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Abstract

Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of
ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers
and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze
these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have
been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments,
the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments per-
formed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the
molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manage-
able by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a ‘‘Split Super-Operator’’ method. Exam-
ples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory
shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The two-dimensional (2D) Fourier transform ESR
experiment known as 2D-ELDOR [1–3] is a technique
that provides considerable enhancement in resolution
to ordering and dynamics as compared to conventional
ESR spectroscopy. It has been employed extensively in
studies of membrane vesicles using nitroxide-labeled lip-
ids and cholesterol [4–8], spin probes in liquid crystals
[9–11], and spin-labeled polymers and peptides [12,13].
The three pulse 2D-ELDOR sequence is shown in
Fig. 1.

In 2D-ELDOR, crosspeaks appear that are a measure
of magnetization transfer by spin relaxation processes
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during the mixing time, Tm. The principal relaxation
mechanisms are the intramolecular electron–nuclear
dipolar (END) interactions, which lead to nuclear spin
flip transitions that report on the rate of rotational reori-
entation, and the Heisenberg exchange (HE) rate which
reports on the bimolecular collision rate of the spin-la-
beled molecules. The pattern of cross-peaks, as well as
how they grow in with Tm, enables one to distinguish
the contributions from each relaxation mechanism. In
the 2D-ELDOR experiment there are two coherence
pathways, the Sc+, which is FID-like and the Sc�, which
is echo-like, because it is refocused by the last pulse. As a
result, in the presence of inhomogeneous broadening (IB)
the Sc� spectra are substantially sharper due to the echo-
like cancellation of the IB, and are less attenuated by fi-
nite dead times. It is possible to distinguish the homoge-
neous broadening (HB) and the IB because the
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Fig. 1. Pulse sequence and coherence pathways of 2D-ELDOR. The
upper, middle, and lower horizontal lines in the latter correspond to
coherences of +1, 0, and �1, respectively.
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refocusing of IB is achieved along one spectral dimension,
whereas it is not refocused along the orthogonal spectral
dimension. (This is strictly true after the Sc� spectrum is
transformed into a SECSY spectrum, [4–8]). This is
important, since the IB contains information on the
microscopic ordering of the spin labels, whereas the HB
reports on the molecular dynamics. Complex fluids are
generally characterized by microscopic order but macro-
scopic disorder (i.e., the MOMD effect). In addition, one
may use the different shapes of the autopeaks and cross-
peaks to precisely distinguish the contribution to IB from
proton shf interactions, which are the same for each hf
line, and the effect of MOMD, which varies for each hf
line. These are key features of 2D-ELDOR, which yield
greatly improved resolution to dynamics and ordering
in complex fluids such as membranes.

Lee et al. [14] have provided a detailed theory for 2D-
ELDOR and related experiments based upon the sto-
chastic Liouville equation (SLE), that is applicable to
complex fluids, and it has been the basis for analysis
of these experiments in conjunction with least-squares
fitting [15]. Also a more sophisticated version has been
introduced to model the complex dynamics in such fluid
and disordered systems [10]. However, a key simplifying
assumption has remained in the theory, viz., the pulses
have been treated as ideal non-selective ones, which have
the effect of irradiating the whole spectrum uniformly.
In reality, this is never the case, although considerable
instrumental progress has been made to achieve very
short p/2 pulses, as short as 3 ns [16], which do provide
good coverage even for slow motional ESR spectra at
conventional ESR frequencies. Such short pulses are
not generally available in either home-built or commer-
cial spectrometers. In the past empirical methods were
employed to correct for incomplete coverage [4]. Very
recently, with the advent of high frequency (95 GHz)
2D-ELDOR [17], wherein the spectral extent is greatly
increased, the need to better understand the effects of
using realistic pulses of finite temporal extent becomes
even more important. In fact, not only should one con-
sider the effects of the finite pulse on the spectrum, but
also the molecular dynamics and relaxation occurring
during the time of the pulse.
To address these matters one therefore needs to
solve the SLE in the presence (and in the absence) of
the finite pulses. It is the purpose of the present paper
to address this challenge. The task of dealing with the
full SLE including radiation field during the pulse is
complicated by the fact that the submatrices of the
SLE representing the different orders of coherence
(±1 for the off-diagonal density matrix elements and
0 for the diagonal and pseudo-diagonal density matrix
elements as described in [14]) are now coupled by the
radiation field and must therefore be calculated as
one very large and cumbersome supermatrix. These
submatrices are decoupled during the free evolution
periods, which is all that is needed to be calculated
in the Lee, Budil, and Freed theory (LBF, [14]) that as-
sumed ideal pulses, so these submatrices could be sep-
arately diagonalized. This is a great simplification for
the LBF theory, but was a key challenge in the present
work.

Rather than having to diagonalize the full superma-
trix, which can assume huge dimensions with a more
complex structure of its elements, we decided to employ
an approach similar to the ‘‘Split Hamiltonian’’ method
previously used by Salikhov et al. [18] and Saxena and
Freed [13] to separate out the effects of the main part
of the spin Hamiltonian neglecting the radiation from
the radiation term, and then to deal with their combined
effect using successive short time steps via the Trotter
formula [19,20]. In these previous applications to spin-
echo modulation and double-quantum coherence ESR,
respectively, the molecular dynamics and spin relaxation
were largely ignored, so only the time evolution of the
density matrix under the effect of the spin-Hamiltonian
was considered.

In the present work, the Trotter formula is applied to
the full SLE including the explicit role of the molecular
dynamics and microscopic ordering for the duration of
the finite pulse. By separating, or splitting out the role
of the radiation from the other terms in the SLE we
show it is possible to calculate the time evolution during
the pulse by just diagonalizing the submatrices for the
different orders of coherence using the algorithms that
are available from the LBF theory. This ’’Split Super-
Operator’’ method is shown to be very effective in en-
abling the analysis of the effects of finite pulses in 2D-
ELDOR experiments after we establish subtle but
important features of its application to the SLE. Com-
putation times are however significantly increased over
those for the LBF theory involving ideal pulses, as one
would expect, but the resulting formulation is a tracta-
ble and useful one. Although we focus on 2D-ELDOR
in this paper, the theory is clearly equally applicable to
other 2D-FT ESR techniques such as COSY and
SECSY ESR (cf. [12]).

