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Abstract

Pulsed ESR techniques with the aid of site-directed spin labeling have proven useful in providing unique structural information
about proteins. The determination of distance distributions in electron spin pairs directly from the dipolar time evolution of the
pulsed ESR signals by means of the Tikhonov regularization method is reported. The difficulties connected with numerically invert-
ing this ill-posed mathematical problem are clearly illustrated. The Tikhonov regularization with the regularization parameter deter-
mined by the L-curve criterion is then described and tested to confirm its accuracy and reliability. The method is applied to recent
experimental results on doubly labeled proteins that have been studied using two pulsed ESR techniques, double quantum coherence
(DQC) ESR and double electron–electron resonance (DEER). The extracted distance distributions are able to provide valuable
information about the conformational constraints in various partially folded states of proteins. This study supplies a mathematically
reliable method for extracting pair distributions from pulsed ESR experimental data and has extended the use of pulsed ESR to
provide results of greater value for structural biology.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The measurement of long distances ranging from
those in a single biomolecule to the domain size of pro-
tein complexes by ESR methods is a relatively new
method in structural biology. Based on cw (continuous
wave) [1,2] and pulsed ESR techniques [1], the distances
available from ESR span the range of distances between
electron spins from 0.8 to almost 8 nm. As compared to
mature fluorescence resonance energy transfer (FRET)
techniques [3,4], ESR provides several important advan-
tages in terms of smaller molecular size of the probes for
a less perturbing original structure, and simpler labeling
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protocols; (two different probes are required for FRET).
ESR distance measurement techniques have been suc-
cessful in various aspects for studying biological
systems. In combination with site-specific double-spin-
labeling techniques [5] it has become a valuable tool
for determining long range distance constraints of the
protein backbone and obtaining information on confor-
mational mobility in specific loop regions [1,6–8].

Double-quantum coherence (DQC)-ESR [9–11] has
been shown to be a promising approach to determine
intramolecular distances in proteins [12]. Its capability
for large distance measurement in biological systems
has recently been expanded from 5 nm to about 7 nm
by the double-quantum filtered refocused (DQFR)-elec-
tron spin-echo (ESE) technique, which is based on the
partial suppression of the effects of nuclear spin diffusion
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on the electron spin phase memory time Tm [13]. The
notable features of DQC-ESR are: (i) with appropriate
phase cycling it is able to isolate just the double quan-
tum coherence signal, possible in a system of two elec-
tron spins such as a double-labeled molecule, from
which the dipolar interaction is directly extracted; (ii)
the standard form of DQC [12] based on strong micro-
wave pulses yields time-domain signals that are distinct
from relaxation decay; (iii) dilute systems, such as solu-
tions of large proteins and their complexes, can yield sig-
nals an order of magnitude greater than that of
techniques that rely on weaker pulses; (iv) thus DQC
is desirable when working with small amounts of bila-
beled biomolecule and/or when greater sensitivity is
needed for measuring longer distances.

Among the other methods, the older technique of
PELDOR [14–16], which is also known as DEER (dou-
ble electron–electron resonance) [17,18] is the most
familiar, and it has been applied more often to investi-
gate the structure of biomolecules. Both, DQC-ESR
and DEER are based on detecting the spin-echo, but
the effect of the dipolar coupling enters differently.
DQC-ESR is based on the development of electron–
electron coherence in the system of coupled electron
spins, e.g., on anti-phase coherence (2S1+S2z + 2S2+S1z) ·
sin (at/2), which can be converted to double-quantum
coherence S1+S2+ � S1�S2� and back, with the proper
pulse sequence [9]. Here, a is the value of the dipolar
coupling. Both spins must be manipulated with coherent
pulses in a concerted way for the method to work.
DEER, on the other hand, records the evolution of
the in-phase single-quantum coherence S1+cos (at/2)
that is affected by the interaction with the 2nd spin,
flipped independently by a single pulse at its resonant
frequency, which must be sufficiently different from that
of the first spin. No coherence development between the
two spins is necessary, regardless of the fact that DEER
can be described in terms of anti-phase coherence, which
accounts for the ‘‘missing’’ part of the detected echo.
Thus, even though the two methods detect the evolution
of the single-electron coherence caused by interaction
with another spin, they do it quite differently. As a result
the two methods can be expected to complement each
other. Due to its simpler (compared to DQC) require-
ments on pulse strength and manipulations, DEER
has been used by several groups in studies of intramolec-
ular organization in biological systems [19–24].

In the past the average distance in a pair of electron
spins has been estimated by Fourier transforming the
time-domain experimental data to obtain the singular
frequencies of the Pake pattern function [25]. An esti-
mate of the pair distribution can be obtained by several
indirect methods. One way is to fit a reasonable model
to the experimental data. In early studies with PEL-
DOR, a simple model for the distance distribution was
presumed to fit the experimental time evolution data
[15,16]. A current advantage of modeling is that one
can parametrize and attempt to fit subtle aspects of
the method [20]. Borbat et al. [12] obtained more de-
tailed pair distributions in a protein system using
DQC-ESR by considering refined geometrical models
based on Monte Carlo simulations of the conformations
of the methanethiosulfonate spin label (MTSSL), which
was attached at two sites of the protein. Fig. 1 shows the
scheme for how the average distance between a pair of
spins in proteins can be obtained (by Fourier transform)
and how the pair distribution can be extracted (by the
method presented in the present report) from the dipolar
time evolution signal produced with pulsed ESR tech-
niques. MTSSL is shown in (Fig. 1F) and was used as
the spin label in the present study.

