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The application of the ‘‘model trust region’’ modification of the instrumentation. Two of the most important advances in-
Levenberg–Marquardt minimization algorithm to the analysis of clude the introduction of two-dimensional Fourier-transform
one-dimensional CW EPR and multidimensional Fourier-trans- methods (1–4) , and the extension of both continuous-wave
form (FT) EPR spectra especially in the slow-motion regime is (5, 6, 7) and pulsed (8, 9) EPR methods to high frequencies
described. The dynamic parameters describing the slow motion requiring superconducting magnets. By analogy with similar
are obtained from least-squares fitting of model calculations based

developments in NMR, these enhancements have greatlyon the stochastic Liouville equation (SLE) to experimental spectra.
increased the amount of structural and dynamic informationThe trust-region approach is inherently more efficient than the
that is available from spectra of spin labels and intrinsicstandard Levenberg–Marquardt algorithm, and the efficiency of
paramagnetic species.the procedure may be further increased by a separation-of-vari-

One important application of EPR, and magnetic reso-ables method in which a subset of fitting parameters is indepen-
dently minimized at each iteration, thus reducing the number of nance in general, is to study the molecular dynamics of an
parameters to be fitted by nonlinear least squares. A particularly appropriate label in isotropic fluids, ordered phases such
useful application of this method occurs in the fitting of multicom- as liquid crystals or biological membranes, on surfaces, or
ponent spectra, for which it is possible to obtain the relative popu- attached to macromolecules. Many details of the dynamics
lation of each component by the separation-of-variables method. are discernible in the slow-motion regime (10) , where the
These advantages, combined with recent improvements in the characteristic time scale of the motion is on the order of the
computational methods used to solve the SLE, have led to an

inverse spectral bandwidth. However, the analysis of slow-order-of-magnitude reduction in computing time, and have made
motion spectra is complicated by the fact that the relationshipit possible to carry out interactive, real-time fitting on a laboratory
between the spectrum and the physical parameters of interestworkstation with a graphical interface. Examples of fits to experi-
is rather indirect. The partial averaging of EPR spectra bymental data will be given, including multicomponent CW EPR
molecular motion or spin dynamics can produce very com-spectra as well as two- and three-dimensional FT EPR spectra.

Emphasis is placed on the analytic information available from the plicated and irregular lineshapes requiring detailed spectral
partial derivatives utilized in the algorithm, and how it may be simulation to extract the desired information.
used to estimate the condition and uniqueness of the fit, as well The increase in the number of spectral dimensions and
as to estimate confidence limits for the parameters in certain cases. the resolution now available in EPR has been accompanied
q 1996 Academic Press, Inc. by a corresponding increase in the computational demands

of spectral simulation. The computational requirements are
particularly stringent for slow-motion problems, which typi-

INTRODUCTION cally require the solution of large matrix equations (11–13)
for the calculation of a single spectrum.

Although the literature on computer simulation of EPRIn recent years, there has been a dramatic increase in the
spectra is quite extensive (14) , most of the methods forpower and flexibility of electron paramagnetic resonance
fitting simulations to experimental EPR spectra have beenmethods, mostly as a result of significant advances in EPR
applied either in the motionally narrowed regime or in the
rigid limit. Only relatively recently have nonlinear-least-
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squares methods been used to fit slow-motion EPR spectraBoston, Massachusetts 02115.
(15–22) . One feature of slow-motion spectra that makes† Present address: Department of Chemistry, Ewha Womens University,

Seoul, Korea, 120-750. them particularly problematic to fit is the much larger num-
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156 BUDIL ET AL.

ber of parameters that may in principle enter into the calcula- obtain confidence intervals for the fitting parameters and to
carry out statistical tests to evaluate different models for thetion of the spectrum relative to motionally narrowed or rigid

limit spectra. Aside from inhomogeneous broadening, which molecular dynamics.
In this work, we present a general approach that we havecan be present in any motion regime, fast-motion spectra

may be fitted with just the isotropic magnetic parameters developed in our studies over the past several years, for
fitting both one-dimensional and two-dimensional slow-mo-and the Lorentzian linewidths which relate to the rotation

of the probe. In the specific case of 14N nitroxides, there tion EPR data to spectra calculated using the stochastic Liou-
ville equation. Several strategies for increasing the efficiencyare just three linewidth parameters which can relate to the

rotational diffusion rate. At the other extreme, rigid limit of the fitting procedure will be discussed. The first is the
separation of variables into a set of nonlinear fitting parame-spectra may require all of the magnetic tensor components,

but do not require any dynamic parameters. In contrast, slow- ters containing the magnetic and/or dynamic parameters of
interest, and a set of separately optimizable (usually linear)motion spectra generally require full information about the

magnetic tensors and rotational dynamics, which frequently parameters. The resulting reduction in the size of the parame-
ter space that must be searched significantly enhances theentail additional parameters to characterize the motional

model or molecular ordering. speed of the overall fitting procedure. Additional efficiency
is obtained with a modified version of the Marquardt–Lev-The large number of variable parameters and the computa-

tional power required for fitting slow-motion spectra limit enberg method. We also demonstrate how, by varying differ-
ent linear combinations of parameters (e.g., spherical vsthe choices from among the many algorithms that are avail-

able for nonlinear-least-squares minimization. One of the Cartesian components of the magnetic and diffusion tensors)
the effects of correlation amongst these parameters may bemore popular methods in widespread use is the downhill

simplex method, which has been applied to fit rigid-limit reduced. These advantages, combined with improvements in
the computational methods used to solve the SLE, have made(powder) samples by Duling (23) and Fajer et al. (24) ,

who also outline the use of that method for analyzing distri- it possible to carry out interactive, real-time fitting of large-
scale problems on a laboratory workstation with a graphicalbutions of oriented assemblies, and multiexponential kinetics

in EPR. For general application to slow-motion problems, interface. We achieve order-of-magnitude reductions in com-
puting time compared with earlier versions of our programhowever, this method becomes unwieldy because of the rela-

tively large number of function evaluations it requires. (15–18) .
Also, the earlier versions of the SLE calculation (11–13)Among the more highly recommended methods for com-

putation-intensive minimization problems are the so-called have been upgraded to include a fully anisotropic rotational
diffusion tensor and the specification of all three Euler anglesquasi-Newton methods, which include the Levenberg–Mar-

quardt algorithm and its various modifications. These meth- describing the principal axes of molecular diffusion relative
to the principal axes of the magnetic tensors. We also allowods have the drawback that they require the partial deriva-

tives of the spectrum with respect to each of the nonlinear the specification of all three Euler angles describing the rela-
tive orientation of the A and g tensors, and include the iso-parameters at each iteration of the procedure. For functions

such as the slow-motion EPR spectral intensity, which have tropic nuclear Zeeman interaction.
The dynamic models available for slow-motion spectralno simple analytical expression, each partial derivative must

be calculated by a forward-difference approximation, which simulation are summarized under Methods below, where we
also briefly review the numerical methods used to calculaterequires a recalculation of the spectrum with a small step in

each parameter. To balance this additional computational one- and two-dimensional spectra, describe algorithms used
in the nonlinear minimization and optimization of the sepa-burden, however, is the very useful feature that the partial

derivative information may be used to estimate the condition rated variables, and review methods for statistical analysis
of EPR fitting parameters based on the Levenberg–Mar-of the fit at each iteration of the minimization procedure.

Such a diagnostic capability allows one to improve the over- quardt and related quasi-Newton methods.
Under Examples and Discussion, we demonstrate theall efficiency and reliability of the fit by eliminating indeter-

minate parameters or by imposing additional constraints method for selected examples of both synthetic and experi-
mental 1D and 2D slow-motion data. Emphasis will beamongst them. This is a particularly critical advantage for

models with a large number of variable parameters, which placed on the analytic information available from the partial
derivative information utilized in the algorithm, as well asmay not all be measurable from a given experimental data

set. Other advantages of quasi-Newton methods include statistical analysis of the fitting parameters, and the condition
of the fit. The first example illustrates the effects of fittingglobal convergence, and more flexible control over conver-

gence criteria, which, when properly applied, allows exces- highly correlated variable parameters and discusses methods
for reducing parameter correlation. In the second example,sive iterations to be avoided. Finally, under appropriate con-

ditions, the partial derivative information can be used to we demonstrate global fits to a series of spectra taken for
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different values of an experimental parameter ( in this case, by (a) the electron spin Zeeman interaction, including an
orientation-dependent g factor; (b) the electron-nuclear hy-the orientation of an ordered phase) , while the third example

shows the fitting of CW spectra with multiple independent perfine interaction tensor A , and (c) the isotropic nuclear
spin Zeeman interaction.spectral components having different dynamic or ordering

properties and illustrates how the spectral resolution and Several different coordinate systems are employed to rep-
resent the full problem: (a) the magnetic tensor frame (xm,quantification of the individual components can be assessed

by statistical analysis. A method is described for estimating ym, zm) fixed in the molecule; (b) the rotational diffusion
tensor frame (xR, yR, zR) , which is also a molecule-fixedparameter uncertainty bounds from fits to experimental data

in the usual case where the residual distribution violates frame; (c) the director frame (xd , yd , zd) , which is a labora-
tory axis system relative to which the molecule orients inthe assumptions underlying the standard error expressions.

Finally, we illustrate fitting of 2D-FT spectra such as COSY anisotropic fluids (cf. below); and (d) the laboratory frame
(xL , yL , zL) , in which the dc magnetic field lies along zL .spectra and 2D-ELDOR spectra obtained at a series of mix-

ing times, which are then collectively equivalent to a three- The relationships amongst these coordinate systems are
specified by different sets of tilt angles. The diffusion tiltdimensional experiment. The section concludes with a de-

scription of how the programs developed in this work may angles VD Å (aD, bD, gD) are the Euler angles that specify
the rotation taking the magnetic axes into those of the rota-be obtained.
tional diffusion tensor. The rotation is accomplished by the

METHODS following series of operations: ( i) a rotation about zR through
the angle gD; ( ii ) a rotation about yR through the angle bD;Slow-Motion Models
and (iii ) a rotation about zR through the angle aD, where aTable 1 summarizes the model parameters that may enter
positive angle produces a counterclockwise rotation wheninto a slow-motion spectral calculation. These are identified
viewed along the axis of rotation looking from the positiveby the labels used in the interactive fitting program and are
side. In the case that the A tensor and g tensor are not coaxial,divided into four categories common to both CW and 2D-
it is possible to specify a set of magnetic tilt angles Vm ÅFT models: ( i ) magnetic and structural parameters that de-
(am, bm, gm) that rotate the A-tensor axes (xA, yA, zA) intoscribe the magnetic tensors (including an inhomogeneous
the g-tensor (magnetic) axes using the same convention. Itlinewidth tensor) and their relative geometries; ( ii ) dynamic
should be noted that, according to these definitions, the aparameters, which include the rates of rotational diffusion
angle is not required if the tensor(s) in the reference framefor various types of motional models; ( iii ) ordering potential
is (are) axially symmetric; for example, aD x 0 has nocoefficients that describe the orienting influence of aniso-
effect if Rx Å Ry . Finally, the director frame is related to thetropic fluids such as liquid crystals and membranes; and
laboratory frame by the angles C Å (0, c, 0) ; only one angle(iv) integer parameters that define the type of model or
is required for this rotation because of the axial symmetry ofcalculation used. In addition, the 2D-FT models include rota-
the orienting potential. The director tilt angle c is thus thetion-independent electronic and nuclear spin relaxation times
angle between the director of the anisotropic fluid and thethat influence the 2D spectral lineshape, and the experimen-
magnetic field.tal delay times required to specify a 2D or 3D experiment

In addition to the explicit magnetic interactions of thefully.
electronic and nuclear spins, it is possible to specify twoThe typical approach in applying slow-motion least-
types of orientation-dependent inhomogeneous broadening:squares fitting is first to determine the magnetic parameters
(a) a linewidth tensor W associated with the magnetic framefrom rigid-limit spectra and then to fix these parameters,
that specifies an additional Lorentzian linewidth, and (b) thevarying only the dynamic and ordering parameters in the
quantities D (0) and D (2) that specify an added Gaussianfitting procedure. In fact, we have found that the slow-motion
inhomogeneous linewidth D that has been chosen to relatelineshape program can also be efficiently used to obtain
to the director frame according to the formula D Å D (0) /magnetic parameters from rigid-limit spectra by performing
D (2)cos2c. (The present 2D implementation of these modelscalculations in the limit of very small rotational rates. For
does not utilize the orientation-dependent term).many applications, particularly 2D and high-field spectra,

we find that the spherical harmonic expansion utilized in the
Dynamic Parametersslow-motion calculation is competitive with standard ap-

proaches that utilize some variation of discretized integration
The spectral calculation incorporates several differentover the unit sphere.

models for rotational diffusion, including: (a) Brownian ro-
Magnetic and Structural Parameters tational diffusion; (b) non-Brownian diffusion, including

different types of jump diffusion models; (c) anisotropicThe programs model the reorientation of a one-electron,
one-nucleus system (typically a nitroxide) that is described viscosity for motion in oriented fluids; and (d) discrete jump
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TABLE 1
List of Model Parameters Used in Nonlinear-Least-Squares Simulation of One- and Two-Dimensional

EPR Spectra in the Slow-Motion Regime

Parameter symbol Parameter Name Description

gxx , gyy , gzz gxx, gyy, gzz g tensor
Axx , Ayy , Azz axx, ayy, azz A (hyperfine) tensor (G)
Wxx , Wyy , Wzz wxx, wyy, wzz Lorentzian linewidth tensor (molecular frame, p-p width in gauss)
gN gamman Nuclear gyromagnetic ratio (rad s01 G01)
aD, bD, gD alphad, betad, gammad Diffusion tilt angles (7)
am, bm, gm alpham, betam, gammam Magnetic tilt angles (7)
c psi Director tilt angle (7)
D(0), D(2) gib0, gib2 Director-frame-dependent Gaussian inhomogeneous broadening (p-p width, G)

c20, c22, c40, c42, c44 Coefficients for orienting potential{cL
K}

f phase Phase of spectrum (7); /907 Å pure dispersion
B0 b0 Static field (G)

Dynamic parameters

Pl , Pxy , Pzz pl, pkxy, pkzz Log10 of model parameters for non-Brownian diffusion
Rxx , Ryy , Rzz rxx, ryy, rzz Log10 of rotational diffusion tensor (s01)
Dj djf Log10 of rate for jumping among symmetry-related sites (s01)
Dj , Dj ,⊥ djf, djfprp Log10 of effective diffusion tensor for anisotropic viscosity (s01)
vss oss Log10 of Heisenberg spin exchange rate (s01)

Integer parameters

2I in2 Twice the nuclear spin, I.
ipdf Model parameter (Brownian, non-Brownian, anisotropic viscosity)

njump ist Number of symmetry-related sites in discrete-jump model
ml , mxy , mz ml, mxy, mzz Non-Brownian diffusion model flags

lemx, lomx, kmn, kmx, Basis set truncation indicesLemx , Lomx , Kmn , Kmx , Mmn , Mmx , P I
mx

mmn, mmx, ipnmx
nMOMD nort Number of orientations in MOMD model

Additional parameters for 2D models

Dg gib Gaussian inhomogeneous broadening (gib0 in CW program), p-p width (G)
Dl lib Lorentzian inhomogeneous broadening, p-p width (G)

hwid, mwid Constant and linear terms for Tmix-dependent broadening (Lorentzian)
in 2D ELDOR, p-p width (G)

t2edi, t2efi(T01
2e )(0), (T01

2e )(2) Log10 of angular dependent homogeneous T01
2e tensor (s01)

