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Using an extension of the Boltzmann equation for the Wigner distribution 
appropriate for dilute spin 1 systems, spin diffusion equations are derived in 
the limit of  large nuclear polarization in the non-degenerate rdgime. As an 
example of a system to which this work may be applied, the domain of validity 
of the Boltzmann equation for doubly spin-polarized deuterium, D ~ ,  is 
studied. The effect of  a finite field gradient is discussed. A calculated spin wave 
spectrum for a model one-dimensional system in the presence of a gradient is 
presented. Analogous effects in spin 1/2 systems are compared and contrasted. 

1. I N T R O D U C T I O N  

Spin diffusion in quantum systems produces effects that have no 
analogue in conventional diffusion systems. The spin-polarized quantum 
gases aHem, H~$, and D ~  show these effects far from the degenerate r6gime. 
For D$$ and H$$, the arrows indicate that the electron and nucleus are 
polarized. In the case of  He$, only the nucleus is polarized. The momentum 
distribution is well described by a Boltzmann distribution, so that the systems 
under  discussion bear  some similarities to non-degenerate semiconductors. 
That this is so follows from a chain of  inequalities, which defines a dilute 
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non-degenerate, quantum gas: 

a<< A<< n-1/3<< 1<< L, (1) 

where a is the scattering range of the potential, A is the thermal de Broglie 
wavelength, A =-,/2~h2/mkBT, rt - 1 /3  is the mean interparticle spacing, l is 
the mean free path in the gas, and L is the characteristic sample size. 

The first inequality ensures that quantum-mechanical interference 
effects are important during collisions. The second ensures that one has a 
non-degenerate system. The third condition is the criterion for a dilute gas, 
and the final inequality enforces the hydrodynamic limit. 

If the second inequality were reversed, one would be in the degenerate 
rrgime. In H$+, a bosonic system, one might see Bose-Einstein condensation 
for example. Similarly, in D~,[, a fermionic system, one would expect to 
see the effects of Fermi degeneracy and ultimately 'gaseous superfluidity' 
via Cooper pairing. 

Unfortunately, laboratory densities are far from the degenerate rrgime 
to date. If one wishes to study doubly spin polarized atomic deuterium gas, 
D$$, it is reasonable to consider the Boltzmann equation for the transport 
properties because the domain of validity coincides with the densities and 
polarizations that are experimentally feasible. The approach developed here 
is based on a Chapman-Enskog analysis of the Boltzmann equation when 
particle indistinguishability effects are built into the collision tenn. 

In order to create doubly spin polarized hydrogen or deuterium gas, 
one relies on a strong magnetic field to polarize the electron spins. The 
nuclear spins remain unpolarized initially, because the Boltzmann factor is 
still nearly unity for achievable magnetic fields and temperatures in the 
nuclear spin space. Recombination events, however, can lead to profound 
modifications of the electron spin down nuclear spin manifold. The energy 
level diagram of atomic deuterium in low magnetic field is shown in Fig. 
1. We are interested in the la), 1/3) and iT) states. The IT) state has no 
admixture of electron spin up and is described by rni = -1  in nuclear spin 
space, where rnI is the nuclear magnetic quantum number; hence, the 13') 
state is analogous to the Ib) state in doubly spin polarized hydrogen. The 
remaining states in the nuclear spin manifold, the 113) and la) states, have 
a small admixture of electron spin up, due to the hyperfine interaction. If  
there is a third body to conserve energy and momentum, the la) and I/3) 
states will recombine through the electronic singlet state bonding interaction. 
After recombination events have depleted the la) and I/3} states, the nuclei 
are essentially completely polarized in the t3') state. Note that this is a 
metastable state describable by a negative nuclear spin temperature. Because 
this is a rarefied gas, one expects that TI,, nuclear rates will be slow due 
to the TI,, bottleneck, 1 well-known from spin polarized hydrogen work. 
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Fig. 1. Energy level d iagram for atomic deuter ium in a magnet ic  field. 

Thus, a rarefied sample initially polarized only in the electronic states would 
become doubly spin polarized after short times, due to selective recombina- 
tion, and would be metastable on the time scale of TI,,. 

The simplest NMR experiment that one could perform on doubly spin 
polarized atomic deuterium would be to look at the [y)-I/3) transition. It 
is interesting to note that the hyperfine interaction introduces a small relative 
splitting between the two Am1 = 1 transitions in the electron spin down 
manifold: and which is shown in Fig. 2. Figure 3 shows 
the lY)-I/3) transition energy as a function of applied magnetic field. The 
spectrum that one would observe by irradiating the lY)- l/3) transition will 
not have a significant admixture from the l/3) - lot) transition for the following 
reasons. Initially, the I/3) and lot) states are nearly unpopulated, so that the 
[/3)-lot) transition would be much weaker than the lY)-[/3) transition. 
Secondly, the relative splitting of the Am1--1 transition would prevent 
spectral overlap for the modest gradients that we propose in Sec. 6. 

