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New ESR experiments based on techniques of two-dimensional correlation spectroscopy 
have been shown to be useful in the determination of magnetization transfer rates in 
motionally narrowed nitroxides. Spectral enhancement based upon linear prediction with 
singular value decomposition (LPSVD) is applied in the present work to project 2D ab- 
sorption lineshapes and to dramatically improve the signal/noise ratio. Heisenberg spin 
exchange rates obtained from volume integrals of LPSVD-projected 2D absorption line- 
shapes compare well with those obtained from absolute value peak amplitudes in the case 
of 2,2,6,6-tetramethyl4piperidonsN-oxyl-d,b (pd-tempone) dissolved in toluene-ds (where 
theory predicts that the two should agree). 0 1988 Academic PBS, hc. 

INTRODUCTION 

In a recent report we have demonstrated the application of two-dimensional cor- 
relation spectroscopy to ESR (I). Such techniques are based upon the irradiation of 
the entire ESR spectrum with a broadband microwave (MW) pulse (2, 3) and the 
recording of the free precession signal (i.e., free induction decay or FID) that follows. 
More recently we have demonstrated the quantitative capability of ESR correlation 
spectroscopy with a three-pulse experiment (2D ELDOR) for the observation of mag- 
netization transfer between hyperhne (hf) lines (4). In (4) we determined the rate of 
Heisenberg exchange by comparison of peak heights in the absolute value representation 
of the 2D ELDOR spectrum. The theory indicates, however, that it is the volume 
integrals of the 2D absorption lines, not the absolute value peak heights, which correctly 
reflect the electron spin population differences in the general case. In (4) we depended 
on the fact that ratios of absolute value peak heights give the same information as 
ratios of 2D absorption volume integrals when T2 is the same for each hf line. In 
general there is significant variation of T2 across the spectrum, in which case volume 
integrals of the 2D absorption lines are essential for accurate measurement of mag- 
netization transfer rates. 

The ESR spectrum obtained upon Fourier transformation of the FID is, in general, 
an admixture of absorption and dispersion. In order to obtain the pure absorption 
spectrum, numerical phase corrections are required (3). The phase of each resonance 
line depends on the resonance offset of that line as well as on the dead time of the 
spectrometer (4). We observe an almost linear variation of the phase of the recorded 
signal on frequency (5). During the spectrometer dead time, a component of the free 
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precession signal may undergo several periods of oscillation, leading to a phase shift 
of as much as 67r radians for a resonance offset of 50 MHz. For a spectrum of bandwidth 
100 MHz, this implies a total phase variation of 12~ radians across the spectrum. 
Numerical correction of this phase variation is accomplished by a simple coordinate 
transformation in the frequency domain of the real and imaginary outputs of the FFT. 
Given a complex spectral function S(V), the expression for this coordinate transfor- 
mation is 

111 

where (Y consists of a frequency-independent correction (the so-called zeroth-order 
correction) and a frequency-dependent correction (a first-order or linear correction), 
i.e., (Y = a0 + (Y~v. Such corrections are feasible in one-dimensional FTESR (3), but 
are very cumbersome when applied in both dimensions of a two-dimensional spectrum 
because of the large required linear corrections. 

Two-dimensional correlation spectroscopy (“COSY”) in ESR is performed in much 
the same way as for NMR. The pulse sequence a/2-t,-r/2-t, constitutes the simplest 
of the COSY experiments. The initial x/2 pulse generates the transverse magnetization 
components which precess during the evolution period tl becoming amplitude encoded 
according to their precessional frequencies in the rotating frame. The FID is recorded 
during the detection period of duration t2, which begins with the final ?r/ 2 pulse. The 
closely related experiment, 2D ELDOR, uses three MW pulses in the sequence x/2- 
tl-r/2-T-r/2-&. Magnetization transfer is revealed by cross correlations which give 
rise to 2D ELDOR cross peaks. Peaks which appear along the diagonal in 2D COSY 
type experiments are associated with autocorrelations and are thus called auto peaks. 
In each type of 2D experiment an FID is collected for each t, ; then the phase of the 
first pulse is advanced by 90”, and a second FID is collected [call them s’( t, , t2) and 
s”( tl , tz)] . These two signals depend on terms oscillatory in tl that are in phase quad- 
rature ( 6). Fourier transformation with respect to t2 of each data set yields the spectral 
functions 3( t, , w2) and ?‘( t, , 02). Baseplane corrections facilitate suppression of axial 
peaks (4) after which we form 