As opposed to the use of a parameterized model for
fitting the experimental data, here we concentrated on
solving directly the inverse problem of reconstruction
of the distance distribution from experimental data.
The equation connecting the pair distribution (P (r) in
Fig. 1E) and experimental time evolution data (V (t) in
Fig. 1B) is the Fredholm equation of the first kind, (a
detailed account of which is given in the next section),
which has been recognized as representing an ill-posed
problem [26]. This means that the solution of this equa-
tion has been proven to be mathematically unstable, i.e.,
a number of possible solutions, which may be totally
unreasonable from, e.g., the structural perspective,
may approximate the experimental data well within
the error bounds. A large variety of physical problems
belong to this class, a close example is the problem of
‘‘de-Paking’’ in solid-state NMR. This is the reason
why a physically reasonable model was utilized for fit-
ting the experimental time evolution data provided by
DQC ESR. Recently, a method for direct conversion
of ESR dipolar time evolution data to distance distribu-
tions was proposed by Jeschke et al. [27]. They found
that with judicious discretization of the equation it
was possible to convert the ill-posed problem to a rea-
sonably well-posed problem. Very recently, the data
analysis procedures for this ill-posed problem (more spe-
cifically, the dipolar evolution function for PELDOR
measurements) has been aided by employing several
methods, including Tikhonov regularization, coordinate
transformation, and polynomial interpolation [28,29].1

In this work, the Tikhonov regularization method is
applied to reconstruct distance distributions, and its use-
fulness for this task is investigated. Starting with the
analysis based on singular value decomposition (SVD),
we illustrate the difficulties connected with the recovery
of the distance distribution from the spectroscopic data.
The quality of the solution, P (r) obtained by Tikhonov



Fig. 1. Distance measurements by pulsed ESR. (A) A cartoon structure of T4 lysozyme with MTSSL (F) side-chains shown. (B) Time-domain data
V (t) from 17.3 GHz DQC for 65/135 labeling. (C) The dipolar spectrum of (B). (D) The geometrical model used to fit the data for Rav and DR. The
model is based on X4/X5 [12] approximation of side-chain R1 (F) conformations. (E) The pair distance distribution reconstructed by solving the
corresponding inverse problem (cf. Eq. (1)) using Tikhonov regularization method.
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regularization strongly depends on finding the optimal
regularization parameter, k. Whereas there are many
methods for determining the optimal value [30], the L-
curve criterion was selected, in particular because it
leads to a convenient graphical tool for displaying the
effect of k on the regularized solution. We have tested
it with two representative distributions of distinct shape,
a bimodal one based on two Gaussians and a box-like
one with sharp edges.

We apply this method to biomolecules, by analyzing
both DQC-ESR and DEER experiments that have been
performed on the proteins T4 lysozyme and cytochrome
c and its various intermediate conformations between
native and unfolded states. The distance distributions,
estimated by using the Tikhonov regularization on
experimental data, are in good agreement with the con-
formations of these proteins resolved by other methods.
Our analysis does provide pulsed ESR with an addi-
tional feature to approach the subject of structural
biology.
2. Mathematical formulation of the dipole–dipole

interaction

A complex spin system is characterized by dipole–di-
pole interactions amongst all its spins. In the ideal case
of a very dilute distribution of isolated molecules bear-
ing two electron spins, the spin system can be viewed
as an ensemble of spin pairs, each coupled via their
intramolecular dipolar coupling but also weakly coupled
to all other spins via intermolecular dipolar couplings.
The signals obtained from either DQC or DEER reflect
the effects of these two types of interactions where, of
course, only the intramolecular couplings are of interest
to us from the viewpoint of a structural study. It has
been recognized that the intermolecular interactions
produce a significant effect on the signal, causing sin-
gle-exponential signal decay by the mechanism of
instantaneous diffusion [31,32]. It was shown to appear
as a baseline effect in the DQC time-domain data from
a system of dilute bilabeled molecules [12]. In turn, the
intramolecular couplings lead to the finite-depth modu-
lation of the signal. The baseline function with respect to
time was found to be approximately linear in the DQC
signal envelope, and the logarithmic plot of the DEER
signal is linear as well. This baseline function can be re-
moved, as has been shown elsewhere [12,16].

The intramolecular dipole–dipole interactions can be
expressed in the following form given by equations:Z Rmax

Rmin

jðr; tÞP ðrÞ dr ¼ V ðtÞ; ð1Þ

with jðr; tÞ ¼
Z 1

0

cos½ð1� 3x2Þxd t� dx;

xd ¼
c2e�h
r3

; and x ¼ cos h; ð2Þ

where V (t) is the intramolecular signal obtained from
dipolar spectroscopy experiments, j (r, t) represents the
ensemble average of the dipolar coupling over all possi-
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ble molecular orientations for given r. The angle h is the
angle between the vector r connecting the two spins and
the direction of the static magnetic field, B0. P (r) is the
distance distribution in spin pairs defined on the interval
[Rmin, Rmax]. Eq. (1) is in the form of a Fredholm equa-
tion of the first whose kernel j (r, t) is given by Eq. (2).
The inversion of this equation for obtaining P (r) is thus
an ill-posed problem, which means that many different
functions, P (r) may yield a predicted V (t) that agrees
with the experimental V (t) within the error bounds of
the experiment.

Strictly speaking, the kernel j (r, t) is suitable for an
ideal case, since for example, it neglects any intermolec-
ular dipolar interactions, (or else they have been effec-
tively removed as discussed above). In addition, a
more rigorous kernel, j (r, t), would also account for
correlation of the orientation of the radial vector be-
tween the two spin labels in the molecule and the orien-
tations of the nitroxide magnetic tensors, which would
lead to orientation selection when finite pulses are used
that provide incomplete spectral excitation. Whereas it
is possible to account for these and other possible effects
[9,23], it would greatly complicate j (r, t) by adding such
ill-defined features into the analysis. On the contrary,
the form of the intramolecular kernel given by Eqs. (1)
and (2) is believed to constitute a reasonable approxima-
tion, since typically spin-labels used in protein labeling
have enough flexibility to significantly reduce complicat-
ing effects from such orientational correlations [12].
Clearly, in all these experiments, the data requires some
form of largely empirical conditioning to account for
known effects, such as intermolecular couplings or relax-
ation, before they can be used to recover distributions in
distances.
3. Shortcomings in the application of the linear regression

method

To invert this Fredholm equation of the first kind
numerically, we should first convert it to a discrete form.
There are many ways to discretize integral equations,
and we do not attempt to cover this topic extensively
here. The quadrature method is used below to approxi-
mate the integral equation in Eq. (1) with a weighted
sum as

V ðtÞ ¼
Z Rmax

Rmin

jðr; tÞPðrÞdr �
XN
j¼1

wjjðti; rjÞP ðrjÞ; ð3Þ

where wj = (Rmax � Rmin)/N, rj = (j � 1/2)wj + Rmin for
j = 1,2, . . . ,N, and ti = (i � 1/2) (Tmax/M) for i = 1,2,
. . . ,M. N and M represent the numbers of solution
points and time-domain data points, respectively.
Hence, we convert the equation to a system of linear
algebraic equation represented by,
S ¼ KP ð4aÞ
with the elements given by

kij ¼ wjjðti; rjÞ and si ¼ V ðtiÞ
for i ¼ 1; 2; . . . ;M ; j ¼ 1; 2; . . . ;N ; ð4bÞ

where K denotes an operator which maps the function P

into the experimental data vector S. And as noted, K is
an M · N matrix with M P N.