Reynolds, Hayden and Hardy 2 have reviewed attempts to produce and 
study D~$. The work of Shinkoda, e t  al .  3 in particular is important because 
their experiments indicate what densities and temperatures are feasible with 
conventional experimental techniques. They achieved densities appropriate 
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Fig. 2. Relative splitting of Am i = 1 transitions in D ~ .  

for a dilute, nondegenerate, hydrodynamic fluid at temperatures sufficiently 
high that the deuterium gas was primarily in the bulk phase, not the surface 
phase. These conditions correspond to the upper left hand comer  of  Fig. 
4. Buckle 4 has developed a Fermi liquid theory for D$$, which assumes 
that the momentum distribution is degenerate. The domain of validity of  
such a theory as it stands is shown in the lower right hand side of  Fig. 4, 
which has not yet been reached experimentally. As such, Buckle's theory 
does not apply to the dilute case considered here. Nevertheless, the Chap- 
man-Enskog approach studied here, and the Fermi liquid theory of Buckle 
have some points in common, and analogies between the two approaches 
will be exploited as appropriate at various places in the sequel. In order to 
facilitate comparison between Buckle's treatment and this work, we have 
used a notation that is compatible with Buckle. 4 

The Chapman-Enskog approximation is expected to break down when 
the density is too high, e.g. in the degenerate rdgime, as well as when the 
density is too low so that the mean free path becomes comparable to the 
sample cell size, i.e. in the Knudsen rdgime. Buckle's results suggest that 
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the behavior in the degenerate r6gime, at least not too far below TF, will 
not be qualitatively different from the dilute limit considered here. Thus 
we find that the two approaches lead to similar results. Furthermore, recent 
work 5 in doubly spin polarized hydrogen, H$$, shows that the onset of the 
molecular or Knudsen r6gime does not lead to qualitatively different spin 
transport even though a hydrodynamic theory is no longer valid. 

Spin transport in these systems is therefore amenable to study by several 
theoretical approaches. The method chosen here is, we believe, the one that 
corresponds most closely to the physical conditions that can be realized in 
the laboratory. 

Spin diffusion is driven by gradients in the magnetization, which cause 
a spin current. As the spins diffuse, they interact with one another, which 
modifies the spin current, and thus the nonequilibrium magnetization via 
the continuity equation. The scattering processes will lead to quantum 
mechanical modifications of the spin current when the de Broglie wavelength 
becomes longer than the scattering range of the potential. The spin 1/2 case 
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Fig. 4. The domains of validity of this work (low density region) and the work by Buckle 
(high density region) are plotted as a function of density and temperature. The temperatures 
and densities accessible by present-day cryogenic technology are also plotted. The Fermi 
temperature, TF, runs between both domains. The domain of validity of Buckle's work is 
bounded at high densities by the gaseous superfluidity 1 transition temperature, T c. See text 
for discussion. 

is well known: 

J~ = -Do  grad M~, (2) 

where Ji is the contribution to the spin current due to M~, M~ is the ith 
component of  the nuclear magnetization and Do is the classical diffusion 
coefficient. When the correct quantum mechanical description of scattering 
is incorporated into the theory, Eq. (2) becomes 6 

-~x~ / j (3) 

where e is + 1( -  1) for bosons(fermions) and M is the nuclear magnetization; 
/z is a measure of the importance of exchange scattering relative to direct 
scattering and is analogous to the/~ parameter defined by Silin 7 for degener- 
ate Fermi liquids. We shall refer to/~ as the spin wave quality factor. The 
importance of/~ may be seen by taking the limit as/~ -> 0. One recovers the 
classical diffusion result of Eq (2). 
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One may derive a diffusion equation by inserting Eq. (3) into the 
continuity equation 

OM~+ div Ji = 0 (4) 
Ot 

As will be shown ut infra, in the limit of small perturbations from a large 
static magnetization (small tip angle), the diffusion equation for the mag- 
netization that one derives bears a resemblance to the Schr6dinger equation. 

The goal of this paper is to derive the spin 1 analogue of Eq. (3) in 
order to obtain a spin 1 diffusion equation for the magnetization by using 
a generalization of the Boltzmann equation approach developed by Lhuillier 
and Lal~e. 8 

2. SPIN 1 BOLTZMANN EQUATION 

In contrast to the usual derivation of spin waves for a degenerate Fermi 
liquid in an applied magnetic field, 9 which is based on a transport equation 
that neglects the collision "term, we find that we must keep the collision 
term in the Boltzmann equation for a non-degenerate gas in order to generate 
the modifications of the spin current that lead to spin waves, as will be 
shown ut infra. The derivation of the Boltzmann equation with the appropri- 
ate collision term may be found elsewhere. 8 Some comments on the nature 
of the derivation are relevant, however. In deriving the quantum-mechanical 
two body cross-section, Lhuillier and Lalo$ 8 made no detailed assumptions 
about the nature of the spin structure of the colliding atoms. Hence, the 
equation that they derived may be applied to systems of arbitrary spin, once 
the appropriate spin-density matrix has been chosen. 

The non-linear character of the Boltzmann equation makes it intract- 
able, unfortunately, so that a well-defined approximation scheme must be 
used. Basically, Lhuillier and Lalo$ develop an expansion in / /L-- the 
Chapman-Enskog approximation. The density matrix within this approxi- 
mation becomes the sum of two parts: the equilibrium term and the first 
order correction. The correction term has a simple physical interpretation. 
In any case, the linearized Boltzmann equation, following the notation of 
Lhuillier and Lal6e, 8 becomes: 

d 1 
(fo(r, p)8/~s(r, p)) + m  p" grad(p°(r' p)) 

=fo(r, p)Icoll(8/~s(r, p)), (5) 

where the density matrix, ps(r, p)~ p°(r, p)+ 8ps(r, p). The bar in Eq. (5) 
indicates that the Boltzmann distribution, fo(r, p), has been factored out. 
Finally, note that the collision term is a matrix function of 8~ ° (cf. Eq (7)). 
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In order to calculate the effect of  spin transport, we shall assume that 
spin transport reestablished the equilibrium momentum distribution. Under 
that assumption, 8t5s depends only on the momentum: 

8~s = 8/Ss(p) (6) 

Furthermore, our  assumptions are consistent with associating a spin current 
with 8p, os that we may take 8/5s to be linear in p. The collision term under 
those approximations becomes 

q' 1 , l~o,,(8~s)=f d3q'-~ f d2Ofo(p2){o'k(O)~p~(q-q) 
ie ex -o I (o)[o,, 

+/__e( 3 q ex -o - -  zywd(k)fo(p-q)[p~, 8P-~(q')], (7) 2 d q m  

where the tr and ~- cross-sections are defined in Ref. 8. The term in ~'~d is 
one of  the contributions to the /~ coefficient, which will be shown to be 
related to the spin wave 'quality factor' ut infra. 