It is hoped that the ability to analyze the effects of fi-
nite pulses in 2D-ELDOR will make this important
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technique more accessible to other laboratories engaged
in pulsed ESR spectroscopy.

In Section 2, we describe the new theory encompass-
ing finite pulses. Then in Section 3, we provide results of
the theory examining effects of different pulse widths on
2D-ELDOR spectra at 9 and 95 GHz. In addition, we
compare with experiments as a function of pulse width
and show the very good agreement achieved.
2. Theory

2.1. Stochastic Liouville equation

Let us first define our model system, which is a spin-
labeled molecule (e.g., with a nitroxide). The molecule is
undergoing reorientation in an anisotropic medium. In
ESR, to study the molecular reorientation dynamics
and ordering, the spin-labeled molecule is placed in a
static magnetic field, B0. The two major magnetic inter-
actions in this system are: the Zeeman interaction be-
tween B0 and the electron spin (S = 1/2) and the
hyperfine interaction between S and the nuclear spin
(I = 1) in the nitroxide. When the system is subject to
a microwave pulse of intensity B1, there is, in addition,
the magnetic interaction between S and B1.

We consider the 2D-ELDOR experiment on the sys-
tem defined above, as our prototype. Its pulse sequence
and coherence transfer pathways are presented in Fig. 1.
The sequence contains three p/2 pulses followed by three
respective time intervals. (The discussion is focused on
2D-ELDOR, since it is the most commonly employed
[14]). Other relevant pulse ESR experiments can be
treated either as special cases of 2D-ELDOR, e.g.,
COSY data may be generated by letting the mixing time
Tm in Fig. 1 equal zero, or else the same methodology
can be built up to include more complex pulse
sequences.

The 2D-ELDOR signal in Fig. 1 may be analyzed by
following the time evolution of the spin magnetization
during the corresponding pulse sequence. In the slow
motion ESR theory, such a time evolution is described
in terms of the stochastic Liouville equation (SLE) of
the spin density operator q (X, t) [21,22],

o

ot
q̂ðX; tÞ ¼ �i½ĤðX; tÞ; q̂ðX; tÞ� � ĈðXÞ½q̂ðX; tÞ

� q̂eqðX; tÞ�

¼ �iĤxðX; tÞq̂ðX; tÞ � ĈðXÞ½q̂ðX; tÞ
� q̂eqðX; tÞ�. ð1Þ

Here q̂eqðX; tÞ is the instantaneous equilibrium density
operator:

q̂eqðX; tÞ ¼ P 0ðXÞ
exp½�hĤðX; tÞ=kBT �

Trfexp½�hĤðX; tÞ=kBT �g
; ð2Þ
where kB is Boltzmann�s constant and T is the absolute
temperature. In Eq. (1), the spin dynamics is character-
ized by the quantum operator ĤðX; tÞ,

ĤðX; tÞ ¼ Ĥ0ðXÞ þ Ĥ1ðtÞ; ð3Þ
where the total spin Hamiltonian has been divided into
two terms, with Ĥ0 representing the contribution due to
the free evolution of the spins in the absence of the radi-
ation and Ĥ1 being due to the interaction of the electron
spin S with the microwave radiation. On the other hand,
the molecular reorienting dynamics in Eq. (1) is charac-
terized by the classical stochastic (Markovian) operator
Ĉ(X), in the equation of motion for the probability dis-
tribution function, P (X, t)

o

ot
PðX; tÞ ¼ �ĈðXÞP ðX; tÞ; ð4Þ

where X is the molecular orientation.
Depending on the relative strengths of Ĥ0ðXÞ, Ĥ1ðtÞ,

and ĈðXÞ, Eq. (1) may lead to different types of solu-
tions. In the following sections, we will solve Eq. (1)
for a few cases of experimental interest.

2.2. Stochastic Liouville superoperator

We first concentrate on the three time intervals fol-
lowing the three p/2 pulses. In the absence of the radia-
tion, Ĥ1ðtÞ vanishes. The equilibrium density operator
in Eq. (2) becomes, in the high-temperature approxima-
tion [21–23]

q̂eqðXÞ ¼ P 0ðXÞ
1

N
1� hĤ0ðXÞ

kBT

" #
; ð5Þ

where N is the total number of spin states. The equilib-
rium orientational distribution, P0 (X), can be expressed
in terms of the molecular reorienting potential, U (X) as

P 0ðXÞ ¼
exp½�UðXÞ=kBT �
hexp½�UðX=kBT Þ�i

; ð6Þ

where the angular brackets imply an ensemble average.
Then, Eq. (1) can be simplified to

o

ot
v̂ðX; tÞ ¼ �L̂ðXÞv̂ðX; tÞ. ð7Þ

Here the stochastic Liouville superoperator, L̂ðXÞ, and
the reduced spin density operator, v̂ðX; tÞ, have been de-
fined as

L̂ðXÞ � iĤ
x

0ðXÞ þ ĈðXÞ ð8Þ
and

v̂ðX; tÞ � q̂ðX; tÞ � q̂eqðXÞ; ð9Þ

respectively, with q̂eqðXÞ given by Eq. (5). The formal
solution to Eq. (7) can easily be obtained

v̂ðX; t þ t0Þ ¼ e�L̂ðXÞtv̂ðX; t0Þ; ð10Þ
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which can be further expressed in terms of the eigenfunc-
tions,which form theorthogonalmatrix,O, and the eigen-
values of L̂ðXÞ contained in the diagonal matrix, K [14]

v̂ðX; t þ t0Þ ¼ Oe�KtOtrv̂ðX; t0Þ. ð11Þ
It is now helpful to specify the detailed forms for the

spin Hamiltonian and diffusion operator. For brevity of
presentation, we emphasize the simplest case where the
spin-labeled molecule has a cylindrically symmetric
shape and is reorienting in an isotropic medium. More
general formulations of the SLE for anisotropic probe
potential are given elsewhere [24]. Discussion of a cage
potential is also given elsewhere [25,26]. The case of
anisotropic potential has been incorporated into our fi-
nite-pulse computer program, but in this paper, we will
illustrate the theory with the simple isotropic case. For
the system we have chosen, the spin Hamiltonian takes
on the following form:

Ĥ
x

0 ¼
X
l¼g;A

X
l¼0;2

Xl
m¼�l

Xl
m0¼�l

Â
ðl;mÞx

l;L Dl
mm0 ðXLRÞF ðl;m

0Þ
l;R

�
; ð12Þ

where two reference frames are introduced: the labora-
tory frame, L, with its z-axis along the static magnetic
field and the diffusion frame, R, with the z-axis along
the long axis of the cylindrical molecule. The magnetic
tensor frame has been taken to coincide with the R

frame (again for purposes of simplifying the present dis-
cussion). The electron and nuclear tensor components,
Â
ðl;mÞ
l;L , and the magnetic tensor components, F ðl;m

0Þ
l;R , are

most conveniently expressed in the L frame and the R

frame, respectively. These components have been sum-
marized in [27]. The Wigner rotational matrix,
Dl

mm0 ðXLRÞ, in Eq. (12) transforms the L frame to the
R frame via a set of Euler angles, XLR.

