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A comprehensive analysis of the accuracy and reliability of dynamic imaging of diffu- 
sion by ESR is presented. The importance of analyzing the data in Fourier space is em- 
phasized, and a new method which enables the determination of the important Fourier 
modes while also providing a test of the reliability of the measurement of the diffusion 
coefficient, D,, is presented. It is shown that values ofD, - 10m9 cm2 s-’ can be measured 
in about one hour to lo-20% accuracy, whereas for D, - 10e7 cm2 s-’ the error should 
be below 1%. These statements are applicable for experiments in which there is unre- 
stricted diffusion, and an initial Gaussian concentration profile. Systematic error result- 
ing from non-Gaussian concentration profiles is shown to be relatively unimportant. 
However, the finite sweep time through a spectrum is found to yield a systematic error 
analogous to a Doppler shift, which tends to cancel only for the case of unrestricted 
diffusion. The experimental geometry in which there is diffusion from a reflective bound- 
ary requires special adjustments to align the gradient-on and -off spectra. A convenient 
and reliable method to accomplish this is presented. Nevertheless, there are inherently 
greater sources of error for this geometry, and this is confirmed by the experimental 
results. Utilizing the reflective boundary geometry, the longitudinal and transverse diffu- 
sion coefficients for PD-TEMPONE ( 15N labeled) in the nematic phase of MBBA at 20°C 
are 3.7 X lo-’ and 2.5 X 10m7 cm’ s-l, respectively. Their ratio of 1.5 is consistent with 
results for other probe molecules in MBBA. o 1989 Academic press, 1nc. 

The technique of dynamic imaging of diffusion by ESR (DID-ESR) has been devel- 
oped in the last few years, and it has already proved to be very useful in the measure- 
ment of diffusion coefficients in fluids including normal liquids, liquid crystals, and 
model membranes ( 1-3). In our initial work ( I), we showed that by utilizing a quasi- 
one-dimensional sample with an inhomogeneous distribution of spin probes dis- 
solved in a fluid solvent, one may image this concentration distribution as a function 
of time by employing a magnetic field gradient along the axis of diffusion, and thereby 
observe the approach to a homogeneous distribution via translational diffusion. 
From the time variation of the concentration distribution, one obtains the diffusion 
coefficient, 0,. However, such experiments required a long time to obtain 0, (e.g., 
5-7 days for D, N 10M6 cm2 s-i). More recently (2), major improvements to the 
technique which enable much more rapid measurement were made (e.g., D, N 10e8 
cm2 s-l may be measured in about one hour), and these improvements also enabled 
us to reduce the influence of several complicating features of the original experiment 
(e.g., spatial variation of the sensitivity of ESR cavity). This resulted from two ad- 
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vances. First, one must prepare a distribution of spin probes which is highly localized 
in the center of microwave cavity, so that the concentration profile will change sig- 
nificantly in a short time and this change will take place in the region where the 
sensitivity of the cavity is quite homogeneous. Second, the imaging results are ana- 
lyzed in Fourier space (inverse wavelength space). This overcomes difficulties that 
reduce the accuracy in measurement of the concentration profiles in real space, and 
perhaps even more important, the diffusion equation is easily analyzed in inverse 
wavelength space such that only those Fourier components with sufficient sensitivity 
to the diffusion need be included. 

The Fourier-domain analysis was shown to be applicable to two basic experimental 
geometries, one in which there are no boundary conditions and spin probes diffuse 
freely in both directions from a source (i.e., “unrestricted diffusion”) and the second 
in which there is diffusion from a source placed at the reflective boundary (“restricted 
diffusion”) (2). The former geometry was found particularly user-friendly and a spe- 
cial virtue of DID-ESR was realized in our recent study of lateral diffusion in model 
membranes (3)) wherein we showed that one can simultaneously study translational 
diffusion and rotational diffusion from the same set of ESR spectra. This led to new 
and interesting correlations between ordering and dynamics. 

Our experience in the past was that the geometry of restricted diffusion is fraught 
with greater experimental problems and is thus inherently more difficult for obtaining 
accurate results. We have found experimentally (2) that a precise alignment of the 
reflecting wall at the center of the ESR cavity is needed in order to simplify the numer- 
ical data analysis. If this condition is not fulfilled, then one must use cumbersome 
data manipulation to estimate the diffusion coefficient, leading to much higher uncer- 
tainties in the result. Our further efforts confirmed this difficulty. 

We continued the search for a reliable improvement in the analysis of the data 
from the restricted diffusion geometry and this paper reports on our latest findings. 
We propose a new technique for the restricted diffusion experiment. The technique 
does not require perfect alignment of the reflective wall in the center of the cavity. 
We will show that the effects of perfect alignment are equivalent either to appropri- 
ately varying the static magnetic field between recording gradient-on and -off spectra 
or to numerically shifting recorded spectra. We find that, with the improvements 
proposed, the restricted diffusion experiment, although slightly more challenging ex- 
perimentally, provides a dependable method for studying translation diffusion. Addi- 
tionally, the new numerical analysis of the data that we use can also be used in the 
unrestricted diffusion experiment; it clarifies the accuracy of the DID-ESR method 
by enabling a simple assessment of the relevant Fourier modes. 

There are a number of matters relating to the accuracy and reliability of DID-ESR 
which were not addressed in the previous work. The objective of this paper is also to 
present a comprehensive discussion of the accuracy and reliability of DID-ESR. As a 
result of these considerations we have learned how to improve the data analysis and 
how to deal with residual artifacts that could otherwise limit the accuracy of this 
experiment. What emerges from the present study is that DID-ESR in both geome- 
tries, unrestricted and restricted, is indeed a highly reliable and very accurate method 
for determining diffusion coefficients of probes and allows the effects of virtually all 
of the experimental artifacts that could limit its accuracy to be suppressed. 
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The paper is organized as follows. In the first section we review the basic principles 
of the DID-ESR experiment and introduce a scaling of variables useful for under- 
standing the new numerical procedure of handling the restricted diffusion data and 
for simplifying the evaluation of the accuracy and reliability of DID-ESR. 