i(t,, ~2) = Re[s^l] + i Re[s^“] 

which yields the 2D spectrum S( or, ~2) upon final FT. 

PI 

This two-step 2D quadrature phase alternation sequence provides the phase infor- 
mation in the tl domain necessary for the pure absorption representation of the 2D 
spectrum; i.e., we obtain four quadrant phase information ( 7). S( w1 , w2) obtained 
by the above procedure (known as hypercomplex FT) is not, in general, a 2D absorption 
spectrum, but an admixture of absorption and dispersion in both u1 and w2 axes. In 
order to project out the 2D absorption representation, one would apply phase correc- 
tions as described by Eq. [I] to each 1D spectrum obtained upon FT with respect to t2 at a given tl . Analogous phase corrections would then be applied to each spectrum 
obtained upon FT with respect to t, at a given 02. As already noted, this procedure 
is difficult in ESR because of the large phase variation across the spectrum in both 
frequency domains. 
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To facilitate accurate projection of 2D absorption lineshapes and to suppress certain 
artifacts that appear in 2D ELDOR spectra, we have applied a linear prediction method 
developed by Kumaresan and Tufts (8) that was introduced to magnetic resonance 
by Barkhuijsen et al. ( 9). In that initial application to magnetic resonance, the emphasis 
was on obtaining good frequency information in one-dimensional data. Millhauser 
and Freed (10) demonstrated the application of these methods to two-dimensional 
electron spin-echo (2D ESE) spectroscopy. The 2D ESE method is distinct from COSY 
and related techniques in that COSY requires irradiation of the entire spectrum (i.e., 
nonselective pulses), whereas in 2D ESE one irradiates only a narrow region of the 
spectrum (i.e., selective pulses), recording the maximum ESE signal voltage as the dc 
field is swept through the spectrum. Real valued linear prediction is applied to the 
ESE envelope at each field position in the 2D ESE spectrum, facilitating extrapolation 
of the time series to zero dead time. In this report we demonstrate the use of complex 
linear prediction in both axes of a 2D ELDOR spectrum. We show how this new 
application of the general technique, which we call hypercomplex linear prediction, 
facilitates the projection of 2D absorption lineshapes as well as the rejection of residual 
axial peaks and much of the noise. 

LINEAR PREDICTION FOR 2D CORRELATION SPECTROSCOPY 

The basis for (autoregressive) linear prediction is that a discrete time series 

{Xl, x2, * * * 9 XN) [31 

can be modeled by the expression 
M 

X, = C bixn-iy [41 
i=l 

where the set { bi} are called the forward linear prediction (lp) coefficients, and the 
order M is less than N. The implication of Eq. [ 41 is that each sampling of the time 
series can be expressed as a linear combination of the A4 previous ones. With the 
application of backward lp, described by writing Eq. [4] in the backward sense, i.e., 

M 

& = C ai&+i, 
i=l 

[51 

one can model an FID in terms of exponentially damped sinusoids and determine all 
of the relevant parameters: frequency, time constant, amplitude, and phase. In such 
a procedure one first generates a set of coupled equations obtained upon writing Eq. 
[ 5 ] for the N - M possible values of n. The least-squares solution for the set of 
backward lp coefficients, { ai}, in terms of the N complex data points, is written as 

x2 

x3 

L 

x3 ... x.&f+ I ‘aI Xl 

x4 -** &i+2 a2 = x2 

i **: 

