z/d [i= II , and 1 , cf. Eqs. ( 13) 
and ( 12)], for two different sets of E and ,$,, and for two 
significantly different values of the compressibility varia- 
tion across the smectic layer. That is, a0 [cf. Eq. (A7)] was 
arbitrarily set to be proportional to A (aS+ey) (cf. Ap- 
pendix A), with A=0.12 and (o;y)=(O.3; 375) or (0.6; 
75) with proportionality constants of 1 or 2, respectively. 

The following qualitative conclusions may be drawn 
from Fig. 5. The Ag,, for long probes (Z/d > 0.6) is es- 
sentially insensitive to the smectic potential parameters of 
the probe, ;lp and ep, and it is only weakly dependent on 
the compressibility. Both features signify effective decou- 
pling of the probe from the translational part of the poten- 
tial. For a small probe (I/d < 0.4)) A 0 I, increases signifi- 
cantly with increase in the translational ordering of the 
probe, and the effect is stronger the better defined the 
smectic structure, i.e., a larger amplitude of the compress- 
ibility wave, So. For very small probes, the activation en- 
ergy decreases, and this reflects the fact that the probe 
easily finds its way through the hard-core region; (i.e., 
smaller fluctuations in the environment are required to 
substantially increase the probe’s free volume). 

For transverse diffusion, the long probe is again essen- 
tially insensitive to the smectic translational ordering and 
compressibility. Note at this point, that for such a probe 
the AZ?,, and A$, activation energies are practically the 
same, a feature most characteristic for the nematic phase. l4 
The AgP, decreases slowly with probe length as it de- 
creases to Z/dzO.2. For a very short probe the situation is 
different: AS’:, vs Z/d drops rapidly as Z/d is decreased. 

The very weak dependence of A%‘:, on the smectic 
ordering of the probe, and on the probe length is consistent 
with the experimentally observed similarity in A%‘* for 
different length probes. For longitudinal diffusion the 
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model anticipates a wide range of behaviors, from similar 
A%‘,, for short and long probes in the limit of “soft,” 
illdefined smectic layers, to A?Yihorf > AglP”s for “hard,” 
well-defined smectic layering. When we compare the cal- 
culations with the experimental results for diffusion of 
PDT and CSL in the smectic A phase of S2, we again note 
that reasonable agreement can be obtained from our model 
if the smectic phase under investigation is a soft one at high 
temperatures, but becomes better defined deep in the smec- 
tic phase, as we expect. 

ACKNOWLEDGMENTS 

Supported by NIH Grant No. GM-25862, NSF Grant 
Nos. DMR-92-10638 and CHE 90-04552, and The Cornell 
Materials Science Center. One of us (J.K.M.) acknowl- 
edges fruitful discussions with Dr. J. Kostrowicki on as- 
ymptotic approximations used in this paper. 

APPENDIX A: THE FREE-VOLUME MODEL OF 
TRANSLATIONAL DIFFUSION IN THE SMECTIC 
PHASE 

The principal concept of the free-volume model is that 
each molecule of a system is confined to a cage by its 
neighbors. The molecule is rattling inside this volume until 
fluctuations in density open up a hole within the cage large 
enough to permit a substantial translation of the molecule. 
Thus the large scale displacement occurs not as a result of 
an activation in the ordinary sense but rather as a result of 
redistribution of the free volume within the liquid. 

