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A methodology for obtaining pure absorption two-dimensional absorption spectrum are narrower than those in the magni-
electron spin resonance spectra is presented for the case of large tude spectrum. For Lorentzian lines, the peak widths at half-
inhomogeneous broadening and/or slow motions. For slow mo- height are áT01

2 compared to 31/2T01
2 for the magnitude

tions, the spectra consist of ‘‘complex Lorentzians’’ superimposed spectrum. In the wings of the spectrum this resolution en-
with complex weighting factors, presenting a challenge to ob-

hancement is even more dramatic because the dispersivetaining absorption spectra. It is shown how absorption-type spec-
parts of Lorentzian peaks decay more slowly, as (v0 v0)01 .tra can be recovered for the two-pulse COSY and SECSY experi-
Thus adjacent resonant lines will experience more overlap,ments in such cases. For three-pulse 2D ELDOR experiments,
including the appearance of apparent, but not real, cross peaks.absorption lineshapes can be obtained for the autopeaks, whereas
Also, noise in the pure-phase spectrum is randomly distributedthe cross peaks would be of mixed-mode character, in general.

However, for practical cases the dispersive components in the cross (i.e., equal positive and negative components) while it appears
peaks will be relatively small. Theoretical and experimental ab- as positive definite in the magnitude spectrum. In addition,
sorption spectra are provided to illustrate the method and to show the mixture of absorption and dispersion can lead to the prob-
the improved resolution obtained from absorption lineshapes. In lem of ‘‘phase twist’’ of spectral lines (8).
particular, the variation in linewidths across a SECSY spectrum,

Earlier work using swept-field 2D ESE demonstrated
which is a key component in elucidating motional dynamics, is

(10, 11) that the spectra in the slow-motional regime wereclearly rendered in the pure absorption mode. A convenient
very sensitive to T2 variations across the spectrum. This wasmethod for introducing the necessary phase corrections for the
found to be particularly important for determining the detailsslow-motional spectra is also provided. q 1997 Academic Press

of the motional mechanism (e.g., whether the molecule ro-
tates by jump, free diffusion, or Brownian diffusion).

The natural candidate to monitor this T2 variation in 2DINTRODUCTION
FTESR is the SECSY experiment. However, in this experi-
ment, finite pulses and dead times lead to a phase variationRecent advances in digital electronics and microwave
across the spectrum. This causes a mixture of absorptiontechnology have opened up the field of two-dimensional
and dispersion in both frequency domains, which itself leadselectron spin resonance (1, 2) . At the same time, the devel-
to a loss in resolution because of interference from the broadopment of a comprehensive theory for 2D ESR (3) based
dispersive components. Either one makes the necessary cor-on the stochastic Liouville equation (4) has enabled the
rections (by methods we discuss below), or else for conve-rigorous analysis of slow-motional and inhomogenously
nience magnitude spectra may be studied, wherein the phasebroadened 2D ESR spectra from complex fluids (5, 6) . The
corrections are unnecessary, but the resolution is reduced.2D ESR lineshapes in complex fluids are crucial to obtaining
As a result, the variation of linewidths across the spectrumreliable motional and ordering parameters.
is rarely apparent in the magnitude displays, so it is crucialWhile the collection of the signal is performed in a phase-
to obtain pure absorption lineshapes. This problem is exacer-sensitive and dual-quadrature fashion, the analysis of the
bated in the near rigid limit where the resonance frequenciesslow-motional spectra has typically been restricted to the
of the ‘‘dynamic spin packets’’ are virtually a continuum.magnitude domain because of the inapplicability of standard

A number of methods have been developed for obtainingmethods used to extract the pure absorption signals from
absorption spectra in high-resolution 2D NMR (12, 13) andfast-motional 2D ESR spectra with little inhomogeneous
in echo-detected NMR (14, 15) . In 2D ESR, absorptionbroadening (1) . This inevitably leads to a loss of resolution
spectra can be readily obtained in the fast-motional regimebecause of the contributions of the broad dispersion peaks,

as is well documented in NMR (7–9) . Linewidths in the using linear predictive methods (LPSVD), when there is
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440 SAXENA AND FREED

little inhomogeneous broadening (16) . It should be pointed
out that the NMR methods of Keeler and Neuhaus (13) are
strictly valid only for negligible inhomogeneous broadening.
This is discussed in the Method section after formulating
the problem in the context of slow-motional theory.

The more challenging case of slow motions in magnetic
resonance (where the spectra are very sensitive to details of
the motional dynamics) requires more care as the spectrum
consists of a sum of complex Lorentzians coupled by com-
plex weighting factors (3, 10, 11, 17, 18) . Methods used so
far in NMR (14, 15) are based on the simplifying assump-
tions that these weighting factors are real. This is discussed
in more detail in the Method section. Furthermore, the
LPSVD method is unsatisfactory since it approximates the
very complicated lineshapes by a sum of decaying sinusoids,
which have little relation to the fundamental dynamic modes
[or dynamic spin packets; cf. (2)] predicted by theory.
Hence the problem of obtaining absorption lineshapes has
so far remained unresolved in both 2D ESR and 2D NMR
(19) . In the Method section we propose a procedure for
obtaining absorption spectra for the two-pulse COSY and FIG. 1. Basic pulse sequences in 2D ESR. (a) COSY, (b) SECSY, and

(c) 2D FT ELDOR.SECSY experiments. The method is extended to the 2D
ELDOR case and the limitations of this approach are pointed
out. It is shown how experimental spectra may be conve-
niently phase corrected. Finally, experimental and theoretical

actions (1, 2) . In the very slow-motional regime another
examples are provided under Results and Discussion.

mechanism becomes relevant. Here each point in v2 refers
to an orientation or a set of orientations of the molecule with

METHOD respect to the dc magnetic field. Cross peaks can develop
due to the ‘‘real time’’ reorientation of the molecule during

Formulation of the Problem the mixing time. Since the orientations provide a continuum,
this ‘‘motional’’ cross-peak development results in an appar-

The main classes of 2D ESR experiments discussed are
ent broadening of the autopeaks (3) .

the two-pulse COSY and SECSY and the three-pulse 2D
The quantitative analysis of slow-motional spectra relies