2We t1edi Log10 of longitudinal electron spin-relaxation rate (s01)
2Wn tlndi Log10 of longitudinal nuclear spin-relaxation rate (s01)
t1 , t2 init1, init2 Initial t1 and t2 times in a 2D experiment (ns)
Dt1d , Dt2d stept1, stept2 Step sizes for t1 and t2 in a 2D experiment (ns)
Tmix tfix Mixing time in a 2D ELDOR experiment (ns)

Additional integer parameters for 2D models

iexp Experiment type: FID, 2D SECSY, stimulated SECSY, 2D COSY,
2D ELDOR, echo-ELDOR

icomb Linear combination: Sc/ or Sc0

Levenberg–Marquardt parameters

ftol Relative tolerance for change in residuals at convergence
xtol Relative tolerance for change in parameters at convergence
gtol Relative tolerance for change in residual gradient at convergence
scale Scaling factor for step size along each parameter dimension
fdstep Relative forward-difference step for calculating partial derivative

for each parameter
bound Scale for initial trust region boundary
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motion for hopping amongst a set of symmetry-related sites. Heisenberg spin exchange. In addition to any of the dif-
fusional models mentioned above, it is possible to accountDifferent diffusional models may be used for different mo-

lecular axes, but only when the motions occur on very differ- approximately for the effects of isotropic Heisenberg spin
exchange between probe molecules with a rate specifiedent time scales.
by vSS .Brownian diffusion. Brownian diffusion occurs as a se-

All dynamic parameters are specified as log10 of the pa-ries of infinitesimal reorientational steps. This model is most
rameter, divided by units of seconds01 or seconds as appro-appropriate for intermediate-sized spin probes and spin-la-
priate. (Ratios such as rotational anisotropies N and Nxy andbeled macromolecules, and is therefore the most widely
non-Brownian model parameters Pi do not require this can-used. The program allows a fully anisotropic rotational diffu-
cellation of units) . The convention applies to the rotationalsion tensor to be specified in the case of Brownian diffusion.
diffusion tensor, the Heisenberg spin-exchange rate, and theNon-Brownian diffusion. In non-Brownian diffusion, the
jump rate in the discrete jump model, as well as the residenceprobe undergoes a discontinuous step motion. The two non-
times in the non-Brownian diffusion models. LogarithmicBrownian models supported by the program include jump
scaling has been adopted because it adjusts the dynamicdiffusion and approximate free diffusion (10) . In jump diffu-
parameters to be of the same order of magnitude as thesion, the molecule remains stationary for an average time t
other fitting parameters, which can substantially improve theafter which it instantaneously jumps to a new orientation,
convergence properties of the least-squares algorithm.specified by some angle of rotation about the specified axis.

Orienting potential. For diffusion of a probe in a me-The root-mean-square reorientation angle for axis i ( in radi-
dium with microscopic molecular ordering such as a liquidans) is uavgÅ »u 2

…Å 6Riti . In an approximate free-diffusion
crystal, membrane, or polymer, the tendency of the probemodel, the molecule rotates freely about axis i with a rota-
to order is modeled by a restoring potential that is definedtional rate Ri , but instantaneously reorients at an average
relative to the director axes of the liquid. The potential isinterval ti , and continues its free rotation.
expanded in a series of spherical harmonics DL

0K(V) åThe residence time ti in each of these models is specified
Y L

K(b, g)by means of a ‘‘model parameter’’ Pi Å Riti . In the present
implementation, the non-Brownian rotational diffusion ten-
sor must possess at least axial symmetry; thus, i may refer U(V) Å 0kBT ∑

L ,K

cL
KDL

0K(V) , [1]
only to the axes perpendicular ( i Å xy) or parallel ( i Å
z) to zR. However the model does allow for internal non-

where V Å (a, b, g) represents the angles relating theBrownian diffusion around zR, in addition to the overall
diffusion axes to the director frame (b and g are the polarrotation. The residence time tl corresponding to this internal
angles of the director z axis in the diffusion frame), and thediffusion is specified by the model parameter Pl using the
dimensionless coefficients cL

K have the property that cL
K Årelation Pl Å R⊥tl . This is useful for describing non-

cL
0K Å cL*K . In the present implementation, the summationBrownian behavior of a spin probe moiety that is flexibly

in Eq. [1] is restricted to even values of K and L up to 4 (Kattached to a larger diffusing molecule (25) .
£ L) . Non-Brownian diffusion models may not be usedDiscrete jump motion. In addition to either Brownian or
with an orienting potential.non-Brownian diffusion, one may specify a discrete jump

The programs allow for mW icroscopic oW rder with mW acro-motion amongst n sites having n-fold symmetry about zR,
scopic dW isorder (MOMD), i.e., a case in which there arewith a rate given by Dj . It is only appropriate to use this
domains with local ordering described by the potential inmodel in combination with other rotational diffusion when
Eq. [1] , but whose directors are isotropically distributed sothe jump motion is much faster than the overall molecular
that there is no macroscopic ordering (26) . This case isrotation around zR. If the jump motion is the only important
modeled by integrating the spectral lineshape over the direc-feature of the system, the R tensor elements should be set
tor tilt angle c using a specified number of c values.to very small values.

Anisotropic viscosity. This model is intended for use Tensor Representations
with ordered fluids (cf. below) in which the rotational diffu-
sion rate of the probe may depend on its orientation with All of the tensor properties used in the spectral calculation,
respect to the director frame. The specific model used applies including the g-matrix, the A-tensor, the linewidth tensor W ,
to the case in which the director lies along the spectrometer and the rotational diffusion tensor, R , may be expressed in
field (i.e., c Å 0) and includes rates for diffusion perpendic- three different forms: (a) Cartesian form {Mx , My , Mz}, the
ular and parallel to the field direction (called R̂⊥ and R̂\) in representation that is most frequently used in spectral fitting
addition to the molecular diffusion tensor. This model cannot procedures; (b) axial form {M⊥ , M\}, which also refers to

the Cartesian axes, but is restricted to axial symmetry; andbe used with either non-Brownian or discrete jump motion.
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geneous linewidth, and rotational diffusion tensor compo-
nents may all be specified in a similar way.

The rotational diffusion tensor is a special case, since the
transformations in Eq. [2] are applied to the log10 of the
rate constant (per seconds01) . Thus, the average rotational
diffusion rate constant RV åGRxRyRz is the geometric mean
of the rate constants for rotational diffusion about each of
the axes of the molecular diffusion frame; similarly, the axial
rotational anisotropy N å Rz /

√
RxRy is the ratio of the rate

constants for diffusion about axes perpendicular and parallel
to the zD axis. It should be noted that, in the case of axial
rotational symmetry (RxÅ Ry) , this definition of N just given
is consistent with the conventional usage (10) ; however,
that for RV differs from the more commonly employed defini-
tion, RV Å

√
R⊥R\ (10) .

There are several reasons for introducing alternative repre-
sentations for the various tensor quantities used in the fittingFIG. 1. Illustration of Cartesian versus ‘‘spherical’’ component specifi-

cation of the g anisotropy for a S Å 1
2, I Å 0 system. The spherical compo- procedure. It is often convenient to constrain a tensor to

nents correspond to (i) the isotropic average, (x / y / z) /3, ( ii ) the axial maintain a constant trace or axial symmetry during a minimi-
component, z 0 (x / y) /2, and (iii ) the rhombic component, (x 0 y) . zation, based on some prior knowledge of the system (e.g.,
The hyperfine, electronic Zeeman, rotational diffusion, and inhomogeneous

the isotropic g value and hyperfine splitting from motionallylinewidth tensor components may all be specified in either form.
narrowed spectra) . This is easily accomplished using the
modified spherical tensor components: for example, in order
to maintain axial symmetry, one would set M3 to zero and

(c) ‘‘modified spherical’’ form {M1 , M2 , M3}, the compo- vary M1 and M2 ; in order to maintain a constant trace, one
nents of which are defined in terms of the Cartesian compo- would fix M1 at the desired value and vary M2 and M3 .
nents as In addition, it frequently occurs that small deviations from

spherical or rhombic symmetry of a tensor cannot be re-
M1 Å 1

3 (Mx / My / Mz) solved from a given EPR spectrum. This situation is identi-
fied by the appearance of strong correlations amongst theM2 Å Mz 0 1

2 (Mx / My)
elements of a given tensor when they are varied in a minimi-

M3 Å Mx 0 My . [2] zation. Such correlations can sometimes be avoided by using
a different representation of the tensor (cf. Examples and

In this representation, M1 , M2 , and M3 represent the isotropic, Discussion below).
axial, and rhombic components of the tensor, respectively.
These components differ from the usual second-order spheri- Numerical Calculation of Slow-Motion EPR Spectra
cal tensor components, M(0, 0) , M(2, 0) , and M(2, 2) by

The computational methods used to calculate 1D CW andconstant factors, but are defined in such a way that they may
2D FT slow-motion magnetic resonance spectra using the sto-be directly correlated with and/or estimated from features
chastic Liouville equation have been described in detail (10–of an experimental ESR spectrum. This is illustrated in Fig.
13, 27, 28). Only a brief overview of those features of the1, which depicts a typical ‘‘powder pattern’’ spectrum for a
spectral calculation that are most relevant to the nonlinear-randomly oriented electron spin with rhombic g anisotropy
least-squares minimization procedure will be presented here.and no coupled nucleus. The three turning points in the

spectrum correspond to the standard Cartesian components
One-Dimensional CW Spectrax , y , and z , of the g tensor. The modified spherical compo-

nents correspond to (i) the isotropic average, (x / y / z) / The unsaturated CW EPR intensity as a function of fre-
3, ( ii ) the axial component, z 0 (x / y) /2, and (iii ) the quency, I(v) , may be represented in compact ‘‘matrix ele-
rhombic component, (x 0 y) , which may be determined ment’’ notation (10–12) as
from the spectral features as indicated in the figure. A trans-
formation similar to that given in Eq. [2] has been applied

I(v) Å » »nÉ(GH 0 iL) / iv1Én… … , [3]previously by us (15–18) for varying components of the g
and A tensors, and by Hustedt et al. (19) specifically for
varying components of the g tensor. The hyperfine, inhomo- where » »nÉ is a vector representing the observable magneti-
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zation, including the S/ spin operator and the equilibrium excessive computation for each spectral evaluation, signifi-
cantly diminishing the efficiency of the procedure. For moreprobability distribution function for the orientation of the
demanding problems, the basis set truncation method de-radicals, GH is the ‘‘symmetrized’’ diffusion operator used to
scribed by Vasavada et al. (27) is typically employed tomodel the classical motion of the radicals, and L is the
identify and eliminate elements of the basis set that are unim-Liouville superoperator matrix derived from the orientation-
portant for the solution of the problem at hand. This proce-dependent spin Hamiltonian. The matrix equation [3] is con-
dure can dramatically reduce the time required to computestructed using a basis set with a typical dimension of from
the spectrum, particularly for 2D calculations. However, too30 to 20,000, depending upon the motional rates, degree of
small a basis set may introduce unacceptable deviations fromprobe ordering, and the desired spectral resolution, which
the ‘‘true’’ spectral lineshape, even to the point of producingincreases with EPR frequency and the number of spectral
physically unreasonable spectra. In addition, an insufficientdimensions. The basis set is constructed as a product of

generalized spherical harmonics DL
MK(V) and spin transition basis set can have more subtle adverse effects during the

indices p and q for the electronic (S) and nuclear (I) spins: course of nonlinear-least-squares minimization. First, since
the minimization must carry out spectral evaluations over a
range of parameter values, the search may extend beyond

ÉL , M , K , pS , qS , p I , q I
…

the region for which a given truncated set is valid. Second,
å ÉL , M , K… # ÉpS , qS , p I , q I

… the calculation of partial derivatives of the spectrum with
respect to fitting parameters by the forward-difference ap-
proximation (cf. below) requires a higher degree of accuracy

ÉL , M , K… å
√

2L / 1
8p

DL
MK(V) , [4]

in the spectral intensities. Thus, a basis set which is sufficient
to produce a given spectrum with acceptable accuracy may

where pS Å m 9S 0 m *S and qS Å m 9S 0 m *S for the transition not be large enough to permit accurate calculation of its
partial derivatives. The qualitative consequences of inaccura-between electronic spin states ÉS , m *S) and ÉS , m 9S) , and p I

and q I are similarly defined for the nuclear spin states. In cies in the partial derivative spectra are described in greater
detail under Examples and Discussion.practice, the stochastic Liouville operator is constructed us-

ing a basis set that is obtained by forming certain symmetry-
derived linear combinations of the vectors defined in Eq. Two-Dimensional Fourier-Transform Spectra
[4] , which permits the matrix to be expressed in complex
symmetric form, and also allows reduction of the basis set Two basic types of two-dimensional Fourier-transform (2D

FT) experiments have been demonstrated to have major utilityin many cases. The details of these transformations are given
elsewhere (11, 28) . in the analysis of spin-label dynamics. The first is the two-

pulse 2D COSY (correlation spectroscopy) experiment, andIt is convenient to divide the basis set into subspaces
corresponding to different pS indices. These subspaces are the second is the three-pulse 2D ELDOR (electron-electron

double resonance) experiment, which is analogous to 2D ex-coupled only through the S/ or S0 operators, which appear
only in the nonsecular terms in the spin Hamiltonian or in change experiments in NMR. In both types of experiments, a

dual-quadrature signal is detected; that is, the signal has a real,the interaction with a strong irradiating microwave field (cf.
below). Thus, in the high-field limit where nonsecular terms absorptive part and an imaginary, dispersive part with respect

to each of the two frequencies defining the 2D spectrum. Inmay be neglected, the unsaturated CW EPR lineshape calcu-
lation requires only the subspace upon which the vector Én… … both the 2D COSY and 2D ELDOR experiments, these signals

can be combined in appropriate linear combinations to yieldhas a projection, namely the pS Å 1, qS Å 0 subspace
(11, 12) . The L matrix does not need to be fully diagonalized an FID-like signal called the Sc/ signal and an echo-like signal

called Sc0 . Because of partial cancellation of inhomogeneousin order to obtain the CW spectrum; the least-squares calcu-
lation uses a Lanczos tridiagonalization of the matrix fol- broadening in the echo-like signal, the Sc0 spectra are, in gen-

eral, substantially sharper than the Sc/ , so that a comparisonlowed by a continued-fraction approximation to the spectral
lineshape using the elements of the tridiagonal matrix (11– of the two aids in the discrimination of the different broadening

contributions to the lineshape (21, 22, 28).13) . The conjugate gradients version of the Lanczos algo-
rithm (27) is employed so that the number of Lanczos steps In general, 2D FT experiments contain pulses that couple

the different pS manifolds, and thus spectral calculation re-required for convergence of the spectrum may be determined
during each calculation. Thus, the number of steps taken can quires the pS Å 0 (‘‘diagonal’’) subspace corresponding to

longitudinal magnetization as well as the pS Å {1 ‘‘off-vary during the course of a minimization procedure. Proper
choice of a basis set for the spectral calculation is critical diagonal’’ subspaces, which are conjugate to each other and

correspond to counter-rotating transverse magnetization. Forto efficient nonlinear-least-squares analysis, particularly for
the fitting of 2D spectra. Too large a basis set can result in slow-motion 2D FT spectral calculations, it is generally nec-
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essary to diagonalize the stochastic Liouville matrix in each quence can be written as pS Å 0 r |1 r 0 r 01 for the
Sc{ signals. The signal following the third pulse is given byof the three subspaces, in order to obtain the eigenmodes

that fully describe the evolution of the spin system in the
absence of any microwave pulse in the high field limit, i.e., SELDOR

c{

Å »n01ÉO01exp(0L01t2)O tr
01P (01R0)O0exp(0L0T )O tr

1 L1O1 Å L1 O tr
0 L0O0 Å L0 O tr

01L01O01 Å L01 .
1 O tr

0P (0R|1)O|1exp(0L|1t1)O tr
|1Én|1 … . [7][5]

Because the diagonal space is larger, the pulse propagatorsHere, the O and L matrices are respectively the orthogonal
between the diagonal space and the off-diagonal space intransformation matrices composed of the eigenvectors and
this equation are rectangular. Detailed expressions for thethe diagonal matrices of eigenvalues for each subspace with
matrix elements of L in each of the pS manifolds, and thethe pS values for the subspace specified as a subscript. De-
methods for efficient diagonalization of the stochastic Liou-tailed expressions for L and a discussion of the properties
ville equation are given elsewhere (28) .of O and L in each manifold are given elsewhere (28) .