may be regarded as lyotropic smectic phases. In that work 
we considered diffusion of probes which very closely re- 
semble the lipid and cholesterol components of the mem- 
branes. Since we were at that time concerned only with the 
transverse (or lateral) diffusion coefficient ( g1 >, it was 
then sufficient to account only for the presence of the ori- 
entational order in the smectic layer. Here the free-volume 
theory is reconsidered in order to fully account for the 
smectic order and to estimate activation energies for lon- 
gitudinal and transverse diffusion from a common ap- 
proach. To make the theory applicable to a variety of 
probes ranging from globular ones of the size of PDT as 
well to rigid and elongated ones like CSL, let us consider a 
probe of arbitrary length I, and for simplicity the same 
diameter as the liquid crystalline molecule. This ensures 
that all characteristic volumes for the probe, { VP> are sim- 
ply proportional to the corresponding characteristic vol- 
umes of the liquid crystalline molecule {Vi,}, as well as 
that intermolecular interactions (per unit length) are the 
same. Since the model is designed primarily to account for 
the activation energy, we may argue that despite this sim- 
plification it is also applicable to probes with sizes that 
depart significantly from the liquid crystalline molecule, 
i.e., for relatively very small probes like methane or oxy- 
gen, or bulkier like tetramethylsilane; the probe size pri- 
marily affects the magnitude of the diffusion coefficient, 
and not the activation energy, cf. the Stokes-Einstein rela- 
tion, Eq. (5). 

Introducing two characteristic free volumes, a critical 
free volume volume v*, large enough to permit a substan- 
tial displacement, and Vf, the average free volume per mol- 
ecule, the diffusion coefficient can be expressed a$’ 

Ls ,Q ( V*)e-tp’vf, (Al) 
where a ( v*) is the “in cage” diffusion coefficient in a 
cage of volume ( v* + v) with v the mean molecular vol- 
ume. Since the average free volume can be assumed to arise 
from the isobaric thermal expansion, Eq. (Al) can be re- 
written as 

Diffusion in the isotropic phase of the liquid crystalline 
material is taken as the reference. The critical free volume 
for a probe in the isotropic phase is defined as I$!& 
= V& + S V, where Vif, is an average free volume per mol- 
ecule and S V is an increase in the free volume sufficient for 
the displacement. The translational diffusion coefficient is 
then given by Fq. (A2) with V*E vm and g”( T) 
=q&( n, 

Ls =g( v*) LsO( T)e-fl’(T- To’, (A21 
where p= [S V/a r, S V= v* - Vf, a is the mean value of 
the thermal expansion coefficient and To is the temperature 
at which the volume per molecule would be reduced to the 
close-packing limit. ZZ?‘( T) is the small-scale diffusion 
constant, g( v*) is a numerical factor related to the size of 
thecage,suchthatB(V*)=g(V*)g’(T).cisanumer- 
ical constant. 

c@im( T) =&,@w( T)emBiSdcTmTo), (A3) 

where flip= c * S V/( aiso~iiso)) -‘@=( T) is the small scale 
diffusion coefficient in the isotropic phase, and Vim is now 
the mean molecular volume per molecule in the isotropic 
phase. 

The most pronounced and important feature of the 
smectic A phase is the existence of significant orientational 
and translational order of the liquid crystalline molecules. 
This smectic order is often considered as resulting from a 
mean field ordering pseudopotential experienced by each 
liquid crystalline molecule. The potential is usually as- 
sumed be of the form 

Equation (A2) was developed for a simple liquid of 
hard spheres by Cohen and Tumbull,5g and was success- 
fully applied to explain the fluidity of a large number of 
glass-forming substances. 

U(8,z) = -VSom[s+n(r~~)acos(2~z/d)]P~(cos e) 

Diogo and Martins have used a similar approach to 
explain the temperature dependence of the twist viscosity 
in the nematic phase,60 and we have used such an approach 
to obtain a model explaining the temperature dependence 
of transverse diffusion in mixed model membranes,24 which 

-t-eA(qJ/d)y cos(27rz/d)], (A4) 

which was first proposed by McMillan.53 In Eq. (A4) 8 
is the angle between the long axis of the molecule and 
the director n, and z defines the position of the center of 
mass of a liquid crystalline molecule with respect to the 
smectic layer (i.e., along the normal to the smectic layer). 
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S, CT, and y are the smectic phase order parameters; 
S= (P,(cos 0)) is the orientational order parameter, 
o= (Pz (cos 8) cos (27rz/d) ) is the orientational-transla- 
tional order parameter, and y= (cos(2n-z/d)) is the trans- 
lational order parameter, where the thermal average ( * * a) 
is as usual given by 