According to the singular value decomposition
(SVD) method, K can be decomposed as
K ¼ URV T ¼

u11 � � u1N
� �
� � �
� � �

uM1 � � uMN

0
BBBBBB@

1
CCCCCCA

�

r11

� 0

�
0 �

rNN

0
BBBBBB@

1
CCCCCCA

�

m11 � � � m1N
� � �
� � �
� � �

mN1 � � � mNN

0
BBBBBB@

1
CCCCCCA

T

: ð5Þ

Thus, K can be written as the product of an M · N col-
umn-orthogonal matrix U, whose columns are com-
posed of the M-dimensional vectors ui, an N · N

diagonal matrix R with nonnegative elements r (the sin-
gular values), and the transpose of an N · N column-or-
thogonal matrix V, whose columns are composed of the
N-dimensional vectors mi, such that UTU = I and
VTV = I [33]. What is common for all discrete ill-posed
problems is that the matrix R is a diagonal matrix which
has nonnegative diagonal elements appearing in decreas-
ing order such that r1 P r2 P . . . P rN P 0, and an in-
crease of the dimensions of K will increase the number of
small singular values.

It can be readily shown that the solution to Eq. (4a)
can be written as

P ¼ Vð Þ
N�N

� diagð1=riÞð Þ
N�N

� UT
� �
N�M

� Sð Þ
M�1

¼
XN
i¼1

uTi S
ri

mi: ð6Þ

The solution vector P only exists if the right-hand side of
Eq. (6) indeed converges. From Eq. (6), we see that P is
expressed in terms of the singular vectors mi and their
corresponding expansion coefficients uTi S=ri. One can
therefore completely characterize the solution P by an
analysis of the coefficients and the singular vectors.

Let us assume that the errors in the given problem are
restricted to the right-hand side of Eq. (4a), such that the
given data vector S can be written as

S ¼ S� þ e; S� ¼ KP �; ð7Þ
where S* represents the exact unperturbed data, and the
vector e represents the noise in the data. At this stage, it
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is necessary to introduce the following assumption,
which is referred to as the Picard condition [34], in order
to characterize the solution P. In order for Eq. (4a) to
have a solution, it is necessary and sufficient that

XM
i¼1

1

r2
i
jhS; uiij2 < 1;

where the brackets denote the inner product. For the
discrete algorithm used herein it means that the best
approximate solution of KP = S exists only if the SVD
coefficients juTi Sj decay sufficiently fast with respect to
singular values ri with increasing i.

Here, we consider the bimodal distribution, shown in
Fig. 2A, whose time-domain signal vectors S and S* are
shown in Fig. 2B, as an illustration of how the ill-posed
problem can be examined using a Picard plot. Fig. 3
shows the Picard plot of the first 100 singular values
ri, coefficients juTi Sj, and coefficients juTi S=rij of the solu-
tion for the case of S = S*, which means that no noise is
present on the right-hand side of Eq. (4a). The coeffi-
cients juTi Sj decay with i faster than ri does before both
coefficients level off at the rounding-off error (�10�17)
by ca. the first 50 singular values. This indicates that a
solution P cannot be recovered by SVD once the num-
ber of desired singular values in the solution, i is greater
than ca. 50, because the coefficients juTi Sj fail to meet the
requirement of the Picard criterion. To illustrate how
dramatically a few small singular values can spoil the
estimated solution, two solutions of this case, (i.e.,
noise-free) were obtained by truncating the respective
Fig. 2. Two models of simulated distance distribution, P (r) are illustrated in (
box-like distribution. The respective dipolar signals V (t) simulated by Eq. (1)
of ca. 50.
singular values by the 53rd and 54th and are shown in
Figs. 3B and C. The estimated solution obtained with
the first 53 singular values is acceptable; whereas, the
solution obtained with the first 54 singular values is en-
tirely garbled due to just a few very small singular val-
ues. This indicates that after ca. r50 the decreasing
singular values become dominant in the solution, so that
by r54 the solution has been greatly distorted just by
computer round-off error. The Picard condition is thus
found useful in evaluating a system of linear equations.
Fig. 3D shows the Picard plot for the case where the
SNR of the S vector is set to 100. The coefficients
juTi Sj fail throughout to meet the requirement of the Pi-
card condition, because the coefficients juTi Sj do not de-
cay fast enough relative to the singular values ri. This
indicates that for the kernel of interest (cf. Eq. (2)) the
problem is severely ill-posed at a noise level of
SNR � 100 as does the system of corresponding linear
equations (cf. Eq. (4a)). If one attempts to reconstruct
an approximate kernel with proper discretization, he
may be misled to think he is closer to the correct solu-
tion than is really the case just because some of singular
values have contributed significantly to the variations in
the solution. Thus, for this case of SNR � 100 it appears
impossible to recover the solution P by SVD.