The diffusion operator for a cylindrical molecule
undergoing a Brownian rotation in an isotropic medium
is given by

ĈðXÞ ¼ Ĵ � R � Ĵ . ð13Þ
Here the operator Ĵ , defined in the R frame, is the gen-
erator of an infinitesimal rotation of the molecule. The
diffusion operator R is diagonal in the R frame and
has two principal components, R^ and Ri describing,
respectively, the tumbling and spinning motion of the
molecule. The more general form of Eq. (13) appropri-
ate for an anisotropic fluid is given elsewhere [27].

To proceed, we need to define a basis set in Liouville
space to calculate the matrix elements of L̂ðXÞ and its
eigenfunctions and eigenvalues in Eq. (11). It may be
written as a direct product of a spin portion and an
angular portion

jpS ; qS; pI ; qI ; L;M ;Ki ¼ jpS; qS ; pI ; qIi

� ½LðLþ 1Þ�1=2

8p2
DL

MKðXLRÞ. ð14Þ
Here the electron spin-transition numbers pS ¼ m0S � m00S
and qS ¼ m0S þ m00S, where m0S and m00S are electron spin-
quantum numbers before and after the transition,
respectively. Equivalent definitions hold for the nuclear
spin. For a system of one electron spin (S = 1/2), such as
a nitroxide, we may have pS = ±1 denoting the two
counter rotating xy components of the electron spin
magnetization, and pS = 0 representing its z component.
The matrix elements of Ĥ

x
and Ĉ in the basis set given

by Eq. (14) can be found in [27].
The basis set defined in Eq. (14) is particularly conve-

nient in the high field limit and in the absence of the
microwave field. It can then easily be shown that, ex-
pressed in this basis set, the stochastic Liouville operator
is block diagonal with respect to different pS values,

Oe�KtOtr ¼
O�1e�K�1tO

tr
�1 0 0

0 O0e
�K0tOtr

0 0

0 0 Oþ1e�Kþ1tO
tr
þ1

0
B@

1
CA.

ð15Þ
Eq. (11) may then be decomposed into three equations

v̂mðX; t þ t0Þ ¼ Ome
�KmtOtr

mv̂mðX; t0Þ; ð16Þ
where m ” pS = ±1,0, and the matrix of eigenfunctions
Om and the diagonal matrix of eigenvalues Km may be
computed separately in their respective basis sets.

2.3. Pulse propagator superoperator

Let us next consider the three p/2 pulses in Fig. 1. In
this section, they are treated as ideal pulses which are
very strong and of very short duration. During the puls-
es the interaction between the electron spin and the
microwave radiation is thus so dominant that the effects
of Ĥ0 (in the rotating frame, see below) and of Ĉcan be
completely ignored. Thus Ĥ

x

1 is the only term in Eq. (1)
which is significant, so we write for the rotating frame

o

ot
q̂ðtÞ ¼ �iĤx

1;rotq̂ðtÞ. ð17Þ

The formal solution to Eq. (17) for a pulse of duration tp
can be written as

q̂ðt0 þ tpÞ ¼ exp½�iĤx

1;rottp�q̂ðt0Þ � P̂ðtpÞq̂ðt0Þ; ð18Þ

where the pulse propagator superoperator, P̂ðtpÞ, has
been defined. Since Eq. (17) has been written in the
appropriate rotating frame, Ĥ

x

1;rot is time independent.
It should also be noted from a comparison of Eqs.
(10) and (18), that while it is more convenient to work
with the reduced density matrix v̂ in the absence of a
microwave pulse, the time evolution during a strong
pulse is best described in terms of the conventional den-
sity matrix q̂.

Now we may write the pulse Hamiltonian in the
rotating frame [13]
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Ĥ1;rot ¼
x1

2
ðSþe�i/ þ S�ei/Þ; ð19Þ

where x1 is the angular frequency and / the phase of the
microwave radiation. For a strong pulse of duration tp,
we have

h ¼ x1tp ¼ ceB1tp; ð20Þ
where h is the flip angle of the pulse, ce the gyromag-
netic ratio of the electron spin and B1 the intensity of
the pulse. From Eqs. (14) and (18)–(20), the matrix ele-
ments of the pulse propagator superoperator can be
shown to have the following structure when expressed
in the electron spin portion, |pS, qSæ, of the basis set
in Eq. (14):

j0;1i j0;�1i j1;0i j�1;0i

P̂ðh;/Þ¼

cos2ðh=2Þ sin2ðh=2Þ i
2
sinhei/ � i

2
sinhe�i/

sin2ðh=2Þ cos2ðh=2Þ � i
2
sinhei/ i

2
sinhe�i/

i
2
sinhe�i/ � i

2
sinhe�i/ cos2ðh=2Þ sin2ðh=2Þe�i2/

� i
2
sinhei/ i

2
sinhei/ sin2ðh=2Þei2/ cos2ðh=2Þ

0
BBBB@

1
CCCCA;

ð21Þ

and it is block diagonal in the nuclear spin and molecu-
lar reorientation spaces. The effects of a microwave
pulse can then be fully specified by Eq. (21). For exam-
ple, hpS1; qS1 jP̂jpS2 ; qS1i ¼ P̂ðpS

2
 pS

1
Þ, represents the pulse

whose propagator transforms the density matrix from
the pS1 space into the pS2 space.