(.--)= Jo’dzJ: ..eP(e,z)sin ede, 

Moscicki, Shin, and Freed: Translational diffusion by ESR imaging 645 

In our previous work we assumeda that the compress- 
ibility is position independent. In the smectic phase, how- 
ever, as a result of the density wave along z, k(z) is also a 
periodic function of z. Since the compressibility-density re- 
lation is dominated by a reciprocal dependence, as a rough 
approximation we assume that the compressibility across 
the smectic layer is inversely proportional to the density. 
Since the smectic density wave is weak, we may thus write 
k(z) zk”[l -So cos(2nz/d)]. Note also that, as a conse- 
quence, the amplitude of the compressibility variation 
across the layer, So must be directly related to the density 
wave amplitude; for simplicity we will assume 6, to be 
proportional to A ( US+ ey) . 

The average compressibility of the cage surrounding 
the probe depends on the probe length. We assume that an 
effective k, characteristic of the volume around the probe 
can be taken as the simple average 

where P( f?,z) =exp[ - U( e,z)/kr]/J,d dz J; sin 8 de 
x exp[ - U( 0,z) /kT] and Uom, A (rdd) and E are smectic 
potential parameters, and it is assumed that A(rdd) mo- 
notonously decreases with the ratio between ro, which is of 
order of the hard-core part of molecule, and d, the inter- 
layer distance. 

To make Eq. (A4) applicable to the probe molecule, 
we assume that the concentration of the solute is so low 
that the order parameters of the solution are the same as of 
the pure liquid crystal. The form of Eq. (A4) would then 
hold for the probe, with r. being replaced by the length of 
the probe, I. That is, 

s 

ziN2 
k,= k(z’)dz’/l=k’+& cos(2rz/d), (-47) 

r-1/2 

u(e,Z)=-Uo[S+A~(l/d)u COS(kz/d)]P2(COSe) 

+q&,U/d)y cosWrd&l, (A5) 

where now 8, and z refer to the probe molecule, U,, AJN 
d), and eP are the probe potential parameters, but the order 
parameters S, a, and y are of the smectic phase. We note 
that AP( Z/d) in Eq. (A5) would also be a decreasing func- 
tion of I/d. That is, a very small probe for which I/d( 1 
will be a very effective probe of the z dependence of the 
potential, since over its length I this potential is nearly 
constant. But in the opposite limit of l/d& 1 the probe is so 
long that it always sees the average (cos(2rz/d))=O in- 
dependent of the precise location with respect to z of its 
center of mass. 

where Sk= -So sinc( rrl/d). In this manner k, reduces to 
k(z) for I=O, and takes the average value for lad. 

If App denotes the associated fluctuation in the pres- 
sure leading to increase of the size of the cage by 
AC(z), then assuming that the temperature remains con- 
stant one can write 

1 AT(z) 
k,,: -- - 

I V,(z) ApP =’ 
(A81 

This should produce a change in the free energy per probe 
at z 

AG(z) = Vp(z)App= -; AT(z), 
z 

(A9) 

The ordering of the long molecular axis and of the 
center of mass result in the average free volume at the 
disposal of a molecule being (i) changed and (ii) position 
dependent. Therefore, following our earlier arguments,24 if 
the probe located at z is to gain the critical free volume 
T(z) for a translational jump, the cage has to expand, 
first by the amount it was changed by the transition from 
the isotropic to smectic phases AC(z), and, additionally 
by SV, to reach the size of V$,, which is needed for the 
displacement. This can be written as24 

provided the ordered phase is otherwise at equilibrium. 
On the other hand, since the temperature is constant, 

the change in the free energy can be associated with the 
change of the energy of intermolecular interactions aver- 
aged over orientations, which in terms of the McMillan 
mean field approximation can be written as53 

~(z)=V&=V,f,+GW=V;(z>+A~(z)+SV, 

with V{(z) and VL average free volumes per molecule in 
the smectic (with the center of mass at z) and isotropic 
phases, respectively. 