WI . . 
XN-M+ 1 XN-M+2 " ' XN IH bl* (EM XN-M 

The least-squares problem is solved by determination of the singular values of the 
data matrix in Eq. [ 61. Noise rejection is achieved by subtraction of the root mean 
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square of the singular values attributed to noise from singular values associated with 
the PID. There are two parameters which must be selected in order to model the PID: 
(1) the number of lp coefficients (i.e., the order M) and (2) the number of singular 
values attributable to signal, which we refer to in the standard fashion as the reduced 
order, K. Linear prediction yields the frequencies and T2’s, after which a linear least- 
squares (LS) procedure is used to obtain amplitudes and phases. Once the frequency, 
T2, amplitude, and phase of each FID component are known, reconstruction of the 
PID is facilitated by the expression 

Xk E x’(nAt) = 5 cjexp(-nAt/T2j)cos(ujnAt + 4j), 
j=l 

[71 

representing one ,quadrature component and an analogous expression for the other 
quadrature component. As noted above, the phases, 4,, may vary substantially across 
the spectrum, so that the spectrum obtained upon FT of the reconstructed FID de- 
scribed by Eq. [ 7 ] is an admixture of absorption and dispersion. To remedy this 
problem we zero the K phases, { 4j, j = 1, K} , prior to reconstruction of the FID, so 
that upon FT of the LPSVD result we obtain the pure absorption lineshapes. This 
procedure is easily generalized to two frequency dimensions by applying complex 
LPSVD to each FID prior to FI with respect to t2, collecting the results of the FT as 
described by Eq. [ 21, then applying complex LPSVD once again in the tl domain. If 
the phases, $j, are zeroed at each call to LPSVD, the pure absorption representation 
of the 2D spectrum is retrieved. 

In addition to projection of pure 2D absorption lineshapes, LPSVD facilitates re- 
moval of distortions found in all of our 2D FIESR spectra near wI = 0. The source 
of these distortions is a combination of extra amplitude modulation in tl due to vari- 
ations in the MW pulse flip angle as a function of tl (arising from distortions in the 
second MW pulse) and incomplete cancellation of axial peaks (4). To remove these 
distortions we reject components whose frequencies fall within a band centered at o1 
= 0 by excluding them from the reconstructed FID; i.e., we apply a narrow reject 
filter of desired width (usually +3 MHz) in ~1. Careful experimental adjustment of 
the MW carrier frequency ensures that all three hf lines are off resonance by at least 
3 MHz, so that no spectral information is destroyed upon application of the narrow 
reject filter. Elimination of these distortions improves the accuracy of our measurements 
of 2D absorption volume integrals, especially for those peaks close in frequency, wI, 
to W] = 0. 

The application of LPSVD to 2D ELDOR data is based upon the following theo- 
retical expressions which describe the experiment (4, II). Let s’( T, tl , t2) represent 
the time-domain 2D ELDOR spectral function obtained with three MW pulses of 
equal phase. Then 

s’(T, tl, td = B’ 2 c’,,rexp(-A,tz)exp(-T/7,)Re(C @xP(-Ajtl)), 181 
nml i 

where the T, represent the decay times associated with magnetization transfer and 
the cXml and bU are the relative amplitudes; the imaginary parts of the Aj are the 
precessional frequencies whereas the real parts represent the homogeneous widths; 
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i.e., Aj = ( T;i -iOj). Equation [ 81 shows that the 2D ELDOR spectra are, in the ti 
and t2 time domains, sums of decaying sinusoids as assumed by LPSVD. In the case 
of motionally narrowed nitroxides with magnetization transfer driven by Heisenberg 
spin exchange we can derive from Eq. [ 81 the simple expression 

wHE =+ln 
( 

2Umjy + Vm 
v, - a,z ’ 1 

[91 

where the vj are determined from volumes of auto peaks (which go as I’:) and the 
Umj are the appropriate ratios of observed cross-peak to auto-peak volumes, and WHE 

is the Heisenberg exchange rate. Equation [ 9 ] emphasizes the importance of obtaining 
accurate relative peak volumes from the 2D absorption spectrum. 