ELDOR (a 2D exchange experiment) . The pulse sequences
on theoretical simulations based on the stochastic Liouville

are shown in Fig. 1. In the two-pulse experiments, the first
equation (SLE) (3, 4, 20, 21) . The dual-quadrature 2D ESR

pulse creates transverse magnetization (i.e., {1 coherences)
signal will, in general, provide two types of coherence sig-

which evolves for a period t1 . The signal is measured during
nals, the Sc0 ( the ‘‘echo-like’’ or the N type) and the Sc/t2 for a range of settings of t1 . In the SECSY experiment,
( the ‘‘FID-like’’ or the P type) , which are then fit to theory.

inhomogeneous broadening is refocused along t1 , and hence
For slow-motional 2D FT spectral calculations, it is neces-

the technique provides the homogeneous linewidths (i.e.,
sary to diagonalize the stochastic Liouville superoperator,

intrinsic T2’s) across the spectrum, along v1 (2) .
designated here by L , in each of the diagonal (zero-order

In the three-pulse experiment, the first pulse again nutates
coherence) and off-diagonal ({1 order coherence) sub-

the spins into the x–y plane (providing {1 coherences) ,
spaces, i.e.,

following which they are ‘‘frequency labeled’’ during the
evolution period t1 . A second pulse converts this magnetiza-

O tr
1 L1O1 Å L1 , O tr

0 L0O0 Å L0 , O tr
01L01O01 Å L01 .tion into the z direction, ( i.e., zero-order coherences) where

it exists for a time T ( the mixing time), during which the
[1]spins can be exchanged to different resonant frequencies

leading to a magnetization transfer. Hence, after the third
Here the subscripts 0, {1 refer to the order of the coherence,pulse, cross peaks can appear due to spins that precessed at
while O and L are the complex eigenvectors and eigenvaluesv1 Å va during t1 and v2 Å vb during t2 . The principal
of the stochastic Liouville operator, L . The real parts of L{1mechanisms for magnetization transfer are the electron-nu-

clear dipolar (END) and Heisenberg exchange (vHE) inter- provide the homogeneous linewidths (i.e., T01
2 ) and the
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441LINESHAPES AND MOTIONS IN 2D ESR

imaginary parts are the resonant frequencies of the ‘‘normal in v2 . We collect two signals S * and S 9 for the 2D ELDOR
given bymodes’’ or ‘‘dynamic spin packets.’’

Detailed expressions for L are given elsewhere (3) . A
detailed discussion of the properties of O and L is provided

S *( t1 , T , t2) Å 1
2

∑
lmn

Clmnexp[0(L0)mT]in Ref. (22) . The relevant results are reproduced here. For
fast motions (i.e., the motional narrowing limit) , the eigen-

1 exp[0(L01)n( t2 / b2) 0 ia2]vectors are pure real and the eigenvalues in the diagonal
space are pure real, providing simply the electron and nuclear 1 ∑

j

[exp{0[D( t2 / t1) 2]}
spin flip rates and the cross-relaxation rates. For slow mo-
tions O and L become complex, in general. However, in the

1 B/
lj exp{0(L01) j( t1 / b1)}diagonal subspace, the eigenvalues L0 are either pure real

or come in complex conjugate pairs with eigenvectors such / exp{0[D( t2 0 t1) 2]}
that the combination can be written as real oscillating sinu-

1 B0
lj exp{0(L/1) j( t1 / b1)}] [8]soids.

For the two-pulse COSY experiment, the Sc{ terms (corre-
S 9( t1 , T , t2) Å 1

2i
∑
lmn

Clmnexp[0(L0)mT]sponding to the coherence pathways 0 r |1 r 01) are
given by (3)

1 exp[0(L01)n( t2 / b2) 0 ia2]
Sc{( t1 , t2) Å ∑

l ,n ,j

ClnB{
lj exp[0(L|1) jt1] 1 ∑

j

[exp{0[D( t2 / t1) 2]}

1 exp[0(L01)nt2]exp[0D( t2 { t1) 2] [2] 1 B/
lj exp{0(L01) j( t1 / b1)}

Cln Å ∑
p

(n01)p(O01)pn(O01)ln [3] 0 exp{0[D( t2 0 t1) 2]}

1 B0
lj exp{0(L/1)l( t1 / b1)}] . [9]B{

lj Å ∑
t

(O|1)l j(O|1)t j(n|1)t , [4]

Analogous equations for the COSY/SECSY can be written.
Phase distortions due to imperfect pulses and finite deadwhere n{1 represents the two counterrotating transition mo-
times (cf. below) are included by the terms a2 , b1 , and b2 .ment vectors that specify the transverse magnetization cre-
The signals from the two coherence pathways are given byated by the first pulse, and D Å 2p 2D 2

g . Dg represents the
the simple linear combination (23)additional inhomogeneous broadening, assumed to be

Gaussian.
Sc{( t1 , T , t2) Å S *( t1 , T , t2) { i 1 S 9( t1 , T , t2) . [10]The 2D ELDOR signal (corresponding to the coherence

pathway 0 r |1 r 0 r 01) is given by a similar expression:
In the absence of inhomogeneous broadening, the collected
signal reduces to (1)Sc{( t1 , T , t2) Å ∑

l ,n ,m , j

ClnmB{
l , jexp[0(L|1) jt1]

S *( t1 , T , t2) Å ∑
l ,n ,m

Clnmexp[0(L0)mT]1 exp[0(L0)mT]exp[0(L01)nt2]

1 exp[0D( t2 { t1) 2] [5] 1 exp[0(L01)n( t2 / b2) 0 ia2]
Clnm Å ∑

p ,k

(n01)p(O01)pn(O01)kn(O0)km(O0)lm [6] 1 R ∑
j

Bljexp[0(Lj)( t1 / b1)] [11]

B{
lj Å ∑

t

(O|1)l j(O|1)t j(n|1)t . [7] S 9( t1 , T , t2) Å ∑
l ,n ,m

Clnmexp[0(L0)mT]

1 exp[0(L01)n( t2 / b2) 0 ia2]Note that L0 is real and B and C are complex, in general.
In the absence of nuclear modulation, the eigenvalues and 1 I ∑

j

Bljexp[0(Lj)( t1 / b1)] . [12]
eigenvectors of the two off-diagonal spaces are complex
conjugates of each other ( i.e., O01 Å O*1 and L01 Å L*1 ;
therefore B01

lj Å B 1*lj ) . Note that in Eqs. [11] and [12] Bl jå B/
lj ; i.e., the superscript

has been omitted for convenience. In this case, the first stepExperimentally, one measures a mixture of both Sc0 and
Sc/ . Quadrature detection in t2 gives phase discrimination of the phase cycle measures the real part in t1 , given by Eq.
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442 SAXENA AND FREED