The pulses used in a 2D FT EPR experiment are expressed
Spectral Fitting Algorithmin the form of pulse propagator matrices that depend only on

the pS and qS indices, and whose matrix elements in the ÉpS, ‘‘Model Trust Region’’ Levenberg–Marquardt Algorithm
qS
… basis may be expressed in terms of the pulse tipping angle

u and phase f (28–30). Given the eigenvectors and eigenval- The specific algorithm used in this work closely follows
ues in Eq. [5] and a sequence of appropriate pulse propagators, the implementation found in the MINPACK program library
it is straightforward to calculate the 2D EPR signal for the 2D (32) , which utilizes one of the quasi-Newton methods
correlation spectroscopy (COSY) and 2D exchange (ELDOR) known as the ‘‘model trust region’’ modification of the Lev-
experiments utilized in this work. The initial density matrix is enberg–Marquardt approach (33, 34) . Previous versions of
the equilibrium density matrix which has nonzero elements our slow-motion fitting programs (15–18) utilized the basic
only for zeroth-order coherence (pS Å 0). The initial p/2 Levenberg–Marquardt algorithm available in Version 4 of
pulse in each sequence converts this magnetization to first-order the IMSL library (35) .
coherence which is represented as the two counter-rotating The experimental data are represented as a column vec-
transition moment vectors Én{1… that specify the transverse tor h consisting of a list of values hi containing the inten-
magnetization corresponding to density matrix elements with sity of the spectrum at each point in the spectral domain.
pS Å {1. During the detection period, only the Én01… transition The vector h may include a sequence of spectra that are
moment contributes to the observable magnetization »S/… . to be fitted simultaneously, a spectrum with multiple di-
Thus, 2D ESR signals for the coherence-transfer pathways of mensions, or a sequence of multidimensional spectra. The
interest may be written as a product of Én{1… with the appro- experimental data values are always represented as a one-
priate combination of transformation matrices, exponentiated dimensional vector regardless of the actual number or di-
eigenvalue matrices, and pulse propagator matrices, which is mensions of the spectra. The two- and three-dimensional
then projected onto »n01É. spectra considered in this work are specified in leading-

In the COSY sequence, the coherence-transfer pathways dimension order ( i.e., spectra depending upon the frequen-
pSÅ 0 r|1 r0 1 are responsible for the Sc/ and Sc0 signals cies v1 and v2 are stored so that points corresponding to
defined by Gamliel and Freed (31) , which are respectively the same v1 value are contiguous) . A similar scheme has
known as ‘‘P-type’’ and ‘‘N-type’’ signals in the NMR liter- been utilized in the nonlinear-least-squares analysis of
ature. Those signals can be written as motionally averaged 2D NMR spectra (36 ) .

The theoretical spectrum calculated at each point in the
spectral domain is similarly represented as the vector f(x) ,SCOSY

c{
where x is a vector containing the set of parameters to beÅ »n01ÉO01exp(0L01t2)O tr

01P (01R|1)O|1 determined by the fitting procedure. The problem is then to
find the x that best matches f(x) with h according to some1 exp(0L|1t1)O tr

|1Én|1 … , [6]
criterion, most commonly, according to the minimum in the
squared differences between the vectors. More explicitly,where P (pS

2RpS
1) denotes the pulse propagator that transforms

given the residual vector f (x) å h 0 f(x) , we may seekthe density-matrix elements from the pS
1 subspace into the

to minimize the unweighted sum of squared residualspS
2 subspace. The pulse propagators P (pS

2RpS
1) in Eq. [6] are

proportional to the unit matrix.
The coherence-transfer pathways for the 2D ELDOR se- s 2 Å É f (x)É2 Å f T(x)rf (x) [8a]
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It is also possible to weight the residuals using some a priori User control is provided over some of the parameters in
Eqs. [9] and [11]. The relative forward-differences step dxiknowledge of the experimental error, which is taken to be

the uncertainty in the measured spectral intensity at a given (typically 1005) is adjustable for each search parameter,
which provides a means of checking for roundoff errors infield value, i.e., the experimental noise level. The standard

deviation of the noise, s, is estimated from the experimental the computation of J . The accuracy of the calculation of J
is critical to the proper performance of the algorithm andpoints along a sufficient length of baseline (or area of base-

plane). In practice, s is obtained from the variance of a correct statistical analysis of the results. The user may also
specify a multiplicative factor for each of the scaling factorslinear fit to the two baseline segments at either end of the

spectrum that should comprise about 10–20% of the spectral Dii , which are initially set to the norms of the corresponding
column of J . This effectively increases or decreases thesweep width. Similarly, a plane may be fitted to a 10–20%

edge around the border of a two-dimensional spectrum to search step size for the given parameter.
The scalar l in Eq. [9] is the Levenberg–Marquardt pa-estimate the spectral noise. The noise level is assumed to be

constant across a given spectrum; however, for global fits rameter. In the simplest and most commonly used implemen-
tation of the Levenberg–Marquardt method (37) , the stepsinvolving multiple spectra, s may be different for each spec-

trum. The sum of weighted residuals, which should be the along each parameter dimension are not scaled (i.e., D Å
I) , and l is either increased or decreased by a constant‘‘true’’ x 2 of the fit, is calculated as
factor at each iteration, depending on whether É f (x/)É2 ú
É f (x0)É2 or É f (x/)É2 õ É f (x0)É2 . This approach has thex 2 Å f T(x)rs01

rf (x) , [8b]
drawback that the optimal value of l is not determined at
each iteration, and certain pathologies in the J matrix maywhere s is a diagonal matrix whose elements contain the
arise if the scales of individual parameters are too different.experimental si for each element of f .
In our previous versions (15–18) , this problem was reducedThe minimization procedure takes an initial estimate for
by the use of a log scale for parameters such as the R tensor,the parameters being searched, x0 , to calculate a refined
and also by further rescaling of the parameters.estimate of the parameters, x/ , according to the formula

More sophisticated implementations carry out a line
search in order to minimize É f (x/)É2 with respect to l atx/ Å x0 0 [JT(x0)J(x0) / lD]01J(x0) f (x0) , [9]
each iteration, but this approach requires additional function
evaluations. However, if one defines a step bound dc ( thewhere J(x0) represents the Jacobian matrix of f (or s01

rf
trust region) around x0 within which the residual functionfor weighted residuals) with respect to the parameters x ,
is assumed to be well approximated by the equationevaluated at x0

É f (x)É2J(x0) Å S Ìf
Ìx1

D
x0

! S Ìf
Ìx2

D
x0

! rrr

à É f (x0)É2 0 [JT(x0) f (x0)]rx

/ 1
2xr[JT(x0)J(x0)]rx , [12]

then the x/ corresponding to the optimal l may be found
Å

S Ì f1

Ìx1
D

x0

S Ì f1

Ìx2
D

x0

???

S Ì f2

Ìx1
D

x0

S Ì f2

Ìx2
D

x0

???

: : ???

[10] by a line search that utilizes the information in J(x0) without
recalculating the spectrum. The initial step bound dc is taken
to be the lesser of the quantities aÉDrxÉ (a is a user-speci-
fied scaling factor) and the length of the first step Éx/ /
x0É calculated according to Eq. [9] . Subsequently, dc may
be either increased or decreased depending upon how closely

and D is a diagonal matrix with Dii containing a scaling
the change of the residual function predicted by Eq. [12],

factor controlling the step length for the parameter xi . For
D fpred , matches the calculated change, D fcalc Å É f (x0)É 0

weighted residuals, the i th row of J is also multiplied by a
É f (x/)É. If D fcalc /D fpred § 0.75, then either Eq. [12] is a

factor of s01
i . In practice, each column of J is calculated

good approximation to É f (x)É within the trust region or the
by a forward-differences approximation

function continues to decrease rapidly beyond the step
bound, and dc may be increased, typically by a factor of 2.
If D fcalc /D fpred õ 0.1, Eq. [12] is not a good approximationS Ìf (x)

Ìxi
D Å 1

dxi

[ f (x / xP idxi ) 0 f (x)] . [11]
throughout the trust region, and dc must be decreased. This
modification of the basic Levenberg–Marquardt method is
among those most generally recommended for calculation-where xP i is the unit vector corresponding to xi in x.
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intensive problems such as EPR spectral fitting in recent recalculation of L precede all others in the list. The overall
efficiency is further increased by carrying out the optimizationtreatises on nonlinear-least-squares methods (33, 34, 38) .

After the completion of a step, x/ is taken as the new x0 of the separable parameters without resorting to nonlinear mini-
mization methods, as we now describe.and the procedure repeats until it converges to a minimum.

Convergence is judged according to one or more of the
Scale Factors for Multicomponent Spectrafollowing criteria: ( i ) function convergence, where the rela-

tive change in residuals (É f (x/)É2 0 É f (x0)É2) /É f (x0)É2

Separable linear parameters appear in the minimization
after a step is less than some predefined tolerance, ftol

problem when the experimental data are to be fitted using a
(typically 1004) ; ( ii ) parameter convergence, for which the

sum of spectral components, each with its own scaling factor.
scaled norm of the step ÉD(x/ 0 x0)É2 is less than the

If all of the calculated component spectra are normalized
tolerance xtol ( typically 1005) , and (iii ) gradient conver-

to the same integral (or double integral, for first-derivative
gence, in which the scaled norm of each column of J(x/)

spectra) , this scaling procedure is equivalent to determining
is less than some prespecified tolerance gtol ( typically

the relative population of each species, which is a common
1006) , which can occur if x/ is at an extremum of f (x) .

objective in the analysis of multicomponent spectra in gen-
True convergence according to the third of these criteria

eral (40–42) . Specifically, at each iteration of the nonlinear
is relatively rare; most often, termination due to gradient

parameter minimization, the scaling factors ai are obtained
convergence signals an extremely weak dependence of the

by solving a linear equation of the form
spectrum on all of the fitting parameters.

h Å Fra Å [f1 ! f2 ! rrr]ra, [13]
Separable Fitting Parameters

where h is the data vector and the design matrix F is com-In separable least-squares problems, it is possible to partition
posed of column vectors corresponding to each of the calcu-x Å (j, h) such that for a given set of nonlinear parameters
lated component spectra. In the case that several spectra arej, \ f (j, h)\ is easily minimized with respect to h. Such a
being fitted globally, the spectra are packed into the columnseparability has the advantages that no initial estimate for h is
vectors fi in the same order as the experimental data. Theneeded, and fewer nonlinear search parameters are involved,
solution vector a is obtained from a standard QR factoriza-reducing the time needed to compute J . One important special
tion of the design matrix F (43) ,case of a separable problem for the present application is when

h contains only linear parameters. Although it is possible to
F Å QR; a Å R01QTh , [14]minimize a function of this type using a single-step iterative

algorithm (39), we utilize an equivalent but somewhat less
efficient procedure in which the nonlinear functions depending where Q is an orthogonal rectangular matrix, and R is an
on j are first calculated and the linear parameters in h deter- upper triangular square matrix. Then the best-fit spectrum
mined by linear least-squares at each iteration of the nonlinear for the given set of nonlinear parameters is given by
parameter search. This ‘‘nested’’ procedure is necessary to
accommodate the possibility of spectral shifting (cf. below), f(x) Å ∑

i

aifi (x) . [15]
but it does take implicit advantage of the theorems proved by
Golub and Pereyra (39) that establish the properties of global
convergence for this method. Because of the very large memory requirements it would

impose, this type of multicomponent analysis has not beenPrevious versions of our slow-motion fitting programs for
CW EPR spectra (15–18) have relied on a different sort of implemented in the 2D spectral calculations described above.

The use of an orthogonal decomposition method such as theseparation-of-parameters technique for optimizing the calcula-
tion. In those versions, the fitting parameters were divided into QR factorization has the advantage that linear dependencies

or near-dependencies among the component spectra can betwo groups according to whether a change in the parameter
required a retridiagonalization of the L matrix. Parameters identified and removed. That is, given two components having

practically indistinguishable spectra (aside from a possible lin-which enter only into the continued-fraction part of the spectral
calculation, such as field range and offset, inhomogeneous li- ear scaling factor), one of them may be eliminated from the

linear-least-squares problem. This is accomplished by utilizingnewidth, phase, and scale, were optimized separately by a
nested nonlinear-least-squares procedure. This scheme was de- column pivoting during the QR procedure and examining the

diagonal elements of the resultant R matrix.signed to avoid costly recalculation of the L matrix during the
course of the minimization. In the present version, the same The method outlined above bears some resemblance to

other methods of multicomponent EPR spectral analysisobjective is achieved by maintaining the list of search parame-
ters in an order such that the parameters that do not require that have been described in the literature. The iterative
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subtraction technique of Evans and Morgan (41 ) is a form The first two terms on the right-hand side of this equation
are positive constants, whereas the third term is simply theof orthogonal decomposition that offers a similar ability

to distinguish the number of independent components in correlation function for h(v) and f(v) , which is a function
a given spectrum. It suffers the drawback that it requires of Dv. Thus, the sum of residuals can be written
regions in which there is little overlap between the compo-
nent spectra in order to perform optimally. The common \ f (v) \ 2

factor analysis employed by Moens et al. (42 ) is based
Å \h(v) \ 2 / \f(v) \ 2 0 2 corr{h , f}(Dv) [17]on a method that is widely applied in chemistry and related

fields (40 ) and also relies on orthogonal decomposition.
from which it is evident that the minimum in the residualsHowever, this type of approach requires a set of experi-
\ f (Dv) \ 2 occurs at the maximum of the correlation functionmental spectra in which the relative populations of the
corr{h , f}(Dv) . The problem is thus reduced to findingindividual components are varied, which is usually im-
the value of Dv at this maximum. For discrete data, it ispractical for slow-motion spectra.
straightforward to calculate corr{h , f}(Dv) utilizing theSpectral Shifting
properties of the discrete fast Fourier transform, and the

The vector of separable parameters h may contain nonlin- desired value of Dv may then be obtained by polynomial
ear parameters as long as h is uniquely determined for each interpolation of the maximum from the tabulated correlation
j. One nonlinear EPR parameter that is usually separable in function. The accuracy of this interpolation is critical to the
this sense is the trace of the g tensor, which determines the smooth and reproducible performance of the Levenberg–
center frequency (or field position) of the spectrum. This Marquardt algorithm, since the extrema in the correlation
quantity is particularly important to fit in cases where either function are quite sharp, i.e., the residuals depend very
the spectrometer frequency or the absolute magnetic field

strongly on Dv. The specific interpolation scheme used is
is not known to sufficient accuracy. Most spectral fitting

the five-point Lagrange formula for equally spaced abscissas
procedures that are used to obtain full g-tensor information

(44) ; the root of this function’s derivative within the five-
from randomly (or partially) oriented spin probes include

point region is then obtained by a simple polynomial root-
all three tensor components as nonlinear parameters in the

finding algorithm (37) .
fit. However, one component may be removed from the set
of nonlinear parameters by introducing a spectral shift, Dv, Combined Spectral Shifting and Scaling
which is determined at each iteration. In the past (15–19) ,

It frequently occurs in multicomponent fitting problemsa nested procedure has been used, wherein the optimum
spectral shift Dv is located by a search algorithm such as that both the spectral shift and the individual spectral scaling
a binomial or golden-section search, while a linear-least- factors must be determined. In this case, it is possible to
squares fit is used to optimize the baseline shift and scale combine the methods described above to determine both the
factor for the signal amplitude. The use of spline-interpolated linear and nonlinear components of h. For this application,
data allowed a minimum number of data points to be fitted. it is most convenient to use the following form of the linear
In the procedure described below, we utilize a different ap- equation for the scale factors:
proach involving rapid calculation of the correlation function
between the model spectrum and experimental data, which
may be used to determine the spectral shift in one-dimen-

corr{h , f1}(Dv)
corr{h , f2}(Dv)
corr{h , f3}(Dv)

:

sional spectra, as well as the shift along one dimension of
a 2D spectrum. A similar procedure is used for shifting
multicomponent spectra, as described below.