RESULTS 

In our 1 D FTESR experiment we record the in-phase and quadrature components 
of the FID following a 7r/2 MW pulse, taking care to cancel image peaks with the 
four-step CYCLOPS image cancellation sequence ( 12). The spectrum of 2,2,6,6-tet- 
ramethyl-4-piperidone- N-oxyl- di6 ( pd-tempone ) in toluene- ds obtained upon FI of 
the FID is shown in Fig. la (only one of the quadrature components is shown). 
Superimposed on these data is the spectrum obtained upon FT of the LPSVD-treated 
FID. The absorption spectrum projected from the L,PSVD-treated data is given in Fig. 
lb. LPSVD enabled a clear distinction in this example between singular values as- 
sociated with noise and those associated with the three 14N hf components. The “signal” 
singular values were at least an order of magnitude greater than the rms of the “noisy” 
singular values. Weak 13C sidebands present in the data were not recovered by LPSVD 
because of their smaller amplitudes relative to the noise; some of these components 
could be recovered by increasing the order M. 

In our 2D ELDOR experiments we record the in-phase and quadrature components 
of the FID during the detection period for each of 16 different phase alternation 
sequences at 90 different values oft, . The 16-step phase alternation scheme incorporates 
2D quadrature detection as described above, as well as sequences for the cancellation 
of axial peaks and transverse interference (4). The 2D ELDOR spectrum of pd-tempone 
in toluene-ds at 2 1 “C is shown in Fig. 2a; note that this is an absolute value plot (i.e., 
the square root of the power spectrum). The application of Eq. [ 91 to the spectrum 
of Fig. 2a gives the result WHE = 4.89 X lo6 s-‘, where we have compared relative 
amplitudes, rather than volumes, of cross peaks and auto peaks. Since all three hf 
lines in the spectrum of Fig. 2a have about the same T2, we can expect reasonable 
agreement between WHE determined from volume integrals and from peak amplitudes 
as described. 

We applied linear prediction to this same data set by using 24 complex lp coefficients 
in the t2 domain, and up to 60 coefficients in the tl domain. In the t2 domain six of 
the singular values were attributed to signal, whereas in the t, domain up to 12 were 
attributed to signal. The required CPU time was approximately 4 h on a Prime 9955 
computer, including the time required for FITS. LPSVD consistently recovered three 
components in the t2 domain, corresponding to the three hf lines, and no greater than 
six components in the tl domain. Projection of pure absorption lineshapes was per- 
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FIG. 2. (a) Absolute value 2D ELDOR spectrum of 1.17 X lo-’ M pd-tempone in toluene& at 21 “C, 
mixing time T = 3.10 X lo-’ s; 90 t, steps; 256 complex data points per FID extending to 1 gs, data from 
Ref. (4). (b) LPSVD-projected pure 2D absorption representation of the same spectrum; M = 24, K = 6 
in the tl domain, M = 60, K = 12 in the t2 domain; the broad peak near the center of the spectrum (at w, / 
2~ = -8 MHz) has zero width in w2 (hence zero volume) and is apparently an artifact of the computation. 
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formed in both time domains. Extrapolation of the time series in t, to 128 points 
eliminated artifacts caused by tl truncation and enabled a more accurate determination 
of baseplane offset. In Fig. 2b we illustrate the LPSVD result obtained after eliminating 
components for which 1 w1 /2* ) < 3 MHz (i.e., narrow reject filtering); note the 
considerable improvement in signal/noise ratio. The volume integral of each 2D ab- 
sorption line was measured by numerically integrating in the w2 domain and summing 
the results over the discrete values of wI . Estimation of the Heisenberg exchange rate 
from ratios of volume integrals with the use of Eq. [9] gave the result oHE = 4.59 
x lo6 s-l, in good agreement with the result obtained from Fig. 2a and with the ESE 
result, wHE = 4.25 + 0.60 X lo6 S-’ (4). 