[11]. The phase of the preparation pulse is then advanced weighting factors Clnm and Bl j become complex, and the very
concept of a pure absorption spectrum requires special care.by p /2 for the second half of the phase cycling to collect

the imaginary part in t1 , given by Eq. [12]. Equations [11] To appreciate this, consider the single-pulse FID (3) . The
signal, SFID , is given byand [12] provide the dual-quadrature or hypercomplex data

set, i.e., R2R1 , I2R1 , R2I1 , and I2I1 , where R and I stand
for real and imaginary part of the signal and the subscripts SFID( t2) Å ∑

j

Cj exp[0(L01) jt2] [13]
refer to the two time axes. When b1 , a2 , and b2 are nonzero,
there will be an admixture of absorptive and dispersive com- Cj Å ∑

pk

(n01)p(O01)p j(O01)k j(n01)k . [14]
ponents in the frequency-domain spectra, as discussed be-
low, and this will require phase correction.

The phase errors are primarily due to two sources. The A Fourier transform of this signal provides the CW equiva-
first is an imperfect bandwidth due to the finite irradiating lent spectrum,
fields and pulses. Gorcester and Freed (1) analyzed this
using a classical vector model and they found that it led to a SFID(v2) Å ∑

j

Cj( A2j / iD2j) , [15]
linear phase variation across the two-dimensional frequency
spectrum.1 Additionally, instrumental dead times (of about
50 ns in t1 and 40 ns in t2 in current work in our lab) where A2j and D2j are the absorptive and dispersive contribu-
contribute a further phase error given by F(v0 0 vr f ) Å tions to the lineshape from each dynamic ‘‘spin packet.’’
(v0 0 vr f )td /2p (1) , where td is the dead time. They are defined as

However, most signals of interest in 2D ESR are strongly
inhomogeneously broadened due to various reasons such as A2j å A2j(v2) Å T01

2j / [ (T01
2j )2 / (v2 0 vj)

2] [16]
the presence of unresolved superhyperfine interactions, and

D2j å D2j(v2 )the effects of MOMD [microscopic order but macroscopic
disorder (cf. Results and Discussion)] and of very slow Å (v2 0 vj) / [(T01

2j )2 / (v2 0 vj)
2] . [17]

motions (3) .
Common phase-correction techniques used in high-resolu- Also, v2 is the Fourier transform frequency component

tion 2D NMR (13) rely on separating out the real and imagi- corresponding to t2 , and its zero refers to the center reso-
nary parts of the t1 data in the two parts of the phase cycle nance frequency. The real and imaginary parts of the signal
(cf. Eqs. [11] and [12]) . However, this is strictly valid only in Eq. [15] correspond to the standard absorption and disper-
for negligible inhomogeneous broadening. The presence of sion spectra in CW ESR spectroscopy. These are given by
inhomogeneous broadening invalidates this in two ways.
First, in the presence of inhomogeneous broadening, the t1- Abs å R[SFID(v2)] Å ∑

j

{R[Cj]A2j 0 I[Cj]D2j} [18]dependent terms in the collected signal (cf. Eq. [8] and Eq.
[9]) are not pure real and imaginary, respectively. Second,

Dis å I[SFID(v2)]after the dead time, the Sc/ signal is much weaker than the
Sc0 signal (cf. Eq. [5]) . In fact, in extreme (but frequent) Å ∑

j

{Re[Cj]D2j / I[Cj]A2j}. [19]
cases, we lose the Sc/ signal completely, and then S * } Sc0 ;
S 9 } i 1 Sc0 . Again this causes the t1-dependent terms to
deviate from a simple real or imaginary behavior. The pres- Note that while D2j appears in Eq. [18], it has always been
ence of these two factors ensures that we no longer have found that slow-motional absorption CW ESR spectra are
two independent complex functions to phase the spectra and pure positive, as required for an absorption experiment. This
hence commonly used 2D NMR procedures (13) are not suggests that the negative excursions due to the dispersive
immediately applicable. components are counterbalanced by larger absorptive com-

Note that, in the fast motional regime, absorption spectra ponents. However, these dispersive components contribute
can also be obtained by other methods. For example, for to the complexity of the slow-motional lineshape. We will
fast motions and small inhomogeneous broadening, the take Eqs. [18] and [19] as operative definitions for absorp-
model based on LPSVD (11, 24, 25) is valid and has been tion and dispersion for slow-motional ESR (and NMR).
used to calculate the pure absorption spectra (2, 16) . In the next subsection it is shown that by suitable transfor-

Additionally in the slow-motional regime, however, the mations and phase corrections we can calculate, for the
COSY or SECSY experiment,

1 Note that the imperfect coverage would also lead to a frequency-depen-
dent amplitude variation of the 2D ESR spectrum, and for quantitative Sc0(v1 , v2) Å ∑

j

A1j[R(Cj j)A2j 0 I(Cj j)D2j] . [20]
analysis, this is also corrected (1, 2) .
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443LINESHAPES AND MOTIONS IN 2D ESR

A comparison of Eqs. [20] and [18] shows that Eq. [20] each other (3) . Also the autopeaks occur at j Å n and hence
for the autopeaks the sum reduces tohas a form very similar with respect to v2 to that of the CW

spectrum. In the v1 direction we obtain simple absorption
lineshapes. This method is then extended to the 2D ELDOR S auto

c0 ( t1 , t2) Å ∑
j

Kjjexp[0{Re(L01) j}( t1 / b1)]
case, and it is shown that, in the slow-motional regime, we
can recover absorption-like lineshapes for the autopeaks in 1 exp 0 [(L1) j( t2 / b2) / ia2]
an ELDOR experiment. However, the cross peaks can be

1 exp[0Dt 2
2] . [23]mixed mode in general. Finally in the subsection Phase Fac-

tors, we provide an approach for determining the relevant
In fact, we find from simulations that the SECSY experimentphase factors, based on nonlinear least-squares techniques.
is dominated by the autopeaks, and so we shall take Eq.
[23] to apply generally to a good approximation. Note thatSlow Motions with Large Inhomogeneous Broadening
the argument of the exponential in t1 is pure real, and so it