In the second section in this work, we consider, in some detail, new improvements 
in the DID-ESR technique. We introduce a new way of data handling and illustrate 
this procedure with some experimental results. We discuss the basic modifications of 
the restricted diffusion experiment and show how the new data handling helps to 
achieve this. 

In the next to last section in this work, we show how the new insights provided by 
our present analysis enable us to estimate the minimum measurable 0, and the accu- 
racy of the measurement. We find that the two experimental geometries should be 
considered separately, although there are many points in common. We find that with 
present experimental techniques the smallest 0, obtainable is Dmin = 10 -9 cm2 s-’ 
in a 1 h (or rapid) experiment, provided there is unrestricted diffusion and an initial 
Gaussian concentration profile. Of course, correspondingly smaller values of 0, may 
be achieved by increasing the length of the experiment. The error in D, can be very 
small, e.g., below 1% for 10m7 cm2 s-‘, in the case of unrestricted diffusion. Somewhat 
greater error is found for diffusion from a reflective boundary. 

Concluding remarks appear in the last section. 

BASIC CONCEPTS OF THE EXPERIMENT 

The DID-ESR experiment is specifically designed for studying two simple cases of 
the diffusion: (I) unrestricted dzfision in opposite directions from an instantaneous 
source, and (II) restricted dzjksion only in one direction from an instantaneous 
source, i.e., diffusion from the source located at an impermeable reflective boundary 
( I-2). Monitoring the time evolution of the concentration distribution of spin probes 
is done with the aid of a one-dimensional uniform magnetic field gradient. The ESR 
spectrum recorded in the presence of the magnetic field gradient (gradient-on 
spectrum), I,( B, t), is a result of the convolution of the hyperfine spectrum of the 
spin probe (gradient-off spectrum), IO(B), with the concentration of spin probes 
C(x, t> (1,-a, 

Z,(B, t) = C*Z, = 
s 

O” C(B’, t)Z,,(B - B’)dB’, [II -02 

since the magnetic field gradient V,B, maps x onto BjB = xV,B, and the concentra- 
tion of spin probes at any point in the sample is low enough for Heisenberg spin 
exchange (HSE) not to occur ( 1,2). 

The simplicity of the DID-ESR experiment is in the fact that we are monitoring 
solely the component of diffusion in the direction of the one-dimensional field gradi- 
ent, even though the sample is three-dimensional. 

Considerations become especially easy when the concentration of spin probes is 
low enough for the translational diffusion along x to obey Fick’s second law (4)) 
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wx, t) = D d2C(x, 0 
dt x dX2 ’ 

where D, is the diffusion constant, and C(x, t) is the concentration of spin probes 
( “concentration profile”) along x at time t . In practice, preparing the initial concen- 
tration of spin probes low enough to obey Fick’s law but still high enough to provide 
a strong ESR signal (without HSE broadening) is not a problem (Z-3). Case (I) 
would then correspond to a situation where a small amount of the spin-probe-en- 
riched material is initially confined to the center of a quasi-one-dimensional sample, 
e.g., capillary tube. If a very narrow source [i.e., one that can be considered a point 
source (~6 function)] is placed at x = 0 at t = 0, then the solution of Eq. [ 21 at later 
time t takes the form of 

C(x, t) = $& --ex+(&)l~ 131 

In practice, however, the initial distribution extends over a finite distance, and may 
not be Gaussian. If C( x, 0) is the initial concentration profile, then the concentration 
profile at some later time t can be written down as 

ax, t> = &-j “, s qx’, t = ())e-(x-x’)2/4Dxt~X’, 

i.e., the convolution of the initial distribution with a Gaussian function, G(x; 2D,t) 
= (4*D,t)-112e-X2J4D~‘. 

Case (II) corresponds to a situation where the source material is confined at the 
initial time to the vicinity of the reflecting wall, which conveniently could be either 
the bottom or the wall of the ESR sample cell. The boundary (reflective) condition, 
(dC/dx) 1 X=0 = 0, introduces a symmetry such that Eq. [ 31 will also describe the 
evolution of concentration profile from the point source placed at the boundary, but 
with C, being replaced by 2C,, and x space restricted to positive values (4). Equation 
[ 41 may also be easily adapted to the case of a reflecting wall at x = 0 (4). 

Prior to outlining the main points of the data analysis, we wish to emphasize a 
useful scaling of the distance, x, and magnetic field, B, introduced by the recording 
procedure of ESR spectra. This scaling renders x and B formally equivalent which 
simplifies the mathematical description of the experiment. 

First, a uniform one-dimensional magnetic field gradient, B’ = V,B, which is used 
to map the concentration profile from x space onto B space (see Eq. [ 1 ] ) , effectively 
scales the distance by B’ so the variables become & = x. B’ and DB = 0,. Bf2. Second, 
the ESR spectrum is detected by sweeping the magnetic field over some range, say, 
B,. Thus, the magnetic field is scaled with 1 /B, and the scaled variables become 4 
= x. B’/ B, and D, = 0,. (B’/ B,) 2, so t is dimensionless and D, is in units of inverse. 
time. It follows directly from the last scaling’ that the dimensionless distance and 

’ It is interesting to note that, after additional scaling of the time with D,, i.e., 7 - D,. t, the diffusion 
equation in dimensionless space ([, T ) takes a very simple form: 
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magnetic field are equivalent: B/B, = x. B’/B, = 6. Thus, the ESR spectrum and the 
concentration profile become functions of the same variables, and we will capitalize 
on this property in the restricted diffusion experiment. The particular property of this 
scaling is that basic equations of DID-ESR (i.e., Eqs. [l] - [ 43) hold also for the scaled 
variables, which can easily be verified by substituting the new variables into Eqs. [ 1] - 
14 ] . Therefore, we may use scaled variables without losing the general character of 
the following discussion. 