The sum of the squared differences between an experi-
mental spectrum h(v) and a shifted calculated spectrum
f(v 0 Dv) can be written (assuming continuous functions Å

\ f 1\
2 f1rf2 f1rf3 ???

f2rf1 \f2\
2 f2rf3 ???

f3rf1 f3rf2 \f3\
2 ???

: : : ???

a1(Dv)
a2(Dv)
a3(Dv)

:

.
for the moment)

\ f (Dv) \ 2

[18]Å *
/`

0`

dv[h(v) 0 f(v 0 Dv)]2

This equation is equivalent to the normal equation formÅ *
/`

0`

h(v)2dv / *
/`

0`

f(v 0 Dv)2dv
of a linear least-squares problem, with the exception that
corr{h,fi}(Dv) for a specific value of Dv replaces hrfi in

0 2 *
/`

0`

h(v)f(v 0 Dv)dv. [16] the left-hand vector elements. The norms and dot products
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of the component spectra that appear in the matrix are first Under these assumptions it is possible to express an uncer-
tainty bound for each individual parameter and joint confi-calculated and stored as shown. Since this matrix is indepen-

dent of Dv, it is sufficient to carry out a single QR decompo- dence regions for subsets of parameters using information
obtained from the covariance matrix c , which is estimatedsition of it that may subsequently be used for solving Eq.

[18] for a series of different Dv values. Then the correlation from the Jacobian matrix evaluated at the residual minimum
x* asfunctions between the data and each of the component spec-

tra, corr{h , fi }(Dv) , are calculated using the discrete fast
Fourier transform. For each Dv in the domain, the left-hand- c(x*) Å C01(x*) Å [JT(x*)J(x*)]01 . [20]
vector is substituted with the values of corr{h , fi }(Dv) ,
and the optimal scaling factors for each component at the Equation [20] implies additional assumptions that are
given Dv are found by solving the set of linear normal used to derive the statistical expressions given below,
equations in a manner similar to Eq. [14]. The set of solu- namely (i) that the residual function f (x*) is well approxi-
tions for a range of Dv values may be calculated at once mated by a multidimensional Taylor expansion around the
by forming a matrix on the left-hand side of Eq. [18] with minimum which includes the curvature matrix C(x*) in
a column for each Dv. The sum function (i ai (Dv)corr{h , its second-order term, and (ii) that C(x*) is in turn well
fi }(Dv) is then tabulated as a function of Dv and the approximated by the product JT(x*)J(x*). These assump-
optimal value of Dv determined by polynomial interpolation tions are violated when f exhibits a highly nonlinear depen-
as described above for the single-component case. dence upon the parameters in x , i.e., when there is significant

local curvature of the surface at x*, so that higher-orderStatistical Inference from Nonlinear-
terms of the Taylor expansion are nonnegligible.Least-Squares Minimization

An essential part of experimental measurements using Parameter Uncertainties and Confidence Regions
least-squares spectral analysis is the estimation of measure-

For minimizations of the weighted residuals, the confi-ment error, that is, some estimate of how close the pa-
dence bounds for each parameter at the x 2 minimum arerameters at the least-squares minimum are to the ‘‘true’’
given by (37)parameter values. The Levenberg–Marquardt and related

quasi-Newton methods have a number of advantages for
dxi Å {

√
Dx 2

pcii [21]nonlinear-least-squares analysis that are underutilized in
magnetic-resonance applications. These algorithms all share
the feature that the Jacobian matrix is calculated during the and the boundary of the joint confidence region for a given
parameter search. Upon convergence of the search, the Ja- subset of parameters in the p-dimensional vector xp is given
cobian contains information about the local topology of the by
x 2 function that, under certain conditions, can be used to

(xp 0 x*p )rCpr(xp 0 x*p ) £ Dx 2
p , [22]draw statistical inferences about the parameter uncertainties,

the relative importance of each parameter, and correlations
amongst the fitting parameters. where Cp denotes the curvature matrix corresponding to the

subset of p parameters in xp . In Eqs. [21] and [22], the
Basic Assumptions Required for Statistical Analysis quantity Dx 2

p is calculated from the x 2 probability distribu-
tion function for p degrees of freedom and a prespecifiedIn order to obtain useful expressions for parameter confi-
confidence interval a such that the probability that the truedence regions in terms of the Jacobian matrix and the experi-
solution vector lies within the region x 2(xp) 0 x 2(x*p ) £mental noise, it is necessary to make some assumptions about
Dx 2 is given by a. It should be noted that p Å 1 in Eq.the experimental data. Specifically, the data are assumed to
[21], whereas in Eq. [22], p is the number of parametershave the form
in the subset for which the confidence region is being calcu-
lated. This approach was previously used (15–18) in slightlyhi Å fi (x†) / 1i [19]
modified form (35, 45) .

For unweighted residual minimizations, t-distribution sta-where the 1i are assumed to be normally distributed ran-
tistics are used to estimate confidence bounds for each pa-dom values with a standard deviation s1 . A second, more
rameter, and F-distribution statistics are used to estimateprofound assumption expressed in Eq. [19] is that the
joint confidence regions, as (34)experimental spectrum underlying the noise can be exactly

reproduced by the model f(x ) for some specific set of
parameters x†. dxi Å {ta /2

n0ps
√

c *ii [23]
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ses from the output of the fitting program. For the i th param-(xp 0 x*p )C *p (xp 0 x*p ) £ ps 2Fa
p ,n0p , [24]

eter, the program reports the uncertainty bound dxi calculated
according to either Eq. [21] or Eq. [24]. The program alsowhere n is the number of data points. The primes on c and
reports a matrix of the correlation coefficients rij betweenCp are added to distinguish them from the matrices in Eqs.
each pair of parameters. The covariance matrix c (or c *)[21] and [22], since the Jacobian matrix from which they
for the two-parameter subset is then constructed asare calculated is not scaled by the spectral noise distribution.

Parameters outside the set of nonlinear parameters may
be included in this type of analysis as well, so long as it is F dx 2

i rijdxidxj

rijdxidxj dx 2
j
G å F cii cij

cij cj j
G . [25]

possible to calculate the partial derivative of the residuals
with respect to such parameters. For the scaling factors,
the partial derivatives are simply the unscaled individual Then, defining dx Å x 0 x*, Eq. [22] for two variables can
component spectra; similarly, the partial derivative of the be written as
residuals with respect to the shift parameter Dv is simply
the first derivative of the scaled total spectrum with respect to

Dx 2 Å S dxi

dxj
DrF cii cij

cij cj j
G01

rS dxi

dxj
D [26]field (or frequency), which may be calculated numerically.

Columns containing the appropriate first derivatives for sep-
arable parameters are appended to the Jacobian matrix, and

which may be expanded astheir uncertainties and covariances calculated as for the non-
linear parameters.

If the underlying assumptions expressed in Eq. [19] are Dx 2 Å 1
D

(dx 2
j c 2

ii 0 2cijdxi dxj / dx 2
i c 2

j j) [27]
valid, then s 2/n will be an unbiased estimate of the average
s 2 (34) . Thus, in the limit of very large sample sets, t and
F statistics should give equivalent results to x 2 statistics for with D Å ciicj j 0 c 2

ij . Solving this equation for dx2 gives the
two boundaries of the error ellipsenormally distributed errors. For the simulated spectra utilized

in this work, which do have normally distributed noise, the
two approaches do indeed give nearly identical results. How-

dx2 Å
1

c11

[c12dx1 {
√
(c 2

12 0 c11c22)dx 2
1 / c11Dx 2] [28]ever, for real experimental data, we find that Eqs. [23] and

[24] tend to give larger estimates than Eqs. [21] and [22]
for both the uncertainty bounds and the confidence regions. which has real roots for

It is worth reemphasizing at this point that none of the
expressions given above provide a valid estimate of parame-
ter uncertainties in the cases that (a) the errors in the spec- dx1 £ Z c11Dx 2

c11c22 0 c 2
12
Z . [29]

trum are not normally distributed, (b) the underlying spec-
trum cannot be exactly represented by the model function f

In the case of large correlations (rijú 0.9) , it is possible toat some point in the search parameter domain (i.e., one is
use the major axis of the ellipse to define a linear relationshipfitting with an incorrect model) , or (c) the residual function
between the two parameters in the region of the solution:has high curvature or nonlinearity in the neighborhood of

the minimum. Although we have found that the third of
these difficulties can largely be avoided by proper scaling dx2 Å tan z dx1; tan 2z Å S 2c12

c11 0 c22
D . [30]

of the dynamic parameters ( in log space) , the large majority
of experimental spectra fail to meet the first two criteria
rigorously. It might therefore appear that Eqs. [21] – [24] One approach to reducing the dimension of the search space
are of limited utility for estimating experimental errors; how- in the case of highly correlated parameters is to use Eq. [30]
ever, it is still possible to obtain reasonable uncertainty esti- to impose a linear constraint on the fitting parameters (34) .
mates from them in many cases, as will be discussed under
Examples and Discussion below. Quality of Fit Criteria

A wide variety of statistical tests and empirical criteriaCalculation of Two-Parameter Error Ellipses
have been used to measure the quality-of-fit for various mini-
mization procedures. Here, we briefly review a selection ofParameter confidence regions are most often used to ex-

amine correlation between only two parameters (an example the criteria that have been applied to EPR spectra in the
literature and compare them for application to slow-motionis given under Examples and Discussion). Here, we give

the expressions used to calculate two-parameter error ellip- spectra.
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Reduced chi-squared test. The x 2 given by Eq. [8b] at where hV and fU respectively are the mean values of the data
the minimum of the weighted residuals offers a semiquantita- and the calculated function. The linear correlation coefficient
tive measurement of the goodness-of-fit, since the true x 2 given in Eq. [31] ranges between 01 and /1, with 1 corre-
should be distributed about the value n 0 p with a standard sponding to a ‘‘perfect’’ fit, whereas that of Eq. [32] depends

upon the scale of the spectrum.deviation of
√
2(n 0 p) , where n is again the number of

For slow-motion EPR spectra, the correlation coefficientpoints and p is the number of fitting parameters. Thus, for
appears to be a relatively weak criterion for an acceptablean ‘‘ideal fit,’’ i.e., one in which the only source of deviation
fit. Some fits that exhibit obvious flaws and fail by otherbetween data and calculation is normally distributed spectral
quantitative criteria have still given linear rlin values greaternoise, the reduced x 2 , given by x 2

red Å x 2 / (n 0 p) , should
than 0.95. The fits to simulated spectra with normally distrib-be distributed about unity with a standard deviation of
uted noise shown below all gave rlin values above 0.999.

√
2/(n 0 p) .

Residual index, R. This type of statistic is similar to oneThis criterion is fairly strict. In practice, a x 2
red ap-

used in X-ray crystallographic analysis and has been appliedproaching unity can readily be obtained using simulated da-
to magnetic-resonance spectral fitting in a few cases. Alter-tasets with normally distributed pseudorandom noise, but it
native forms for R that have been applied in EPR includeis very difficult to achieve for experimental data, especially
(48)when global fits to two or more spectra are involved. Any

deviations between the data and the calculated fit that are
detectably larger than the spectral noise level will produce

Rabs Å
(i Éhi 0 fiÉ

(i ÉhiÉ
[33]

a relatively large x 2
red . In practice, fits with x 2

red values as
large as 50–100 can still appear reasonable to the eye (cf.
Examples and Discussion). and (42)

Quality-of-fit parameter. A related quantity that can be
used to estimate the quality-of-fit is Q (37) , the cumulative

Rsqr Å
(i (hi 0 fi )2

(i (hi 0 hU )2 , [34]probability distribution function for x 2 , which assumes val-
ues from 0 to 1. Essentially, Q is the probability of finding
the experimental x 2 based on the expected distribution of both of which approach zero for a perfect fit. These expres-
x 2 for the available degrees of freedom. If Q is very small, sions essentially give the total deviation between the data
the discrepancies between data and model are unlikely to be and model as a fraction of the integrated signal amplitude
random fluctuations. in some form. A value of Rabs õ 0.05 has been suggested

Q has proven to be of almost no practical utility for slow- as a criterion for a fit that is ‘‘quite good’’ (14) . The value
motion spectral fitting, mainly because it goes to zero very of Rsqr should be smaller for an equivalent fit; Rsqr É 0.01
rapidly as x 2 deviates from n 0 p . In practice, Q for many or less has been suggested as an appropriate criterion for a
of the experimental data sets we have examined is smaller good fit (42) . In practice, the actual cutoff values are likely
than the floating-point machine precision of our workstation, to depend on the experimental signal-to-noise ratio. Fits to
and it can be very small even for fits that by other criteria simulated slow-motion data with an S /N of 100 give Rabs
are quite acceptable. Fits to simulated data sets typically values of 0.04–0.06, whereas the best fits to experimental
give Q values of 0.1–0.6; however, any value above 0.001 nitroxide spectra with comparable signal-to-noise typically
should be considered an excellent fit to experimental data. produce Rabs É 0.1. The residual index thus appears to be a

Correlation coefficient, r. A more commonly used crite- more useful empirical measure than the linear correlation
rion is the correlation between the data and the calculated coefficient r , but much less rigorous than the x 2 and related
spectrum. Alternative forms of the correlation coefficient r tests.
that have been used in EPR analysis include the linear corre-

Condition of Fitlation coefficient (19, 46)

The Jacobian matrix utilized in the Levenberg–Marquardt
and related quasi-Newton minimization algorithms possesses

rlin Å
(i(hi 0 hU )(fi 0 fU )

[(i(hi 0 hU )2 (i (fi 0 fU )2] 1/2 [31]
some useful diagnostic features for identifying ill-condi-
tioned fit, i.e., when one or more parameters do not signifi-
cantly affect x 2 , or when two parameters are linearly depen-and the correlation coefficient used by Jackson (47)
dent. In the first of these cases, J will have a zero column,
whereas in the second case, two columns of J will differ by
only a multiplicative factor. Either of these conditions leadsr Å (i hifi

((i f
2
i )1/2 , [32]

to a zero determinant of the full J matrix, so that Eq. [9]
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cannot be solved without removing the appropriate columns quardt method; and (iv) efficient optimization of separable
parameters in order to reduce the dimension of the parameterof J . Although these extreme pathologies are rarely encoun-

tered in practice, the full implementation of the QR decom- search space, as described under Methods. These enhance-
ments have improved the efficiency of the calculation to theposition algorithm with pivoting can be used to identify

when J is ‘‘nearly’’ rank-deficient according to some prede- point where it is possible to carry out routine interactive
analysis on an IBM RS-6000 RISC laboratory workstationfined tolerance.
operating under the AIX (UNIX) system, even for relatively
large-scale problems. For example, a series of global minimi-EXAMPLES AND DISCUSSION
zations for liquid crystal spectra obtained at two director
orientations for eight different temperatures takes about 20We have developed two general computer programs,

NLSL and NL2DC (cf. end of this section), based on the minutes to complete, operating interactively. For four fitting
parameters, this corresponds to approximately 1500 individ-models and methods outlined above, for least-squares analy-

sis of CW EPR and 2D EPR data sets, respectively. Magnetic ual spectral calculations, or about 750 ms per calculation.
The program may also be run in production mode by speci-parameters as well as dynamic parameters associated with

a selection of different models may be optimized. Both pro- fying the fitting commands in a script file once an appropriate
set of conditions for the minimizations has been identified.grams also allow for global analysis of a series of spectra

obtained by varying one of the experimental conditions (e.g., In the examples that follow, we illustrate some of the
more significant applications of slow-motion EPR spectralsample orientation or 2D mixing time) and both incorporate

the separated-variables approach to reduce the parameter fitting by the Levenberg–Marquardt method. In many cases,
the data sets employed are simulated by adding normallysearch space. In addition, program NLSL can also carry out

fitting of multiple components in either a single or a global distributed noise to a theoretical spectral lineshape. In addi-
tion to their illustrative purpose, such spectra provide a use-minimization.