Now it is clear that the singular values continue to
decrease as the number of SVD components increase. Be-
cause the inverse square of the ri contribute to the solu-
tion P, a small amount of noise in S may produce
extremely large variations in P, if some singular values
A), a bimodal distribution taken as a sum of two Gaussians, and (C), a
are shown in (B) and (D), with the noise that was added to yield SNR�s



Fig. 3. (A) The Picard plot of the linear system, (cf. Eq. (4a)) for the bimodal distribution. Noise is set to zero in the vector S. The coefficients juTi Sj
decay faster than the singular values, ri for ca. i P 50. The solution, P becomes dominated and distorted by the decreasing ri as i is increased to
greater than ca. 50. The estimated distributions obtained using the first 53 and 54 ri are shown in (B) and (C), where the original distribution is
plotted by a dashed line. (D) The Picard plot for the case of (A) with the SNR increased to ca. 100. The system is ill-posed because the coefficients
juTi S=rij diverge quickly and dominate the solution, P starting from even the first few singular values.
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become too small. This corresponds to large errors. The
solution P obtained from some data S may deviate
strongly from true values. Hence, even one small singular
value is very undesirable. It means that somehow infor-
mation is lost and cannot be restored by inversion. The
Picard condition provides a valuable tool to determine
the severity of the ill-posed inverse problem for the sys-
tem given by Eq. (1) with the kernel of Eq. (2). A method
which can extract a numerically stable P (r) from experi-
mental data is necessary in applications of pulsed ESR to
distance measurements. In other words, the problem
should be regularized by transforming the Fredholm
equation of the first kind into a form that is not ill-posed.
4. Tikhonov regularization

The Tikhonov regularization method is based on a
modification of the Fredholm integral equation of
the first kind that is intended to stabilize its solution.



Fig. 4. The influence of the regularization parameter on the regular-
ized solution is illustrated by varying the regularization parameter k.
As k	 kopt the regularized solution has many peaks because of the
inherent instability of the residual norm iKP � Si. The second term of
Eq. (8) stabilizes the solution. As k increases to k� kopt it results in an
over-smoothed solution. The exact solution and the solution with
optimal regularization parameter are also shown in the figure for
comparison.
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This is achieved first by constructing the following
functional:

U½P � ¼ kKP � Sk2 þ k2kLPk2 ð8Þ
with k being the so-called regularization parameter,L is
an operator, usually the identity (LP = P) or second
derivative (LP = P00). Then the regularized solution Pk

is formally obtained by minimizing the functional in
Eq. (8), yielding: [35,36]

P k ¼ KTK þ k2LTL
� ��1

KTS: ð9Þ

For an appropriate value of k, the first term on the right
hand side of the Eq. (8) forces the result to become com-
patible with the data. The second term leads to a
smoothed estimate of the solution. The quality of the
result depends strongly on the regularization parameter
k. If k is too small, the result will show artificial peaks. If
k is too large, the result will be over-smoothed. Fig. 4
shows a comparison between the exact solution of the
bimodal distribution and the solutions with Tikhonov
regularization for k � koptimal, k = koptimal, and
k 	 koptimal. Thus, for this reason, a reliable method
for determination of the regularization parameter is
crucial to solving our inverse problem.
5. Determination of the regularization parameter

The main problem when using the Tikhonov regular-
ization method is the determination of an appropriate
regularization parameter k. Several numerical methods
for determining the regularization parameters were crit-
ically discussed in the literature [30]. Other methods are
based on tracking the changes in the size of the regular-
ized solution versus the size of the corresponding resid-
ual to determine an optimal k. The procedure
represented in graphical form is referred to as the L-
curve criterion. The use of such a criterion in connection
with ill-posed least squares problems goes back to Miller
[37] and Lawson and Hanson [38]. The L-curve criterion
is clearly illustrated and extensively applied to the anal-
ysis of discrete ill-posed problems by Hansen [39]. More
properties of the L-curve are derived by Hansen and
O�Leary [40] where it was also shown that the character-
istic L-shaped corner is better pronounced in a double
logarithmic plot. Many properties of the L-curve for
Tikhonov regularization have been investigated [40,41].
Two limitations [42] of the L-curve criterion should be
mentioned and checked in the computation: (i) if the
corresponding SVD coefficients jmTi P �j decay very fast
to zero such that the solution P* (exact solution) is dom-
inated by the first few SVD components, the optimal
regularization parameter may not be located at the cor-
ner of the L-curve; (ii) as pointed out by Vogel [43], the k
that is based on the L-curve criterion may deviate from
the optimal k when N, the vector rank of the regularized
solution, is too large. Note that it depends on the specif-
ics of the kernel for the problem regarding how large a
value of N would cause a failure of the L-curve ap-
proach to determine k. A detailed analysis of the prob-
lem for the kernel of interest and the destabilizing
effects caused by the experimental noise is given in the
later sections.

The L-curve is a parametric plot of type (q2 (k), g2 (k))
[40], where q (k) and g (k) represent the norms of the reg-
ularized solution iLPi and the residual iKP � Si, respec-
tively. The underlying idea of the L-curve method is that
a good method for choosing the regularization parame-
ter for discrete ill-posed problems must incorporate
information about the solution norm iLPi in addition
to using the information about the residual norm
iKP � Si. This is indeed very consistent with the spirit
of the Tikhonov regularization, which is poised to seek
a reasonable balance in keeping both of these values
small. Minimization of the Tikhonov functional of Eq.
(8) is a compromise between minimizing the residual
norm iKP � Si2, and keeping the solution norm iLPi2

small, i.e., enforcing stability of the solution. The L-
curve has a distinct L-shaped corner located exactly
where the solution Pk changes in nature from being
dominated by regularization errors to being dominated
by noise in the S vector. It has been proven that the
L-curve always has an L-shaped appearance [40]. Hence
the corner of the L-curve corresponds to a desirable bal-
ance between minimized norms, and the corresponding
k is a good one. The idea for choosing the optimal k is
to choose the point on the L-curve that is at the corner
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of the curve corresponding to its maximum curvature.
As noted above, the rationale behind this criterion is
that the corner corresponds to a solution in which there
is a reasonable balance between the regularization and
perturbation errors. This interpretation is of particular
importance for Tikhonov regularization due to its cor-
ner-stone variation theorem [26] that Pk is the unique
minimizer of the Tikhonov functional.