The Fourier transform of Eq. [ 41 yields 

(?(K, t) = e(K, O)exp{ -47r22$K2} 

or, 

[51 

ln{e(K,t)l =-47r2D$~2+ln(@(~,0)}, [61 

where C? ( K, t) is the Fourier-space image of C( t, t) and K is the inverse wavelength in 
dimensionless units. The latter equation can be used directly to analyze data from 
unrestricted diffusion in Fourier space. We notice that essentially two @(K, t), re- 
corded at distinct times, ti and tj, are sufficient to determine D,, 

ln @(K, fi) [ 1 @(KY tj) = --4rr2D&K2, 

where At, = ti - tj. The linear least-squares fit with respect to AtijK 2 (cf. Eq. [ 71) to 
the experimental data yields the slope -4r2 D,, and thus D,, In practice, to increase 
the precision of D,, a number of concentration profiles at different times, i = 1, . . . , 
N, are recorded (2, 3). Then, first, the concentration profiles at different times are 
paired and, with aid of Eq. [ 7 1, the slope -4x2 DcAtiJ is determined for each pair (step 
one). Next, these slopes are analyzed as a function (linear) of At,, resulting in D, 
(step two) (2). Note that, in principle, steps one and two can be merged, since one 
can directly perform the linear least-squares fit of Eq. [ 71 to experimental data with 
respect to AttiK 2. Doing so, however, one must be careful: as explained in our previous 
paper (2), in step one the intercept of the linear fit for each pair { i, j> is an order 
of magnitude larger than the slope and this might bias the final result. In order to 
compensate for this, the intercept for each pair should be subtracted prior to further 
analysis. 

Finally, D, is converted to real-space units: 

Dx = D,.(B,/B’)2. 

Deconvolution of the concentration profile from I,( t, t) requires special com- 
ments. It follows from Eq. [ 11 that because the FT of Ig is just the product of two 
individual FTs, the extraction of the concentration profile in inverse wavelength 
space merely requires a division of two complex functions. If jg(~, t) and J,(K) are 
the Fourier transforms of Ig( 4, t) and 10( 0, respectively, then 

@(K, t> = Jg(‘G t)/jo(K). [91 

For the general case of unrestricted diffusion, expressing @(K, t), J,(K), and jg( K ) 
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in polar form, ] @(K, t) ( e *@n,r, ] J,(K) 1 e*v@o, and ] J,(K) ( e*+@o+%J, respectively, 
(j = l6), d b an su stituting intro Eq. [ 71 yield 

1101 

and &, = $+ = const. Clearly, all the information about the shape of a concentration 
profile is contained in the amplitude of 9,( K, t). In fact J,(K) cancels out of Eq. [lo], 
and therefore IO(t) is not required. This also means that the relative positions of 
either C or I0 on the 4 scale are irrelevant since 

FT 
C(t - t;O, t)*lO(t - ti> - 

@(K, t)e*%&. y,( K)e*?& 

= [I@(~,t)le*“k(b’~i)~].~~(~), [ll] 

where to and 4i are the center positions of the concentration profile and of I0 on the ,$ 
scale, respectively; i.e., the time independent phase factor [(lo + &)K] does not con- 
tributeto lC?(~,t)l. 

The situation for case (II) is different. The concentration profile in the presence of 
a reflecting wall at t = 0 has the form of 

= 
0 

C(F, t> 
i 

t<o 

+o (a-0 
[I21 

and fulfills the boundary condition (KY/ax) IXZo = 0. Since only cos KE (and not 
sin ~4) obeys this boundary condition, the (cosine) FT of the concentration profile 
must be a real function. In practice, a Fourier transform realized through the fast- 
Fourier-transform (FFT) routine introduces a periodicity (5, 6). Thus the FFT of 
C([, t)[ 1 l] yields both real and imaginary parts for C? ( K, t), but the real part of the 
FFT is just the same as the twine FT. Thus we may write 

A problem appears when the reflecting wall and/or the reference spectrum is dis- 
placed along 4. Such displacements introduce K-dependent phase factors in Fourier 
space, which contribute to the real and imaginary parts of the FFT of Ig( [, t): 
ji(K, t) = @(K, t)e2+E’K ..Y,(K)e*+‘” = (3(K, t)e2”kFo”g0( K), 6’ and r are displace- 
ments of C(K, t) and Io( E), respectively, and superscript d refers to the result of dis- 
placed functions. Thus, in order to extract Re@ ( K, t) both real and imaginary parts 
of C? d must be taken into account, and Eq. [ 131 takes the form of 

COS K(o-Re@d(K, ti) + Sin Kt;O-hl@d(K, ti) 

COS K&‘Reed(K, tj) + Sin K&,~hl@d(K, tj) 

= -4T2D tK2 

t 2 [I41 

where C? d( K, t) = Jd( K, t)/ J,(K). Since to = 4’ + r is the relative mismatch between 
the positions of the wall and of the center of the reference spectrum, the phase factor 
can be interpreted as resulting from shifting either the reflective wall or the reference 
spectrum. Experimentally accounting for to through Eq. [14] cannot be accom- 



560 MOSCICKI, SHIN, AND FREED 

plished easily and, instead, alignment of the reflecting wall with the reference spec- 
trum is advisable (2). 

IMPROVEMENTS IN DID-ESR TECHNIQUE 

In our previous paper (2) we gave technical details of the DID-E% experiment in 
the geometries of unrestricted and restricted diffusion and a detailed discussion of 
different variants of the numerical data analysis. In particular, it was shown that it is 
possible to prepare a sufficiently narrow and symmetric initial distribution to obtain 
Gaussian character of the concentration profiles at a later time for both geometries, 
(I) and (II), thus making either Eq. [lo] or Eq. [ 131 applicable. Subsequently, the 
unrestricted geometry was successfully applied to study lateral diffusion in model 
membranes (2,3). 

Despite this success, we also pointed out difficulties and limitations of the experi- 
ment and data analysis. In particular, we have found that when performing an experi- 
ment in the presence of the reflective wall, it is essential for accurate determination 
of the diffusion coefficient to precisely align the reflecting boundary and the center of 
the cavity. Otherwise, a cumbersome data manipulation is necessary, increasing the 
uncertainty of D, value (2). We have shown also that the data analysis in Fourier 
space must be restricted to a limited range of K, K,in < K < K,,,, due to the presence 
of random noise in the data and round-off errors of numerical calculations. 