SECSY and COSY. In the slow-motional regime, the will yield simple exponential decays. A Fourier transform
weighting factors B and C are complex, as noted above. of Eq. [23] with respect to t2 gives
Further, the signals are usually strongly inhomogeneously
broadened. Consequently, the Sc/ signal typically decays S auto

c0 ( t1 , v2) Å G(v2)
away in the dead time. Therefore, the method of choice must

# ∑
j

Kjjexp[0{Re(L01) j}( t1 / b1)]be based on the ‘‘echo-like’’ Sc0 signal. We now describe
such a procedure for the SECSY experiment, where the echo

1 exp[0if2](A2j / iD2j) , [24]is measured after a two-pulse sequence, and we show how
a simple variant of this is applicable for the case of COSY.

where the symbol # stands for the convolution integral, A2jThe SECSY signal is given by
and D2j are defined in Eqs. [16] and [17], respectively, and

Sc0( t1 , t2)

G(v2) Å
√

p

D
expF0 v 2

2

D G [25]Å ∑
nj

Knjexp[0{(L/1) j / (L01)n}( t1 / b1)]

1 exp[0(L1)n( t2 / b2) 0 ia2]exp[0Dt 2
2] , [21] f2 Å v2b2 / a2 . [26]

where The real and imaginary parts of Eq. [24] are given by

Kn j Å ∑
l

ClnB/
lj . [22] R[S auto

c0 ( t1 , v2)]

Å G(v2) # ∑
j

exp[0{Re(L01) j}( t1 / b1)]

The terms Cln and B/
lj are given in Eqs. [3] and [4], respec-

1 [{R(Kj j)A2j 0 I(Kj j)D2j}cos f2tively.
For the case of a COSY experiment, Lee et al. (3) demon- / {R(Kj j)D2j / I(Kj j)A2j}sin f2] [27]

strated that the Sc0 spectrum is symmetric about the t1 Å t2

I[S auto
c0 ( t1 , v2)]axis. In fact, it is this feature that gives rise to the echo. A

shearing transform (3, 26) t2 r t1/ t2 recovers the equivalent Å G(v2) # ∑
j

exp[0{Re(L01) j}( t1 / b1)]
of the SECSY experiment ( i.e., substituting t2 r t1/ t2 in Eq.
[2] for Sc0 gives Eq. [21]) . Physically, this arises because

1 [{R(Kj j)D2j / I(Kj j)A2j}cos f2a SECSY experiment is essentially a time-shifted COSY
experiment. Therefore, one first obtains the Sc0( t1 , T , t2) 0 {R(Kj j)A2j 0 I(Kj j)D2j}sin f2] . [28]
combination as given by Gamliel and Freed (23) for the
COSY experiment. Upon performing the shearing transform Comparing Eqs. [27] and [28] with Eqs. [18] and [19]
the signal is identical to SECSY (cf. Eq. [21]) and hence allows us identify the absorption (A*2j) and dispersion
the following discussion is applicable for both the SECSY (D *2j) lineshapes in v2 as
and COSY experiments.

For these experiments a further simplification can be A*2j å R(Kj j)A2j 0 I(Kj j)D2j [29]
made. In the absence of nuclear modulation, the eigenvalues
in the two off-diagonal spaces are complex conjugates of D *2j å R(Kj j)D2j / I(Kj j)A2j . [30]
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444 SAXENA AND FREED

With these definitions Eqs. [27] and [28] can then be rewrit- S auto
a0 (v1 , v2) Å cos(b1v1)R[S auto

a0 (v1 , v2)]
ten as 0 sin(b1v1)I[S auto

a0 (v1 , v2)] , [38]

R[S auto
c0 ( t1 , v2)] which yields

Å G(v2) # ∑
j

exp[0{Re(L01) j}( t1 / b1)]
S auto

a0 (v1 , v2) Å G(v2) # ∑
j

A1jA *2j . [39]

1 [A *2jcos f2 / D *2jsin f2] [31]

The lineshapes in v1 are of a simple absorption type (cf.I[S auto
c0 ( t1 , v2)]

Eqs. [36] and [39]) , i.e., a sum of Lorentzians with simple
Å G(v2) # ∑

j

exp[0{Re(L01) j}( t1 / b1)] homogeneous linewidths given by R(L01) j .
Therefore, for the COSY (and SECSY) experiment, use

of the shearing transformation and phase correction and an1 [D *2jcos f2 0 A *2jsin f2] . [32]
application of the Fourier transform allow us to obtain ab-
sorption-like lineshapes in v2 and v1 .From Eq. [31] it is clear that the presence of phase variation

2D ELDOR. The success of the above procedure inleads to a mixture of absorption with some dispersion in the
yielding absorption-like lineshapes for the two-pulse experi-real part of the S auto

c0 ( t1 , v2) signal. To rectify this, we can
ments encourages one to generalize the method to the three-phase correct the signal as
pulse 2D ELDOR case. Therefore, we first apply the shearing
transformation on the time-domain Sc0( t1 , T , t2) data (cf.S auto

a0 ( t1 , v2) Å cos f2R[S auto
c0 ( t1 , v2)]

Eq. [5]) which gives
0 sin f2I[S auto

c0 ( t1 , v2)] [33]

Sc0( t1 , T , t2)
to give

Å ∑
nmj

Knmjexp[0{(L/1) j / (L01)n}( t1 / b1)]

S auto
a0 ( t1 , v2)ÅG(v2)

1 exp[0(L0)mT]exp[0(L1)n( t2 / b2) 0 ia2]
# ∑

j

exp[0{Re(L01) j}( t1/ b1)]A *2j ; [34]
1 exp{0(Dt 2

2)}. [40]

i.e., we can recover absorption-like lineshapes (analogous Here
to Eq. [18] for the single pulse FID) in v2 . Since the t1

terms in Eq. [34] provide decaying exponentials only, we Knmj Å ∑
l

ClmnB/
lj . [41]

would expect S auto
a0 ( t1 , v2) to be pure positive. On Fourier

transforming Eq. [34] with respect to t1 we get

The weighting factors Clmn and B/
lj are defined by Eqs. [6]