The implementation of the L-curve method is based
on locating the unique point of maximum curvature in
the plot of (q2 (k), g2 (k)). It is obtained by consecutive
substitutions of k into Eq. (9) to yield Pk from which
the corresponding values of q (k) and g (k) (defined
above) are obtained. One then generates an L-curve
parametric plot whose x and y axes are q2 (k) and
g2 (k), respectively. The point of maximum curvature is
then obtained directly by finding the maximum of
d(q2)/d (g2) [40,42]. In addition, the L-curve plot pro-
vides a useful graphic illustration for the basic mathe-
matical idea of the Tikhonov regularization method,
(i.e., the corner represents a balance in keeping both
norms small, as mentioned above). Note that the L-
curve plots shown in the sequel are displayed as double
logarithmic plots (i.e., plots of log q vs. logg) to best
maintain the L-shaped curve. It has been found that
the behavior of the L-curve is more easily seen and bet-
ter pronounced if plotted in this way [40].
6. Results and discussion

6.1. Application to simulated data

To simulate experimental data, two different models
of the distance distribution P (r) were chosen and shown
in Fig. 2A (a bimodal Gaussian distribution with two
peaks, whose respective parameters (mean, standard
deviation) are 3.6, 1 nm and 3.9, 0.77 nm) and Fig. 2C
(a box-like distribution with two maxima located at
3.2 and 4.3 nm and the curve between the peaks de-
creases as r�1 from each maximum such that it is sym-
metric about the center at 3.75 nm). Their respective
time evolution signals (i.e., the vector S) were calculated
according to Eq. (1) and are shown in Figs. 2B and D.
The number of solution points (i.e., N; cf. Eq. (4b))
was set to be the same as the number elements of the
vector S (i.e., M; cf. Eq. (4b)) for all cases studied,
although in some high SNR cases we found reducing
N not only can shorten the computation time but also
does not affect the estimated distribution. In other
words, K was usually chosen to be a square matrix,
which provides the maximum possible number of points
in the solution.

The estimated distance distributions P (r) extracted
for three different noise levels in dipolar signals are
shown on the right-hand side of Fig. 5 by thick solid
lines where the original distributions are plotted by thin
solid lines. The respective corresponding L-curves are
shown on the left-hand side. The optimal regularization
parameter, which minimizes the Tikhonov functional in
Eq. (8), for the respective case is marked on the corre-
sponding L-curve plot. All results were obtained by
using the ‘‘Regularization Toolbox’’ of the Matlab soft-
ware package, which was originally created by Hansen�s
group [44] and adapted for present purposes. The recon-
struction of the distance distribution with the Regulari-
zation Tools package is remarkably good, especially for
cases with high SNR in the dipolar signal. The original
bimodal distribution is well recovered in the cases of
SNR � 500 and 100. The optimal k, which represents
the maximum curvature of the L-curve, is properly lo-
cated on the corner for these two cases. As the SNR is
decreased to 30, the maximum curvature of the L-curve
fails to locate at the visual corner of the L-curve in log-
log scale. This indicates the L-curve criterion may break
down under SNR � 30, therefore the distribution is
poorly recovered. In other words, the result shows that
the estimated solution is improved as the SNR in S is in-
creased, as one would expect. The increased noise in the
vector S is the factor that causes the corner of the L-
curve to become less sharp, and therefore contributes
to the failure to obtain an optimal regularization param-
eter. As shown in Fig. 5, the estimated distribution thus
first becomes oscillatory about zero in the peripheral re-
gions of the distribution that is properly recovered from
a high SNR of ca. 500 and then becomes distorted glob-
ally as the SNR decreases to ca. 30.

The estimated solutions for the box-like distribution
are shown in Fig. 6. The SNR�s for the respective cases
are shown in the insets. It is obvious that higher SNR is
required, compared to the bimodal distribution, to
reconstruct this type of distribution. The same oscilla-
tions (which are caused by the noise) in the peripheral
regions of the distribution were observed. For the case
of SNR � 30, the optimal k considerably deviates from
the corner. This indicates that the original distribution
may not be realistically recovered at this noise level as
shown on the right-hand side. In the estimated distribu-
tion the two sharp peaks in the original distribution are
barely seen, whereas, the average distribution remains
close to the original. An SNR � 30 is, in general, smaller
than in a good DQC or DEER experiment. The box-like
distribution is a challenge for any of the regularization
methods. Thus, it is fair to say that Tikhonov regulari-
zation with the L-curve works quite well for the kernel
of Eq. (2).

It should be noted that the estimated solution P (r)
was found to be oscillating about zero in the peripheral
regions of the distribution for all of the cases studied.
These oscillations were found to exist even in the case
of SNR � 2000, which is much greater than in typical
experiments. Although negative values of P (r) are



Fig. 5. The bimodal Gaussian-like distribution is recovered from three different noise levels (SNR � 30, 100, and 500 corresponding to top, middle,
and bottom graphs, respectively) in the simulated time evolution data using Tikhonov regularization. The recovered distribution is plotted by a thick
solid line on the right-hand side, while the original distribution is shown by a thin line. The respective corresponding L-curves are shown on the left-
hand side, which themselves illustrate to some extent how ill-posed is the case with the applied noise. The optimal k for each case is marked on the L-
curve plot.
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physically unreasonable, it was not necessary to modify
the current algorithm to force the estimated solution be
positive since (i) as shown above, this oscillation does
not affect the average distance even for the case of
SNR � 30; (ii) the oscillation in the peripheral regions
never becomes dominant in intensity as compared to
the major distribution in all of the cases studied; (iii)
although the peripheral distribution could become dom-
inant in cases of very low SNR, and thus be mistaken as
the main distribution in such low SNR cases, the opti-
mal k will have deviated significantly from the corner
(see below). Thus, it is important to observe the location
of the optimal k, so that one can know how well the dis-
tribution is recovered. As far as choosing the operator L
in Eq. (8), we found from the model tests that for the
case of high SNR (such as SNR � 500) the solutions ob-
tained with either L equal the identity or the second
derivative operator are almost the same; whereas, for
the case of SNR � 30 the solutions were better recov-
ered with the identity operator; (e.g., the estimated solu-
tion of the bimodal distribution of SNR � 30 was
recovered to be a simple Gaussian distribution, if the
second derivative operator is used to smooth the
distribution). Thus, we selected the identity operator



Fig. 6. The box-like distribution is recovered from three different noise levels (SNR � 30, 100, and 500 corresponding to top, middle, and bottom
graphs, respectively) in the simulated time evolution data using Tikhonov regularization. The recovered distribution is plotted by a thick solid line on
the right-hand side while the original distribution is shown by a thin line. The respective corresponding L-curves are shown on the left-hand side of
the figure. The optimal k for each case is marked on the L-curve plot. Although the distribution with SNR � 30 is poorly recovered, the average
distance is close to a correct value.