Starting from qeq and applying to it Eqs. 21 and 16
repeatedly, the time evolution of the density matrix for
the coherence pathways defined in Fig. 1 can be ex-
pressed as

q�ðt1 þ T þ t2Þ ¼ O�1 exp½�K�1t2�Otr
�1P̂ð�1 0ÞO0

� exp½�K0T �Otr
0 � P̂ð0 �1ÞO�1

� exp½�K�1t1�Otr
�1P̂ð�1 0Þqeq. ð22Þ

The ESR signal can then be computed from

S2D-ELDOR
c� ¼ Tr½S�q�� ð23Þ
2.4. Arbitrary pulses of finite intensity

2.4.1. Trotter formula

For a pulse of finite intensity, the effect of Ĥ0 (in the
rotating frame) as well as molecular rotational dynamics
cannot be ignored during the pulse. In this case, Ĥ1 be-
comes comparable with (or even smaller than) Ĥ0 and/
or Ĉ in Eq. (1), and we must solve the complete equation
of motion without dropping off any terms. We now re-
write Eq. (1) as (in the rotating frame)

o

ot
q̂ðX; tÞ ¼ ½�L̂ðXÞ � iĤ

x

1;rot�½q̂ðX; tÞ � q̂eqðX; tÞ�. ð24Þ

While an exact formal solution to Eq. (24) may be writ-
ten, the computation of the relevant eigenfunctions and
eigenvalues could be formidable. The three coherence
modes (m = 0, ±1, cf. Fig. 1) in Eq. (16) couple to each
other due to the presence of the pulse propagator and
one has to solve the full eigen-equation of much larger
dimension.

A useful technique for dealing with Eq. (24) is the so-
called split operator method [18], which is based on the
Trotter formula [19,20]

exp½Aþ B� ¼ lim
n!1

exp
A
n

� �
exp

B
n

� �� �n

ð25Þ

for operators A and B. Eq. (24) can be used advanta-
geously to separate the effects of non-commuting opera-
tors. When applied to the propagator relevant to the
case of pulses, of finite intensity, the Trotter formula
takes on the following form:

exp½ð�L̂� iĤ
x

1Þtp� ¼ lim
n!1
ðexp½�L̂Dt� exp½�i Ĥx

1Dt�Þ
n

¼ lim
n!1
ðexp½�i Ĥx

1Dt� exp½�L̂Dt�Þn;

ð26Þ

where Dt = tp/n, and we have dropped the subscript rot
for convenience. (The first case follows if A! L̂ and
the second if B! L̂.) In Eq. (26), the original arbitrary
pulse of duration tp has been approximated by a se-
quence of short pulses of duration Dt interspersed by
free evolution periods also of duration Dt. Thus, by
breaking the original pulse width tp into n very small
time intervals, the stochastic Liouville operator and
the pulse propagator can be treated as though they com-
mute. Within each time interval, the effects of pulse and
of free precession with spin relaxation/molecular rota-
tional dynamics on the time evolution of the spin density
operator may be treated independently as distinct expo-
nential operators, which are each then applied n times,
by using Eqs. (17) and (10), respectively.

2.4.2. Equation of motion

In this section, we will solve the equation of motion
for an arbitrary pulse whose width is tp and whose inten-
sity is B1. To apply the Trotter formula, the pulse is
divided into n steps of spacing Dt. We start just before
the pulse, where the spin density operator is q̂ðX; t0Þ.
During the initial Dt, the electron spin magnetization
is first allowed to undergo the combined process of spin
evolution and molecular rotation while ignoring the
pulse, (i.e., the second form of Eq. (26)). Thus, the re-
duced spin density operator after this period is given
by Eq. (10)

v̂ðX; t1Þ ¼ exp½�L̂ðXÞDt�½q̂ðX; t0Þ � q̂eqðXÞ�; ð27Þ

where t1 = t0 + Dt. One then follows with a pulse of
duration over the same Dt, which rotates the electron
spin magnetization by an angle Dh (see Eq. (20)):
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Dh ¼ ceB1Dt. ð28Þ
The spin density operator after the pulse can be written
according to Eq. (18)

q̂ðX; t1Þ ¼ P̂ðDtÞ½v̂ðX; t1Þ þ q̂eqðXÞ� ð29Þ

with v̂ðX; t1Þ given by Eq. (27), so that Eq. (29)
becomes

q̂ðX; t1Þ ¼ P̂ðDtÞ exp½�L̂ðXÞDt�q̂ðX; t0Þ þ P̂ðDtÞ
� ð1� exp½�L̂ðXÞDt�Þq̂eqðXÞ

� M̂ðX;DtÞq̂ðX; t0Þ þ N̂ðX;DtÞq̂eqðXÞ; ð30Þ

In Eq. (30), two new operators

M̂ðX;DtÞ � P̂ðDtÞ exp½�L̂ðXÞDt� ð31Þ
and

N̂ðX;DtÞ � P̂ðDtÞð1� exp½�L̂ðXÞDt�Þ ð32Þ
have been introduced. M̂ðX;DtÞ represents the propa-
gator driving the spin density operator from q̂ðX; t0Þ
to q̂ðX; t1Þ during Dt; N̂ðX;DtÞ is due to the switching
back and forth between q̂ and v̂, as required when
applying P̂ðDtÞ and exp½�L̂ðXÞDt� separately (see
Eqs. (10) and (18)). It arises because the stochastic
Liouville operator seeks to return q̂ to its thermal equi-
librium value, qeq (cf. Eq. (10)), whereas the radiation
term, yielding the pulse propagator, seeks to remove
the system from thermal equilibrium (cf. Eq. (18)).
(Eq. (30) can be shown to be equivalent, for very small
Dt, to the integrated form of Eq. (24) by expanding the
exponential operators and keeping only terms no high-
er than linear in Dt).

During the second Dt, the relation equivalent to Eq.
(30) can be written between q̂ðX; t2Þ and q̂ðX; t1Þ, and
upon replacing q̂ðX; t1Þ with Eq. (30), we have

q̂ðX; t2Þ ¼ M̂
2ðX;DtÞq̂ðX; t0Þ

þ ½M̂ðX;DtÞ þ 1�N̂ðX;DtÞq̂eqðXÞ. ð33Þ

The same procedure is repeated n times until the final
q̂ðX; tnÞ is reached

q̂ðX; tpÞ ¼ q̂ðX; tnÞ

¼ M̂
nðX;DtÞq̂ðX; t0Þ

þ
Xn
i¼1

M̂
i�1ðX;DtÞ

" #
N̂ðX;DtÞq̂eqðXÞ; ð34Þ

where M̂
nðX;DtÞ and M̂

i�1ðX;DtÞ refer to M̂ðX;DtÞ being
applied n times and i � 1 times, respectively.

