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Time-series analysis has become an integral part of signal interpretation in mag- 
netic resonance and other experiments. As an example, linear prediction with singu- 
lar value decomposition (LPSVD) (I, 2) and the related method, Hankel SVD 
(HSVD) (3)) have been recently applied to problems in NMR (2)) 2D NMR (4), 2D 
electron spin-echo spectroscopy (2D ESE) (5,6), Fourier transform ESR correlation 
spectroscopy ( 7)) time-resolved femtosecond spectroscopy (8)) and nonstationary 
neurological currents ( 9). The minimal goal of time-series analysis is to separate sig- 
nal from noise. Spectral transform methods, such as FFT filtering (IO), maximum 
entropy ( MEM ) ( I I ) , and LPZ ( 12)) replace the original data with a new time series 
(or its spectrum) that has an enhanced signal-to-noise ratio. In contrast spectral de- 
composition methods, such as LPSVD or HSVD, which assume a certain functional 
form for the time series, provide both a recipe for separating signal from noise and a 
listing of the harmonic components contained in the original data. This harmonic 
list simplifies spectral analysis and can be used to (1) extend the noise-reduced time 
series, (2) selectively reconstruct certain regions of the harmonic spectrum, and (3) 
data-compress the signal. The substantial benefits of spectral decomposition are often 
offset by the requirements of considerable computational time and memory storage. 
For a time series of N data points spectral transform techniques usually require com- 
putational time of O(N logzN) to O(N’) and storage of O(N) whereas spectral 
decomposition, such as HSVD, requires computational time of 0( N3) and storage 
of O(N2). 

We have investigated a new approach for solving the spectral decomposition prob- 
lem which is based on the Lanczos algorithm (LA) (13). In the past the LA has 
provided an effective means for solving slow-motional magnetic resonance spectra 
( 14, 15) as well as other complicated problems in chemical physics ( 16, 17). The LA 
is an extremely fast method for solving large eigenelement problems when either (1) 
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all the eigenelements of a sparse matrix are required or (2) a small set of relevant 
eigenelements of a dense (or sparse) matrix of special structure are required. (A 
Lanczos-Prony method for time-series problems has been previously proposed ( 18)) 
but it does not benefit from SVD as an intermediate step nor is it based on the LA 
that we employ.) The goal of this report is to discuss our recent findings on the appli- 
cability of the LA for spectral decomposition. We base our approach on the HSVD 
(3). The time-consuming singular value decomposition is performed with the LA 
and we find that the computational time for Lanczos-HSVD (LA-HSVD) is of 
O(N*)andthestorageisofO(N). 

The HSVD, as developed by Barkhuijsen et al., is based on the state space theory 
ofKungetal.(Z9).Givenatimeseriesoftheform{Xg,~,,~2,...,~N-1}thefirst 
step is to form the rectangular Hankel data matrix of order M which is given by 

A singular value decomposition is then performed on H , 

H = UN=, PI 

where Z is the diagonal matrix of singular values, and U and VT are formed from the 
left and right singular vectors, respectively. The matrix of left singular vectors, U, is 
used to find the frequencies and time constants of the time series. The details of this 
calculation are elaborated by Barkhuijsen et al. (3). By far the most time-consuming 
part of the total HSVD calculation is the decomposition in Eq. [2] and it is here 
where we apply the LA. 

Because the parameter M is chosen to be much larger than the number of expected 
harmonics H must have a rank less than the value of M. The matrix, 2 (of dimension 
min( N - M + 1, M)), which contains the singular values, ( gi}, will have both non- 
zero and zero diagonal entries. The number of nonzero q’s is the rank of H , R ( H) , 
and the corresponding R(H) vectors in U provide an orthonormal basis for the range 
of H . If the time series is corrupted by noise then Z will have min (N - M + 1, M) 
- R(H) small singular values, the magnitude of which will be related to the signal- 
to-noise ratio. Thus, the signal-associated ai’s are used as a map to the relevant vectors 
contained in U . 