288 Y.-W. Chiang et al. / Journal of Magnetic Resonance 172 (2005) 279–295
to recover the distributions from the actual experimental
data, which will be shown in the next section.

In summary, the optimal k is determined by the max-
imum curvature of the L-curve, and it is found to be lo-
cated at the visual corner of the L-curve in a log–log
scale plot in most cases. In other words, the location
of the optimal k in log-log scale plot of the L-curve indi-
cates how well the original distribution can be recovered
under the given noise level. As shown above, the in-
creased noise in the vector S causes the optimal k to
deviate from the L-curve in the log–log scale plot result-
ing in a poorly reconstructed distribution (the bimodal
and box-like distributions with SNR � 30).

6.2. Experimental methods

The DQC experiments at 17.3 GHz were performed
as described previously [12], but with the use of a dielec-
tric resonator in order to improve B1 and the sensitivity.
For the same frequency, the DEER option was provided
as an extension of the existing pulse spectrometer by
adding a pumping arm. It consists of a microwave



Fig. 7. (A) The dipolar time evolution spectrum of the T4L 65/135
mutant, with 40 ns sampling spacing, obtained from six-pulse DQC-
ESR at 17.3 GHz. The L-curve for selecting the optimal regularization
parameter, 8.279 (marked by a cross) is shown as an inset. (B) The
distribution obtained is plotted by a solid line whose average distance is
found to be 4.52 nm. This distribution is found to be similar to a
Gaussian distribution, which is plotted by the dashed line with an
average and standard deviation of 4.51 and 0.29 nm, respectively. In
addition to being consistent with the previous study (� 4.63 nm),[12] the
Gaussian-like distribution indicates the side-chains are likely to exhibit
less restricted conformations than assumed in the X4–X5 model.[12]
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source, pulse channel, and Ku-band TWT amplifier. The
pumping pulse was injected into the waveguide through
the 10 dB directional coupler. For both types of experi-
ments a continuous flow cryostat CF935 (Oxford Instru-
ments), housing the dielectric resonator, was employed
to stabilize the sample temperature. In the DQC exper-
iments the 6-pulse sequence (p/2–p–p/2–p–p/2–p) with
p/2 pulses of 3.2 ns and p pulses of 6.2 ns was used. In
4-pulse DEER [14], the center maximum of the ESR
spectrum was used for pumping and the low-field edge
for detection. The frequency difference was set to 65–
70 MHz. For detection 16 ns p/2 and 32 ns p pulses were
used; a 25 ns p-pulse was used for pumping.

Two proteins were studied, T4-lysozyme (T4L) and
iso-cytochrome c (iso-1-cyt c). The residues of interest
were substituted by cysteines and labeled with the nitr-
oxide spin label, (1-oxyl-2,2,5,5-tetramethyl-3-pyrro-
line-3-methyl) methanethiosulfonate (MTSSL). The
respective nitroxide side-chain R1 is shown in Fig. 1.
T4L was prepared at concentrations of 50–100 lM in
30 wt% glycerol-d8/D2O and studied by DQC. Iso-1-
cyt c at a concentration of 500 lM in 30 wt%
glycerol–water was studied by DEER. The Heme iron
in iso-1-cyt was reduced under anaerobic conditions to
lengthen the T2�s of nitroxide spin-labels. For the exper-
iments with partially unfolded protein, guanidinium
hydrochloride (GdnHCl) was added to iso-1-cyt solu-
tions in concentrations of 0.7 and 1.5 M to achieve dif-
ferent degrees of unfolding. For all experiments the
samples were vitrified by shock-freezing in liquid nitro-
gen and transferred to the cryostat for measurements
conducted at 70–77 K. Data collection times were in
the range of 0.5 to 4 h.

6.3. Distance distributions in T4L by DQC

Figs. 7A and 8A show the DQC experimental time
evolution signals of T4L 65/135 and 61/80 mutants from
the six-pulse DQC sequence after correction for the de-
cay, caused by phase relaxation due to nuclear spin
diffusion.

Fig. 7B shows the result for the distance distribution
of spin-pairs (solid line) recovered by Tikhonov regular-
ization, with the L-curve shown as an inset to Fig. 7A.
The shape of the L-curve is well maintained and the
optimal k does not deviate from the sharp corner. As
pointed out above, this indicates that the distribution
function P (r) can be reasonably recovered using Tikho-
nov regularization. The corresponding average distance
for this 65/135 doubly labeled mutant of T4L is 4.52 nm,
which is consistent with the known crystal structure of
T4L and our previous study wherein the dipolar spectra
were fitted with a geometrical model based on the ex-
pected side-chain conformation of MTSSL [9,10]. There
are some perturbations and oscillations about zero in
the estimated distribution in the peripheral regions.
The oscillations, as shown in the model studies using
simulated data, are due to perturbations (noise and dis-
tortions) in the time-domain signal, whereas it affects the
average distance of the recovered distribution insignifi-
cantly even for the case of SNR � 30. As discussed
above, only positive values of the distribution are phys-
ically relevant; small negative excursions fall outside the
region where the relevant part of the distribution is lo-
cated and can be ignored. The estimated distribution,
shown in Fig. 7B, appears to be a Gaussian-like distri-
bution. For better comparison, a Gaussian distribution,
Ŝ = 0.29 nm, Ravg = 4.51 nm, (where Ŝ represents the
standard deviation of Gaussian distribution) is also
plotted in Fig. 7B (dashed line). This is in good agree-
ment with our previous result [12] (for this 65/135