DISCUSSION 

Many possibilities exist for improvement of the 2D linear prediction method pre- 
sented in this report. First, we consider potential improvements in the computational 
method for solving Eq. [ 61. The SVD algorithm is generally the most stable method 
of determining the singular values of the rectangular lp data matrix [call it A], but it 
is also the most computationally inefficient. An alternative approach is to solve for 
the eigenvalues of the matrix AtA, which are simply related to the singular values of 
A (13). This method is computationally more efficient than SVD but may become 
unstable in the case of large order M. Barkhuijsen et al. have nevertheless found this 
technique to be generally successful in LPSVD applications (9, 24). Related com- 
putational methods for the solution of Eq. [ 61 and variations on the linear prediction 
theme have been demonstrated by Tang et al. (15). We are exploring the use of 
iterative Lanczos approximation methods for singular value decomposition which are 
known to predict the large singular values very accurately, and which could be modified 
to exploit the Hankel structure of A (i.e., the property A, = Ai+j). 

We have illustrated that linear prediction may be applied to 2D data simply by 
applying LPSVD to the constituent 1D spectra (in both tl and t2 time domains). We 
now propose a substantially different approach, which can truly be considered 2D 
linear prediction, because it exploits all of the symmetries of 2D COSY type spectra 
and yields all of the 2D spectral information while performing the analysis entirely in 
the time domain, i.e., without any Fourier transformation. The procedure, which we 
will refer to as 2D LPSVD, is carried out as follows: ( 1) calculate the M lp coefficients 
in Eq. [ 61 with the FID obtained at the initial t, (for convenience) and determine the 
frequencies and T2’s; (2) recognizing that frequencies and T2’s are the same for all of 
the FIDs (i.e. along the t2 axis) irrespective of the value of tl , perform the linear LS 
procedure on each FID to determine amplitudes and phases at each tl and for each 
of the quadrature components in tl (i.e., s’ and S, cf. Eq. [ 2]), utilizing the frequencies 
and T2’s obtained in step 1; (we now define a time series with parametric dependence 
on tl by the expression 

K 

X nm = x(nAtl, mAt2) = C cj(nAtl)exp(-mAt2/T2j)cos(w2/rtAt2 + &j), [lo] 
j=l 

which reflects the dependence on tl of the complex valued amplitudes, C, determined 
in step 2); (3) recognizing that the Cj( nA cl ) in Eq. [lo] are themselves time series of 
the same form as x(nAt) in Eq. [7] (cf. Eq. [8]), perform LPSVD on the Cj(nAt,) 
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for every component j (corresponding to the different frequency components in the 
w2 frequency domain); and (4) reconstruct the 2D time-domain data with the expres- 
sion 

x,,,, E x(nAtl, mAt2) = 2 2 cijexp(-nAL\tl/T2,li)cos(wlinAtl + r$li) 

X exP(-~At2/T2,2j)COS(W2j~At2 + hj), [Ill 

which is the 2D LPSVD analog of Eq. [ 71, where cii, T 2,li, T2,2j, wli, w2jv 4li, and &j 
are the parameters returned by 2D LPSVD, and & is the reduced order in t2 with 
K1 (j) the reduced order in tl associated with cj(nAtl) (cf. Eq. [lo]). Equation [ 1 l] 
represents one quadrant of the hypercomplex data, and analogous expressions may 
be written for the other three quadrants. 