S auto
a0 (v1 , v2) Å G(v2) # ∑

j

A *2jexp(0ib1 1 v1) and [7], respectively. In Eq. [40] the t1 terms are clearly
complex. Further, the T-dependent term consists of either
pure exponential decaying functions or real oscillating sinu-1 (A1j / iD1j) . [35]
soids (22) . After Fourier transforming Eq. [40] with respect
to t2 and phase correcting as defined Eq. [33], i.e.,A1j and D1j are defined as

Sa0( t1 , T , v2) Å cos f2R[Sc0( t1 , T , v2)]
A1j å

R(L01) j

(RL01) 2
j / v 2

1

[36]
0 sin f2I[Sc0( t1 , T , v2)] , [42]

D1j å
v1

(RL01) 2
j / v 2

1

. [37] we get

Sa0( t1 , T , v2)The frequency-domain spectrum can then be phase corrected
in v1 in a manner similar to Eq. [33] to obtain the absorption Å G(v2) # ∑

nmj

exp[0(L0)mT]
spectrum,
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445LINESHAPES AND MOTIONS IN 2D ESR

fore postulated that the presence of an inhomogeneous spread1 (A *2nR exp[0{(L/1) j / (L01)n}( t1 / b1)]
(which is less effectively canceled out for the cross peaks

/ D *2nI exp[0{(L/1) j / (L01)n}( t1 / b1)]) . than the autopeaks) in frequencies causes these dispersive
components to rapidly decay away in the dead time. Paradoxi-[43]
cally, the presence of finite dead times are actually helpful in
extracting pure absorption spectra. This is in accord with

G(v2) is given in Eq. [25]. Also, A *2n and D *2n , the absorp- the experience of Grandinetti et al. (15) for time-shifted 2D
tive and dispersive components in v2 , are defined in a man- dynamic-angle spinning NMR experiments. Again, they ra-
ner similar to Eqs. [18] and [19], i.e., tionalized this behavior as due to the presence of a Lorentzian-

type inhomogeneous broadening which caused the dispersive
A *2n å R(Knmj)A2n 0 I(Knmj)D2n [44] components to decay away rapidly in t1 .

D *2n å R(Knmj)D2n / I(Knmj)A2n . [45]
Phase Factors

The above prescriptions rely on accurate knowledge ofThe autopeaks in 2D ELDOR occur at j Å n . Since L/1

the actual phase factors in the experiment. The general proce-Å L*01 , we have
dure for obtaining them would be to first phase the t1 Å 0
slice (which is unaffected by modulation in t1) to obtain theR exp[0{(L/1) j / (L01)n}( t1 / b1)]
v2 phase factors, and then the t1 Å 0 slice (constructed from

Å exp[0R(L01) j( t1 / b1)] [46] the full two-dimensional data set) is phased for phase factors
in v1 . However, due to finite dead times in both t1 and t2 ,I exp[0{(L/1) j / (L01)n}( t1 / b1)] Å 0. [47]
this method is not available in 2D FT ESR. One can of
course phase up a single-pulse FID from the sample (withHence, for autopeaks, Eq. [43] reduces to
the same dead time in t2 and coverage) to obtain phase
factors in v2 but then those in v1 are undetermined.

R[S auto
a0 ( t1 , T , v2)]Å G(v2) # ∑

mj

exp[0(L0)mT]A *2j We describe a method for circumventing this problem.
One can obtain good ‘‘seed’’ values for a2 , b1 , and b2 by

1 exp[0R(L/1) j( t1/ b1)] . [48] modeling a fast-motional signal with well-characterized
properties (e.g., PDT/toluene) collected under similar ex-

On Fourier transforming Eq. [48] with respect to t1 and perimental conditions, using LPSVD (16) . The actual phase
phase correcting in a manner identical to Eq. [38], i.e., factors for the sample of interest can be slightly different

from these, since different samples and temperatures can
Sa0(v1 , T , v2) Å cos(b1v1)R[Sa0(v1 , T , v2)] slightly change the resonator quality factor, Q , as well as

the operating frequency. This would change the coverage in/ sin(b1v1)I[Sa0(v1 , T , v2)] ,
the experiment and hence the phase factors. However, for a

[49] particular sample and temperature, they would be indepen-
dent of mixing time.

If we examine Eq. [39] for the SECSY/COSY experimentwe get for the autopeaks
in the light of Eq. [18], we can make the ansatz that the
absorption spectrum is pure positive. This has been con-Sauto

a0 (v1 , T , v2)
firmed by us by many theoretical simulations. Therefore,

Å G(v2) # ∑
j

exp[0(L0)mT]A1jA *2j . [50] after Fourier transforming with respect to t2 , the seed values
of the phase factors a2 and b2 required for phasing
S auto

a0 ( t1 , v2) (cf. Eq. [33]) are (nonlinearly) optimized so
A1j has been defined in Eq. [36]. S auto

a0 (v1 , T , v2) is similar
as to minimize the function k, defined as

to that for the SECSY experiment (Eq. [39]) . Therefore, it
is evident that absorption-like spectra can be obtained for
the autopeaks in a 2D ELDOR experiment. k Å [ ∑

n1,n2

i , j

Si ,j]
2 ∀Si , j õ 0, [51]

Examining Eq. [43] shows that the lineshapes of the cross
peaks would be predicted to be mixed mode in general. How-
ever, as a practical matter a large number of theoretical simu- where Sij is the spectrum at the i th value of t1 and the j th

value of v2 , and n1 and n2 are the number of points in t1lations have shown that negative excursions in the cross peaks
(expected due to the presence of dispersive components) are and v2 , respectively. Thus, minimization of k corresponds

to the minimization of the negative excursions in the ( t1 ,minimal for finite inhomogeneous broadening, D. It is there-
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446 SAXENA AND FREED

v2) spectrum. Following phase correction in v2 , Sa0( t1 , v2) R[S auto
c0 (v1 , v2)] Å G(v2) # ∑

j

A *2j A1j , [57]
(cf. Eq. [34]) is Fourier transformed with respect to t1 and
the function k is recalculated according to the equivalent of

where A*2j and A1j have been defined in Eqs. [29] and [36],Eq. [51]. The phase factor b1 required to properly phase
respectively. Note that Eq. [57] corresponds to the phasedS auto

a0 (v1 , v2) (cf. Eq. [38]) is again optimized by minimiz-
experimental spectra given by Eq. [39], as it should. Henceing k. Brent’s algorithm, based on the principal-axis method
we can make a direct comparison between theory and experi-(27) , was used to optimize the phase factors. The penalty
ment. The approach for the case of 2D ELDOR is exactlypaid for this procedure is in the form of increased data pro-
the same, and it yields Eq. [50] for the autopeaks.cessing. However, computationally the method is not de-

manding, so that the increased time is not very excessive.
This method was successfully tested on theoretical simula- EXPERIMENTAL
tions where a finite dead time was introduced to produce
phase errors (cf. next section). Samples