Fig. 8. (A) The dipolar time evolution spectrum of the T4L 61/80
mutant, with 16 ns sampling spacing, obtained from six-pulse DQC-
ESR at 17.3 GHz. The L-curve for selecting the optimal regularization
parameter, 0.723 (marked by a cross) is shown as an inset. (B) The
estimated distribution is plotted whose average distance the main
distribution is found to be 2.66 nm. It shows a bimodal distribution
with a relative weight of the components of 2:1 located at 2.36 and
2.90 nm, respectively. The previous study [12] also showed a similar
bimodal distribution.
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mutant, Ŝ � 0.22 nm, Ravg = 4.63 nm). Two matters
should be emphasized: (i) the real pair distribution of
the 65/135 does not have to be Gaussian-like; (ii) we
have no intent, at this stage, to uniquely determine the
structural details of R1 side-chains that lead to the dis-
tributions, since different conformations of the first three
bonds would likely result in other reasonable structures
that agree with the experiment. Our results should just
be taken as a demonstration that the values of the aver-
age distance obtained here are consistent with our
knowledge about the T4L crystal structure.

The DQC time evolution data for the 61/80 mutant is
shown in Fig. 8A and the respective L-curve plot is
shown in the inset. The L-curve has a good shape. It
indicates that the distribution should be satisfactorily
recovered from the experimental data using Tikhonov
regularization. Fig. 8B shows the estimation for the dis-
tance distribution of pairs for the 61/80 mutant. The
estimated solution is a bimodal distribution with the
respective components in the ratio of 2 to 1 being cen-
tered at 2.36 and 2.9 nm, respectively. The average dis-
tance for the main distribution of 61/80 is 2.66 nm. As
we have determined from fitting to a model [12], dis-
tances between the mutants 61/80 showed a bimodal dis-
tribution, with peaks at 2.9 and 3.4 nm and relative
weights of components are 2 and 1, respectively; the
average distance was ca. 3.06 nm. Both methods agree
on the notion that the mutant is likely to have a bimodal
distribution.

6.4. Iso-1-cytochrome c folding conformation study by

DEER

One of the major topics in structural biology is to
understand the dynamic conformations of biomolecules
as they fold into or unfold from their tertiary and sec-
ondary structures. A complete study of dynamic protein
conformation consists of two types of information: the
kinetics of folding/unfolding and the conformations of
possible intermediates. The former has been studied by
Scholes et al. using the rapid-mix flow ESR technique
[45–47] on the heme-containing protein iso-1-cyt c. In
the present study we used iso-1-cyt c double labeled at
S47C and K79C to study the pair distributions in the
folded protein and in partially unfolded states induced
by variation in the GdnHCl concentration.

The time evolution data obtained from DEER exper-
iments at 17.3 GHz for iso-1cyt c in its completely
folded state is shown in Fig. 9A, with the L-curve plot-
ted in the inset. The optimal k is located well in the cor-
ner of the L-curve, although the corner is not as sharp as
those in the model studies. The estimated distribution is
shown in Fig. 9B, a narrow pair distribution (as com-
pared with the distribution from the unfolded iso-1-cyt
c shown below) with an average distance of 1.96 nm
for the main distribution. An average distance ca.
1.4 nm was estimated with the cw ESR method using
the spectral convolution scheme [48], which assumes
the additional spectral broadening in a double-labeled
protein can be approximated as a Lorentizian r�6 broad-
ening, but no information about the pair distribution is
available from the cw ESR.

Two cases of the spectra from the mutant iso-1-cyt c
in different partially folded states are shown in Figs. 10
and 11, which represent the proteins being unfolded in
[GdnHCl] of 0.7 and 1.5 M, respectively. Note that the
mutant iso-1-cyt c was found to be completely unfolded
in 2.0 M GdnHCl. For the case of the partially folded
state in 0.7 M GdnHCl, the optimal k locates properly
around the corner of the L-curve. The estimated distri-
bution is plotted in Fig. 10B, whose average distance



Fig. 9. (A) The dipolar time evolution spectrum of the iso-1-cyt c

S47C/K79C mutant, with 5 ns sampling spacing, obtained from four-
pulse DEER experiments. The proteins are in a completely folded
state. The L-curve for selecting the optimal regularization parameter,
1.375 (marked by a cross) is shown as an inset. (B) The estimated
distribution with an average distance ca. 1.96 nm for the main
distribution. The distribution is narrower as compared to other cases
in the present study.

Fig. 10. (A) The dipolar time evolution spectrum of the iso-1-cyt c

S47C/K79C mutant, with 5 ns sampling spacing, obtained from
four-pulse DEER experiments at 17.3 GHz. The proteins are in a
partially folded state induced with [GdnHCl] = 0.7 M. The L-curve for
selecting the optimal regularization parameter, 2.508 (marked by a
cross) is shown as an inset, where the optimal regularization parameter
locates properly around the corner. (B) The estimated distribution with
an average distance 2.78 nm from the main distribution. The distri-
bution is broadened as compared to the case of the completely folded
state.
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is ca. 2.78 nm for the main distribution. The pair distri-
bution is much broader than in the completely folded
state, and its average distance is found be larger due
to partial folding. This information, which indicates less
restricted motion of the R1 side-chain and larger dis-
tances between the probes, is in good agreement with
general expectations on the partially folded state of the
protein. This broadened distribution has also been sug-
gested by a cytochrome c folding landscape mapped
from a FRET study [49].

The other case for a more unfolded state of the mu-
tant iso-1-cyt c is shown in Fig. 11. The experimental
time evolution data (cf. Fig. 11A) shows that there is sig-
nificant noise, which is greater than in the other cases
studied in this work. The optimal k seems to fail to be
located properly at the corner of the L-curve (cf. the in-
set of Fig. 11A). This apparently is caused by the in-
creased noise in the time evolution data as shown in
Fig. 11A, as compared to the DQC dipolar spectra
shown in Figs. 7A and 8A. At present we cannot ade-
quately assess how reliably the pair distribution is recon-
structed, since the deviation of the optimal k from the
corner indicates the distribution may have been poorly
recovered. Based on the model studies shown in Figs.
5 and 6 which demonstrate that the distribution may
not be faithfully recovered under severe noise condition
but the average distance is still reasonable, we believe
that the estimated distribution (Fig. 11B) still provides
some important information: (i) the obtained broad pair



Fig. 11. (A) The dipolar time evolution spectrum of the iso-1-cyt c

S47C/K79C mutant obtained with 10 ns sampling spacing from four-
pulse DEER experiments at 17.3 GHz. The proteins are in a partially
folded state induced with [GdnHCl] = 1.5 M. (The proteins are fully
unfolded in 2.0 M GdnHCl). The L-curve for selecting the optimal
regularization parameter, 2.62 (marked by a cross) is shown as an
inset, where the optimal regularization parameter is found to slightly
deviate from the corner due to great noise in the spectrum. (B) The
estimated distribution with an average distance 3.66 nm for the main
distribution. The distribution is broadened and of a different type from
Fig. 10B.