In this section we present a convenient way of optimizing the accuracy of estima- 
tion of D,, which effectively removes the earlier arbitrariness of choosing an appropri- 
ate range of K values suitable for analysis. We will also show how, with this new proce- 
dure of dealing with the data, the mechanical alignment of the reflective boundary 
with the center of the cavity in the restricted geometry can be replaced by a simple 
magnetic field adjustment or numerical alignment of digitized Ig and I0 spectra. 

Improved estimation of D,. As a result of random errors in the value of 
In [ @ (K, TV) / 8 (K, TV)], the linearity with respect to either K 2 or &K 2 is observed over 
only a limited range of K, K,in < K < K,,,. The lower limit is a result of very small 
differences between concentration profiles from different times at low K, which are of 
the order of the random error. The upper limit reflects the fact that at high K the 
magnitudes of the &J (K, t) are themselves becoming very small (2). Estimation of D, 
previously had, therefore, some degree of arbitrariness, associated with the freedom of 
choosing K,in and Km,, . To reduce this arbitrariness, we propose the following simple 
procedure. The diffusion coefficient is calculated from the data with different ranges 
of consecutive K values taken into account. The calculated diffusion coefficient 
( Dslope) is then a function of the range of K that is taken into account, (K,in, K,,,), 

D slope = Dslope( K,in, Kmax). H owever, we found that if K,in is small, Dslope is rather 
insensitive to its value. Then let K,in be small and fixed SO Dslope is only a function of 
K,,, . For small VdUeS Of K,,, ( >K,in), Dslope should initially have erratically scattered 
values. However, as K,,, increases it should go through a plateau corresponding to 
D,. On further increase in K,,, , the random scatter of data points at higher K should 
force the Dslope to deviate (decrease) significantly again. Clearly, an immediate advan- 
tage of such analysis of calculated values of Dslope is (i) the removal of the aforemen- 
tioned arbitrariness in choosing the cut-off limits for K, and (ii) an instant readout of 
the D, value from the plot. 
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FIG. 1. D,,,,, ( k,,, ) plot for geometry of unrestricted diffusion; k mar is in units of cm-‘. (CSL spin probe 
in an oriented model membrane of POPC at 333 K.) 

To demonstrate the effectiveness of this procedure we have applied it to our recent 
measurements of the translational diffusion of CSL spin probe in an oriented model 
membrane of POPC (3)) see Fig. 1. The presence and extent of the plateau are clearly 
visible. Note that fluctuations in values of Dslope at the plateau are extremely small. 
We may then state that the plateau in Dslope (K,,,) singles out the most probable value 
of the diffusion coefficient, II,. 

We will show now how the plot of Dslope( K,,,) can significantly assist the experi- 
ment as well as improve the data analysis in the presence of the reflective wall. 

Improved experiment with the reflective boundary. We found experimentally in the 
past that, in the presence of a reflective wall, the analysis of experimental data runs 
into difficulty when trying to deconvolute the concentration profile from Ig and I,, 
spectra. The successful deconvolution was possible only when the reflective boundary 
had been placed precisely in the center of the cavity (2). 

The origins of this difficulty can be explained as follows. Let a sample with a reflec- 
tive boundary be present in the cavity and let to correspond to the center value of the 
static field in the absence of the magnetic field gradient. The signal is recorded only 
over some limited sweep range of the static magnetic field (i.e., +$, since the sweep 
range in dimensionless units is just 1) around the center field value (to). Thus the 
particular position of the ESR spectrum inside this “window” depends on the value 
of to. The spectrum recorded under these conditions is our reference one (lo), and 
we may consider to as the reference point (origin) on the t scale. Next, the magnetic 
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field gradient is switched on. In general, the static magnetic field at the position of the 
reflecting wall is changed because of the gradient, so there is a mismatch between the 
position of the reflective wall and the reference point on the 4 scale. Consequently, the 
gradient-on spectrum is the convolution of the concentration profile and the shifted 
reference spectrum, and the corresponding Fourier transform contains a K-dependent 
phase factor reflecting this misalignment, cf. Eq. [ 141. 

In order to perform a successful deconvolution of the concentration profile we 
must, therefore, counteract the mismatch either prior to or after FT. The latter choice 
of correcting the phase factor in Fourier space is more cumbersome and unreliable 
and we refrained from using it in the past. We now point out that corrections prior 
to FT offer much more convenient and elegant options. These corrections can be 
performed by adjustments in x, B, and f spaces, since they are equivalent. To do a 
proper adjustment we need, however, a reliable method of controlling “alignment.” 
We describe below the principles of monitoring the alignment of the spectra. 

Most frequently an ESR spectrum is detected as the first derivative of the absorp- 
tion, 

[I51 

where we assumed that the reflective wall is present at E = 0, cf. Eq. [ 121: Note that 
the first term on the right hand side of Eq. [ 15 ] is just the absorption spectrum scaled 
by the factor C( 0). Let us assume for a moment that Io( [) is a singlet. Then, because 
dC/df is either zero or very small (negative) in value in the vicinity of the reflecting 
wall (recall the boundary condition, (X/at) ] t=. = 0), the first term on the right 
hand side dominates the spectrum around 4 = 0. We may then state that this (sharp) 
maximum corresponds to the position of the reflective wall on the [ scale. Similarly, 
for the double- or triple-line reference spectrum, like “N or 14N nitroxide spin labels, 
as a result of the presence of the reflective boundary, I;( 0 should feature maxima 
uniquely corresponding to the reference spectrum lines. Therefore, to fulfill the re- 
quirement of a proper deconvolution via FFT, both spectra, 1: and IO, must be 
aligned in such a way that positions of sharp maxima in 1; coincide with centers of 
IO lines (or the crossover points in the first derivative spectrum, Ib), see Fig. 2. This 
alignment can be achieved either by varying the position of the reflective wall inside 
the cavity or by changing the static magnetic field between recording & and Ib, in 
the following way. The first-derivative spectra of gradient-on and gradient-&-are first 
recorded and their positions on the recording chart compared. If they do not match 
each other, adjustment is necessary and this can be done two ways. First, we can 
repetitively move the position of the reflective wall inside the cavity, record lb, and 
check again if satisfactory alignment was achieved. Alternatively, we can obtain the 
alignment by varying not the position of the wall but the position of IO through 
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FIG. 2. Adjusted first-derivative (a) gradient-ofland (b) gradient-on spectra in the presence of a reflective 
wall. Adjustment was made by varying the static magnetic field prior to recording the gradient-ox spec- 
trum. Schematically shown in(c) is the position ofthe reflective wall and the concentration profile. (MBBA 
with “N-PDT spin probe at room temperature. Sweep range 200 G.) 

changes of the static magnetic field. It is, however, very difficult to judge when we 
have achieved satisfactory alignment. 