There are a number of methods for performing singular value decompositions and 
we briefly mention two of these. With the normal equations (NE) approach, the 
eigenelements of HHT are used to determine the singular values and vectors (20). If 
Mis chosen so that H is approximately square (i.e., M = N/ 2) the number of floating 
point operations (the PLOP count) will be 0(N3) and the storage will be O(N*) 
(20). A slower, but typically more stable algorithm (21)) is’the Golub-Reinsch (GR) 
SVD which operates directly on the matrix H (and not HH’) and requires 0(N3) 
FLOPS (with a multiplicative factor of about 3 greater than for the NE) and storage 
similar to that of the NE method. 
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The Lanczos algorithm is a three-term recursion for generating a select (or 
complete) set of eigenelements of a large matrix. The SVD problem can be reduced 
to an eigenelement problem by construction of the real symmetric matrix 

B= ’ H [ 1 HT 0 . 
[31 

The ai’s of H will occur in f pairs as the eigenvalues of B. By applying the LA to B 
the recursion becomes 

,dziui = HTvi - ,&-,u~-~ 

B~i+lvi+l = Hui - &Vi [41 

and the calculation is initiated with a random starting vector vI and ,&, = 0 (22). 
Iteration of Eq. [ 41 produces two sets of orthogonal vectors, { ui } and ( vi}, and a set 
of coefficients { pi}. Afterj/2 iterations thej-dimensional tridiagonal Lanczos matrix 
is defined as 

/y2 $ i3 : : : 
0- 
0 

T, = 0 P3 0 a** 0 
[51 . . . 

0 0 0 *** i j 

-0 0 0 *‘* @j O- 

and{ul,u2,... ~Uj/2}and{vl,v2,-.. , vj/2} are essentially the Lanczos vectors. For 
j sufficiently large, diagonalization of Tj will yield eigenvalues (Ritz values) that are 
close approximations to those from B . Likewise, the eigenvectors from Tj along with 
{ Ul,UZ,. - f 2 Uj/2}and(vl,v2,. . . , Vj/2 } can be used to construct a set of orthonormal 
vectors (Ritz vectors) which are close approximations to the eigenvectors of B. These 
eigenvectors contain the left and right singular vectors of H . Details of these calcula- 
tions are reviewed elsewhere (22). 

The Lanczos calculation in exact arithmetic proceeds as follows. We assume that 
v1 has a nonzero projection on all of the singular vectors of H . Successive applications 
of the Lanczos recursion generates new orthonormal vectors in this space. When a 
basis for the entire vector space generated by H is complete, no new orthonormal 
vectors can be created, and this is signaled by a value of zero for the most recent @j. 
An N by j matrix, Qj, constructed from the Lanczos vectors along with Eq. [ 41 shows 
how the Lanczos procedure generates a similarity transform of B, 

BQj = QjTi. PI 
(Note that if H is not square some of the zero eigenvalues of B will not correspond to 
oi’s of H .) For the purposes of the SVD problem it is a beneficial consequence of the 
LA that extremal well-separated eigenvalues of a matrix spectrum are the first pro- 
jected for smallj. The spectrum of B is bounded by [ - cl, pi] and most of the eigen- 
values are clustered near zero (when H is overdetermined). Therefore, as j approaches 
2 R ( H ) only the signal-associated Ci’S will result from diagonalization of Tj . 

From the arguments above we can deduce the enormous computational savings 
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afforded by the LA. Examination of Eq. [ 41 shows that H is never modified (which is 
in contrast with other diagonalization schemes). Because there are only N indepen- 
dent elements in H, only these elements are required and the matrix vector products 
can be computed without actual generation of the matrix form of H . Furthermore, 
only the most recently calculated vectors, vi and ui-1, are needed for each new itera- 
tion-all of the previous vectors can be stored on disk for later generation of the 
selected singular vectors. The storage requirements, therefore, are O(N). 

One matrix-vector multiplication in this case requires O(M(N - M)) FLOPS. 
As discussed above, iteration of Eq. [ 41 can be terminated when j 3 2 R(H) so the 
computationaltimeisofO(R(H)M(N-M))orO(R(H)N2)whenM~N/2.This 
computational savings over the standard NE or GR SVDs reflects the fact that only 
the signal-associated singular values and vectors are calculated (when the signal-to- 
noise ratio is sufficiently large). 

Practical application of LA-SVD requires knowledge of when iteration of Eq. [ 41 
should be terminated. When the signal-to-noise is reasonably high (> 10) we find that 
this convergence is signaled by a loss of orthogonality of the most recent vector, vi, 
with respect to the starting vector. For low S/N signals one must monitor the large 
singular values calculated from Tj to determine when further iteration will not affect 
their values. 