For the 2D ELDOR experiment, the above ansatz of a
CSL samples. A measured amount (0.346 ml) of 1.9pure positive spectrum is correct only for the T É 0 experi-

mM CSL in chloroform stock solution was added to 50ment. This corresponds to the limit where a 2D ELDOR
mg of POPC (in excess chloroform) to yield a 1 mol%experiment is equivalent to a COSY. Cross peaks grow in
concentration of the spin probe. The sample was containedwith mixing time, and these, having a mixed-mode character
in a 3 mm o.d. glass tube. The chloroform was removed by(cf. Eq. [43]) , would violate the condition of pure positivity.
desiccating on the vacuum line for about 24 hours and aTherefore, one should phase correct the lowest mixing time
small excess of water was added to form a saturated disper-experiment ( i.e., T É 0) and use the phase factors obtained
sion. The sample was then degassed to a pressure of aboutfor the longer mixing times.
1 1 1004 Torr and sealed.

Comparison with Theory Peptide samples. The peptide systems studied were (a)
A P P P P C-MTSSL I (monoradical) and (b) MTSSL-C PFor simulations, we assume that the pulses are perfectly
P P P C-MTSSL II (biradical) where (i) MTSSL is thenonselective (3) . Hence, the only source of phase variations
methanethiosulfonate spin label and (ii) A, C, and P areis the dead times in t1 and t2 . In fact, these are known exactly
amino acids alanine, cysteine, and proline, respectively.from Eq. [21], i.e.,
These short-chain peptides were custom synthesized at the
Cornell Biotechnology Department and were labeled with

a2 Å 0 [52] the MTSSL spin label via a disulfide bond (28) . The MTSSL
spin label was procured from Reanal (Budapest, Hungary).b2 Å t2d [53]
The concentrations of the two systems were about 1.5 mM.

b1 Å t1d , [54] The sample was prepared by dissolving the required amount
of the peptide in a glycerol /water/ trifluoroethanol mixture

where t1d and t2d are the dead times in t1 and t2 , respectively. which was buffered with MOPS [3-(N-morpholino)pro-
Hence the phase errors can be rectified directly in the time panesulfonic acid] at pH 7, in a glove bag.
domain, so Eq. [21] becomes

2D FTESR Experiments
Sc0( t1 , t2) Å ∑

nj

Knjexp[0{(L/1) j / (L01)n} t1]
All experiments were performed on the 2D FT ESR spec-

trometer, which has been described elsewhere (1) . The use1 exp[0(L1)nt2]exp{0(Dt 2
2)} [55]

of a TWTA with an output power of 1–2 kW as well as a
loop-gap resonater allowed uniform coverage of about {100and the form for the autopeaks (cf. Eq. [23]) becomes
MHz. The pulse sequences used are shown in Fig. 1. COSY
and 2D ELDOR experiments were performed on both sam-

S auto
c0 ( t1 , t2) Å ∑

j

Kjjexp[0{Re(L01) j} t1] ples. A 16-step phase cycle for COSY and a 32-step phase
cycle for 2D ELDOR were used to eliminate all unwanted

1 exp 0 [(L1) jt2]exp[0Dt 2
2] . [56] terms. These are based on the 8- and 16-pulse sequences

given elsewhere (23) . The additional steps in the phase cycle
serve to further eliminate instrumental artifacts not fully re-We Fourier transform Eq. [56] with respect to t2 and extract

the real part. This is then Fourier transformed in t1 and the moved by the original sequence (6) . The nominal width of
a p /2 pulse was 4.9 ns.real part of the transform gives

AID JMR 1078 / 6j16$$$383 01-31-97 01:49:02 magas



447LINESHAPES AND MOTIONS IN 2D ESR

initial value of t1 was 50 ns and 128 steps of 3 ns were
collected. For each t1 step, 256 data points at a 1 ns interval
were measured in t2 after a spectrometer dead time of 40 ns.

RESULTS AND DISCUSSION

We would first like to demonstrate that the absorption
spectrum from a COSY/SECSY experiment is positive
definite, using simulations. Two cases are of experimental
interest: (a) very slow motion, where the spectrum is sensi-
tive to the details of motional mechanisms, and (b) samples
where the spectrum is a superposition of spectra from locally
ordered environments (or fragments) which are randomly

FIG. 2. Absorption spectra obtained from theoretical simulations for
the SECSY experiment. (a) A typical very slow-motional spectrum. The
parameters used are R⊥ Å 1.7 1 105 s01 , R\ Å 1.7 1 106 s01 , and DG Å
2.0 G. (b) A typical MOMD spectrum obtained using 20 orientations. The
parameters used are R⊥ Å 2.3 1 108 s01 , R\ Å 2.3 1 109 s01 , S Å 0.08,
DG Å 0.5 G, and vHE Å 1 1 106 s01 . The dead times in t1 and t2 for (a)
and (b) were 40 ns each. Also, the magnetic parameters used are gxx Å
2.0081, gyy Å 2.0061, gzz Å 2.0024, Axx Å 5.6, Ayy Å 5.3, and Azz Å 33.8.

CSL samples. We collected 256 points at a step size of
1 ns in t2 after a dead time of 75 ns for ELDOR and 62 ns
for COSY. The separation between the first two pulses, t1 ,
was stepped with 128 steps of 3 ns from an initial value of
50 ns. The 2D ELDOR experiments were repeated for a
series of mixing times, T , ranging from 74 ns to 3 ms. Results
were obtained at several different temperatures.