Once the commutators in the collision integral have been evaluated, 
all that is left are the momentum integrals, Eqs. (27) and (28) We shall see 
that they are related to integrals that have already been evaluated for H$~, 
3He~,, and D ~ .  1° 

3. S P I N  1 D E N S I T Y  M A T R I X  

For the case of  spin 1/2, the spin-density matrix is 

1 
ps = ~  (12+o ' .  M(r)),  (8) 

where 12 is the unit matrix in two dimensions, or is the 'vector' of  Pauli 
matrices, and M is the nuclear spin polarization vector. 

For a spin 1 system, for which an interaction with an applied electric 
field gradient is possible, one must include additional terms in the density 
matrix proportional to spherical tensors of  rank two. In order to facilitate 
comparison with Buckle's results, we will use his definit ions:  A convenient 
form is: 

O o = ( 3 L  - 12) (9) vz 
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(lO) 

(~2 1 [~ 2 ^2 . . . .  
= ~ x -- Iy  ± i ( I f l  r + / f i x ) ] ,  (11) 

where I is the 'vector' of  spin 1 angular momentum operators, and the caret 
indicates an operator. One finds 

a¢~= ~: 1 A ^ 
x/2 (Ix ± ily) (12) 

~o= ~z (13) 

Using the trace methods outlined in the appendix, one may write the 
spin density matrix for a spin 1 system in terms of  an expansion in irreducible 
tensor operators, viz. 

1 1 Ps =~13+~I " M ( r ) + ~ .  M(r), (14) 

where 13 is the three dimensional unit matrix, M is the nuclear spin 
polarization vector and M is the nuclear quadrupolar alignment tensor. The 
quantity ~ .  M is the rank two analogue of I • M. One may define M as 
follows: 

M q = Tr(Qqps}, (15) 

where (~q is one of  the operators listed in Eq. (9)-(11). In terms of the 
contraction convention: 

q=k 

T(1) -T(2 )  = E ( - 1 ) q T q ( 1 ) T k q ( 2 ) ,  (16) 
q=--k 

where T is a spherical tensor of  rank k, one may write 

q = 2  

~"  M = ~,, ( - 1 ) q Q q A - q  (17) 
q=--2  

Let us choose a trial form of 8fis that is traceless and linearly dependent 
on momentum. One may write: 

1 2 

8fi~(p)=½ E (-1)q"(c[¢ '" P)Sq-+ E (-1)q'(c2-q '" P)(~q,, (18) 
q"=-- I  q '=- -2  

where the e vectors will be shown to be related to the spin currents that are 
generated by the equilibrium restoring relaxation processes. We shall assume 
that the c vectors are momentum independent. 
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k in In order to get a feel for the physical meaning of  the coefficients cq 
6t~s, let us calculate the spin current associated with 8t~s, viz. 

J(S~)--- f d3p f°(P) ~ [Tr{~i6~}] 

=I d3Pf°(P)~P" e-x2' 1 (-a)STr{SiSa} 

1 1 
- : - - C i ,  

similarly 

(19) 

J((~,) = ~ c 2, (20) 

where we have used the summation convention and the trace relations in 
the appendix. Here, 1/fl is kBT, J(S) is the spin current associated with the 
nuclear polarization, M, and J ( ~ )  is the spin current associated with the 
nuclear quadrupolar alignment, ~¢. 

This simple example illustrates a technique that we will use to  evaluate 
the spin current due to the drift and collision terms in the kinetic equations. 
We operate on both sides of  Eq. (5) in a generalized ket notation, viz. 

- - ~ - / / + ( ( p , ( 9 1 1 p  grad t~ , ) )=  p, CglF~o,,~t~>>, (21) 

where << pA61----p6, an outer product of the momentum p and the spin 
operator O, and the notation << • i" >> indicates a trace over spin operators 
and an integral over all momenta weighted by fo(P). 

In the rotating frame approximation, we transform away the first term 
on the left hand side of  Eq. (21). In Sec. 6, however, we shall examine the 
effect of a finite magnetic field gradient, which will require that we include 
the effect of a position dependent Larmor frequency in Eq. (21), because 
it is experimentally relevant. The finite gradient case is the analogue of spin 
wave spectroscopy 5 in H$$, which is performed in a magnetic field gradient. 