AG(z)=-? [S*S,,(z)+AJZ/d)a*cos(2rz/d)SJz) 

+epAJl/d)y.cos(2n-z/d)], C-410) 

where the local orientation parameter of the probe, SP(z), 
is given by 

In order to estimate A c (z) we follow the scheme of 
our previous work.24 Let k(z) be the isothermal compress- 
ibility of the smectic phase. Then, by definition, 

SJZ) = 
s 

w sin 8 de P2(cos 0) . PO(z) 
0 

with 

i av 

k(z)= --T ap ( ) r,r’ 

where Y is a small volume around z. By comparing Eqs. (A9) and (AlO) one obtains 

(.446) 
77 

PO(Z) =PL&z)/ 
s 

sin edeP(e,z). 
0 
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Wo 
AC(z) =2 [ ~S$,(z)+A~(Z/d)0cos(2m/d)S~(z) is finally determined. 

The diffusion coefficient in the vicinity of the interlayer 

++&/d)y cos(2vz/d) 1; (All) position z can now be calculated by substitution of 

whereby the critical free volume c(z) 
c(z) into Eq. (A2) 

v;F(z) =A?(4 + V;(z) +SV (A121 

9(z)=g(V*)9’(T)exp - 
I 

P,+S,@S,(z) +A,Wd) bSJ4 +~pylcod2d41 
T-To I 

Xexp - 
I 

$,{SSJz)cos(2rz/d) +AJZ/d) [C&~(Z) +epy]cos2(2rz/d)} 
T-T, (A13) 

where 

P,=C*~V/(a,f$>, 
S,=c*koUd(2apVp), (-414) 

s,=-~.s,sinc(l/d)Uo/(2a,~~). 

It is easy to verify that Eq. (A13) confirms intuitive 
expectations that diffusion in the hard-core region should 
be the slowest, while in the aliphatic range, the fastest. In 
the former case, since ZZO (or z-d) and SJZZO) zmax, 
Q (zzO) will be the smallest, while in the latter case 
z~d/2 and S,(z~d/2) ~min, and the diffusion coefficient 
becomes the largest. 

Equation (A13) forms the basis for considerations of 
both transverse and longitudinal diffusion. Let us first con- 

I 

I 

sider transverse diffusion. The probe z position in the layer 
randomly varies according to the probability function 
P( e,z), such that in the process of diffusion the dependence 
of the transverse ditIusion on z averages out, so the average 
behavior of the probe is characterized by oP, and yP, with 
associated average free energy AG given by 

AG= -; [S.S,+A~(Z/d)ao,+E~~(I/d)yyp], 

(A15) 

and the average compressibility is given by (k) = k” + Sky,. 
Therefore, if we assume that the probe diffuses transversely 
maintaining its average position along the z direction, the 
(average) transverse diffusion coefficient becomes 

91 (T>=g, (v*)-@ (T)exp - I 
P,+8o(k> [SS,+A~Cl/d,aa,+E(Z/d)~~~l 

T-To I 
, (A16) 

with 80=c* lJd(2api$). 
It is clear from ECq. (A 16) that a probe positioned on 

average close to the center of the hard core will diffuse 
transversely much slower than one in the aliphatic region. 
Note also, that for a+0 and yPzO, i.e., in the absence of 
positional order of the probe, we recover the case of the 
nematic phase. 