Peptide samples. At the temperature range and motional
FIG. 3. Absorption spectra obtained from theoretical simulations for

rate studied, the T*2 (É5 to 10 ns) were too short to allow the 2D ELDOR experiment. Simulation parameters are the same as those
the detection of the free induction decay, but an echo decay in Fig. 2a. Spectra are shown for different mixing times, T : (a) 100 ns,

(b) 1 ms, and (c) 5 ms.can readily be measured. For the 2D ESR experiments, the
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the legend. We find that the use of Eq. [57] for the autopeaks
in SECSY gives virtually identical results to those from Eq.
[55] in the cases tested. Hence, the spectra in Fig. 2 are
found to be pure positive. As noted earlier, the COSY Sc0

signal after the shearing transformation is formally equiva-
lent to a SECSY signal. We have found that the ansatz of
pure positivity of the SECSY spectrum is true for theoretical
absorption spectra obtained for a large range of parameters.
Hence, this criterion can be safely imposed while phasing
SECSY/COSY experimental spectra using Eqs. [33], [38],
and [51].

In Fig. 3, theoretical absorption spectra are shown for the
2D ELDOR case corresponding to the parameters of Fig.
2a. Here Eq. [40] is used with the phase corrections of Eqs.

FIG. 4. Negative of 2D ELDOR absorption spectra, T Å 5 ms. The
simulation parameters are the same as those in Fig. 2a except for the
inhomogeneous broadening parameter and the dead times: (a) DG Å 0.1
G and dead times are 0 ns, (b) DG Å 0.1 G and dead times are 40 ns, (c)
DG Å 2.0 G and dead times are 0 ns, and (d) DG Å 2.0 G and dead times
are 40 ns.

distributed; i.e., the sample is microscopically ordered but
macroscopically disordered (refered to as MOMD) (3, 5, 6) .
The MOMD case is important for biologically relevant mem-
brane systems, where it is not conveniently possible to pre-
pare macroscopically aligned samples, although macroscopi-
cally disordered ‘‘dispersion’’ samples are readily available.

FIG. 5. Absorption spectra obtained from theoretical simulations for
In Fig. 2 we show theoretical absorption spectra obtained the 2D ELDOR experiment. Simulation parameters are the same as those

using Eq. [55] for SECSY, for the cases (a) and (b). The in Fig. 2b. Spectra are shown for different mixing times, T : (a) 150 ns,
(b) 1 ms, and (c) 3 ms.parameters used to simulate these spectra are provided in
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safe to use a small mixing time 2D ELDOR spectrum to
optimize the experimental phase factors as described in the
subsection Phase Factors. These can then be used to phase
correct the 2D ELDOR experimental spectra obtained for
all the other mixing times, at that temperature.

Theoretical absorption spectra for the MOMD case are
shown in Fig. 5. The contribution to the inhomogeneous
broadening due the MOMD effect is important for this dis-
cussion (6) . During the evolution period, t1 , a spin label
belonging to hyperfine (hf) component ‘‘a’’ will evolve with
an inhomogeneity associated with this hf component. After
it exchanges to hf component ‘‘b’’ during the mixing time,
T ( leading to a cross peak in the spectrum), it will evolve
in t2 with the refocused inhomogeneity associated with the
component, b. Therefore, inhomogeneities associated with
the MOMD effect, which are different for ‘‘a’’ and ‘‘b’’ (3)

FIG. 6. Experimental COSY Sc0 data from CSL/POPC at 707C after
the shearing transformation t2 r t2 / t1 shown in a ( t1 , v2) format: (a)
before phase correction and (b) after phase correction in v2 .

[52] – [54]. While absorption-like lineshapes are recovered
for the autopeaks, small dispersive components in the cross
peaks appear for larger mixing times (cf. Fig. 3c for T Å 5
ms) , leading to negative excursions in the 2D spectra. This
is shown more clearly in Fig. 4 where the negative of the
data is plotted, for T Å 5 ms, at two different values of the
inhomogeneous broadening parameter DG (0.1 and 2.0 G)
and dead times (0 and 40 ns) each. For zero dead times (cf.
Figs. 4a and 4c), there are small dispersive components
present which lead to negative (positive in the spectra
shown) excursions. However, for finite dead times (cf. Figs.
4b and 4d), these components largely decay away in the
dead times. For large dead times these features would be FIG. 7. Same data as Fig. 6 after the second Fourier transform. (a)

Magnitude Sc0(v1 , v2) and (b) absorption.within the noise in the spectrum. Hence, we find that it is
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CSL, is characterized by the rotational diffusion constants,
R⊥ and R\ , which represent the principal values of an axially
summetric rotation diffusion tensor. For CSL, these repre-
sent the motion perpendicular and parallel to the long molec-
ular axis. The molecules in the bilayers experience ordering
potentials, which can be characterized by an order parameter,
S , defined as the first moment of the probability distribution
in this potential (6) . For this sample at this temperature the
rotational rates were found to be R⊥ Å 8.5 1 107 (s01) , R\

Å 2.3 1 108 (s01) , and ordering S Å 0.66 (6) . The COSY
spectrum was transformed into the SECSY format and is
shown in the real ( t1 , v2) domain. The mixture of absorption
with dispersion due to the phase variation across the spec-
trum is clear (as is expected from Eqs. [31]) .

Figure 6b shows the same figure after phase correction in
f2 , using Eq. [33] and Eq. [51]. The dispersive components
in v2 have largely been eliminated. A small amount of nega-
tive excursion occurs only in the smallest t1 slice, and this
could be due to contributions from dead time or effects due
to phase interaction between pulses. Note that the t1 domain
consists of a sum of decaying exponentials, consistent with
Eq. [39].

In Fig. 7 the same experimental COSY spectrum is shown
after the second Fourier transform and phase correction using
Eq. [38]. The contour plots are provided in Fig. 8. Both the

FIG. 8. Contour plots of spectra in Fig. 7 demonstrating the gain in
resolution. (a) Magnitude and (b) absorption.

(as opposed to the proton superhyperfine interactions, where
they are the same), will be less effectively refocused in the
cross peaks. This extra broadening ensures that the disper-
sive components in the cross peaks are largely eliminated
from the spectrum. Hence, the negative excursions of the
cross peaks in Fig. 5 are relatively small. The ansatz of pure
positivity for the 2D ELDOR spectrum from such MOMD-
like samples is thus acceptable even for larger mixing times.