4. SOLUTION OF THE BOLTZMANN EQUATION 

When evaluating the collision term in Eq. (21), an examination of  the 
collision integral in Eq. (7) shows that there will be p-dependent factors in 
the integrand of  the form 

Tr{IqStS~} = c~" p (22) 

Tr{(~qSj6s} = c~. p, (23) 
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that are present in addition to the p-dependent cross-sections. In order to 
evaluate [#o, 6#,], we shall make the local frame approximation: 

M = Mo£ + 1VI(r), (24) 

A 
sg = AoQo + M(r), (25) 

where IMI = Mo and I ¢1 ~ Ao. In this approximation we are limited to small 
gradients of magnetization, consistent with a small tipping angle NMR 
pulse, for example. In the local frame approximation, therefore, the commu- 
tator terms in the collision integral may be rewritten as 

- 0  - - -  1 0 ^ 0  [P~, 6#,] + A°[(~ °, 6/~], 6p~]-~M [ I ,  (26) 

where we have assumed that #0 is of the form of Eq. (14). We shall drop 
the tildes over the quantities M(r) and ~¢(r) in the sequel. Inserting Eq. (7) 
into Eq. (21), we may rewrite the collision term of Eq. (21) in terms of the 
momentum integrals 

8 
X 1 = - -  ~ ~ [O-k] , ( 2 7 )  

and 

8 m rn(1,1) + ~(1)  x 
X, = 3 ~ "'t~'xJ -t,~:~]', (28) 

in the notation of Ref. 7 where 

i"11(1,1) - -7  ̀2 5 (1)  • "t,,k]- dye y Qt~d(k), 

1 I f  

(29) 

(30) 

2 ( 1 )  - -  1 So ~ -v 2 sex [ ~ ] - ~ - - ~  dye y rswa (k), (31) 

and k = (v/-m/fl)y~ h. The Q integrals are the angle-averaged cross-sections 
defined as follows 

Q(1) I ~0 ~ t~,= 2~r sin ~dO(1 -cos O)~rk(O), (32) 
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and  

()ll,~xl(k) = 2~" sin O dO cos O~'eX(k) (33) 

These  in tegra ls  have been  eva lua ted  1° for  sp in -po l a r i zed  3He, h y d r o g e n  and  
deuter ium.  The  sp in  t r anspor t  pa r ame te r s  are  def ined  by  the fo l lowing  
quant i t ies  

1 3 1 1 
nDo fl2X 1 8 mfl n(1,,) (34) 

O,U .s_ ~(1) 
X 4 a L [ ~ - ~ ]  " )'K [,refxwd l 

=~-~= . . , , ~  , (35) 

where  n is the  n u m b e r  densi ty ,  Do is the  long i tud ina l  d i f fus ion cons tant ,  
and  /~ is a measu re  o f  the i m p o r t a n c e  o f  exchange  sca t ter ing  to d i rec t  
scat ter ing.  The  quant i t ies  ~ and  nDo are  p lo t t ed  in Figs. 5 and  6 for  sp in  
po l a r i zed  h y d r o g e n  and  deu te r ium.  

The  d r a m a t i c  up tu rn  in /~ at low t empera tu re s  for  sp in  po l a r i zed  
d e u t e r i u m  is due  to detai ls  o f  the  a t o m - a t o m  in te rac t ion  potent ia l .  In  the 
case  o f  hyd rogen ,  which  has  a la rger  ze ro -po in t  energy than  deu te r ium due  
to its lower  mass,  the m i n i m u m  in the a t o m - a t o m  po ten t i a l  is not  as 
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Fig. 5. The/.~ factor is plotted as a function of temperature for hydrogen and deuterium from 
40 mK to 1 K. The difference in the low-temperature behavior of the two curves is due to the 
attractive interaction between two deuterium atoms, which becomes increasingly important at 
low temperatures. See text for discussion. 
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significant as the repulsive part  of  the triplet potential. Consequently, the 
repulsive triplet potential dominates at all temperatures for spin polarized 
hydrogen, so that /z decreases monotonically to -0o as one lowers the 
temperature.  In the case of  deuterium, however, the reduced zero point 
motion allows the atoms to sample the attractive part  of  the potential as 
one lowers the temperature,  which causes g to increase monotonically at 
sufficiently low temperatures.  The point we wish to emphasize is that the 
different behavior  of/.~ for hydrogen and deuterium results from differences 
in the a tom-a tom potential, not the different statistics. 

Using the trace relations (73)-(79) and Eqs. (34) and (35), we may 
solve for the e vectors. We find 

2 
e±2 Do 
- -  = +/z2(2M0) 2 ( ~: iet,~(2Mo)) fl 1 grad A~2 (36) 
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( A±) =(l±iei~M o ±ietz2~Ao~{e2~ l 
-Dograd  M± \ ±ie~x/3ao l+ietzMo]\e~]-fl (37) 

co 
- -  = -Do grad Ao (38) 
/3 
cl 
- -  = -Do  grad Mo. (39) 
/3 

Recall that Cqk//3 =J~,  where J~ is the current associated with the 
expectation value of the operator ok.  One can eliminate the currents by 
operating on both sides of Eqs. (36)-(3~ with the operator -d iv  and using 
the continuity equations div jqk = --a/0 t(O~). The continuity equations incor- 
porate the physical assumption that the spin currents drive the system back 
to equilibrium. The quantities Mo and Ao are constant in the local frame 
approximation and are unaffected by the -d iv  operator. One finds after a 
simple calculation 

0A~2 Do 
o t -  1 +/~2(2Mo) 2 (1 ~: ielz(2Mo))AA±2 (40) 

= (1 + ielzMo +ietz2v/3Ao~O (As~,  
- OoA ( A ~ )  \±ietz~cr~ao l±iel~Mo/~t\M±] 

as well as: 

( 4 1 )  

OAo 
= DoAAo (42) Ot 

OMo = DoAMo, (43) Ot 

where A is the Laplacian operator. 