Among the more significant challenges for ‘‘fully auto- ful gauge of how accurately the least-squares procedure can
recover the true model parameters. The idealization of themated’’ spectral analysis are the determination of initial

search parameter values, and the presence of local minima data also allows an assessment of the intrinsic resolution of
different types of spectra and fitting procedures with respectin the function to be minimized. The tasks of choosing a

starting point and avoiding false minima become particularly to the model parameters. Where appropriate, examples using
real experimental data will be given, particularly with refer-difficult to automate when a large number of fitting parame-

ters or multiple data sets are involved. The NLSL and ence to procedures for statistical analysis of the fitting pa-
rameters under nonideal conditions.NL2DC programs are therefore not intended to carry out

fully automated least-squares analysis; rather, they are based
on the design philosophy that the optimal fitting algorithm Parameter Correlation: Resolution of
is one which best combines the intuition of the user with Rotational Anisotropy
the speed and (presumably) the objectivity of a computer.

In order to achieve such a combination, the programs are Although correlations amongst the search parameters are
widely neglected in EPR spectral fitting, they occur quitebased on a simple command language interface that enables

real-time, interactive modification of the parameter values, frequently and provide an important criterion for assessing
the reliability of the information derived from the fit. Thissearch parameter set, or fitting procedure itself. The minimi-

zation may be interrupted at any time, modified, and re- is particularly true for slow-motion spectra, where the large
number of available model parameters frequently leads tostarted. In most operating environments, the NLSL program

also displays the current best-fit function graphically, provid- ‘‘overfitting’’ of the data; that is, more quantities may be
sought in the minimization procedure than can accuratelying a convenient means of choosing starting parameters.

Whereas programs for real-time, interactive fitting of mo- be determined from the available data. Thus, the appearance
of large correlations amongst fitting parameters can be ationally narrowed spectra have been available for some time

(49–52) , such an approach had been prohibitive for slow- useful diagnostic for identifying such cases and determining
the intrinsic resolution of the data with respect to the modelmotion spectra because of the much larger computational

burden involved. Critical steps in the extension of such meth- parameters, as we now illustrate.
A major goal in the analysis of slow-motion EPR spectraods to slow-motion analysis have included (i) the utilization

of sparse matrix methods such as the Lanczos algorithm is to determine reliably the anisotropy of the spin probe
rotational motion. This may be particularly important forand related methods (11–13) , particularly for obtaining the

eigenvectors required in 2D calculations (28) ; ( ii ) minimi- nitroxide-labeled macromolecules which can exhibit highly
anisotropic reorientational behavior. The sensitivity of thezation of the basis sets required (27) ; ( iii ) the introduction

of an efficient modification of the basic Levenberg–Mar- ESR spectrum to rotational anisotropy may be expected to
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TABLE 2vary as one proceeds from the limit of motional narrowing
Summary of Magnetic Tensor Parameters Used for thethrough the slow-motion region. For example, in the case of

Simulated Spectra Used in This Workan axially symmetric rotational diffusion tensor, the average
rotational rate constant RV å

√
3

R 2
⊥R\ and the rotational anisot-

Data set
ropy Nå R\ /R⊥ can uniquely be determined from the homo-
geneous linewidths of the three 14N hyperfine lines in the Parameter 1 2 3a 4 5
motionally narrowed spectrum, assuming that the magnetic

gxx 2.0089 2.0096 2.0089 2.0089 2.0081(g and A) tensors of a nitroxide are known (53–55) . As
gyy 2.0021 2.0063 2.0058 2.0063 2.0061the motion slows, the degree to which RV and N may be
gzz 2.0058 2.0021 2.0021 2.0021 2.0024

independently determined decreases until the rigid limit is axx 5.6 5.4 4.9 5.0 5.6
reached, at which point they cannot be measured from the ayy 33.8 5.1 4.9 5.0 5.3

azz 5.3 33.6 33.0 33.0 33.8spectrum at all. In the incipient rigid limit, only the faster
rx b 7.326 7.699 c 7.930components of anisotropic motion are detectable; for exam-
ry b 7.628 7.699 c 7.930ple, with N ú 1, the spectrum will become more sensitive
rz b 8.477 8.398 c 9.362

to R\ and less sensitive to R⊥ as the motion slows. At the betad 15 30 20
slowest motions, there will be a range of combinations of RV b0 3400 d 3405 3400 3262

gib0 2.0 e 2.0 2.0 1.125and N that give the correct value of R\ and therefore fit the
gib2 0.5data reasonably well, but produce an incorrect value for R⊥ .
c20 2.50 4.520Such situations are detected by a high correlation coefficient
c22 01.25 1.432

between RV and N when these components are simultaneously
varied in a minimization. Note. Explanation of parameter names and units for each parameter are

given in Table 1.
a Calculated for psi Å 0, 30, 60, and 90, and for a MOMD spectrum

with nort Å 15.
b A set of rprp and rpll values were used as indicated in Table 3.
c A set of rbar values was used for each of two components as specified

in Table 7.
d Calculated for 89000 and 3400.
e 3.0 G at b0 Å 89000; 2.0 G at b0 Å 3400.

We illustrate this effect for simple Brownian rotational
diffusion in an isotropic solvent with an axially symmetric
anisotropic diffusion tensor. Figure 2 shows a series of simu-
lated X-band slow-motion CW EPR spectra which were cal-
culated using magnetic parameters intended to represent the
cholestane spin label (CSL) (set 1 in Table 2), assuming
Brownian rotational diffusion in an isotropic solvent over a
range of rotational diffusion rates (R⊥ Å 3.0 1 106, 1.0 1
107, 3.0 1 107, and 1.0 1 108 s01) with a constant anisot-
ropy of N Å 10. Normally distributed random noise was
added to each spectrum to produce a signal-to-noise ratio
of 100.

For each of the spectra shown, least-squares minimiza-
tions were carried out with respect to the inhomogeneous
Gaussian broadening parameter and either the average and

FIG. 2. Series of simulated X-band slow-motion CW EPR spectra (open
the anisotropy of the diffusion tensor components ( log10RV /circles) calculated using magnetic parameters of CSL (cf. Table 2) and
s01 and log10N) or the axial Cartesian components ( log10R⊥ /assuming anisotropic Brownian rotational diffusion in an isotropic solvent

for a range of rotational diffusion rates. The value of R⊥ used in each s01 and log10R\ /s
01) . The x 2

red of each fit (shown by solid
calculation was (A) 3.0 1 106, (B) 1.0 1 107, (C) 3.0 1 107, and (D) lines in Fig. 2) was close to unity, and the starting parameter
1.0 1 108 s01 . The rotational anisotropy N Å R\ /R⊥ was 10 for all the values were recovered within the reported uncertainties (cf.
spectra. Normally distributed random noise was added to each spectrum to

Table 3).give a signal-to-noise ratio of 100. Solid lines show nonlinear-least-squares
The most significant aspect of the fits shown in Fig. 2 isfits to the spectra as described in the text; parameters obtained from the

fits are given in Table 3. the increasing degree of correlation that is observed between
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TABLE 3
Best-Fit Parameters and Correlation Coefficients for Each of the Simulated Spectra Shown in Fig. 2, Found by Varying

the Axial Components (rpll, rprp) or the Spherical Components (rbar, n) of the Rotational Diffusion Tensor

Run x2
red Parameter Starting value Fit value ra Parameter Starting value Fit value rb

1 1.089 rprp 6.477 6.500 { 0.083 00.362 rbar 6.810 6.825 { 0.054 0.961
rpll 7.477 7.474 { 0.017 n 1.000 0.974 { 0.091

2 1.142 rprp 7.000 6.997 { 0.029 00.290 rbar 7.333 7.330 { 0.018 0.691
rpll 8.000 7.995 { 0.018 n 1.000 0.998 { 0.038

3 0.967 rprp 7.477 7.478 { 0.013 00.062 rbar 7.810 7.810 { 0.014 0.503
rpll 8.477 8.473 { 0.034 n 1.000 0.995 { 0.038

4 1.070 rprp 8.000 7.975 { 0.030 00.445 rbar 8.333 8.314 { 0.021 0.250
rpll 9.000 8.991 { 0.062 n 1.000 1.016 { 0.080

a Correlation coefficient between parameters rprp and rpll.
b Correlation coefficient between parameters rbar and n.

log RV /s01 and log N toward the slower motions. For the Another use of the correlation coefficients as a measure
of spectral resolution at different EPR frequencies is shownfastest motion shown, the correlation is only 0.25, whereas

a very strong negative correlation of 00.96 is observed at in Fig. 4. Simulated spectra were calculated for a nitroxide
exhibiting a fully anisotropic rotational diffusion tensor (setthe slowest motion. In contrast, no significant correlation

appears throughout the range of motional rates when the 2 in Table 2) at 250 and at 9.5 GHz with added Gaussian
noise to give S /N Å 100 at both frequencies. The results ofminimization is carried out with respect to log R⊥ /s01 and

log R\ /s
01 : the correlation between these two parameters the least-squares analyses are given in Table 4. The minimi-

zation using the high-frequency data yields the starting pa-remains below about 0.45 in magnitude. The differences
between the two cases for the slowest motion are illustrated rameters to within the reported uncertainties for all three

elements of the rotational diffusion tensor. At the lowermore graphically in Fig. 3, which plots the x 2 contours for
the spectrum corresponding to the slowest motion (top of frequency, however, Rx and Ry are incorrectly estimated to

be nearly equal, with a very substantial and unacceptableFig. 2) vs parameter values for both the (log RV /s01 , log N)
and the (log R⊥ /s01 , log R\ /s

01) pairs. The dotted ellipses correlation coefficient of 00.98. The linear relationship de-
rived from this correlation according to Eq. [30] gives ashow joint confidence regions for the fitting parameters cal-

culated from Eq. [28] using Dx 2 Å 5.99 (95% significance slope of 01, indicating that log10Rx /s01 and log10Ry /s01 can
only vary so as to maintain a constant sum (i.e., the productlevel for two parameters) . From this figure, it can be seen

that the strong correlation between log RV /s01 and log N RxRy is constant) . Thus, the lower-frequency data are insen-
sitive to the ratio Rx /Ry that measures nonaxial anisotropyproduces an elongated, tilted error ellipse that conforms rea-

sonably well to the local topology indicated by the x 2 con- in R . This result is consistent with our previous observations
that high-frequency ESR spectra are more sensitive to thetours. In contrast, the long axis of the error ellipse for log

R⊥ /s01 vs log R\ /s
01 is not tilted, but lies approximately rotational anisotropy than are X-band spectra (55) .

The appearance of correlations amongst the elements ofparallel to the R⊥ axis, again conforming to the x 2 contours
and indicating that there is little correlation between the R⊥ a given tensor generally indicate a limitation in the resolution

of the experimental data with respect to that tensor. Suchand R\ parameters.
In general, the appearance of large (ú0.9) correlations correlations can frequently be avoided by (i) fixing the value

of one of the quantities involved, ( ii ) restricting the tensorbetween fitting parameters indicates that the experimental
data are insensitive to one of the correlated parameters, or to a higher symmetry, or ( iii ) using a different representation

for the tensor as illustrated above. By analogy, correlationssome combination of them. In the example shown here, the
poorly determined quantity is readily identified by utilizing between coefficients of the ordering potential usually indi-

cate that the higher-order term is not uniquely resolvablea different linear combination of tensor quantities to reduce
or eliminate the correlation. In the absence of strong correla- and should not be varied in the minimization.

Although the strong correlations observed in slow-motiontion, the relative uncertainties for log R⊥ /s01 vs log R\ /
s01 are easily interpreted and clearly show that the poorly spectral fitting occur most frequently between similar param-

eters, correlations between different types of parameters thatdetermined quantity is R⊥ , consistent with the expectation
that the spectrum should be less sensitive to the slower com- do not lend themselves so easily to a physical interpretation

can also arise. The most common such correlations occurponents of R as the rigid limit is approached.
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between rotational diffusion tensor elements and the inho-
mogeneous linewidth, diffusion tilt angles, or higher-order
(nonaxial) terms in the orienting potential. In such cases, it is
generally necessary to remove one of the correlated variables
from the list of search parameters. Another possible solution
is to impose a linear constraint such as Eq. [30] upon the
correlated variables, thus effectively reducing the dimension
of the search space.

Global Spectral Analysis: Aligned vs Unaligned Samples

An important aspect of the nonlinear-least-squares pro-
gram described here is its ability to perform global analysis

FIG. 4. Least-squares fits to simulated spectra (open circles) of a ni-
troxide at (A) 250 GHz and at (B) 9.5 GHz for a probe with fully aniso-
tropic rotational diffusion (set 2, Table 2). Note the large difference in
field scales. The rotational anisotropy was Rx /Ry Å 2.0 and

√
RxRy /Rz Å

10.0. Least-squares spectra corresponding to the parameters given in Table
4 are shown by the solid lines.

for a series of spectra obtained by varying one of the parame-
ters in a given EPR experiment. Global analysis of multiple
datasets has found widespread use in the study of time-
resolved optical anisotropy decays (56, 57) , and has recently
been applied to the simultaneous analysis of fluorescence
anisotropy decay and saturation-transfer EPR spectra using
the basic Levenberg–Marquardt algorithm (20) . Such an
approach has also been utilized in the analysis of rigid-limit
EPR spectra obtained at different frequencies (48) . It has
previously been applied by us to fit slow-motion EPR spectra
taken at different temperatures to obtain the Arrhenius pa-

FIG. 3. Chi-squared contour maps plotted as a function of parameter
rameters of the rotational reorientation directly (18) , andvalues for least-squares fits to the spectrum at the top of Fig. 2. The variable
to fit liquid crystal spectra at different sample orientationsparameters were (A) log10 of the rotational diffusion rates about the axis

parallel (rp11) and perpendicular (rprp) to the long axis of the diffusing simultaneously (15, 58) . Additionally, a series of 2D EPR
probe, or (B) log10 of the average rotational diffusion rate (rbar) and spectra for different mixing times have been fitted simultane-
rotational anisotropy (n) . The correlation coefficients were 00.36 and ously (21, 22) .
00.96 for (A) and (B), respectively. Dotted ellipses show joint 95% confi-

The main advantage of global analysis is that it placesdence regions for the fitting parameters calculated for Dx 2 Å 6.30 as
additional experimental constraints upon the residual func-described in the text. Note the agreement between the local contour pre-

dicted by the error ellipse and x 2 contours. tion in the parameter space, thus better defining the region of
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TABLE 4
Rotational Diffusion Components Measured from Least-Squares Analysis of Simulated 250 and 9.5 GHz Spectra

Shown in Fig. 4 for a Nitroxide with a Fully Anisotropic Rotational Diffusion Tensor