2 Added in revision: We have considered a model distribution
function utilized in [28] that leads to a broad distribution; i.e., a sum of
three equally weighted Gaussian peaks at 3, 4, and 5 nm with
respective standard deviations of 0.4, 0.5, and 0.2 nm and a noise level
ca. 0.025 (the lowest SNR tested in [28]). We found that the use of the
L-curve criterion provided a very good reconstruction of P (r) for this
case, which was found to be troublesome with the SC method in [28]
using the form of the kernel of Eq. (2).
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distribution (as compared to the folded state) supports
the fact that the protein is far from being in its folded
state; (ii) the average intramolecular distance between
two probes is ca. 3.66 nm for the main distribution,
which indicates the probes at 47C and 79C are indeed
more distant than the case of [GdnHCl] = 0.7 M. In
general, the SNR in the dipolar spectra obtained from
four-pulse DEER experiments was not as large as that
found for T4 lysozyme in six-pulse DQC-ESR, as can
be seen in Figs. 7–11. This may be due to the fact that
in this case the distributions were much broader making
the separation of intramolecular and intermolecular
parts of signals more problematic.
6.5. Comments on solving the inverse problem

Inverse problems are encountered in various fields of
science, such as problems arising in image reconstruc-
tion, determination of thermal parameters of the
material from temperature measurements, and X-ray
tomography in medical applications [26]. It is quite com-
mon for linear inverse problems to lead to an integral
equation of the first kind, which is usually found to be
ill-posed in dealing with experimental data. In a strict
sense, the solution to the ill-posed problem might not
be unique and/or might not depend continuously on
the measured data. While the study of inverse problems
usually involves questions about how to enforce unique-
ness by additional information or assumptions, an
appropriate regularization method is necessary to treat
the instability of the problem and obtain reliable solu-
tion reconstruction, [50].

In addition to the inverse problem presented in the
present study, there are several spectroscopic techniques
requiring solving the inverse problem of the extraction
important information from experimental data, such
as the dePake-ing [51] approach for deconvoluting
NMR spectra, and measuring the distance between
two different chromophores in FRET.

DePake-ing of NMR spectra is a procedure for
decomposition of the deuterium NMR spectrum of the
Pake doublets from randomly oriented domains and/
or from nuclei with different quadrupolar couplings into
the equivalent spectra from an oriented system. The gen-
eral dePake-ing problem is closely related to the ESR
problem of recovering the distance distribution, so it
can be solved using either an iterative algorithm [52]
or regularization methods such as Tikhonov regulariza-
tion [53–55] whose regularization parameter was usually
determined using a self-consistency (SC) method [56,57].
The SC method for determining the regularization
parameter has by far been found useful in various fields,
including NMR and photo-correlation spectroscopy
[58]. In the initial period of this work the SC method
was used for the narrow distributions of T4 Lysozyme.
However, due to the absence of a graphical interface
in the SC method, we found it more convenient to use
the L-curve in the present study. Furthermore, we have
found that the L-curve gives reliable results even for
broad distributions.2
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The FRET technique is a popular technique for esti-
mating pair distance distributions from the measured
spectral data. However, the kernel of the equation for
FRET is in the simple form of an exponential function,
which is significantly different from the kernel given by
Eq. (2). Such an exponential kernel can be solved with
various exponential analysis methods [59]. The distribu-
tion of distances between donor and acceptor-labeled
residues in a polypeptide thus can be extracted from
an analysis of FRET kinetics using least-squares fitting
for general cases [49]. The problem becomes ill-posed
in the presence of noise. A method [60], which is a com-
bination of the Maximum entropy method and the Tik-
honov regularization algorithm, has also been used in a
complementary fashion to adjust the least-squares fitting
results in case of the significant noise.
7. Summary and conclusions

This study, using the Tikhonov regularization meth-
od for extracting distance distributions in pairs from
dipolar time evolution spectra, has demonstrated an en-
hanced potential of pulsed ESR in its applications to
protein structure. The kernel of the equation, which
connects the dipolar time evolution spectra to the dis-
tance distributions in pairs, has been shown to result
in an ill-posed problem of solution reconstruction.
Therefore, a mathematically stable regularization meth-
od was used to solve the inverse problems encountered
in this study. Its application to simulated data, for both
a bimodal Gaussian-like distribution and a box-like dis-
tribution, has shown that Tikhonov regularization
could yield reliable and rather good solutions for rea-
sonable SNRs. Furthermore, experimental data from
DQC-ESR and DEER techniques have been analyzed
by this method. The pair distance distributions for the
doubly labeled 65/135 and 61/80 T4 Lysozyme mutants
estimated using Tikhonov regularization are consistent
with the known crystal structure of T4L and our previ-
ous study. In the analysis of pulsed ESR experiments on
mutants of cytochrome c, the pair distributions depend
on the degree of folding, which is of value in studying
protein folding.

The unique minimizer obtained by Tikhonov regular-
ization guarantees the optimal solution to the ill-posed
problem of interest for the level of noise in the experi-
mental data. Given continuing improvement in the qual-
ity of the dipolar data provided by DQC-ESR and
DEER, these methodologies should greatly benefit pro-
tein structural studies based on using distance con-
straints from them. With further improvement in
decreasing noise, distance distributions extracted by
Tikhonov regularization should be able to provide a
more detailed picture of the structure of bilabeled
biomolecules.
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