5. DISCUSSION 

We shall assume plane-wave solutions for all of the equations of the 
form 

0 ( r ,  t )  = e -i°'t e / k ' ' 0  ( 4 4 )  

This choice leads to dispersion relations for A±2, Ao and Mo of the form 

-ko=-Dok 2 for Ao and Mo (45) 

Dok 2 
-ito~2--l+tz2(2Mo)2(l:Vietz(2Mo) ) for A±2 (46) 
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Note that Ao and Mo relax towards their equilibrium values on a time scale 
given by 1/Dok 2. The components A±2 have damped sinusoidal solutions 
where the 'quality factor' of  the oscillation may be written as 

Q~2= ~{~o±2} 

= 12/zMo]. (47) 

These transitions correspond to two-quantum transitions. One could observe 
such transitions by performing a longitudinal resonance experiment in low 
magnetic fields. The signal to noise of  such an experiment would be low, 
however, because the deuterium quadrupole moment is small. Moreover, 
the off-diagonal terms of  the quadrupolar  coupling to the electric field 
gradient, which are necessary for the observation of  the longitudinal reson- 
ance, will cause the [3') state to have an admixture of the la) state. The 
problem with the [a)s ta te  is that it has an admixture of electron spin up, 
due to the hyperfine interaction. Thus, the quadrupole terms will cause the 
[y) state to have an admixture of  electron spin up which will reduce the 
sample lifetime and the nuclear polarization. We will concentrate on the 
one quantum transitions, therefore, which should be much easier to observe 
experimentally. 

The coupled modes are more complex. We shall discuss the eigenvalues 
in terms of  the quantity Mo + x/6Ao. Using the properties of the operators 
given in the appendix, one may show 

N Z <III°+4g<)°lx> = 2 N~ - N~ 
1 =-,g,7 N 

= Mo + x/-6A0, (48) 

1 Z (IIi°-'Y-60.°[I) = 2 N ~ - N ~ '  
N t=,~,~.~, N 

= M o -  x/'6Ao, (49) 

where the sum is over all particles and N is the total number of  particles. 
The ket, [I), is a nuclear pseudo-spin eigenstate and N~ is the number of 
atoms in the state [v). 

In this paper we are interested in those systems that have a polarization 
M o ~ - l ,  or N ~ , / N = - I .  In order to observe a non-vanishing transverse 
magnetization, therefore, we must calculate M ÷ and A ÷, which depend on 
raising operators. In that case, the only non-vanishing eigenvalue of Eq. 
(41) is 

AS. = 1 + ietz(Mo-x/-6Ao) (50) 
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The ' - '  superscript indicates that we are interested in the 13') -I/3) transition, 
which is described by the operator, u_, defined in the appendix. Using the 
results derived in the appendix, one may show that u_ may be expressed 
in terms of  the spherical tensor operators as 

1) 
u_=  (~+-~  I+ (51) 

A more thorough discussion of  the transition operators is given in the 
appendix. 

The equation that we must now solve is 

0 
OoA(u_) = ;~+ ~ (u_), (52) 

where (u_) is the expectation value of  u_. Just as in the two-quantum 
transitions, one may assume plane wave solutions, which leads to a disper- 
sion relation of  the form 

Do k2 
-itoT_ - - - ,  (53) 

AT- 

where the 'quality factor' of  the underdamped diffusion mode is given by 

~{o~+} 
Q~= ~{,o+} 

= l ~ ( M o - ~ a o ) l  (54) 

Note that the quantity Mo-x/-6Ao ~ - 2  for a sample in which 13') is the only 
significantly populated state. The /z  parameter has a minimum at - 3  in the 
experimentally accessible temperature r6gime. Hence, the sharpest observ- 
able modes corresponding to the y - / 3  transition will have a quality factor 
Qvt3 ~ 6, which is comparable to the spin polarized hydrogen case. 

6. FINITE GRADIENTS 

In Sec. 2, we mentioned that a situation of  great experimental interest 
occurs when the sample is in a finite field gradient. We are now in a position 
to make that statement more precise. There are two modifications that one 
must make to the Boltzmann equation in the presence of  an applied external 
magnetic field, s First, one must add a precession term, [ps, I • B]/ih. Second, 
one must add a 'Stern-Gerlach' term given by the anticommutator 
[Op/Opi, O(B-I)/Oxi]+. Using the equipartition theorem, which is valid in 
the non-degenerate r6gime, and the observation that a characteristic length 
over which B might vary is of the order of the sample cell size, L, we may 
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say that the 'Stern-Gerlach' term is of order [p, B .  I ] + / L m ,  f--~-ssT. Hence, 
the ratio of the precession term to the 'Stern-Gerlach' term is of order 
L ~ B T / h .  If  we take T on the order of 100 mK, and L on the order of 
lcm, then the ratio is of order 10 TM and we may neglect the 'Stern-Gerlach' 
term. 

We shall assume that the magnetic induction, B, is given by 

n = Bo~+  ( G .  r)~, (55) 

where G • r is of the order of a few gauss and Bo is taken as, say, 105 gauss. 
Buckle 4 has treated the case of free precession in the absence of a field 
gradient in some detail. We are interested in the case of a finite gradient. 
In the local frame approximation of See. 4, we find that the continuity 
equation is modified in the presence of an external field. 11 In the Larmor 
frame defined by hto0 = 7Bo, we find 

0fiT/± + i3,G- r fiT/:~ = 0 (56) 
at 

aA± + iTG" r,~± = 0 (57) 
at 

aA±2 +2iTG • r.4:2 = 0, (58) 
at 

where we have ignored the spin-flux term, div. J, for the moment. The 
components hT/o and -4o are unaffected by external field gradients along the 
z direction, because they are assumed to be aligned along the external 
magnetic field Bo. 