The spectral alignment can be very precisely monitored with the aid of the Dslope 
vs knax plot (note k = K . B’/ Bs) . In the case of a perfect match between the spectra, 
D slope must go through a plateau over the (kmin, km,,) range, the Dslope value at the 
plateau corresponding to D,, the same way as it does for the unrestricted diffusion 
experiment, Fig. 1. In the presence of a mismatch between spectra, a k-dependent 
phase factor appears in @(k, t), and the plateau disappears even for a very slight 
displacement. To illustrate this, we carried out test measurements of the diffusion 
coefficient of a spin probe ( “N-PDT) in the nematic phase of MBBA at room temper- 
ature. Measurements were performed on the same experimental setup as described 
earlier (2), but with a new source of the magnetic field gradient (a pair of George 
Associates Lewis Coils, Model 502). For the purpose of measurements a cell was 
made from a square 0.4 X 0.4 cm2 quartz tube, approximately 10 mm in length and 
attached axially to a supporting glass rod. The spin-label-enriched material can then 
be placed in a form of a thin film on one of the sidewalls of the cell so the distance 
available for diffusion is about 0.4 cm. After deposition, the enriched material was 
solidified and the cell filled with pure MBBA. The sample was next allowed to ther- 
mally equilibrate over a period of a few minutes. The sample was placed inside the 
cavity with a standard sample mount, and by rotating the support rod the reflective 
wall oriented either parallel or perpendicular to the static magnetic field. Note that 
because of the axial symmetry of the cell, the reflecting wall is off the center and 
mechanical adjustments of its position are impossible. 

First, a series of 20 gradient-on spectra were recorded at different times. Next, a 
few &‘s were recorded for slightly different values of the central field ( w-0.1-0.2 G) 
chosen so that the spectral alignment of 1b and & seemed close to perfect. Different 
concentration profiles were paired and the mean Dslope( kmax) was calculated for each 
1b recorded, see Fig. 3a. As expected, a relatively small departure of I& from perfect 
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FIG. 3. Diffusion perpendicular to &, in the presence of a reflective wall. Dslope( k,,,) for a number of 
Z,(B) spectra slightly (but differently) displaced with respect to Z,(B, T): (a) raw data without numerical 
adjustment; (b) the same data but after numerical adjustment; dotted straight line indicates the average 
value of Dslope at the plateau; k,,,,, is in units of cm-‘. (MBBA with “N-PDT spin probe at room tempera- 
ture.) 
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alignment with & not only inclines the plateau, upward (downward) due to the 1b 
shift to the left (right) from perfect alignment, but it also makes the estimation of D 
unreliable. The existence of the plateau is, therefore, a reliable criterion for the quality 
of spectral alignment. 

If the recorded spectra do not produce a reliable plateau, further adjustments are 
necessary. This can be done in an elegant way by a careful numerical shift of the 
1b( <) spectrum along the f axis. The results of such manipulations of the experimen- 
tal data from Fig. 3a are shown in Fig. 3b. Clearly, we were able to adjust all recorded 
spectra to obtain essentially the same plateau. It must be noticed, however, that fluc- 
tuations in Dslope are more pronounced than in the case of unrestricted diffusion, cf. 
Fig. 1, substantially reducing the precision of 0, that is determined with the restricted 
geometry of diffusion. 

LIMITS AND ERRORS OF THE DID-ESR EXPERIMENT 

In our previous work (2, 3) we have shown experimentally that within an hour it 
is possible to measure a diffusion coefficient as small as a few 10m8 cm2 s-‘, using a 
standard ESR spectrometer and Fourier-domain analysis. We did not, however, at- 
tempt to estimate either the smallest or the largest diffusion coefficient measurable 
by DID-ESR, nor the uncertainty of the determined value of OX, and we would like 
to address these problems in this section. 

There are numerous potential sources of errors in the DID-ESR experiment, so 
before going into any quantitative discussion we will first try to identify the most 
influential ones. Furthermore, we will concentrate only on those effects which cannot 
be eliminated by careful tunin.g of the equipment and, therefore, are inherent to the 
experiment. Some of these effects are characteristic of ESR spectroscopy in general, 
while the others can be associated with particular features of the DID-ESR experi- 
ment. The first group includes such obvious effects as the noise, nonuniform sensitiv- 
ity of the cavity, or inhomogeneous static magnetic field. To the second group belong 
such effects as a nonuniform magnetic field gradient, finite sweep time, poorly defined 
initial concentration profile, or nonideal boundary conditions for diffusion. Some of 
these effects are mainly responsible for systematic errors, and others cause random 
errors in 0,. Let us begin with the potential sources of the systematic errors, since 
they determine, first of all, the credibility of the DID-ESR technique. 

The most natural way in which systematic errors will manifest their presence is in 
a nonlinear behavior of ln[ @( K, tj)/e( K, tj)] as a function of K*, cf. Eq. [7]. Such 
nonlinearity can rise, first of all, from poorly defined initial distribution and should 
be most prominent in measurements performed shortly after initialization of the 
diffusion (the rapid measurement). With passing time, however, the difference be- 
tween the actual concentration profile and the Gaussian shape should become negligi- 
ble as a result of the diffusion, leading to the disappearance of any nonlinearity. To 
confirm this, we studied the problem numerically, and a number of simple simula- 
tions were performed. Different shaped initial distributions were tried: a layer-like 
distribution with thickness of 2,&, i.e., spin probes are confined in the region - &, < E 
< to, as well as more complicated, but realistic, distributions. Simulations confirmed 
the importance of keeping the breadth of the initial distribution as narrow as possible, 
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although they revealed that the initial shape of the distribution is not as significant as 
one might expect, as long as the shape is kept reasonable, e.g., thin film or globular 
droplet. NO systematic deviations between estimated and assumed values of& were 
observed, and discrepancies were within the accuracy of the calculations. If sufficient 
time was “allowed” for profiles to develop, e.g., when D,t > 2[,, concentration pro- 
files become very close to the Gaussian function, as expected. We concluded, there- 
fore, that a poorly prepared initial distribution can be a source of systematic error 
only at the early stages of the experiment. In practice a poor initial distribution can 
be easily recognized at the start of an experiment and discarded. 