For the spectrum of Fig. 2a, consisting of three resonance lines in the w2 domain, 
only four singular value decompositions (as well as some additional computation, 
primarily LS) would be necessary for the 2D LPSVD calculation. Since SVD is the 
primary computational burden in LPSVD, this technique represents a dramatic re- 
duction in CPU time (we estimate 90%) relative to the technique demonstrated in 
Figs. lb and 2b. In the general case of a 2D spectrum consisting of n resonance lines 
in the w2 domain, 2D LPSVD would require n + 1 SVD calculations.’ Finally, we 
note that the techniques presented in this report <are equally well suited to spectral 
analysis of COSY type 2D NMR data. 

CONCLUSION 

We have demonstrated the application of LPSVD to two-dimensional ESR corre- 
lation spectroscopy for the projection of the pure 2D absorption lineshapes as well as 
for spectral enhancement and narrow reject filtering. The recovery of phase-sensitive 
2D information from the raw data and the removal of distortions near 
WI = 0 improve the accuracy of our 2D techniques and enable better comparison 
between theory and experiment. We obtained good agreement between the Heisenberg 
exchange rate obtained from absolute value peak amplitudes and that obtained from 
volume integrals of LPSVD-projected 2D absorption lineshapes in a 2D ELDOR 
spectrum of pd-tempone in toluene- do. We have outlined a two-dimensional for- 
mulation of linear prediction which exploits the special symmetries of 2D correlation 
spectroscopy, and which dramatically reduces the computational burden of LPSVD 
in these applications. 

ACKNOWLEDGMENT 

We thank Mr. Nick Bigelow for contributions to the software. 

’ Note added in proof. We have implemented this algorithm on a Convex Cl super minicomputer, and 
we find that it successfully yields all of the 2D spectral information outlined above in 63 s of CPU time for 
256 X 128 point hypercomplex data with 50 Ip coefficients in f> and 90 Ip coefficients in tr while using a 
vectorized SVD algorithm. 



LINEAR PREDICTION IN 2D ESR 301 

REFERENCES 

1. J. G~RC:ESTER AND J. H. FREED, J. Chem. Phys. 85,5375 (1986). 
2. J. G~RCESTER, G. L. MILLHAUSER, AND J. H. FREED, in “Proceedings, XXIII Congress Ampere on 

Magnetic Resonance, Rome, 1986” p. 562. 
3. J. P. HORNAK AND J. H. FREED, J. Mugn. Reson. 67, 501 (1986 J. 
4. J. GORCESTER AND J. H. FREED, J. Chern. Phys. 88,4678 (1988). 
5. See Ref. (4), Fig. 4. 
6. J. KEELER AND D. NEIJHAUS, J. Mugn. Resort 63,454 (1985). 
7. D. J. STATES, R. A. HABERKORN, AND D. J. RUBEN, J. Mugn. Reson. 48,286 (1982). 

8. R. KUMARE~AN AND D. W. T~FIS, IEEE Trans. ASSP-30,833 (1982). 
9. H. BARKHUIJSEN, R. DE BEER, W. M. M. J. BOVEE, AND D. VAN ORMONDT, J. Magn. Reson. 61,465 

(1985). 
10. G. L. MILLHAUSER AND J. H. FREED, J. Chem. Phys. 85,63 (1986). 
Il. G. L. MILLHAUSER, J. G~RCESTER, AND J. H. FREED, in “Electron Magnetic Resonance of the Solid 

State” (J. A. Weil, Ed.), p. 571, Can. Chem. Sot. Pub., 1987. 
12. D. I. HOULT AND R. E. RICHARDS, Proc. R. Sot. London, A 344,3 11 ( 1975 ) 
13. G. H. GOLUB AND C. F. VAN LOAN, “Matrix Computations,” Johns Hopkins Univ. Press, Baltimore, 

1983. 
14. H. BARKHULISEN, R. DE BEER, AND D. VAN ORMONDT, J. Magn. Reson. 64,343 (1985). 
15. (a) J. TANG, C. P. LIN, M. K. BOWMAN, AND J. R. NORRIS, J. Mugn. Reson. 62, 167 (1985); (b) J. 

TANG AND J. R. NORRIS, J. Chem. Phys. 84,521O (1986). 