Correlation matrix
Starting Least-squares

Parameter value value rx ry rz

250 GHz rx 7.326 7.314 { 0.012 1 00.353 0.800
ry 7.628 7.667 { 0.039 1 00.475
rz 8.477 8.470 { 0.015 1

9 GHz rx 7.326 7.448 { 0.018 1 00.984 00.382
ry 7.628 7.540 { 0.017 1 0.212
rz 8.477 8.088 { 0.033 1

allowed solutions and reducing otherwise high correlations variable; the more useful series variables include (i) the
director tilt angle for studying an ordered system at a seriesamongst the parameters. The principles of global analysis

may be applied to many different types of series in which of orientations; ( ii ) the spectrometer field, for fitting spectra
measured at a series of different EPR frequencies; ( iii ) thea single EPR parameter is varied. We have implemented a

very general approach to this strategy: in principle, it is mixing time in a 2D exchange (2D ELDOR) experiment;
and (iv) different coherence pathways for a given 2D spec-possible to carry out a global fit with respect to a series in

any parameter that can also be varied as a search parameter. trum.
In the following example, global fitting to spectra fromIn practice, not every EPR parameter is practical as a series

FIG. 5. Least-squares fits to simulated X-band EPR slow-motion spectra (open circles) for the 5-PC spin probe (set 3, Table 2) in an aligned
membrane at director tilt angles of C Å 07, 307, 607, and 907, and for macroscopically disordered membrane domains (MOMD) model. Minimizations
were carried out using a mismatched motional model with bd Å 0; shown are (A) global fit to all orientations of the aligned membranes; (B) global fit
for C Å 07 and 907 only; (C) individual fits for C Å 0 and 907; and (D) individual fit to the MOMD spectrum. Fits using the correct model and least-
squares parameters given in Table 5 did not deviate above the noise level. Solid lines show nonlinear-least-squares fits of a mismatched model (see text)
using least-squares parameters given in Table 6. Note that the mismatched model leads to significantly greater discrepancies in the global fit to four
orientations.
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aligned samples obtained at a series of orientations will be samples, i.e., using the MOMD model. Many membrane
systems are not amenable to alignment by the methods justillustrated. This approach, in combination with methods that

provide a high degree of membrane alignment such as pres- mentioned, and in such cases one is restricted to randomly
oriented dispersion samples with an accompanying loss ofsure-annealing (59) and isopotential spin-dry ultracentrifu-

gation (58, 60) , has been essential for enhancing the struc- resolution. It is therefore important to be able to utilize the
fitting procedure to assess the quality of the informationtural and dynamic information that can be obtained from

spin-labeled membrane systems by analysis of slow-motion obtained from unaligned vs aligned membranes systems.
Figure 5 presents simulated data for a lipid spin probe inEPR spectra (16, 59, 61) .

Global fits to spectra from aligned membranes will also be macroscopically aligned membranes at director tilt angles of
07, 307, 607, and 907 as well as in macroscopically disorderedcompared to fits to spectra from macroscopically disordered

TABLE 5
Comparison of Parameter Correlation Matrices for Single-Orientation and Global Least-Squares Fits to Simulated Spectra

from Aligned Membranes at Various Director Tilt Angles, and to a MOMD Spectrum (See Text for Definition)

Correlation coefficients
Least-squares

Type of fit Parameter value gib0 gib2 rbar n betad c20 c22

07 only gib0 2.020 { 0.061 1 0.6037 0.5534 00.1963 00.3904 0.5554
gib2
rbar 7.936 { 0.005 1 0.0334 00.7258 0.1053 00.0015
n 0.677 { 0.034 1 0.1695 00.955 0.991
betad 29.931 { 0.151 1 00.1261 0.2725
c20 2.512 { 0.022 1 00.921
c22 01.272 { 0.051 1

907 only gib0 2.508 { 0.029 1 0.666 00.142 00.395 00.403 0.325
gib2
rbar 7.931 { 0.007 1 00.119 00.518 00.375 0.187
n 0.701 { 0.069 1 0.798 0.592 00.732
betad 30.000 { 0.407 1 0.819 00.767
c20 2.488 { 0.084 1 00.945
c22 01.230 { 0.116 1

07 and 907 gib0 2.007 { 0.031 1 00.622 0.597 0.114 00.255 0.342 0.318
gib2 0.507 { 0.021 1 00.236 l00.516 00.133 00.743 0.674
rbar 7.935 { 0.004 1 00.404 00.758 0.290 00.484
n 0.693 { 0.015 1 0.504 00.043 0.181
betad 29.948 { 0.136 1 0.120 0.302
c20 2.507 { 0.017 1 00.852
c22 01.261 { 0.030 1

07, 307, 607, 907 gib0 1.999 { 0.033 1 00.836 0.514 00.138 00.154 00.136 0.284
gib2 0.517 { 0.036 1 00.287 00.009 0.063 0.047 00.123
rbar 7.933 { 0.002 1 00.022 00.343 0.156 00.095
n 0.688 { 0.001 1 0.024 0.119 00.192
betad 29.990 { 0.145 1 0.504 00.127
c20 2.504 { 0.025 1 00.839
c22 01.256 { 0.035 1

MOMD gib0 1.772 { 0.344 1 00.964 0.270 0.213 0.340 00.040 0.323
gib2 0.847 { 0.332 1 00.198 00.123 00.333 00.068 00.205
rbar 7.937 { 0.021 1 00.222 00.676 0.153 00.312
n 0.556 { 0.020 1 0.339 00.887 0.926
betad 30.333 { 1.918 1 00.103 0.544
c20 2.612 { 0.183 1 00.858
c22 01.335 { 0.349 1

Note. The simulated spectra are shown in Fig. 5. (Least-squares spectra for the parameters given below are not visible in the figure.)
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vesicles, but using the same set of magnetic and dynamic rameters, which are incorrectly predicted by the minimiza-
tion.parameters. The simulation parameters were chosen to typify

the 5-PC probe (set 3 in Table 2) including a substantial The very strong correlations disappear when global analy-
sis is performed; for example, in the 07, 907 global fit, therediffusion tilt angle, bd å 307. The MOMD spectra were

obtained using the sinc-weighted average of the spectra cal- are no correlations greater than 0.90, and the overall correla-
tion is almost entirely removed when spectra from fourculated for 15 different values of c. Normally distributed

noise was added to give a signal-to-noise ratio of 100 for angles are included. Thus, if a sufficient number of different
orientations are employed, it becomes possible to support theall of the spectra.

The spectra corresponding to aligned membranes were independent determination of as many as seven parameters,
permitting a more detailed description of the molecular dy-fitted in several different ways, including (i) separate fits

for c Å 07 and c Å 907, ( ii ) global fits for c Å 07 and c namics. In this context, it is not surprising that the fits to
the MOMD spectrum exhibit somewhat less parameter cor-Å 907, and (iii ) global fits for c Å 07, 307, 607, and 907.

The parameters varied in each minimization were gib0, relation than that of the cÅ 07 spectrum, since the spin probe
is sampled over a wider range of molecular orientations ingib2, rbar, n, c20, c22, and betad (cf. Table 1).

For the individual fits to the c Å 07 and c Å 907 spectra, both cases. Also, it has been found in the past that the 907
orientation is the more sensitive for labeled lipids (59, 61) .D (2) was not varied since the orientation dependence of

the inhomogeneous linewidth cannot be determined from a An even greater contrast between the resolving power of
multiorientation vs single orientation and MOMD data issingle-orientation spectrum. The same parameters were var-

ied in the fit to the MOMD spectrum. For all of the minimiza- apparent in the estimated parameter uncertainties from the
different types of minimization. For most of the dynamictions, including the MOMD fit, the reduced x 2 was near

unity. parameters of interest, the relative uncertainty of the parame-
ter from each fit follows the order MOMD ú 07 ú (07, 907)The correlation matrices of the variables for each of the

fits listed in Table 5 clearly indicate that, even for aligned É (07, 307, 607, 907) , consistent with the relative reliability
of the fits indicated by the correlation matrices. Significantly,samples, the single-orientation spectra contain insufficient

information to permit unambiguous determination of all of the uncertainties from the MOMD fit are 5–10 times larger
than those from the global fits, owing to the loss of resolutionthe model parameters. This is especially apparent in the c

Å 07 fit, which exhibits correlations exceeding 0.9 between in the macroscopically disordered sample.
Another revealing test of the relative information contentthe rotational anisotropy N and both orienting potential coef-

ficients, as well as between the potential coefficients them- of MOMD vs single-orientation spectra is to compare the
results obtained for an incorrect or approximate theoreticalselves. The correlations observed in both the c Å 907 fit

and the MOMD fit are somewhat less severe: both exhibit model. This situation more closely approaches the conditions
under which real experimental data are usually first analyzed,high correlation between the potential coefficients, and the

fit to the MOMD spectrum also exhibits correlation between since at least the initial fitting of experimental data should
be undertaken using the simplest possible model. To mimicthe D (0) and D (2) Gaussian inhomogeneous broadening pa-

TABLE 6
Parameters Derived from Individual and Global Least-Squares Fits to Simulated Spectra from Aligned Membranes at a Selection

of Director Tilt Angles, and to a Spectrum Exhibiting the Same Dynamic and Ordering Parameters, but with Macroscopic Disorder
(MOMD)

Starting value 07 only 907 only 07 and 907 07, 307, 607, 907 MOMD

x2
red 13.569 6.231 33.011 32.852 1.831

rlin 0.9958 0.9977 0.9877 0.9862 0.9982
Rsqr 0.106 0.082 0.168 0.174 0.083
gib0 2.000 4.249 { 0.034 2.412 { 0.038 3.999 { 0.025 3.279 { 0.024 0.645 { 0.149
gib2 0.500 00.628 { 0.028 00.311 { 0.025 1.952 { 0.143
rbar 7.932 9.092 { 0.006 8.497 { 0.024 8.271 { 0.004 8.130 { 0.003 8.051 { 0.016
n 0.699 2.754 { 0.002 1.542 { 0.074 0.702 { 0.001 0.719 { 0.001 0.736 { 0.036
c20 2.5 1.653 { 0.002 1.633 { 0.030 1.409 { 0.004 1.308 { 0.002 1.824 { 0.014
c22 01.25 0.760 { 0.002 01.642 { 0.041 0.073 { 0.014 0.062 { 0.011 01.243 { 0.002

Note. A mismatch was introduced into the fitting model by constraining the diffusion tilt angle bd to be 0 when the simulated spectra had bd Å 307.
The least-squares fits to each spectrum are shown by the solid lines in Fig. 5.
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a defect in the motional model, the least-squares analysis ters were assumed to be the same for both the MOMD spec-
trum and the spectra from oriented samples. For real mem-was carried out as described above, but with the diffusion

tilt angle bd fixed at zero. The best fits from this experiment brane samples, local structure and dynamics may differ sub-
stantially between the two cases due to differences inare shown in Fig. 5 and the least-squares parameters given

in Table 6. membrane curvature or different phase behavior in aligned
multilayers vs nonaligned vesicles (58) . The results pre-As the results in Table 6 indicate, the mismatch in mo-

tional model produces a very dramatic difference in the qual- sented here show how information from the curvature matrix
used in the Marquardt–Levenberg method can be used de-ity of the fits and the least-squares parameters obtained for

the different types of minimization. The individual fits to fine the resolution of MOMD spectra and also indicate what
may reliably be inferred about the differences between well-the 07 and 907 spectra appear reasonably close as judged by
aligned multilayers and randomly oriented dispersions intheir appearance and x 2

red , but they lead to significant overes-
comparing fits from these two types of samples.timates of the anisotropy and the average rotational diffusion

Finally, it should be noted that there are some potentialrate. The global analyses are much more sensitive to the
technical pitfalls peculiar to fitting MOMD spectra using themismatch, as can be seen by the significant deviations be-
Levenberg–Marquardt or related quasi-Newton minimizationtween data and calculation on the left-hand side of Fig. 5.
methods. The problem lies in the calculation of the Jacobian,Surprisingly, the fit to the MOMD spectrum is rather good,
i.e. the partial derivatives of the spectra, which may not bewith a x 2

red approaching unity, even for the mismatched
fully averaged for a given number of orientations even thoughmodel. Even more significant is that the MOMD fit provides
the spectrum itself is sufficiently averaged. This is becausethe best approximation to the starting parameters. Thus, in
the partial derivative spectra at individual orientations exhibitthe case of a mismatched model, the MOMD spectrum ap-
features that are in general more numerous and sharper thanpear to reflect the average behavior of the spin probe better,
the features in the original spectra, qualitatively resemblingat the expense of resolution to certain details of the motional
higher-derivative spectra with respect to the magnetic field.model.
Because of this effect, significantly more orientations must beSome other aspects of the comparison between aligned
averaged to produce an acceptably smooth partial derivativeand unaligned membranes deserve comment. In the test case
than are needed to obtain an acceptable first-derivative spec-presented here, the magnetic, dynamic, and ordering parame-
trum. Figure 6 illustrates this effect: at the top of the figure is
the first-derivative MOMD spectrum corresponding to the best-
fit spectrum shown in Fig. 5, calculated using 10 orientations.
The bottom two plots are the partial derivative of the same
spectrum with respect to the c20 potential coefficient, calculated
using 10 orientations (middle curve) and 20 orientations (bot-
tom curve, scaled by a factor of 5). When only 10 orientations
are used, there remain relatively large-amplitude oscillations in
the middle of the partial derivative spectrum, which are nearly
completely averaged away out when 20 orientations are used.
Significant differences between the partial derivatives for 10
and 20 orientations were found for all of the dynamic and
ordering parameters.

The practical consequence of an incompletely averaged
partial derivative MOMD spectrum is that the resulting oscil-
lations artificially increase the norm of the column of the
Jacobian matrix corresponding to the given parameter. Since
it follows from Eq. [9] that the step size for each parameter
is inversely related to the norm of the corresponding column
in J , the incomplete averaging has the effect of slowing
down the convergence along the parameter dimension. We
have found that acceptable averaging of the partial derivative

FIG. 6. (A) Calculated best-fit spectrum to the MOMD data shown in spectra generally requires about 2.0–2.5 times as many ori-
Fig. 5d with bd Å 307, obtained by averaging 10 orientations. (B) Partial entations as are necessary to obtain a smooth and completely
derivative of the spectrum in (A) with respect to the c 2

0 ordering potential
averaged MOMD spectrum. The extra computation time re-coefficient, also calculated using 10 orientations. (C) Same partial deriva-
quired for the additional orientations is partially compen-tive spectrum as in (B), but calculated using 30 orientations. The scale in

(C) is expanded by a factor of five. sated by the improved convergence properties of the minimi-
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zation with the correct partial derivative information. Correct
partial derivatives are also essential for accurate statistical
analysis; in this case, an artificially large gradient of the
residual function with respect to a given parameter will result
in an underestimate of the uncertainty in that parameter.

Multicomponent Fitting

A frequently occurring problem in EPR analysis is the
separation and identification of individual components in a
spectrum that contains more than one EPR species. Signifi-
cant effort has been directed toward identifying components
of EPR spectra that differ in their magnetic properties or
chemical identities (41, 42) .