Nonuniformity of the field gradient and a position-dependent sensitivity of the 
cavity are other possible sources of the nonlinearity of In [ @ ( K, ti)/C? ( K, $)J as a func- 
tion of K2. If the cavity sensitivity S( 4) varies with position, then the effective concen- 
tration profile “seen” by the DID-ESR technique is the product of S( t) . C( 4, t), and 
this should lead to difficulty in the determination of 0, in Fourier space. If the varia- 
tion of S(t) is small, one must expect a small but systematic deviation of the esti- 
mated value from the “true” one. The deviation can be to some extent compensated 
if the sensitivity dependence on position in the cavity is known ( I ), but the analysis 
is not an easy task and increases the uncertainty of Q. Strongly inhomogeneous 
sensitivity essentially excludes the possibility of a precise measurement of Q al- 
together. Our experience with the narrow-flange TE ro2 X-band microwave resonance 
cavity shows that the sensitivity of the cavity did not influence results as long as the 
concentration profile was confined to +5 mm around the center of cavity. 

The effect of a nonuniform gradient is similar. Such a gradient would produce a 
nonlinear mapping of x space onto B space, violating the basic assumptions of the 
method, and thereby, at best, reducing the accuracy of the method. It is, therefore, 
essential to perform test measurements of the uniformity of the gradient, each time 
the gradient coils are moved. We found in the past that the coils we have employed 
produce a uniform gradient over the whole region where the sensitivity is sufficiently 
homogeneous for DID-ESR measurements ( 1). Nevertheless, we must stress that an 
inhomogeneity in the sensitivity and nonlinearity of the gradient can produce time- 
dependent deviations which are difficult to account for quantitatively. Therefore, one 
must take pains to ensure that the sensitivity and the gradient are as uniform as 
possible. 

Until this point, we have been implicitly assuming that there is instantaneous 
detection of the ESR spectrum, particularly the Ig spectrum. The recording time 
(= sweep time) is, however, finite, and the above assumption is valid only as long as 
the spectrum can be considered time independent over the time of sweep through the 
spectrum. Unfortunately, under standard experimental conditions, the sweep time 
may be sufficiently long to distort the shape of the spectrum recorded, thus also that 
of (9 (K, t) . Let the sweep rate be TV, and the sweep-time ts: then u, t, = 1 (we recall that 
in dimensionless units the sweep range is 1). Let us also assume for simplicity that 
the concentration profile is a Gaussian centered at 4 = 0, 

where ci is the variance of the concentration profile (the HWHW is approximately 
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equal to 1.1&r,), 8: is the variance of the initial distribution, and t is measured from 
the moment of initialization of the diffusion. Then, by simple substitution, we find 
that the original Gaussian profile will be skewed by the recording procedure: 

1 t2 exp - - 
%+W,{l +W~s,>lt [I71 

Because 4 changes sign in the course of the sweep, one-half of the recorded curve is 
compressed, while the second half stretched with respect to the original Gaussian 
distribution, the degree of the distortion being inversely proportional to 0,. Equation 
[ 17 ] may be thought of as the imaging analog of the Doppler effect. If the distortion 
is not too large and both parts of the distribution, the compressed and stretched, can 
be approximated by Gaussian curves with a? and a:, respectively, then one can 
approximate the variance of the skewed distribution which by definition is ( 7) 

a: N (a2 + CT:)/2 

= [Si + (Df/v,)24 In 21 + 2D,t 

= Sb” + 2D,t. 1181 

Thus, provided that 2 D,t, < (6: + 2 D,t), the artificial broadening caused by the 
sweep is negligible and therefore should not lead to a systematic error. To fulfill this 
requirement, one should then keep v, t as large as possible, which means either fast 
sweep rates or large t (broad distributions). 

Unfortunately, the last statement refers to unrestricted diffusion only. In the pres- 
ence of a reflective wall, one gets either the compressed or the stretched concentration 
profile depending on the direction of the sweep, a? < a$, leading to under- or overes- 
timation of the diffusion coefficient, respectively. By careful choice of the sweep time, 
we can, nevertheless, reduce this systematic error to a minimum. For example, if we 
want sweep-related errors smaller than 2%, for an initial distribution width of 0.02 
cm and D, of order of lo-’ cm 2 s -I, the sweep time should be faster than 0.05 s for a 
measurement performed shortly after initialization of the diffusion (rapid 
measurement) and faster than 50 s for a measurement with a concentration profile 
significantly broadened by the diffusion (delayed measurement). In principle, this 
problem may also be overcome by consecutive measurements of a? and a$ with 
averaging of these two values. 

At this point we must emphasize that a combination of the restricted space avail- 
able for diffusion, introduced by the inhomogeneous sensitivity of the cavity, and of 
restrictions due to the finite sweep time sets the upper limit on the measurable diffu- 
sion coefficient under given experimental conditions. In order to estimate this limit, 
we need to consider the broadest concentration profile measurable, since this would 
guarantee the minimum error associated with the sweep time in any circumstances, 
cf. Eq. [ 171. The maximum measurable breadth of the concentration profile is solely 
defined by the extent of the region where the sensitivity can be considered uniform. 
For the narrow-flange TElo2 cavity, or a typical loop-gap resonator, this corresponds 
to about x,,, N 0.5 cm from the center. Precise measurement of the concentration 
profile is possible as long as most spin probes remain in this region. It is difficult to 
estimate how many spin probes should remain there, but let us again benefit from 
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well-known properties of the normal (Gaussian) distribution. If the concentration 
profile is Gaussian then, for example, 3a, < x,,, would guarantee that only a fraction 
of a percent (less than 0.27%) of spin probes has left the region. For such a concentra- 
tion profile, distortions from the sweep would be avoided if the diffusion coefficient 
obeys the inequality, 2 D, ts 4 ( xmax/ 3 ) 2, which for a typical sweep time of 60 s be- 
comes D, @ 2 X 10d4 cm2 s-l. We may then stipulate that it should be possible to 
measure diffusion as fast as 10e5 cm2 s-l with the unrestricted geometry. When the 
reflecting wall is present, as a result of compressing or stretching the profile by the 
sweep, the maximum measurable diffusion coefficients should be smaller than this 
estimated limit. 