Using the assumptions discussed in Sec. 5, we may write the equations 
of motion for the two-quantum transitions and the 3'-/3 transition as 

(~t  +2i3,G. r ) ~ 2  = Do (~iel.~(2Mo))A~± 2 (59) 
1 +/~2(2Mo) 2 

( O +  i3,G. r)  (u_) = h~  A(u_). (60) 

In order to interpret the equations of motion we have written down, let us 
first consider the A±2 modes in more detail. We shall assume that the time 
dependence is given by e -~0'~2', where we anticipate the existence of a 
spectrum of eigenvalues labelled by n. If we multiply equation 59 by i and 
choose the upper sign, we find 

Do a 2 
t°~2A+2 = 1 +/z2(2Mo) 2 ( -e /z (2M0)-  i) Oz"-- 5 A+2 

+ 27G~A+2, (61) 
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where we have limited attention to the 13')- I a )  transition and have assumed 
that the only significant spatial dependence is in the z direction. We have 
also assumed that the geometry of  the sample cell allows us to use separation 
of  variables. 

In order to make further progress, we define the length, l±, by 

1 2yG(l+/z2(2Mo) 2) 
(62) - -  . 

13 +Do(etz(ZMo) + i) 

Similarly, 

a ,  to+2(l+/xZ(2Mo) 2) 
(63) 

l~ Do(el~(2Mo) + i) ' 

where or, is determined below. We shall also define the dimensionless length, 
~±, as follows 

Z 

~± = ~ + o l n  (64) 

In terms of these quantities, we may rewrite Eq. (61) in the much simpler 
form 

d 2 
d~.Z_ A+2 - ~-A+2 = 0, (65) 

where the minus sign obtains for the case e/z(2Mo)< 0. The solutions of  
Eq. (65) are Airy functions 12 of  complex argument. We may write an integral 
representation as follows 

=_f/ un(~_) N ,  d n cos ~7~'_+~ ~/ = N,  Ai(~_), (66) 
q ' g  

where N,  is a normalization constant. 
We must now choose boundary conditions for u,(ff_). We assume that 

there is a perfectly reflecting wall at z = 0. We also assume that the solution 
at the opposite wall, u, (z = L), has essentially decayed to zero, which means 
that the boundary condition at z = 0 is the only important one. This situation 
obtains when yGL>~R{to+z}. The reflecting boundary condition in one 
dimension is 

Oun[ = O, (67) 
0~_ I ~ . . . .  

where {an} are the roots of  u~(g_)=0.  Tables of  a ,  and asymptotic 
expressions for a ,  for large values of  n may be found in the literature) 2 
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We may rewrite Eq. (65) in terms of the definition of l_. This gives us an 
eigenvalue equation, using the known roots, {ot,}. We find 

(e/z(2Mo) + i)~'/3 to+2 = -ot, - (  2 yG)2 Oo - ~  ~ ] (68) 

We have tacitly assumed that e/z(2Mo) is negative. This is valid for DSJ, in 
the quasi-equilibrium case. 

If  we make Mo positive (following a w-pulse, say), then we must modify 
the eigenvalue equation and choose a new origin for z. The procedure is 
straightforward. 13 We find 

[-ot,,(-(2yG)2Do(l~(2M;)M+i)2) 1/3 for e/~(2Mo)<0 

to+2 { \ /x t o) / (69) 

lot /'2 G'2D (elx(2M°)+i)~l/3 
,kk  Y ) o l+/z2(2Mo)2) for e/x(2Mo)>0, 

and the new origin of z is the point z = L in the old coordinate system. 
Now that we have solved the equation of motion for A+2 in a field 

gradient, we can extend the discussion to (u_) without difficulty. The only 
modifications to the treatment given ut supra that we need to make are to 
replace 2yG by yG and 2Mo by Mo-x/-6Ao. The eigenvalues then become 

" ( (._elx(Mo - q~Ao)  + i ) ]  1/s 
-or, X-(TG)2D° 1 +/z2(Mo-x/~Ao) 2 ] for the case: 

etx(Mo- x/-6Ao) < 0; 
n tO~/3 =~ (70) 

for the case: ( ( TG)2 Do ( ept( Mo-V'-6Ao) + i )'~ 1/3 
"° -i-; ) 
el~( Mo - x/-6Ao) > O. 

In order to calculate a line-shape, we need to know the 'coupling strength' 
or 'transition moment'  for each spin-wave mode. The line-shape is then the 
sum of the line-shapes of each spin-wave mode weighted by the 'transition 
moment'. We have assumed that the time dependence of each mode is an 
exponentially damped sinusoid; hence, the sum is a series of unequally 
weighted Lorentzian lines, where each spin-wave mode has a shift given 

n ~ n by ~{w~t3} and a width given by ~{o2~t3 }. The 'transition moment'  is 13 

d . = V  fvU.(~)Hl(z) dV (71) 

TH1 fO" - L u.(~)  dz, (72) 
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Fig. 7. A model spectrum for the y -/3 transition in D~. The spectrum shows only the lowest 
order spin-waves, which are strongly 'trapped' in the one-dimensional model calculation. 

where the three dimens'~onal integral  over the sample  vo lume collapses to 
an  integral over the only  relevant  d imens ion  in our  one -d imens iona l  model .  

In  Fig. 7 we plot  a model  spect rum for the y - / 3  t rans i t ion  with values 
o f / z  and  nDo appropr ia te  for 300 inK. I f  one compares  the model  spect rum 
with publ i shed  data  TM for H$, one sees that  the large-n spin wave modes  
of  D$$ are shifted up in f requency vis-gt-vis the sharp, small  n modes.  In  
H ,~ ,  the large-n spin-wave modes  are shifted down in f requency vis-a-vis 

the sharp,  smal l -n  modes.  The difference is due to the relative minus  sign 
be tween  the effective field in H~$, which behaves as a boson ic  system with 
e = +1,  and  D~+, which behaves as a fermionic  system with e = - 1 .  