We now turn to some experimental results. The experi-
mental methodology of obtaining the pure absorption spec-
trum is shown in Figs. 6 and 7 for a COSY experiment. In
Fig. 6a a typical spectrum from an incipient slow-motional FIG. 9. Slices along a constant (a) v1 and (b) v2 for the spectra in
and highly ordered MOMD system (CSL/POPC at 707C) is Fig. 7. The absorption lineshape is the solid line while the magnitude spectra

is the dotted line.shown. The rotational mobility of the spin-labeled molecule,
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MOMD effect. Also, the lines are sharper in the absorption
mode and the peaks are better resolved. Such a gain in
resolution is crucial for the accurate analysis of 2D ESR
spectra in order to obtain reliable dynamic and ordering
parameters (1, 2, 5, 6) .

SECSY and 2D ELDOR absorption spectra for peptide I
at 0787C are shown in absorption (Fig. 12) and magnitude
(Fig. 13) modes. This corresponds to the case of very slow
motions. Note that the sharpening of the spectrum is more
dramatic in v1 than in v2 for the peptide sample (cf. Figs.
12 and 13). The likely reason for this is that spectra at
this temperature are substantially broadened in v2 due to
inhomogeneous contributions resulting from the slower mo-
tions. The pure absorption spectrum is not expected to re-
move this type of broadening. However, along v1 we obtain
the natural linewidths [i.e., the homogeneous T2’s (2, 3)] .
The pure absorption widths are narrower as they remove the
overlap effects inherent in the magnitude representation.

FIG. 10. Experimental 2D ELDOR spectra for CSL/POPC at 707C.
Absorption Sc0(v1 , v2) at mixing times, T : (a) 166 ns and (b) 1 ms.

magnitude and the absorption spectrum are shown in these
figures. The gain in resolution is clear. For example, the
linewidths are narrower in the pure absorption spectrum (cf.
Fig. 8b) than in the magnitude-mode spectrum (cf. Fig. 8a) .
This is demonstrated more clearly in Fig. 9 where a single
slice of data along v1 (cf. Fig. 9a) and along v2 (cf. Fig.
9b) is plotted for both the magnitude and the pure absorption
spectrum shown in Fig. 7.

Figures 10 and 11 show the absorption (obtained by phase
correction using Eqs. [42] and [49]) and magnitude spectra,
respectively, for two ELDOR experiments at 707C for CSL/
POPC (corresponding to T Å 166 ns and 1 ms) . The smaller
mixing time (i.e., T Å 166 ns) experiment was used to
obtain the phase factors. Note that there is little evidence of
dispersive peaks in the 2D double Fourier transform absorp-
tion spectra (cf. Fig. 10). This is reasonable for the CSL/
POPC sample, as the 2D ELDOR spectra contain large con- FIG. 11. Experimental 2D ELDOR spectra for CSL/POPC at 707C.

Magnitude Sc0(v1 , v2) at mixing times, T : (a) 166 ns and (b) 1 ms.tributions to the inhomogeneous broadening from the
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In Fig. 15 we show the normalized contours for peptide
II in the absorption (Fig. 15a) and magnitude (Fig. 15b)
modes. This biradical had an interelectron distance of about
20 Å (29, 30) which corresponds to a small dipolar interac-
tion of about 2.3 G. The trend in the variation in T01

2 is
similar to that for the monoradical, as expected. However,
the T2’s are smaller ( the normalized contours are further
apart in Fig. 15 than in Fig. 14) than those of the monoradi-
cal, reflecting additional effects due to modulation of the
small dipolar term.

SUMMARY

The presence of large inhomogeneous broadening in ESR
makes commonly used 2D NMR (13) methods for obtaining

FIG. 12. Experimental 2D ESR spectra for peptide I at 0787C. Absorp-
tion Sc0(v1 , v2) (a) SECSY and 2D ELDOR, (b) T Å 1 ms, and (c) T Å
12 ms.

We would now like to discuss the T2 variation across the
spectrum in a SECSY experiment. The clearest display of
this is to plot the normalized contours of the spectrum. These
are produced by dividing the S(v1 , v2) slice by the zero
megahertz slice [i.e., S(0, v2)] . Any variation of the homo-
geneous linewidth (i.e., T01

2 ) across the spectrum is immedi-
ately apparent. In Fig. 14 we show the normalized contours
for peptide I in the absorption (Fig. 14a) and magnitude
(Fig. 14b) modes. At 0857C the motion is largely quenched.
This is reflected in the constant T2’s in both the magnitude
and absorption contours. However, at 0507C (where the
sample is in the very slow-motional regime) the absorption FIG. 13. Experimental 2D ESR spectra for peptide I at 0787C. Magni-
contours (Fig. 14a) show a clear variation in T2’s. This tude Sc0(v1 , v2) (a) SECSY and 2D ELDOR, (b) T Å 1 ms, and (c) T Å

12 ms.information is lost in the magnitude spectra (Fig. 14b).
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2D absorption spectra inapplicable. Further, the fact that
slow-motional spectra consist of superimposed complex Lo-
rentzians with complex weighting factors invalidates com-
mon assumptions of absorptive lineshapes which rely on the
weighting factors being real. In such cases, it has usually
been assumed that obtaining pure absorption 2D spectra in
unachievable (19) . We have extended the definition of ab-
sorption implicitly used for slow-motional 1D CW ESR
spectra to two dimensions. The absorption spectra in 1D
magnetic resonance are always positive (and hence absorp-
tion-like) despite the fact that, in the slow-motional regime,
they contain ‘‘dispersive’’ contributions from each ‘‘dy-

FIG. 15. COSY data for peptide II after the shearing transformation
t2 r t2 / t1 . Normalized contours are shown. Absorption contours at (a)
0507C and (b) 0857C and magnitude contours at (c) 0507C and (d)
0857C.

namic spin packet’’ according to basic theory. We have
shown that such absorption-like spectra can be obtained for
COSY and SECSY experiments.

Whereas phase corrections for the experimental data are
necessary, these corrections are well defined for a given
pulse spectrometer, although they vary slightly for different
samples. Hence a procedure is provided for optimizing these
phase corrections that is based on the ansatz of the pure
positivity of COSY/SECSY spectra, which we have verified

FIG. 14. COSY data for peptide I after the shearing transformation
by simulations for a number of cases. Experimental absorp-t2 r t2 / t1 . Normalized contours are shown. Absorption contours at (a)
tion spectra obtained using this procedure are provided, and0507C and (b) 0857C and magnitude contours at (c) 0507C and (d)

0857C. the enhanced resolution compared to the magnitude mode
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