The case of longitudinal diffusion (i.e., parallel to z) is 
more complicated since we are dealing with diffusion under 
the condition of the position-dependent diffusion constant, 
for which the general form of the diffusion equation is 

ac a 
z=T& 9(z) ;+cz , 1 I (A17) 

where c(z,t) is the spatial distribution of diffusing species, 
and U, is an external potential that the diffusing molecule 
experiences. Two limiting approaches to solving Eq. (A17) 
are possible. First is one in which the spatial periodicity of 

I 

the smectic phase is accounted for utilizing Eq. (A17) as 
the external potential U,, with the diffusion coefficient be- 
ing assumed constant, i.e., 9 (z) =const. This type of ap- 
proach led Moro and Nordio to the macroscopic diffusion 
coefficient in the form of35 

% =4 [ J; P’e~41-1 dzj-I, (Alf3) 

where PO(Z) is the translational distribution function, and 
9\ is the position-independent microscopic diffusion con- 
stant, cf. Eq. ( 11). 

The other approach is the one that is more natural for 
our development. We consider diffusion of a particle in the 
absence of an external potential, U,=O, but where the dif- 
fusion coefficient given by Eq. (Al 3) is a function of po- 
sition due to the free-volume effects arising from the AG(z) 
given by Eq. (AlO). Let us consider diffusion of a probe 
initially at zo. In the absence of a position-dependent dif- 
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fusion coefficient, its probability distribution p(z,t) would 
develop in time according to the Gaussian function 

1 
pW> =2(rgr)ll~ exp[ - +zd2/(4~t>] (A191 

and the mean square displacement of the probe in t is 
( (z-zo)*) = 29~ If 9 is not constant but rather a peri- 
odic function of z as in Eq. (A13), the time dependence of 
the mean square displacement will reflect this periodicity. 
However, as diffusion progresses, information about the 
fine spatial structure of .9(z) will be lost, and the slope of 
( (z-Q)~) vs I converges to 2LP-““, the value character- 
istic for the long-time behavior, i.e., the macroscopic dif- 
fusion constant. 

We note that this macroscopic diffusion constant can 
be estimated from the time necessary for the probe to dif- 
fuse the distance of the interlayer spacing. The time re- 
quired for a probe to diffuse over a distance Jo, can be 
considered as a sum of times of residence between small 
jumps 6t (when the free volume expands sufficiently) from 
one location to another location. The size of the step SC is 
always the same since it is defined by the critical free vol- 
ume P, but the time between jumps depends on where the 
probe is, so one can estimate 6tz (SLJ2/2D(5>. Therefore 
the overall time required for diffusion over the distance co 
is of order of t = BSt =: z(s132D-‘(z)/2 
= Sgl$)D-’ (&&$/2. Since &,/a( is the number of jumps 
required, the average time between jumps is 

(W2 6fv=&?g- 2&) 
~0 4 --- s- o W) - (A20) 

Such a definition of the average time is consistent with the 
definition of the diffusion constant, since for isotropic dif- 
fusion Eq. (A20) gives 6r”‘= ( Sc)2/2D as is expected. 

In the general case, the average diffusion coefficient is 
then 

~11(T)~2Stav,(6~)2=~~1 I” W’(‘$)dc. (A21) 
0 

This result can be alternatively derived through estimation 
of the average friction coefficient (in units of kT) acting on 
the diffusing molecule. If Z is the friction coefficient, then 
the resistance to diffusion across a thin film of a fluid of the 
thickness SJ will be CQ= Z:S& so the resistance of a layer of 
the thickness & is n(to) = J$‘Z(&)dl = ~oZav, where 
Ea’ is the average friction coefficient of the layer. Since the 
friction coefficient is related to the diffusion coefficient via 
Einstein relation, cf. Eq. (5), by calculating Eav one im- 
mediately gets Eq. (A21). 

In order to evaluate the macroscopic longitudinal dif- 
fusion coefficient we set go=d, i.e., we calculate the aver- 
age diffusion coefficient over a distance of the interlayer 
spacing. Substituting Eq. (A13) into Eq. (A21) and for 
simplicity approximating SJz) z$[ 1 + Ss cos (2rz/d)], 
we get 

s 
d 

X exp{6T[Al cos(2n-z/d) 
0 

+A2 cos2(2?rz/d) +A1 cos3(2rz/d)]}dz, 

(A22) 
where A0 =& + k”8&$, 

Al= [k”S,+~~lS~+koAp(Z/d)[a~+~pyl, 

A2= [k’S,+S,lA~(l/d)a~+~~[~~~~~E~~(l/d)yl, 

and 

A3=S,JSA,,(l/d)aS$ 

with S,=Sd( T- To). 
Note that the form of Eq. (A21) is somewhat similar 

to the expression obtained by Moro and Nordio, cf. Eq. 
(A18), although these equations were derived from differ- 
ent initial assumptions. 