The model  parameters  used were nDo = 1020 m-is -1, tz(Mo-x/6Ao)= 
+6,  e = - 1 ,  G = 1 gauss /cm.  

7. C O N C L U S I O N S  

We have developed a spin 1 Bo l t zmann  equa t ion  and  appl ied  it to D ~ ,  
for parameters  that  are exper imenta l ly  relevant.  Detai led compar isons  of 
pub l i shed  hydrogen  spin wave spectra with the s imula ted  deuter ium results 
are no t  par t icular ly  meaningfu l ,  however.  The hydrogen exper imenta l  and  
theoret ical  spectra are in a three d imens iona l  space. The deu te r ium calcula- 
t ion  assumes a one d imens iona l  model .  What  one can say u n a m b i g u o u s l y  
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is that the transport theory for spin polarized deuterium predicts resolvable 
spin wave structure for reasonable experimental conditions of density, field 
gradient, and diffusion coefficient even though the quantum mechanical 
transport parameter,/~, is smaller for deuterium than for hydrogen over all 
of the experimentally relevant temperature r6gime. 24 

The extension of the model to three dimensions is in principle straight- 
forward. The underlying simplicity of the results is dearest in the one 
dimensional case, however. The philosophy behind the exhaustive analytical 
treatment given here is simply that models which one may solve analytically 
are useful paradigms in a variety of applications, as well as provide clear 
insights into the nature of the solutions. When experimental deuterium 
spectra are available for fitting, it will be straightforward to modify the 
existing hydrogen programs to handle deuterium spectra as well. 

The normalization integral is calculated in the appendix following the 
discussion of spin operators. The program used to compute the model 
spectra was written in turbo PASCAL and is available from the authors. 

A P P E N D I X  

In this appendix we will discuss some useful properties of spherical 
tensor operators and their representation in terms of the transitions among 
the spin 1 nuclear manifold of DSJ,. Furthermore, we will evaluate the 
normalization integral for the eigenfunctions of the damped spin wave 
modes. 

A.I.  Transition Operators 

In order to evaluate the traces that appear in Eq. (21), we note the 
following useful trace relations: 

Tr(-lq] -q') = (-1)q2t~qq, (73) 

Tr((~q(~ -q') = (-1)qSqq, (74) 

Tr( I±[I  °, I~:]) = +2 (75) 

Tr(I±[Q °, 0:~]) = +x/~ (76) 

Tr (0±[P ,  0:~]) = +1 (77) 

Tr(t~±[t~ °, I~]) = +x/-3 (78) 

Tr(0±2[I °, 0~2]) = :F 2, (79) 

where we have used the operators defined in Eqs. (9)-(13). The operators 
are equivalent to the set used in Buckle's work. 4 We have retained only 
those trace relations which are useful in the evaluation of Eq. (21) in the 
local frame approximation. 
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Before we actually write down a representation of  the spherical tensor 
operators, we shall digress in order to develop a more natural basis for 
discussing magnetic resonance experiments in D$$. In order to do so, we 
introduce three spinors, ]a), ]/3), and l Y), which correspond to the projections 
of  the pseudo-spin 1 system defined by the three lowest ground-state 
deuterium hyperfine levels. 

We shall use Gel l -Mann's  A matrices as a convenient representation 
of  the transition inducing operators among the pseudo-spin 1 manifold 
levels. The A matrices satisfy the following commutation relations 

[Ak, A,] = 2~,~Am, (80) 

wheref~a,, is anti-symmetric under  permutations of  its indices. The A matrices 
also satisfy anti-commutation relations, viz. 

4 
[ Ak, At]+ = 3~kl "~ 2dklmAm, (81) 

where dktm is symmetric under permutations of  its indices. The A matrices 
are also normalized according to 

Tr(AkA,) = 28k,, (82) 

where &a is the Kronecker delta. The values of  fkt,, and dk l  m a r e  given in 
Itzykson and Zuber. *s 

A set of  operators that describes the transitions among the pseudo-spin 
1 levels is provided by the Sakata model, which is described in Lipkin. ~6 
We list the transition operators, their representation in terms of  Gel l -Mann 

TABLE I 
Connections between the Various Transition Operators and Their Representations 

Transition Transition operator Gell-Mann representation Spherical tensor 

]a)+ ]y) t_ ½(a, - ih2) 
IA 1 ^ 

1,8) + I')') u+ ½(A6+ ia7) ~-I- - ~  O- 

1 ̂ + 1 {~+ I'r>-, I,m ,,- ½(,~- ia7) -j + ~  

Is)-, I~> v+ ½(,,+ ias) __q+_k 0+ 2 v~ 

to ½a3 L ~° 
1 

yo ~ , 8  4 0  ° 
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matrices, and the connection to spherical tensor operators in Table 1. The 
transition operators also satisfy commutat ion relations, given in, e.g., Cahn. 17 

A.2. Eigenfunction Normal izat ion 

The normalization of  the eigenfunctions requires that one evaluate a 
contour integral. It  is not convenient to use the standard inner product  in 
order to calculate the normalization constant, because the eigenvalues E,  
are complex. Instead of the usual Hermitian bilinear form for constructing 
scalar products, one may use a symmetric bilinear form, as discussed in 
Heuvers. 18 In this case, the normalization integral becomes, 

fo f0 un(z)u , (z )  dz = N~ Ai2(~) dz. (83) 

For a given eigenvalue, E, ,  integrating from z = 0 to z = L defines a 
line segment in the complex-~ plane. Note, however, that in the limit of  
large gradients, the eigenfunction has a small modulus at z = L. In that 
case, one may extend the upper  limit of  integration to z - )  oe without 
introducing significant error in the evaluation of the integral. At this point, 
the path of  integration makes a small angle with respect to the 9t(~) axis 
for large values of  ~(Mo-.,/-6Ao). One may close the contour of  integration 
by considering the contour shown in Fig. 8. 