In arriving at Eq. (34), exp½�L̂Dt� was applied before
P̂ðDtÞ on the initial density operator q̂ðX; t0Þ (i.e., the
second form of Eq. (26)). On the other hand, if we start
with P̂ðDtÞ (i.e., the first form of Eq. (26)), a result sim-
ilar to Eq. (34) is obtained, except that N̂ðX;DtÞ is now
defined as
N̂
0ðX;DtÞ ¼ 1� exp½�L̂ðXÞDt� ð35Þ

instead of P̂ðDtÞð1� exp½�L̂ðXÞDt�Þ in Eq. (32). From
the definition of P̂ðDtÞ, and expanding the exponential
operators in a Taylor�s series and neglecting the second
and higher order terms for the very small time interval
Dt, it can easily be shown that the two definitions of
N̂ðX;DtÞ given by Eqs. (32) and (35) become the same.
This clearly illustrates that exp½�L̂Dt� and P̂ðDtÞ com-
mute with each other if Dt is sufficiently small. (This is
mathematically equivalent to the well known fact that
unitary operators representing rotations do not com-
mute in general, but they do commute for infinitesimal
rotations).

2.4.3. 2D-ELDOR ESR signals
Having determined the density operator for arbitrary

(or imperfect) pulses, we now proceed to compute the
2D-ELDOR ESR signals. For the pulse sequence given
in Fig. 1, the final density operator may be obtained by
applying Eqs. (11) and (34)

q�ðt1þT þ t2þ3tpÞ¼P 1=2
0 ðXÞ

�O�1 exp½�K�1t2�Otr
�1q̂ð�1 0ÞðX;tpÞ

�O0 exp½�K0T �Otr
0 q̂ð0 �1ÞðX;tpÞ

�O�1 exp½�K�1t1�Otr
�1q̂ð�1 0ÞðX;tpÞP

�1=2
0 ðXÞqeq;

ð36Þ

where the equilibrium molecular angular distribution,
P0 (X), has been defined in Eq. (6) and is inserted here
to symmetrize the diffusion operator (which is needed
for anisotropic fluids (cf. [21,23,27])).

^̂CðXÞ ¼ P�1=20 ðXÞĈðXÞP 1=2
0 ðXÞ. ð37Þ

The q̂ðj iÞðX; tpÞ’s in Eq. (36) are submatrices of q̂ðX; tpÞ
in Eq. (34), which contains all the information about the
imperfect pulse. For example, the second pulse in Fig. 1
is described by q̂ð0 �1ÞðX; tpÞ. To construct the q̂ðX; tpÞ
matrix, we need to calculate the matrix elements of
M̂ðX;DtÞ and N̂ðX;DtÞ defined in Eqs. 31 and 35, respec-
tively. In terms of the eigenmodes of the stochastic Liou-
ville superoperator given in Eq. (11), the operators
M̂ðX;DtÞ and N̂ðX;DtÞ may be expressed in the basis
set in Eq. (14) as:

M̂ðX;DtÞ¼ exp½�L̂ðXÞDt�P̂ðDtÞ
O�1e�K�1DtO

tr
�1P�1�1 O�1e�K�1DtO

tr
�1P�10 O�1e�K�1DtO

tr
�1P�11

O0e�K0DtOtr
0 P 0�1 O0e�K0DtOtr

0 P 00 O0e�K0DtOtr
0 P 01

O1e�K1DtOtr
1 P 1�1 O1e�K1DtOtr

1 P 10 O1e�K1DtOtr
1 P 11

0
B@

1
CA;

ð38Þ

where the Pijs are the submatrices of the pulse propaga-
tor matrix given in Eq. (21) and can be obtained from
Eq. (21) with h being replaced by Dh, which is related
to Dt via Eq. (28):
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P 00 ¼
cos2ðDh=2Þ sin2ðDh=2Þ
sin2ðDh=2Þ cos2ðDh=2Þ

 !
;

P�1�1 ¼ cos2ðDh=2Þ;
P�1�1 ¼ sin2ðDh=2Þe�i2/;

P 0�1 ¼
� i

2
sinDhe�i/

� i
2
sinDhe�i/

 !
; P�10 ¼

� i
2
sinDhe�i/

� i
2
sinDhe�i/

 !tr

.

ð39Þ

Note that the diagonal and off-diagonal spaces couple to
each other due to the presence of the pulse propagator,
as is seen from Eq. (38). Thus, to follow the time evolu-
tion of the spin density operator within a finite pulse,
one has to perform a number of matrix-matrix multipli-
cations in the full space, which involve all the elements
of pulse propagator in Eq. (21). This is in contrast to
the case of an ideal (or very strong) pulse, where only
a single pulse matrix element is needed. It can easily
be shown that the matrix-matrix multiplications in M̂

n

(cf. Eq. (34)) do not alter the phase of the pulses. The
corresponding matrix elements of operator N̂ðX;DtÞ
have the following form (to lowest order in Dt, cf.
above):

N̂ðX;DtÞ ¼ N̂
0ðX;DtÞ ¼ 1� exp½�L̂ðXÞDt�

¼
1� O�1e�K�1DtO

tr
�1 0 0

0 1� O0e
�K0DtOtr

0 0

0 0 1� O1e
�K1DtOtr

1

0
B@

1
CA.

ð40Þ

Finally, the 2D-ELDOR ESR signal can be calculated
from Eq. (23).
3. Results and discussion

3.1. Simulation methods

Simulations of CW spectra are normally performed
in the off-diagonal electron spin space |±1,0æ (cf. Eq.
(14)) and no knowledge about the diagonal subspace
|0,±1æ is required. However, in the 2D-ELDOR experi-
ment in Fig. 1, the microwave pulse switches the electron
magnetization between the off-diagonal and diagonal
spaces and the full electron spin space covering both
subspaces has to be considered as given in Eq. (36). Dur-
ing the three time intervals when the microwave field is
absent, the matrix of stochastic Liouville superoperator
is block diagonal in the electron spin space, as can be
seen in Eq. (15), which greatly simplifies the calculation
of the relevant eigenvectors and eigenvalues. During the
pulses, if they are assumed to be perfect, that is, if they
are sufficiently strong in intensity and short in duration,
the time evolution of the electron spin can be followed
by Eq. (18).