Due to our interest in studying translational diffusion in liquid crystals and model 
membranes, where typical diffusion coefficients are of the order of 10-6-10-10 
cm2 s-’ (8, 9), we are primarily concerned with the lower limit of measurable D, 
values. This question would not be complete, however, without specifying the time 
period, to, in which we would like to measure the diffusion constant. Clearly, extend- 
ing the time of the experiment to infinity, we should be able, in principle, to measure 
infinitely small diffusion constants, but, in practice, we are interested in keeping the 
time of measurement as long as possible but within reasonable limits. We found ex- 
perimentally that an hour is a reasonable choice for a single measurement, to N 1 h. 

As we mentioned already, random errors present in the ESR spectra and/or intro- 
duced by numerical procedures (round-off errors) limit the range of K values useful 
for analysis. To facilitate the estimation of this range, we assume again that the con- 
centration profile is Gaussian and that the lo([) spectrum is a single unsaturated 
Gaussian ESR line with the variance of Ai ( I ). Then, I,( K, t) is just a convolution 
of two Gaussians, so its image in Fourier space is 

YJK, t) = A exp{ -27r2(A: + a2 + 2D,t)K2’}, [I91 

where A = JZa Ig( 4, t) d,$ and 6 2 denotes now the variance of the concentration profile 
at the beginning of measurement, and t is measured from the beginning of measure- 
ment. Note that, because the ESR linewidth is independent of the magnetic field 
gradient, the variance of the line in .$ space is Ai = Ai/ Bz. Next, we assume that the 
noise in K space is white noise with a variance of sz. 

Since Yg( K, t) is a Gaussian, its amplitude decreases with increasing K, eventually 
becoming comparable to the noise for some value of K = K,,, : Y,( K,,, , t) N s, . There- 
fore, all values of Y,( K, t) for K > K,,, will be useless for analysis. Denoting the signal- 
to-noise ratio in Fourier space by E, = A/s,, with the help of Eq. [ 191 we obtain 

2 In E, 
Kmax = 27r2( A; + 62 + 2D,t) ’ 

for the upper limit of K values. Since at the beginning of a measurement t = 0, then 
the upper limit is set by the spectrum recorded at t = to. 

The pairing technique on its own imposes a limit on the usefulness Of Y,( K, t) at 
small values of K, due usually to very small differences between paired concentration 
profiles in this range. In order to distinguish between two concentration profiles sepa- 
rated by time to, the difference between Y,( K, 0) and Y,( K, tD) at small K should be at 
least twice the noise. With the help of Eq. [ 191 we obtain 
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1 gg(K, LD> - gg(K, 0) 1 2% m 47r2~2D t 
Igg(K, 011 ?4exp{-2r2(A;+82)~2} t D* 

Thus, from Eq. [ 2 11, the lower limit of K values is given by the solution of 

2H2E,DEtDK&n = exp{ 2a2( A: + a2)K$n} 2 

which, since ( Ai + 6 ’ ) K $in is small, is approximately 

2 1 
Kmin sz 2r2( f,D,tD - A; - s2) ’ 

where we require 

D, > <Ai + ~2)/ktD)> 

[211 

[=I 

t231 

~241 

in order that Eq. [ 23 ] be physically meaningful. 
We optimize the measurement by maximizing the ditlerence (K&,, - K&), and 

this is done through adjustment of the magnetic field gradient, since both DE and 6 2 
are proportional to Bf2. The difference is a maximum when the first derivatives of 
Eqs. [ 201 and [ 23 ] with respect to B12 are equal. Using explicitly the variables in x 
and B space we obtain 

yielding 

1261 

where cx = e,DxtD - 8; and p = 2D,t, + 62. Equation [ 261 has a physical solution 
only if a! > 0, i.e., D, > S: /( e,tD). However, this condition is guaranteed by Eq. [ 241. 
Thus, Eq. [ 241 sets the lower limit on the measurable diffusion coefficient, 

[271 

whereas Eq. [ 261 yields the optimum gradient, B’. Our spectrometer with our usual 
samples yields an eK of the order of 50, but the half-width of the distribution can be 
anywhere between 6, = 0.04 cm and 6, = (x,,, / 3 ) , where the lower limit is defined 
by the breadth of a narrow initial distribution and the upper limit corresponds to the 
size of the sensitive region in the center of cavity. These limits correspond to two 
particularly interesting applications of the DID-ESR experiment. The first one is a 
rapid DID-ESR measurement, which for best results should be performed as soon as 
possible after initialization of the diffusion. The variance of the concentration profile 
is then essentially equal to that of the initial distribution. The second type of applica- 
tion is in a multiple measurement on the same sample, e.g., temperature-dependent 
studies, when the last measurement is usually performed on a very broad sample. 
Usually the ESR lines are narrow, say 2AB N 0.5 G, and we can safely omit the term 
Ai/Br2 in Eq. [ 271. Then, for a one-hour measurement (i.e., tD = 4000) performed 
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in these two limiting cases, we obtain from Eq. [ 271 0, > 2 X lo-’ cm2 s-l for the 
rapid measurement and only 0, > 2 X 1 Om7 cm 2 s -’ for a delayed one. The latter limit 
restricts, therefore, a multiple measurement to cases when the diffusion coefficient is 
of the order of 1O-7 cm2 s-’ or higher. The situation worsens, however, if the ESR 
line is broader, and we must take into account the term AZ / B12 in Eq. [ 271. For 
example, for A, = 2 G and B’ = 100 G cm-’ (rapid measurement) we obtain 0, > 4 
X low9 cm2 s-‘, and for B’ = 10 G cm-’ (delayed measurement) we should expect 
D, > 4 X 10e7 cm* s-r. 