In Fig. 1 we show a plot of the singular values in descending order from a 99 point 
signal containing two harmonics and noise with a signal-to-noise ratio of 10. The first 
four Oi’S contain the signal information. We construct H as a square matrix because 
in past work we have found that this gives the most stable results. This choice also 
simplifies the arithmetic in Eq. [ 41 since H T = H. Application of the GR SVD gen- 
erates 50 Ci’S and the first 20 are plotted. The LA SVD signaled convergence after 
seven iterations and the calculated C;‘S are plotted. It is clear that the signal-associated 
singular values are accurately calculated by the LA approach. In Table 1 we compare 

0 5 10 15 20 

Index 

FIG. 1. Singular values plotted in decreasing order for a two-component signal. The GR SVD (circles) 
and Lanczos SVD (squares) are compared. Note that for the Lanczos approach only the signal-associated 
singular values need to be calculated. 
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Signal/noise 

TABLE 1 

Lanczos SVD 

Component 1 Component 2 

Gollub-Reinsch SVD 

Component 1 Component 2 

cc (Amplitude) 1 .OOOo 
(Frequency) 2.5000 
(Time-constant) 2.0000 
(Phase in “) 0.0000 

1000 1 .oooo 
2.5006 
2.0039 
0.1217 

100 

10 

1 

1.0000” 1 .ooOO 1.0000 
3.5000 2.5000 3.5000 
0.5000 2.0000 0.5000 
0.0000 0.0002 0.0006 

1.0014b 1 .OOOo 1.0014 
3.4987 2.5006 3.4987 
0.5001 2.0041 0.5001 
0.1417 0.1220 0.1426 

0.9955 1.0088’ 0.9958 1.0089 
2.5019 3.4956 2.5018 3.4956 
2.0306 0.5009 2.0306 0.5009 
0.3911 0.4163 0.3922 0.4263 

1.2092 0.8418d 1.2069 0.8404 
2.5096 3.5490 2.5096 3.5490 
1.1845 0.643 1 1.1845 0.6430 
0.0918 3.6928 0.1107 3.6483 

2 3336”’ 
217878 

2.3342’ 
2.7878 

0.2310 0.23 10 
5.0464 5.0021 

Note. Number of required Lanczos iterations: a 5, b 5, ’ 6, d 7, and ’ 15. 
‘Only one component detected by SVD. 

analysisofthesignal,exp(-t/2)cos(2?r2.5t)+exp(-t/0.5)cos(2?r3.5t),withGaus- 
sian white noise added in the indicated proportions. For amplitudes, frequencies, 
and time constants (2, 3), the two methods give the same results to within better 
than 1%. 

As a computational benchmark we applied both methods to a 250 point time series 
again containing two harmonic components. We perform our calculations on a 
Micro VAX II workstation and the arithmetic for the LA is double precision. The 
GR SVD requires approximately 54 s. Ten Lanczos iterations and diagonalization of 
the Lanczos matrix required 4 s. (In both cases the remainder of the calculation after 
the SVD required only 1 s.) In general, we find that we can now easily solve problems 
that are an order of magnitude larger than those solvable with the GR SVD. Further- 
more, the structure of the LA allows for efficient vectorization and/or parallel pro- 
cessing so that large two-dimensional magnetic resonance problems may be rapidly 
solved with a large-scale computer or array processor. Even greater efficiency may be 
possible by taking advantage of the fast Hankel matrix-vector multiplication to re- 
duce the complexity of the Lanczos matrix-vector multiplication from O(N’) to 
0( N log2N) (23), with hard-wiring of the calculation becoming feasible. The meth- 
ods developed here can also be generalized for complex time series by substitution of 
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the Hermitian conjugate, H H, for HT in Eqs. [ 31 and [ 41. Furthermore, these meth- 
ods are not restricted to square matrices. 

A problem often encountered with the LA is a gradual loss of orthogonality of the 
Lanczos vectors due to round-off error. There are now several procedures for dealing 
with this problem including reorthogonalization (21, 22), and we plan to discuss 
them elsewhere. Based upon past experience with the LA (14-17, 21, 22) we antici- 
pate that these methods will be applicable to cases of large Mas well as large N. In this 
initial study we found that round-off error became a problem only after calculation of 
the important hi’s in the examples considered here. We are greatly motivated by the 
enormous computer time and memory savings from the LA-HSVD approach, and 
more general Lanczos HSVD techniques will be the subject of future studies. 
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