In the present work, we are dealing with arbitrary
pulses of finite intensity B1 and pulse width tp, during
which both electron spin relaxation and molecular
reorientation may take place. This complex problem
has been simplified by applying the Trotter formula,
which requires dividing the pulse width into small time
intervals. In each time interval, the Trotter formula al-
lows a decoupling of stochastic Liouville operator from
the pulse propagator (Eq. (25)). It follows that the sto-
chastic Liouville operator and pulse propagator can be
treated independently using Eqs. 10 and 18, respectively.

The 2D-ELDOR spectral simulation starts with the
stochastic Liouville operator L̂ in Eq. (8), with the spin
Hamiltonian Ĥ given in Eq. (12) and the diffusion oper-
ator Ĉ given in Eq. (13). The matrix elements of the sto-
chastic Liouville operator are first computed in the off-
diagonal subspace |±1,0,pI,qI;L,M,Kæ and the diagonal
subspace |0,±1,pI,qI;L,M,Kæ of the basis set defined in
Eq. (14). In general, the matrix dimension of L̂ in the
diagonal space, nd, is approximately two times larger
than that of the off-diagonal space, no. Since the stochas-
tic Liouville matrix is block diagonal with respect to the
two subspaces, the three stochastic Liouville sub matri-
ces can be diagonalized independently to yield the eigen-
functions and eigenvalues, O0 and k0 for the diagonal
space, and O±1 and k±1 for the off-diagonal space,
respectively. In this work, the Rutishauser algorithm
was used for the diagonalization of the stochastic Liou-
ville matrices, since it produces exact eigenfunctions and
eigenvalues [14] and is a better choice than the Lanczos
algorithm when the molecular reorientational rate is
slow.

Having calculated the eigenfunction and eigenvalue
matrices, we are now able to construct the matrices for
the M̂ and N̂ operators, using Eqs. 38 and 40, respective-
ly. Note that unlike the stochastic Liouville matrix, the
M̂ matrix is not block diagonal with respect to the elec-
tron spin space, due to the presence of the pulse. Thus
we are dealing with a matrix which is four times (or
two times) larger than the off-diagonal (or diagonal) of
the stochastic Liouville matrices, respectively. We can
immediately see the computational challenge when cal-
culating the spin density operator q̂ðX; tpÞ in Eq. (34).
One way to avoid directly computing M̂

n
is by comput-

ing the matrix-vector multiplications such as
M̂ðX;DtÞq̂ðX; t0Þ. However, this sequence of matrix-vec-
tor multiplications would have to be repeated for each
of the three arbitrary microwave pulses in Fig. 1, since
they start from different t0. On the other hand, if we
compute M̂

n
directly, it only needs to be performed once

and only one portion of the M̂
n
matrix is needed for each

pulse. In addition, we actually only need to compute
m = log(n)/log (2), instead of m = (n � 1), matrix–ma-
trix multiplies to obtain M̂

n
, by a process of successive

squaring. For example, if n = 8, m is only 3.
It should be noted that the Trotter formula in its sym-

metrized form

exp½Aþ B� ¼ lim
n!1

exp
B
2n

� �
exp

A
n

� �
exp

B
2n

� �� �n

ð41Þ
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converges faster than does Eq. (25). Eq. (41) has been
used in most previous works [18,13]. In an analytic
study, Salikhov et al. [18] used n values of 2–4, while
in another study by Saxena and Freed [13], it was found
that a value of 8 for n was sufficient for the numerical
convergence (at 9 GHz) when B1 = 17.8 G and for a
pulse ten times weaker (B1 = 1.78 G), n = 16 should be
used. (These previous studies did not include the sto-
chastic operator Ĉ, so they did not require the SLE).
In the present study, we used the original form of the
Trotter formula given in Eq. (25). Although the symme-
trized form converges faster, it requires more matrix–
matrix multiplications, which is the major consideration
when the stochastic Liouville matrix becomes extremely
large. For a radiation field of B1 = 17.8 G, n = 8 is suf-
ficient in a typical slow motional 2D-ELDOR spectral
simulation (for 9 GHz).

3.2. Theoretical simulations

We apply the theory developed in this work, by
studying the effects of pulse width on the 2D-ELDOR
ESR spectra. In the spectral simulations in this section,
Fig. 2. Theoretical 9 GHz 2D-ELDOR spectra showing the effect of th
xHE = 1 · 107 s�1, DG = 0.1 G. tp = (A) 0 ns, i.e., ideal pulse, (B) 5 ns, (C) 1
we use the following magnetic parameters: Axx = 5.5 G,
Ayy = 5.7 G, Azz = 35.8 G, gxx = 2.0084, gyy = 2.0060,
and gzz = 2.0022, which are typical for a nitroxide spin
label (cf. next section). The static magnetic field is
B0 = 3280 G, corresponding to 9.2 GHz (except where
noted). The other parameters related to a 2D-ELDOR
spectral simulation are: dead times t01 = 50 ns and
t02 = 50 ns (except where noted) and mixing time
Tm = 100 ns, which are typical experimental values (cf.
next section).

We present, in Figs. 2–4, simulated 9.2 GHz ESR
spectra characteristic of the range of rotational rates
encountered in studies of nitroxide spin labels. Fig. 2
shows the simulated 2D-ELDOR spectra for different
pulse widths in the motional narrowing regime. Here
an isotropic rotational diffusion constant of
R0 = 1 · 1011 s�1 is used. This motion is fast enough
to average out the anisotropy of the A and g tensors
and only the isotropic hyperfine coupling, a0, determines
the line positions. In a CW 9-GHz experiment, this usu-
ally results in a spectrum with three well separated peaks
of almost equal intensity. The same is observed for the
auto-peaks in the 9 GHz 2D-ELDOR spectrum in
e pulse width in the motional narrowing region: R0 = 1 · 1011 s�1,
0 ns, and (D) 15 ns.