In order to estimate the error in D,, we return to Eq. [ 71 which is basic for data 
analysis. In the process of a linear least-squares fit, each point is weighted by the 
inverse of the variance of In [ C? (k, ti)/@ (k, t,)] , which is roughly of the order of 
ef/2, so the error in D, can be calculated following standard error analysis ( 7). For 
typical experimental conditions and for one pair of concentration profiles we esti- 
mated the error in D, to be of the order of lo-” s-l. This estimate can be reduced 
further if we take into account data from a number ofpairs. Therefore, we may expect 
the relative errors in D, to be lo-20% for diffusion coefficients of the order of lo-’ 
cm2 s-‘, but below one percent for 10P7 cm s 2 -r We note also that for fast diffusion . 
processes, errors arising from B’ and B, can give a substantial contribution to the 
uncertainty in 0,. 

The estimate of error of D, is valid in both unrestricted and restricted geometries, 
but we must comment on the fluctuations seen in the plateau of the Dslope plot, see 
Fig. 3b. These fluctuations are due to imperfections either of the reflective wall surface 
(inhomogeneous boundary conditions at the wall) or in the alignment procedure. If 
the reflective wall is rough, it produces an uncontrollable local misalignment of the 
Ig and I0 spectra at different positions on the wall, introducing a position-dependent 
k-dependent phase factor leading to “wavy” behavior of the plateau. The second is 
due to the discrete character of the digitized spectra and to the presence of noise 
and is responsible for discrepancies between Dslope (k,,) curves for different reference 
spectra. The errors resulting from imperfections of the wall are significantly larger 
than those from the discrete character of the [ space and cannot be averaged out by 
the use of multiple pairs. How critical this contribution can be is clearly seen by 
comparing Figs. 1 and 3, showing Dslope (k,,,) in the absence and in the presence of 
a reflective wall, respectively. The estimated relative standard deviations of D, are 1 
and 5%, respectively. In order to minimize the uncertainty of D, in the latter case, it 
is very important to use very good quality (flat) reflecting-wall surfaces, perfectly 
oriented with respect to the direction of the gradient. 

We now calculate the total number of measurements which can be done on the 
same sample, since this is important for multiple experiments. To simplify calcula- 
tions, we define t’ as the delay time between initialization of diffusion and the begin- 
ning ofthe measurement, and to as a hypothetical time in which the initial (Gaussian) 
distribution would develop from a point source, i.e., 8; = 2 D, to, cf. Eq. [ 3 ] . Because 
this time to is irreversibly lost for measurement, we may call it the dead time of the 
experiment. The variance of the concentration profile, Eq. [ 16 1, can be rewritten as 

n;(t) = 2D,t0 + 2D,t’ = 2D,t. I281 
Thus, t should now be considered the absolute delay time of the measurement. 



IMAGING OF DIFFUSION BY ESR 571 

At the beginning of each measurement we optimize the sensitivity of the instru- 
ment to the value of C: at that time by an appropriate adjustment of B’, so the sensi- 
tivity remains optimal in the course of multiple experiment. Let D, denote the value 
of the diffusion constant at the beginning of the first measurement, i.e., D, 
= OX(BA/B,)2, where BA is the magnetic field gradient after the first adjustment. 
Then the variance at the beginlning of each measurement can be written as 

CT;< t) = 20,. 
0 

5 t, 

and at the end of this measurement as 

u;(t + to) = 20,. 
0 
p ct+ b), 

~291 

[301 

so the change of the variance over to is Au g = 2D,( to/ t)to. Notice that since Aa: 
remains constant in the course of the multiple experiment, to changes from measure- 
ment to measurement: 

The absolute delay time after n consecutive measurements, tn, is 

[311 

[321 

where we assumed that the diffusion coefficient remains the same over the experi- 
ment. Assuming that after t, the concentration profile has reached the measurable 
limit, a2(tn) = (.xY,,,/~)~, we calculate the maximum number of single measure- 
ments: 

rr<ln($)-ln(g+ 1) 

<2ln(y)-ln($$+ 1). [331 

For 2x,,, = 1 cm, 26, = 0.04 cm, and a diffusion coefficient of the order of 10e7 
cm2 s-l, we get y1 N 6 but for lop6 cm2 SC’, only y1 x 2. This prediction is in good 
agreement with our observations (2,3). 

CONCLUDING REMARKS 

In this paper, which is the third in a series devoted to the development of dynamic 
imaging of diffusion by ESR (I, 2), we described significant improvements in the 
DID-ESR experiment with the reflective boundary, which make this restricted diffu- 
sion geometry a useful alternative to the unrestricted diffusion experiment. We also 
presented an improved technique of analyzing the data which yields better precision 
in the determination of diffusion coefficients. We have discussed limits of the DID- 



572 MOSCICKI, SHIN, AND FREED 

ESR method and shown that at present the DID-ESR technique can be used to study 
diffusion coefficients in the range 10-9-10-5 cm* s-‘, with precision better than 1% 
for diffusion constants larger than lop7 cm2 s-l and about lo-20% for lo-’ cm2 s-l 
based upon a canonical one-hour length of measurement. 

As a test of the DID-ESR method with the reflective-wall geometry we have per- 
formed translational diffusion measurements of 15N-PDT in the nematic phase of 
MBBA. The measurements have been carried out at room temperature ( -20°C) on 
nematic samples oriented parallel and perpendicular to the direction of diffusion. We 
found coefficients for diffusion parallel and perpendicular to the nematic director 
equal to Dl = 3.7 X lop7 cm* s-l and D, = 2.5 X 10m7 cm2 s-l, respectively, which 
yields a D//D, ratio of about 1.5, consistent with existing experimental data for diffu- 
sion of other probe molecules in MBBA (8). The relative standard deviation (co/D) 
for diffusion perpendicular (subscript t) to the nematic director was about 5%, and 
for the parallel direction (subscript [) somewhat larger. 

In summary, as a result of improvements described in this paper, the DID-ESR 
technique is a very simple and reliable experimental method for studying macro- 
scopic translational diffusion. 
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