By substituting w = 1 - cos( 2rz/d), Eq. (A22) can be 
conveniently rewritten as 

wherep=Al+bi2+3A3, q=A,-t-3A3. 
The magnitude of the preexponential integral in Eq. (A23) can be estimated if one assumes that the argument of the 

integrand exponential function is always large, cf. Appendix B, and such the assumption seems justified. For example, 
experimentally observed values of the activation energy are of the order of several kcal/mol leading to the fact that the 
argument of the exponential function in Eq. (A22) range from about 10 to about 20 in the relevant temperature range. A 
similar conclusion can be reached from an estimate of the magnitude of the McMillan potential parameter U. which 
appears in 6, and 6,. It can be estimated by requiring that the McMillan model fits the observed transition temperatures. 
Using the McMillan normalization, Uo= TNI/O.22O2,53 we find for the smectic phase Ud( T- To) -4.54TNI/( T 
--To)+l. 

Applying the result in Eq. (B2) to Eq. (A23) we finally obtain 

911 (T) - [ ~(s,o,y~@6d(T-To)]“2xexp 
16p+soK”““{(l+SS)[S+A~(Z/d)al 5’+fiJZ/d) .y} 

- 
T-T, I 

, (A24) 
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where 

W(S,a,y~~)=~[S,K”““+(1+~,)~,1~+[(1+2S~)KnaX+(1+S~)S~]A~(Z/d)a)~+(kmaX+S~)~~~(Z/d)~, 
(A251 

and PB”=ko+6k=ko-So sinc(Z/d). 
Since available experimental results suggest that T) To, SO l/( T- To) Y l/T( 1 + TdT) and within experimental 

error l/( T- To> is well approximated by l/T and Eqs. (A16) and (A24) can be simplified to yield 

go (T) -a (W=@ (T)exp - I 
Pp+60W [ss,+A~(l/d)aa,+E~~(l/d)yypl 

T 1 
, 

~3,~ (T)=q (V+W$ (T)[W(S,a,y(SO)~dTl’“exp 
8,+6,k’““C( 1 +&I [S+~,,,Wdhl . $++/,U/d) * r3 

T 

Equation (A26) together with J5q. (A27) provide the 
temperature dependence of the principal components of 
the translational diffusion tensor for a probe of an arbitrary 
length Z diffusing in the smectic phase. Note that a general 
form of our results is similar to Fqs. ( 10) and ( 11) of 
Moro and Nordio,35 although with notable differences; a 
different dependence on temperature of the preexponential 
factor in Eq. (A27) and explicit dependence of the activa- 
tion energies on smectic pseudopotential parameters and 
order parameters. 

APPENDIX B 

Under the assumption that the argument of the expo- 
nential function in the integral 

I 2 

JbqJ3 I= 
0 

evC6d --pw+qw2--A3w313 & 
(Bl) 

is large, the integral can easily be approximated as follows. 
First, we note that integration from 1 to 2 will give only a 
minor contribution to the integral, and, therefore, can be 
neglected. Second, the integrand has a singularity at w=O, 
which effectively limits the range of significant w’s to the 
vicinity of 0. Therefore we let l/ G z l/d and omit 
the w2 and w3 terms in the argument of exponential func- 
tion, yielding 

J(p,gJ3 I= 
6 6 

2p 
wdi& 

75’ 
032) 

since for large p, the error function Q,( &) is close to unity. 
Applying this result to Eq. (A22) one obtains Eq. 

(A24) for D,, . 
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