Fig. 3. Theoretical 9 GHz 2D-ELDOR spectra showing the effect of the pulse width in the incipient slow motional region: R0 = 3.2 · 108 s�1,
xHE = 1 · 107 s�1, DG = 0.3 G. tp = (A) 0 ns, (B) 5 ns, (C) 10 ns, and (D) 15 ns.
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Fig. 2A, that was calculated for ideal pulses, where the
separation between the two outer peaks is 2a0 =
31.3 G. In addition, there are Dm± = ±1 and ±2 cross
peaks arising mainly from the HE, (xHE = 1 · 107 s�1),
which is a typical value in, e.g., a lipid membrane [7].
We checked that 1 ns p/2 pulses, corresponding to a
B1 of about 89 G, which is more than sufficient to cover
the bandwidth of 15.6 G in Fig. 2A, are for all practical
purposes ideal pulses, by comparison with the standard
2D-ELDOR computational routines [14,15]. When the
p/2 pulse widths are increased to 5 ns (corresponding
to B1 	 18 G), the simulated spectrum in Fig. 2B does
not show much difference from that in Fig. 2A. This
indicates that a pulse duration of 5 ns is close to an ideal
pulse in the motional narrowing regime at 9 GHz for
nitroxides.

When the pulse widths are further increased to 10 ns,
the simulated spectrum in Fig. 2C differs significantly
from those in Figs. 2A and 2B. It can be seen from
Fig. 2C that there is an intensity loss in both outer
auto-peaks. The applied field B1 of 8.9 G generating a
10 ns p/2 pulse is insufficient to fully excite the
±15.6 G bandwidth. A further reduction in intensity
of the outer auto and the cross peaks is observed in
Fig. 2D, where the pulse width is 15 ns corresponding
to a B1 of about 6 G. Naturally, the central auto-peak,
which is at f1 = f2 	 0 MHz, is unaffected by the in-
creased duration of the p/2 pulses.

The same simulations were repeated for a slower
motional rate constant of 3.2 · 108 s�1, and the results
are shown in Fig. 3. Now the molecular reorientation
is not fast enough to fully average out the magnetic
anisotropy, and much broader peaks are observed. Also,
the cross-peaks are now largely determined by nuclear
spin flips induced by rotational modulation of the
hyperfine tensor. In the case of an ideal pulse in
Fig. 3A, the three peaks have different intensities due
to the incomplete averaging. A small but noticeable
reduction in the outer peak intensities is seen in
Fig. 3B as the pulse widths increase to 5 ns. This is an
indication that the 5 ns pulses may not be nearly as ideal
in the incipient slower motional regime as in the motion-
al narrowing regime, possibly due to finite effects of
relaxation during the pulse. As tp becomes longer and
the B1 is weaker, further intensity reduction in the outer
peaks is observed in Figs. 3C and D. In the latter case,
the overall pattern of peaks becomes substantially differ-
ent from that of Fig. 3A.



Fig. 4. Theoretical 9 GHz 2D-ELDOR spectra showing the effect of the pulse width in the slow motional region: R0 = 1 · 107 s�1, xHE = 1 · 106 s�1,
DG = 0.3 G. tp = (A) 0 ns, (B) 5 ns, (C) 15 ns, and (D) 30 ns. The dead times: t01 = t02 = 25 ns.
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In Fig. 4 we show results for an Ro = 1 · 107 s�1,
which is well into the slow-motional regime. The 2D-
ELDOR auto- and cross-peaks are very broad, as
expected for this case, which is near the T2 minimum
(ca. 15 ns, cf. [16]). Here, we find that the 2D-ELDOR
spectra are less sensitive to increasing the pulse width.
Only modest differences are noted for a 15 ns pulse
width vs. a strong pulse. Substantial effects are, howev-
er, seen for long pulse widths of 30 ns. The reduced sen-
sitivity to pulse width may be explained by the fact that
the dynamic spin packets making up the 2D-ELDOR
spectrum have very short T2�s resulting in very large
homogeneous broadening. Their breadth means that
the peaks that are not centered near the middle of the
spectrum are, in effect, not substantially displaced in fre-
quency from the applied microwave frequency, i.e., their
(homogeneous) wings extend into the central region of
the spectrum. Thus spectral coverage in this motional re-
gime does not appear to be a concern.

It is of interest to study the effects of pulse width for
higher frequency 2D-ELDOR ESR which is sensitive to
faster motions. Fig. 5 displays the variation of 95 GHz
2D-ELDOR spectra with pulse width for R0 =
3.2 · 109 s�1. In contrast to the 9 GHz cases, with ideal
p/2 pulses, the higher frequency auto-peak is the most
intense instead of the central auto-peak (cf. Fig. 5A).
This is due to the greatly increased role of the g-tensor
in the spin relaxation. It also leads to increased broad-
ening of all auto and cross peaks. As the pulse width
is increased (cf. Figs. 5B–D), the intensity of the cen-
tral peak is unaffected as before, but the intensity of
the outer peaks is reduced, so that for a 15 ns pulse
width the central peak is a little more intense than
the high-frequency auto-peak. The spectral pattern of
Fig. 5D becomes substantially different from that aris-
ing from ideal p/2 pulses. However, as for the 9 GHz
cases, there is only a small difference between Fig. 5B
corresponding to 5 ns pulse widths and Fig. 5A for
ideal pulses.

We now note what effects on the estimation of the
molecular motion would result if one treats an arbi-
trary pulse as an ideal one. From the above analysis,
both incipient slow motion and a non-ideal pulse have
the similar effect of causing intensity reductions in the
outer peaks. If a simulation program assuming ideal
pulses is used, the molecular motional rate may be



Fig. 5. Theoretical 95 GHz 2D-ELDOR spectra showing the effect of the pulse width in the incipient slow motional region: R0 = 3.2 · 109 s�1,
xHE = 1 · 107 s�1, DG = 1.0 G. tp = (A) 0 ns, (B) 5 ns, (C) 10 ns, and (D) 15 ns.
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underestimated. The effect of the non-ideal pulses
would be improperly accounted for by slowing down
the molecular motion to achieve a satisfactory fit to
the experimental spectrum. However, well into the slow
motional regime, where the dynamic spin packets expe-
rience large homogeneous broadening, the effects of fi-
nite pulse widths are much reduced.