Multicomponent spectra can also arise in the case of
chemically identical species that exhibit different mobilities.
One common approach to separating species based on their
mobilities is the spectral subtraction technique, which has
been extensively applied to characterize lipids associated
with integral proteins in membrane systems (62) . Spectral
subtraction is most effective when the mobilities of the two
species differ significantly and one of the components is in
the motionally narrowed regime. It also requires that one
obtain the spectrum for one of the components by itself,
which is assumed not to change in the presence of a second
component. Such methods become increasingly unreliable
when there is significant overlap between the component FIG. 7. Series of simulated two-component X-band CW EPR spectra

calculated for two isotropically diffusing nitroxides with identical magneticspectra, or when more than two species are present. In this
parameters (set 4, Table 2) but different rotational diffusion constants, RV 1case, more sophisticated approaches are required, such as
and RV 2 . The geometric mean of RV 1 and RV 2 was kept fixed at 3 1 107 s01

iterative spectral subtraction (41) . These methods rely on
and the ratio RV 1 /RV 2 was 50, 20, 10, 5, 2, and 1.1, from top to bottom. The

the assumption that the individual component spectra are relative population of the more mobile component in the simulated spectra
unchanged by the presence of other components in the sys- was 30% in all of the spectra, and normally distributed random noise was

added to produce a signal-to-noise ratio of 100. Solid lines show two-tem, an approximation that may be violated in cases where
component nonlinear-least-squares fits to the spectra which could be ob-species with different mobilities are undergoing physical or
tained for all but the bottom spectrum. Parameters obtained from the fitschemical exchange. In the 2D format, one approach to re-
are given in Table 7.

solving species with different mobilities has been the field
swept spin-echo experiment (63, 64) , which permits resolu-

ing nitroxides with identical magnetic parameters (cf. set 4tion of the species based on their different T2 relaxation
in Table 2) but different rotational diffusion constants, RV 1times.
and RV 2 . The geometric mean of RV 1 and RV 2 was kept fixed atThe use of an orthogonal decomposition such as the QR
3.00 1 107 and the ratio RV 1 /RV 2 was 50, 20, 10, 5, 2, andfactorization to quantify individual spectral components has
1.1, from top to bottom. The relative population of the morethe very useful feature that linear dependencies amongst
mobile component in the simulated spectra was maintainedthe component spectra may be detected, and the number of
at 30% in all of the spectra, and random noise was addedcomponents reduced accordingly. Most important, it affords
to produce a signal-to-noise ratio of 100. The values of thea more rigorous and accurate means of quantifying the prop-
two diffusion rates and Gaussian inhomogeneous broadeningerties of the individual species than, e.g., spectral subtraction
parameters were varied in the least-squares minimizations,or trial-and-error. Another very useful feature is that error
which utilized the nested linear-least-squares procedure de-analysis may be performed on the scale factors just as for
scribed under Methods to determine scaling factors for eachthe other fitting parameters, providing estimates of uncer-
component. Two components could be fitted to every spec-tainty and correlation with other parameters. We illustrate

these features in the following examples. trum but that at the bottom (RV 1 /RV 2 Å 1.1) , and the x 2
red was

close to unity in all cases. Relevant least-squares parametersFigure 7 shows a series of simulated two-component X-
band CW EPR spectra calculated for two isotropically diffus- from the fits are given in Table 7. The scaling factors were
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TABLE 7
Least-Squares Rotational Diffusion Rates and Spectral Scaling Factors for Nonlinear-Least-Squares Fits to Simulated Spectra

with Two Components Having Different Rotational Rates in the Ratios Indicated

Correlation
Starting values Least-squares values Scale factors (site 1 vs 2)

RV 2/RV 1 rbar (1) rbar (2) rbar (1) rbar (2) a1 a2 rbar a

50 6.628 8.327 6.683 { .045 8.329 { .038 0.706 { .035 0.294 { .016 0.073 00.523
20 6.827 8.128 6.857 { .040 8.137 { .038 0.714 { .032 0.286 { .018 0.141 00.636
10 6.997 7.977 6.993 { .030 8.025 { .038 0.731 { .032 0.269 { .019 0.351 00.735
5 7.128 7.827 7.146 { .034 7.850 { .052 0.723 { .055 0.277 { .041 0.672 00.892
2 7.327 7.628 7.371 { .045 7.729 { .190 0.859 { .169 0.141 { 1.60 0.913 00.992
1.1 7.457 7.498 7.509 { 3.126 0.000 1.000 0.999 —

Note. The spectra and accompanying least-squares fits are shown in Fig. 7. Reported uncertainties correspond to the 68% confidence level.

included in the error analysis as described under Methods, Again, we find that the correlation coefficients amongst
the parameters offer a very sensitive measure of the resolvingand their uncertainties as calculated from Eq. [21], together

with the correlation coefficient between the two scaling fac- power of the spectrum. In this case, resolution is lost with
respect to discriminating spectral components rather than thetors, are also given in Table 7.

At the very highest ratios, the individual components are individual characteristics of a single component. As the ratio
of the mobilities of the two species gets smaller, the spectraquite well resolved by the fitting procedure, both in terms

of the accuracy of the relative populations and in the accu- become progressively less distinguishable, and the correla-
tion between the rotational rates, as well as that between theracy of the motional parameters derived for each component.

Although starting parameter values of the calculation are scaling factors (cf. Table 7), increases dramatically. At the
lowest ratio of 1.1, the constituent spectra become virtuallyrecovered within the reported uncertainties even down to a

ratio of 2, the uncertainties become quite large, thus limiting indistinguishable, and the procedure eliminates the unneces-
sary component by returning one of the scale factors as zero.the utility of the information derived from the spectrum.

FIG. 8. Experimental X-band CW EPR spectra of the CSL spin probe diffusing in well-aligned multilayers containing a mixture of the lipid POPC,
cholesterol, and dioctanoylglycerol at (A) 07 and (B) 907 director tilt. Solid lines show the least-squares global fit of two spectral components to the
data. The component spectra calculated in the fit are shown on the right-hand side for both tilt angles; they consist of a well-aligned phase (dashed
lines) and a disordered, MOMD-like phase (solid lines) .
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Figure 8 illustrates a recent practical application of multi- Statistical Analysis of Experimental Slow-Motion Spectra
component fitting in our laboratory, which has been utilized When the approximations expressed in Eq. [19] are not
in conjunction with some of the other features of program valid, reliable statistical analysis requires a more robust esti-
NLSL described above, including global analysis and the mate of the parameter confidence regions than the linear-
fitting of MOMD spectra. Shown are experimental X-band limit expressions given in Eqs. [21] – [24]. The best method
CW EPR spectra of the CSL spin probe diffusing in well- for this application is Monte Carlo estimation of the parame-
aligned multilayers containing a mixture of the lipid POPC, ter probability distribution (37, 65) . The basic approach,
with 10 mol% cholesterol, and 10 mol% dioctanoylglycerol once a minimum x* has been located, is to generate a set
(DOG) at 367C, obtained at director tilt angles of 07 and of synthetic spectra (typically several hundred) starting from
907, together with the least-squares fits. Two components the least-squares spectrum f(x*) and adding noise having
are well resolved from these spectra. They are plotted on the same probability distribution as the residuals f (x*). The
the right-hand side for both tilt angles, utilizing the least- noise may be derived either by generating a pseudorandom
squares fits. Two components consist of a well-aligned phase number with a known probability distribution function (37)
( light lines) and a disordered, MOMD-like phase (darker or by randomly permuting the residuals f (x*) and adding
lines) , which is independent of orientation. Significantly, them back to f(x*) (66) . For each spectrum synthesized
the appearance and amount of the disordered phase appears in this manner, a minimization is performed, and the distribu-
to vary almost reversibly with temperature and membrane tion of the resulting set of solutions {x*j } is then used to
composition. Using multicomponent analysis, it has been approximate the probability distributions of the fitting pa-
possible to characterize accurately the molecular dynamics rameters.
and ordering in each of the two phases, as well as their In practice, experimental slow-motion EPR spectra almost
relative amounts, over the entire temperature range for which never rigorously satisfy the assumptions that are required in

order to interpret the linear-limit expressions given in Eqs.a second phase is observed.

FIG. 9. Experimental X-band CW EPR spectra of the 5-PC spin probe diffusing in well-aligned multilayers of the lipid POPC at (A) 257C and (B)
657C for director tilt angles of 07 (upper spectra) and 907 ( lower spectra) . Solid lines show the global least-squares fits. Parameter uncertainties and
correlations for the fits are given in Table 8. Above each spectrum are plotted the residuals for the fit, scaled by a factor of two. The bar graphs at the
bottom show a binned distribution of the combined residuals for 07 and 907, superimposed with a Gaussian curve fit by least squares to the distribution
data at both temperatures. The dashed line on the plot at bottom left shows the best approximation of a double-exponential function to the residual
distribution.
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[21]–[24] as valid estimates of the parameter uncertainties. time-consuming procedure in many cases of practical sig-
At reasonable signal-to-noise ratios, small nonrandom devia- nificance, as will be illustrated below.
tions between calculated and experimental spectra almost Fouse and Bernhard (67) have demonstrated the use of
inevitably appear, even in the best fits. (At low signal-to- the Monte Carlo method in EPR spectral analysis. They
noise ratios, when the residuals are dominated by the spectral carried out a Gauss–Newton least-squares fit of the hyper-
noise, the residuals do exhibit more nearly random behavior, fine splitting for an organic radical trapped in a single crystal
which simplifies the error analysis.) Systematic deviations as a function of crystal orientation. Using the procedure
may occur because an incorrect model is being employed, described above with normally distributed errors, they ob-
or because the model is itself approximate at some level, tained the uncertainties in the hyperfine tensor principal val-
and cannot reproduce the underlying spectrum exactly. They ues and principal axis direction cosines and showed that
may also result from small but systematic experimental er- these were consistent with the uncertainties predicted from
rors such as nonlinearities in the field sweep or signal ampli- the curvature matrix according to Eqs. [21] and [22].
fication. The results of Fouse and Bernhard should be generally

These considerations suggest that Monte Carlo estimation applicable in EPR spectral fitting. For most EPR spectra,
is unavoidable if one requires accurate error analysis of EPR including rigid-limit, slow-motion, and multidimensional
slow-motion parameters, however impractical this may be spectra, the dependence of the residuals on the fitting param-
for routine use, even on modern laboratory workstations or eters will be sufficiently well behaved that the elliptical un-
personal computers. However, it is possible to avoid such a certainty region given by Eq. [22] is a good approximation

to the local topology of the function. Consequently, when
normally distributed noise is added to the calculated function
g(x*) in the Monte Carlo procedure, all of the criteria that
make the linear-limit confidence region a reliable estimate
of the parameter probability distribution are satisfied. Thus,
it should generally be possible to utilize the curvature matrix
instead of Monte Carlo estimation in the case of normally
distributed residuals, even though the residuals may contain
systematic deviations exceeding the ambient noise level.

In the presence of nonrandom deviations, the error esti-
mates based on unweighted residuals will be significantly
larger than those from weighted residuals. This is because
correlated deviations above the noise level contribute to the
unweighted residual norm s 2 (cf. Eqs. [23] and [24]) but
by definition do not contribute to the average spectral noise
»s… . Thus, when s 2 @ »s… 2 , the uncertainty estimates from
the unweighted residuals using t and F statistics according
to Eqs. [23] and [24] should correspond to the Monte Carlo
estimates for normally distributed residuals.

It might therefore appear that one should always minimize
with respect to unweighted residuals, especially since x 2

minimization suffers the additional drawback that some
knowledge of the spectral noise is required, which may admit
errors due to incorrect noise estimation. However, the two
types of minimization can sometimes lead to appreciable
discrepancies in the ‘‘best-fit’’ parameters when the noise
levels differ significantly amongst the experimental spectra
in a global fit. It is generally desirable to retain the weighting
of a x 2 minimization, so that the features of noisy spectra

FIG. 10. Cumulative probability distribution plots for the residuals are less influential than those of ‘‘clean’’ spectra. In such
shown in Fig. 9, in comparison with a normal distribution function. (A) cases, the confidence regions obtained from the unweighted
Residuals from 257C data, exhibiting nearly normal distribution; (B) residu- residuals may be estimated by scaling those obtained fromals from 657C data, showing significant deviation from a normal distribution

the weighted residuals as follows. The elements of the c and(solid line) but closer correspondence with a double-exponential distribu-
tion (dashed line) . C matrices in Eqs. [21] – [24] are approximately related by
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Cij Å C *ij / »s…
2 and cij Å »s… 2c *ij where »s… is estimated for cially considering that they are based on global minimiza-

the n spectra using tions for two director tilt angles. The agreement is quite
good to the eye for both c Å 07 and c Å 907, although there
remain some perceptible deviations, especially around the

»s… Å F∑
n

iÅ1

s 2
i mi

mtot
G1/2

, [35] high-field peak of the c Å 07 spectrum at the higher tempera-
ture (right-hand side) .

By any quantitative criterion, however, the fits shown inin which si and mi are the standard deviation of the noise
Fig. 9 are unacceptable for the purposes of error analysis. Theand the number of points in the i th spectrum and mtot Å (i
reduced x2 values are respectively 115 and 270 for the fitsmi . In the limit of large mtot , the x 2 , t , and F distributions
shown on the left- and right-hand sides. More importantly, thebecome equivalent; that is, Dx 2

1(a) É ( ta /2
mtot01)2 and

residual functions plotted above each spectrum in an expandedDx 2
p(a) É pFa

mtot0p ,p . Thus, the value of dxi given by Eq.
scale clearly reveal the presence of systematic errors above[21] may simply be multiplied by s / »s… to estimate that
the level of the ambient noise. This qualitative observation isgiven by Eq. [23]; similarly, the boundary for the joint
supported by more quantitative tests for systematic behaviorconfidence region ellipsoid on the right-hand side of Eq.
in residuals, such as the runs test (68) and the Durbin-Watson[22] may be scaled by s 2 / »s… 2 , to obtain the uncertainty
test based on serial lag plots of the residuals (69). These testsregion predicted by Eq. [24].
indicate that the residuals at both temperatures exhibit veryTo illustrate this scaling procedure and when it may be
high correlation, which is typical for the vast majority of fitsapplied, we show in Fig. 9 two typical examples of fits to
to experimental slow-motion spectra.experimental slow-motion spectra from the 5-PC spin probe

However, the residuals at the two temperatures do havediffusing in an aligned POPC membrane at director tilt
significantly different distributions as can be seen from theangles of 07 and 907, obtained at temperatures of 25 and
binned distribution plots at the bottom of Fig. 9 and also the657C, respectively. Least-squares minimizations were car-
cumulative probability distributions shown in Fig. 10. Theried out with respect to the weighted residuals using fixed
plots in Fig. 10 were obtained by sorting the mtot residualsvalues of the diffusion tilt angle bd , rotational anisotropy
ri in increasing order, and then calculating the cumulativeN , and inhomogeneous broadening parameters. Error analy-
probability associated with each residual, Pi , as the fractionsis was restricted to the variable parameters RV , c 2

0 ,
of data points having a smaller residual, Pj Å ( i 0 1

2) /mtot .and c 2
2 .