The Airy function, Ai(~), is well behaved in the first quadrant  for large 
values of  ~, so that the arc at infinity makes no contribution to the contour 

~- ~.~ a l l  

rL...__ 
f ~ I ' z  

r3 

Fig. 8. Closed contour for the evaluation of the normalization integral. 



934 K.A.  Earle, J.  H. Freed, and D. M. Lee 

integral. The contour encloses no singularities, which implies that the total 
integral vanishes by the fundamental theorem of contour integration) 9 
Hence, one may write the normalization integral as 

N~ Ai2(~) d~ = N~ Ai2(~) d~ 
n 1 

= 11 (84) 

The integral along F2 vanishes as argued above. If  one defines 

f ~N2,,Ai2(¢,,) de = -13, (85) 
n 

then the contour integral, I t ,  may be written 

I r =  I, + I2 + I~ 

=0,  (86) 

by the fundamental theorem of  contour integration; whence, 

1 1 = - 1 3 ,  

o r  

L 

N2Ai2(~) dz = N2,Ai2(~',) d~ 

= 1. (87) 

The problem is now reduced to evaluating the normalization integral 
along the real axis of the ~ plane. In order to do so, one may use the 
following trick. If  one writes the integrand of  the normalization integral as 
a total derivative of  an analytic function, then the integral may be evaluated 
by evaluating the antiderivative at the endpoints. 

Using the defining equation for the Airy function, Ai"(ff) = ff Ai(~), one 
may show 

Ai2(~) = ~ {~(Ai(~)) 2 - (Ai'(~')) 2] (88) 

At the endpoints of the integral, the derivative term vanishes because of 
the boundary condition. As discussed in Sec. 6, one assumes that there is 
no spin-current into the walls, which implies Ai'(z = 0) = Ai'(z = L) = 0. At 
the upper limit, the first term on the right hand side of  Eq. (88) vanishes 
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because Ai(z) -~ 0, as z ~ oo. Hence, the normalization integral is determined 
by the values of  the Airy function at a discrete set of  points on the negative 
real axis corresponding to the eigenvalues of the problem. One finds, 

I~ N2Ai(~.)dz =~_ N~(-a~) 

=1,  

o r  

N, = l_ (_~,)Ai2(t~,) . (89) 

In order to estimate the large n behavior of  the normalization constants, it 
is useful to have asymptotic expansions for the roots of Ai'(ot,) = 0, as well 
as an asymptotic expansion of  Ai for large negative real argument. For 
sufficiently large argument, one may show 2° 

Furthermore, 21 

/3  ~'(4n - 3).) 2/3. 
(90) 

AJ(-z)--) Irs1/2z-~/4 sin(~ (z)3/2 +4) ( 9 1 )  

Note that the boundary condition, Ai ' (a .  ) = 0, ensures that the Airy function 
is always at an extremum at z = 0. One may therefore approximate Ai(a , )  -~ 
-I-"l"g-1/2(--Oln) -1/4 without introducing significant error in the asymptotic 
evaluation of  Ai(a . ) .  Putting the pieces together, one sees that the large n 
behavior of N .  is given by the following approximate formula 

N,,~x/-'~E(3zr(8n-3))-l/6. (92) 

In order to calculate the rf  power absorbed by the excitation of the 
spin wave modes, one must calculate the coupling of  each spin wave mode 
to the resonator rf field, /-/1. One may define the coupling integral, h, = 
S u,H~ dz, where H~ is assumed to be constant. This is a good approximation 
for the rf  field in a loop gap resonator, for example. For constant H~, 
therefore, the absorptive part of  the transverse magnetization in the rotating 
frame is given by 

7h~t"(to) = X(0) E l iF. 
, 7r ( t o - to , )2+F2  h,u,,, (93) 
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where to, is the frequency shift of  the spin wave mode in the presence of  
the gradient and F~ is the width. The integral over z may be handled in 
the same way as the integral for the normalization constant: the contour 
may be deformed onto the ~ axis. Values of  the Airy integral for real 
argument are tabulated in, e.g., Abramowitz and Stegun, 22 so that evaluation 
of  the quadratures is not difficult. 

If  one defines the observation phase properly, the absorbed power 
gives a pure absorption signal, which may be calculated from 

=-ito ~ ~t+Hl dz 

° z < l _ f  2 2 • ~on) +Fn (-a~)Ai2(~,,) Ai(x) dx (94) 
n 

In order to facilitate the evaluation of  the absorption signal from the tables 
of  quadratures, one may use the integral representation of  Ai(x) to show 
that23: 

Io ~ Ai(x) = 1/3. (95) dx 

Tables of  quadratures for Airy integrals of  the form Sg Ai(x) dx, where a < 0 
are given in. 12 One may therefore compute the coupling integrals, h,, from 
the tabulated values of  the Airy integral and the identity 95. This completes 
the analysis of  the one-dimensional model system considered in this paper. 
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NOTE A D D E D  IN PROOF 

We have recently received a preprint from E. P. Bashkin that discusses 
spin-wave modes in D ~  from an alternative point of  view. Both approaches 
yield similar results for the gradient-free case that Bashkin discusses. 
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