3.3. Comparison with experiments

Now, we apply the arbitrary pulse 2D-ESR theory to
the analysis of some experimental spectra. The system
we chose was ca. 1 mM 2,2,6,6-tetramethyl-4-piperi-
done-N-oxyl-d15 (PD-tempone) dissolved in 85% glycer-
ol-d3-D2O solvent. The reason we chose this system is
that the tumbling of PD-tempone in glycerol could be
simply modeled as an isotropic reorientation in an iso-
tropic medium, and by varying the temperature we
could obtain spectra ranging from fast-to-slow motion.
This simple model of molecular rotation allowed us to
conveniently study the effects of arbitrary pulses on
2D-ELDOR. The experiments were performed on a
home-built pulsed 2D-FT ESR spectrometer described
elsewhere [4,6,16].
Figs. 6 and 7 show some of the experimental 2D-EL-
DOR spectra of PD-tempone in 85% glycerol for differ-
ent pulse widths taken over a range of temperatures. In
these experimental spectra, the static magnetic field B0

was 3280 G and the frequency was 9.2 GHz; the dead
times t01 and t02 were both 50 ns; and the mixing time
Tm was 100 ns. The TWT amplifier provided 1 kW out-
put power, and a 3.2 mm ID bridged lopp gap resonator
was employed. Other experimental aspects and condi-
tions are described elsewhere [4,6,16]. To fit the spectra,
we need the magnetic parameters. In a previous study
[28], the magnetic hyperfine A tensor and g-tensor of
PD-tempone in glycerol have been obtained from the
simulations of rigid limit spectra. These magnetic
parameters have been used in the theoretical simulations
and have been cited above.

The model parameters used in the fits are: the iso-
tropic rotational rate, R0, describing the reorientation
of PD-tempone in glycerol, the Gaussian inhomoge-
neous linewidth, DG, accounting for all the line broad-
ening other than molecular relaxation, and the
Heisenberg exchange rate, xHE, to better fit the cross
peaks in the 2D-ELDOR spectra, due to the magneti-
zation transfer induced by HE during the mixing peri-



Fig. 6. Comparison of 9.2 GHz experimental (left) and simulated (right) 2D-ELDOR spectra of PD-tempone in 85% glycerol for different pulse
widths at 28.7 �C. The parameters used in the simulations are given in Table 1.

Table 1
Dynamic and fitting parameters

t (�C) R0 · 10�8 (s�1) xHE · 10�6 (s�1) DG (G)

28.7 11.0 3.16 0.33
14.8 3.98 2.01 0.34
11.6 3.16 1.12 0.40
7.0 1.58 0.63 0.49
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od in Fig. 1. Since these parameters are independent of
variations in the microwave pulse width, tp, one could
fit simultaneously the spectra of different tp for a given
temperature. In this work, however, we chose another
approach. From Figs. 6 and 7, we can see that the
spectra from longer pulse widths look more like slow
motional spectra, i.e., they are more sensitive to the
motional parameters. Therefore, for each temperature,
we started from fitting the 15 ns spectrum. The fitting
parameters coming out from the 15 ns fit were then
used as the seed values in the fittings of the spectra
of other pulse widths. Repeating this procedure a few
times, we could determine finally a set of model param-
eters which best fit to all the spectra of different pulse
widths for a given temperature. The best fit theoretical
2D-ELDOR spectra are displayed for two tempera-
tures in Figs. 6 and 7 and the corresponding best fit
model parameters are listed in Table 1 for our studies
involving four different temperatures.

The agreement between the experimental and simu-
lated spectra is quite good, as indicated in Figs. 6 and
7 and our other results. The main spectral features of
the experiment have been captured by our theory. The
intensities of the outer peaks are reduced gradually as
the pulse width becomes longer.



Fig. 7. Comparison of 9.2 GHz experimental (left)and simulated (right) 2D-ELDOR spectra of PD-tempone in 85% glycerol for different pulse
widths at 11.6 �C. The parameters used in the simulations are given in Table 1.
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3.4. Discussion

While the theory fits the experiment well and captures
most experimental details, we do notice some discrepan-
cies between the experimental and simulated spectra.
Better fits may be achieved by allowing for slightly
anisotropic rotational diffusion of the probe as well as
a local ordering potential. In addition, a local cage
might be needed [10]. Instrumental details such as the ef-
fects of the Q factor of the microwave resonator were
not included in our theoretical model, although in our
experiments the loaded Q 	 40 was low enough not to
significantly distort the pulses [6]. Also the arbitrary
pulse was assumed to have a simple rectangular shape.
More realistically, B1 changes in magnitude and phase
with time during the pulse (and one can measure this
experimentally). In this case, the pulse propagator in
Eq. (21) would be different for different Dt. This would
lead to a more complicated form for the density opera-
tor q̂ðX; tpÞ than that given in Eq. (34) for the case of a
rectangular pulse, for which the operator M̂ðX;DtÞ is
simply raised the the appropriate power. Our theoretical
method could readily be extended to this more general
case, but it would be computationally more intensive.

Finally, we would like to note that a simple system
has been chosen in this study to illustrate the effects of
arbitrary pulses on 2D-ELDOR ESR spectra. The reori-
entation of PD-tempone in glycerol can be approximat-
ed as a spherical body rotating in an isotropic medium.
For such a system, the quantum numbers L, K, and M,
in the basis functions defined in Eq. (14), only need to be
truncated at Lmax = 6, Kmax = 4 and Mmax = 2, respec-
tively, to achieve the convergence. This corresponds to
a matrix dimension of 60 in the off-diagonal subspace
and of 93 in the diagonal subspace. However, for a sys-
tem where a rod-like molecule is reorienting in an orient-
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ing potential, the dimension of both the diagonal and
off-diagonal matrices may be as large as a few thousand.
The matrix dimensions could become much larger if the
slowly relaxing local structure (SRLS) model [25,26] is
needed to interpret the experimental spectra. Such large
matrices would make the matrix–matrix multiplications
in Eq. (34) much more time-consuming to compute. It
might then be more advisable to recast the algorithm
to compute Eq. (34) such that only matrix vector multi-
plications are used (cf. discussion, Section 3.1).
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