The solid line in each plot represents a normal distributionThe calculated spectra shown by the solid lines in Fig.
having the same mean rV and standard deviation sr as {ri },9 seem qualitatively to satisfy the prevailing standards for

acceptable fits to experimental slow-motion EPR data, espe- given by

TABLE 8
Comparison of Parameter Uncertainties and Correlation Coefficients Estimated by Different Methods for Two Fits

to Experimental Spectra from the 5PC Spin Probe in Well-Aligned POPC Multilayers

Correlation coefficients

From covariance From multiple
Parameter uncertainty matrix minimizations

Eq. Scaled Multiple
Parameter [22] estimate minimization c20 c22 c20 c22

Normally rbar 0.0011 0.0118 0.0120 0.329 00.248 0.413 00.306
Distributed c20 0.0085 0.0904 0.0596 00.898 00.995
Residuals c22 0.0140 0.149 0.110

Nonnormally rbar 0.0008 0.0136 0.0393 0.568 00.505 0.063 00.097
Distributed c20 0.0076 0.125 0.397 00.952 00.994
Residuals c22 0.0103 0.1711 0.570

Note. Parameter uncertainties were obtained using Eq. [22], the scaling procedure described in the text, and estimation based on 100 minimizations
started from randomly chosen initial points. Correlation coefficients were calculated directly from the covariance matrix or estimated as the linear
correlation coefficients for the distribution of the 100 parameter sets.
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0.0031, clearly indicating a strong departure from a normal
Pnormal (x) Å 1

2 Serf F x 0 r
V

sr
G / 1D . [36] distribution. Thus, according to the arguments given above,

one may expect the scaling procedure to predict the results
of Monte Carlo estimation reasonably well for the first spec-From Fig. 10, it can be seen that the residuals at the
trum, but not for the second.lower temperature (Fig. 10A) conform well to a normal

This prediction is borne out by a comparison of the parameterdistribution, whereas those from the higher temperature (Fig.
uncertainties that were calculated for the fits shown in Fig. 9 in10B) deviate substantially, particularly in the ‘‘wings’’ of
three different ways: (a) using the estimates from the weightedthe distribution. A more quantitative test for determining
residuals given by Eq. [21]; (b) scaling the estimate in (a) bywhether a set of residuals obeys a given probability distribu-
s/»s…à

√
x2

red ; and (c) estimation based on 100 minimizationstion is the Kolmogorov-Smirnov (K-S) test (37, 70) . For
with randomly selected initial parameter values. The results arecomparison with a normal distribution, the K-S statistic D
compared in Table 8. As can be seen from this tabulation, theis defined as
uncertainty bounds calculated from the weighted residuals are
consistently much smaller than the estimates by multiple mini-Dnormal Å max

1£i£m
ÉPi 0 Pnormal (ri )É. [37]

mization for all parameters, regardless of the distribution of
the residuals. The scaled estimates are quite comparable in
the case of normally distributed residuals; however, they stillThe D statistic itself has a cumulative distribution function
severely underestimate the uncertainty for the nonnormally dis-that gives the significance level at which the hypothesis that
tributed residuals.two distributions are the same may be rejected. The signifi-

In cases of extreme departure from a normal residual dis-cance level may be obtained by comparing a given value of
tribution, several alternative approaches should be consid-D to tabulations of the K-S cumulative distribution function
ered. The observation of such distributions call into question(70) or by direct numerical calculation (37) . For the 400
both the appropriateness of the fitting model and the use ofresiduals plotted in Fig. 10A, the value of Dnormal is 0.033,
mean-squared deviation as a best-fit criterion. If the least-corresponding to a significance of 0.78, whereas those in
squares fit cannot be substantially improved by utilizing al-Fig. 10B give Dnormal Å 0.141 and a significance level of
ternative models, it may be necessary to refine the ‘‘optimal’’
parameter values by minimizing with respect to a maximum-
likelihood estimator for a nonnormal residual distribution
(37). Nonnormal residual distributions from slow-motion
EPR spectral fits may be well approximated instead by the
double-exponential distribution. Figure 9 shows one such
case: the nonnormal residuals in Fig. 9B also show a double-
exponential distribution (dotted line) which conforms quite
well to the observed distribution and gives a significance
factor 0.28 when compared to the experimental distribution
by the K-S test. For this type of residual distribution, the
maximum-likelihood estimator j is the mean absolute devia-
tion of the fitting function (37).

j Å 1
M

∑
M

iÅ1

Éhi (x) 0 fi (x)É, [38]

which is relatively easy to program, and should be consid-
ered as an alternative minimization method in the case of
nonnormal residuals.

Multidimensional Spectroscopy

Nonlinear-least-squares analysis is essential for the quan-
titative interpretation of 2D FT spectra because of the com-

FIG. 11. Simulated CW EPR MOMD spectrum for a CSL probe exhib-
plicated lineshapes that arise in the slow-motion region, anditing fast motion and high ordering (set 5 in Table 2). (A) First-derivative
the subtle interplay of inhomogeneous linewidths and spinCW lineshape with added noise (S /N Å 100), and least-squares fitted

spectrum (Table 9). (B) Integral of simulated data. relaxation processes in determining the shapes and rela-
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tive intensities of auto and cross peaks in 2D spectra tions that are too slow to be discerned from the CW EPR
spectrum, and it enables one to distinguish important but(21, 22, 28) . The analysis is aided by the presence of the

second frequency in the spectrum, which offers many of the subtle details of the motional models (28) . These advantages
are enhanced by simultaneously analyzing different linearsame advantages as the global fitting of multiple CW spectra

discussed above. In addition, the 2D spectrum usually per- combinations that provide complementary information from
a given measurement, such as the Sc/ and Sc0 signalsmits the direct determination of quantities that are not acces-

sible by CW EPR on a single sample. These include homoge- (22, 22, 28) . The ultimate extension of this strategy is the
2D ELDOR experiment, for which the 2D Sc/ and Sc0 signalsneous linewidths as well as nuclear relaxation rates and

Heisenberg spin exchange. It also allows one to study mo- may be obtained for a series of mixing times (including the

FIG. 12. Simulated 2D ELDOR MOMD spectrum (Sc-signal) for a CSL probe exhibiting fast motion and high ordering (set 5 in Table 2). Shown
is the COSY spectrum (T Å 0 ns, raised surface at top) and 2D ELDOR spectra for mixing times 75, 300, 1200, and 3000 ns (gray-scale images
projected onto planes at different levels on the z axis) . The intensity scale is separately normalized for each 2D slice. Note the development of slightly
elongated cross peaks with increasing T .
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COSY spectrum at zero mixing time), effectively yielding We now compare fits to simulated data sets representing
the CSL in randomly oriented lipid vesicles for CW EPR,a 3D data set which can be analyzed globally by least squares

(21, 22, 28) . Such a series of 2D ELDOR spectra are fitted 2D ELDOR at a single mixing time, and 2D ELDOR at a
series of eight mixing times including the COSY spectrumby the same dynamic and ordering parameters and are char-

acterized by the growth of the cross peaks relative to the at zero mixing time. Figure 11 shows two representations
of the simulated CW EPR MOMD spectrum for a CSL probeauto peaks as a function of mixing time. It affords a large

number of experimental constraints that can be used to im- exhibiting relatively fast motion and high ordering (the cor-
responding parameters are given as set 5 in Table 2). Atprove the accuracy of the determination and resolve or re-

duce ambiguities amongst the fitting parameters. the top of the figure is the standard first-derivative CW line-

FIG. 13. Residuals from global nonlinear-least-squares fit to the simulated 2D ELDOR MOMD spectrum shown in Fig. 12 (spectra for T Å 150 and
300 ns included in the fit are not shown). Raised surface at top is the residual plot for the COSY spectrum at T Å 0. Deviations between data and fit
appear as light and dark lines along the negative diagonal of the gray-scale images, respectively indicating under- and overestimation of the spectral
intensity. The intensity scale is separately normalized for each 2D slice.
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TABLE 9
Least-Squares Rotational Diffusion Rates and Ordering Potential Coefficients for Nonlinear Least-Squares Fits

to Simulated CW EPR and 2D ELDOR Spectra of a MOMD Sample Using Parameter Set 5 from Table 2

Correlation matrix
Least-squares

Type of fit Parameter value gib rbar c20 c22

CW EPR gib 1.108 { 0.128 1 0.731 0.458 0.101
rbar 8.354 { 0.024 1 0.320 0.045x2

red Å 3.124
c20 4.550 { 0.034 1 00.529
c22 0.1628 { 0.040 1

2D ELDOR gib 1.208 { 0.084 1 0.398 00.367 0.111
(single Tm) rbar 8.262 { 0.014 1 00.700 0.759

c20 4.199 { 0.019 1 0.110x2
red Å 1.085

c22 0.404 { 0.005 1

2D ELDORa gib 1.192 { 0.058 1 0.427 00.130 00.380
(global) rbar 8.310 { 0.006 1 00.515 00.417

c20 4.427 { 0.006 1 0.596x2
red Å 1.050

c22 0.410 { 0.001 1

Note. The spectra and accompanying least-squares fits are shown in Fig. 11 for the CW EPR fit and Figs. 12 and 13 for the 2D ELDOR fit. Reported
uncertainties correspond to the 95% confidence level.

a Errors and correlations were estimated directly from the Jacobian matrix calculated at the starting parameter set.

shape with added noise (S /N Å 100), plotted together with cance factors higher than 0.9 in both cases. Some small
deviations between the simulated data and the fit are stillthe least-squares fitted spectrum. At the bottom is the inte-

grated signal, i.e., the CW absorption spectrum, which is observable in the plot of residuals in Fig. 13, which is format-
ted in a similar way to Fig. 12 for comparison. The deviationsincluded for comparison with the 2D spectrum. The isotropic

distribution of microscopic membrane directors produces a appear as light and dark lines along the negative diagonal
of the 2D slices, respectively indicating under- and overesti-sharp central peak and two peaks exhibiting ‘‘powder-like’’

patterns on either side. mation of the spectral intensity by the calculated fit. How-
ever, the mesh plot at the top of Fig. 13 shows that theA 2D ELDOR spectrum (Sc0 signal) was simulated using

the same parameter set for mixing times of 0, 75, 150, 300, deviations were very close to the ambient noise level.
The results from the CW and 2D fits are given in Table600, 1200, 2000, and 3000 ns. Figure 12 shows the calcu-

lated spectrum for selected mixing times (spectra for T Å 9. As one might expect for simulated data sets, all three
minimizations recovered the starting lineshape and parame-150, 600, and 2000 ns have been omitted for compactness) .

The raised surface plotted at the top of the figure shows the ters reasonably well. However, the CW EPR results exhibit
significantly higher parameter uncertainties, and somewhatappearance of the COSY (T Å 0) spectrum. A somewhat

different representation is used for the nonzero mixing times higher correlations amongst the fitting parameters. The fit
so that the spectral intensity may be represented as a function
of the two spectral frequencies f1 and f2 as well as T . The

TABLE 10intensity of each 2D spectrum is represented as a gray-scale
Least-Squares Rotational Diffusion Rates and Ordering Poten-(or color) intensity map on a flat plane that is projected

tial Coefficients for Nonlinear Least-Squares Fits to Experimentalinto a perspective view, and located along the z axis at
2D ELDOR Spectra of CSL in a Vesicle Dispersion at 707C.the corresponding T value. The intensity scale is separately

normalized for each 2D slice. From this type of plot, the gib rbar c20 c22
development of slightly elongated cross peaks can clearly
be observed with increasing T . gib 1.243 { 0.080 1 0.244 00.075 00.235

rbar 8.373 { 0.022 1 00.801 00.226The data shown in Fig. 12 were fitted first by minimizing
c20 2.848 { 0.020 1 00.402with respect to the single 2D spectrum calculated at T Å
c22 0.484 { 0.012 1

300 ns and, second, by globally fitting the entire dataset.
The x 2

red of both 2D fits were close to unity, and their residu- Note. The experimental spectrum and residuals are shown in Figs. 13
and 14. Reported uncertainties correspond to the 95% confidence level.als were very close to normally distributed, with KS signifi-
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FIG. 14. Experimental 2D ELDOR spectrum (Sc-signal) for the CSL spin probe diffusing in randomly oriented POPC vesicles with approximately
20 wt% water at 707C. Shown is the COSY spectrum (T Å 0 ns, raised surface at top) and 2D ELDOR spectra for mixing times of 73, 106, 166, 400,
and 1000 ns (gray-scale images projected onto planes at different levels on the z axis) . The intensity scale is separately normalized for each 2D slice.

to a single mixing time appreciably reduces the parameter water at 707C. Parameters obtained by a global fit to spectra
obtained at T Å 0, 73, 106, 166, 400, and 1000 ns are givenuncertainties, although the correlations remain comparable

to those observed in the CW fit. For the global fit, however, in Table 10, and the residuals from the fit are shown in
Fig. 15.both the uncertainties and the correlations are significantly

reduced relative to the CW case.
Comparable reductions in parameter uncertainties and cor- Program Distribution

relations are achieved in the global analysis of actual experi-
mental data. Figure 14 shows a 2D ELDOR spectrum (Sc0 The source code for the programs described in this paper

may be obtained via anonymous ftp at the Cornell Materialssignal) of the CSL spin probe diffusing in randomly oriented
membranes of the lipid POPC with approximately 20 wt% Science Center. The routines are mainly coded in standard
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FIG. 15. Residuals from global nonlinear-least-squares fit to the experimental 2D ELDOR spectrum shown in Fig. 14. Raised surface at top is the
residual plot for the COSY spectrum at T Å 0. Deviations between data and fit in the 2D ELDOR spectra appear as light and dark areas in the gray-
scale images, respectively indicating under- and overestimation of the spectral intensity. The intensity scale is separately normalized for each 2D slice.

Fortran 77 and compiled using the IBM xlf compiler (com- The following directories are available:
parable to f77 on most Unix systems). There are a few

EPRLL, version 1.6 (family of single-spectrum calcula-routines written in C that perform low-level functions such
tion programs, including the program (EPRBL) used to de-as intercepting the Unix ‘‘kill’’ signal so that the user may
termine truncated basis sets).halt the fitting procedure without exiting the program. In

EPRLF (family of single-spectrum calculation pro-program NLSL, additional C subroutines are used to inter-
grams similar to EPRLL but including nonsecular terms).face with low-level X-windows library functions for graphi-

NLSL (CW version of least squares)cal monitoring of the fit. Some modification of the C subrou-
NL2DC (2D FT version of least squares using the con-tine names may be required in order to run on systems other

than the IBM RS6000. jugate gradients matrix solution)
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Application, Biological Magnetic Resonance’’ (L. J. Berliner and J.NL2DR (2D FT version using the Rutishauser matrix
Reuben, Eds.) , Vol. 8, Plenum, New York, 1989.solution)

13. G. Moro and J. H. Freed, J. Chem. Phys. 74, 3757 (1981).
To obtain the software, use the following steps: 14. B. Kirste, in ‘‘Handbook of EPR Spectroscopy’’ (C. P. Poole, Jr.,

and H. A. Farach, Eds.) , AIP Press, New York, 1994.
(1) ftp ftp.msc.cornell.edu

15. R. H. Crepeau, S. B. Rananavare, and J. H. Freed, in ‘‘10th Interna-
(2) At the login prompt, type anonymous tional EPR Symposium, Rocky Mountain Conferency on Analytical
(3) Enter your e-mail address as the password. Chemistry, Denver, 1987.’’
(4) Type cd pub/freed to access the home directory 16. Y. K. Shin and J. H. Freed, Biophys. J. 55, 537 (1989); 56, 1093

(1989).(5) There an updated list of the available programs and
17. M. Ge, S. B. Rananavare, and J. H. Freed, Biochim. Biophys. Actathe directories in which they are located may be found in the

1036, 228 (1990).file ‘‘README.1st.’’ Type get README.1st to consult this
18. J. H. Freed, J. Chem. Soc. Faraday Trans. 86, 3173 (1990).list and determine the directory for the desired program.
19. E. J. Hustedt, C. E. Cobb, A. H. Beth, and J. M. Beechem, Biophys.(6) Change to the desired directory with the command

J. 64, 614 (1993).cd directory_name .
20. E. J. Hustedt, A. Spaltenstein, J. J. Kirchner, P. B. Hopkins, and(7) Type get filename to obtain the desired file. Al-

B. H. Robinson, Biochemistry 32, 1774 (1993).
though the large number of subroutine files that compose

21. R. H. Crepeau, S. Saxena, S. Lee, B. R. Patyal, and J. H. Freed,
each program are available individually, several standard Biophys. J. 66, 1489 (1994).
formats are provided that allow transfer of all files at once, 22. S. Lee, B. R. Patyal, S. Saxena, R. H. Crepeau, and J. H. Freed,
depending on how the routines are to be unpacked after Chem. Phys. Lett. 211, 397 (1994).
downloading. Details regarding the available formats may 23. Program POWFIT for simulating EPR powder spectra. Author: Da-

vid R. Duling, National Institute of Environmental Health Science,be found in file README.1st.
1994.
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