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The calculation of spectra of two coupled spin systems within the stochastic Liouville 
equation formalism is systematized by the use of the coupled muitipob-operator repre- 
sentation. The Liouville superoperator of the system is easily calculated in this represen- 
tation in a unified way for all interactions by using a generalized Wigner-E&art theorem 
in operator space. The spectrum is defined as the Fourier-Laplace transform of a single 
generalized correlation function, which, besides the autocorrelation of the observed spin 
can also contain contributions of the unobserved spin degrees of freedom, as well as all 
counterrotating parts when needed. The expression for the spectrum, which is an average 
of the appropriate first-order multipoles, is the same irrespective of the particular system; 
i.e., the multiplicity of the spin system, its states, and the relevant transition probabilities 
are all treated implicitly. This definition of the spectrum also introduces, through the 
preparation stage of the spin system prior to the tiee induction decay, another first-order 
multipole which is important for the case of strongly correlated spins. Two spins are 
strongly correlated when the difference in their Zeeman resonance frequency is compara- 
ble to their broadening. Accordingly, strong correlation is most likely to be important in 
low field and/or slow motion. The present method imposes no limitations on the relative 
strength of the relevant interactions or the rate of their modulation and is consequently 
valid in the slow-motion regime. A fast matrix-tridiagonalixation method, based on the 
Lanczos algorithm, is used to calculate the spectrum, working directly in the frequency 
domain. 0 1989 Academic Ress, IN. 

The relaxation theory appropriate for coupled spins is well known. For example, 
Pople ( I ) studied the collapse of the hyperime multiplet structure of the spe&rum of 
a spin I, interacting with another spin S, in the case when the spin S has an efI&.ient 
relaxation mechanism of its own. Such pairs of spins are, for example, proton- 14N 
and proton- “J ‘B, which find important applications in structural and dynamical 
studies (2, 3). A number of approximations were involved in Pople’s treatment: (i ) 
The nonsecular part of the scalar interaction is neglected; (ii) the DD interaction is 
neglected; (iii) the S spin is assumed to be in the extreme-narrowing limit. In Pople’s 
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theory, it is assumed that the source of broadening of the I spectrum is the spin-lattice 
relaxation processes of the S system. As long as the I multiplet is well separated, the 
width of its lines is proportional to the inverse lifetimes of the S states. For S-relax- 
ation rates comparable to wsc (the scalar coupling) the multiplet has a complicated 
structure (involving both shift and superposition) due to the possibility of reencoun- 
ters within the manifold of the S states. 

When the S-relaxation rate becomes even faster, the I multiplet coalesces into a 
single line which narrows with faster S-relaxation rates. For S-relaxation rates on the 
order of magnitude of the shift difference, i.e., 1 was - ool 1, Pople’s method is no 
longer adequate, since the scalar interaction becomes a relaxation mechanism which 
involves simultaneous flips of both spins. This case is treated separately by Redfield 
theory, viz., scalar interaction of the second kind. A further complication arises for 
comparable shift and scalar broadening (line overlap) for which the Redfield theory 
must be applied in a more general fashion (4, 5). These theories essentially disregard 
to a different extent the correlation in the dynamics of the two spins, an approxima- 
tion which is legitimate as long as the mutual interaction of the two spins is not as 
strong as the interaction of the S spin with the lattice. In this case, e.g., if the S spin is 
strongly coupled to the lattice, then it can be considered to be in equilibrium within 
time scales of relevance to the I spin. 

The above conditions are not always fulfilled, however, as in some recent low-field 
experiments in proteins (2). Winter and Kimmich (6) obtain a T, theory for a spin 
I coupled to another spin S by DD interaction, which relaxes the extreme narrowing 
conditions, and is valid even when the I-armor frequency, was, of the S spin is compa- 
rable in strength to its quadrupolar interaction, uQ (see under System for definition 
of uQ), i.e., for low field. They find, in particular, that when the condition woI = wQ is 
fulfilled, an extra enhancement for the Ti relaxation rate is obtained due to relaxation 
transfer from spin S to spin I ( 7, 8). This phenomenon is known as the quadrupolar 
dip, due to the characteristic field dependence of the longitudinal relaxation rate, and 
can only be obtained when ys < yl, in addition to the slow-motion and low-field 
conditions (2, 6). The Winter and Kimmich theory is essentially restricted to a Red- 
field treatment of the quadrupolar nucleus S even though for the low-field case, i.e., 
was 4 up, the quadrupolar term is considered the main part of the interaction, while 
the Zeeman term is treated as a perturbation. Notice also that the intermediate case 
was G aQ cannot be treated by their theory. 

Thus there is no unified lineshape theory valid for an arbitrary combination of 
different relaxation mechanisms and an unrestricted set of parameters. The principal 
aim of this paper is the development of a general lineshape theory including both 
slow motions and low fields, for the case of strong correlation of the two spins, since 
those conditions are fulfilled in a number of experiments (2, 6). 

Freed and co-workers (9) have calculated low-field ESR spectra, both field and 
frequency swept, of triplets in the slow-motion regime even beyond the relaxation 
theory limit. The modification of conventional relaxation theory for the calculation 
of the low-field spectrum was given, together with some characteristic lineshapes. 
Freed and co-workers describe the complications arising in the low-field case, which 
are also important for the calculation of the spectra in the present work. In another 
paper Meirovitch et al. (IO) considered the theory for slow-motional lineshapes for 
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a two-spin (S = f , but arbitrary I) case that is valid for all values of the field. It was 
particularly designed for the ESR of spin probes. The calculations were performed 
by a method due to Moro and Freed (II) based upon the Lanczos algorithm which 
greatly speeds up the computations. The treatment employs an uncoupled represen- 
tation of the S spin from the I (nuclear) spin as is appropriate for ESR. In the present 
work we use the computational methods of Moro and Freed, but we use a coupled 
representation. 

Sanctuary’s work ( 12)) concerning the multipole decomposition of the spin den- 
sity matrix for high angular momenta as well as for multispin systems, shows that the 
multipoles have a direct connection to the experimental observables. He used the 
multipole representation of the density operator to describe some pulsed NMR exper- 
iments in the absence of relaxation. We use a closely related multipole decomposition 
appropriate for coupled spins to both describe the pulse which prepares the system 
as well as in the calculation of the evolution ofthe system after the pulse. The prepara- 
tion of the spin system is not treated to the same degree of accuracy as the free evolu- 
tion of the spins in the present work. This is similar to a procedure foilowed by 
Schwartz et al. ( 13) in a treatment for a single slow-motional Z = 1 spin with quadru- 
polar interaction. 

SYSTEM 

We consider a system consisting of two spins, S and I, which are coupled by the 
hyperfine interaction, i.e., the usual scalar coupling (SC) as well as the dipoledipole 
(DD) interaction. Within the spin-Hamiltonian description, which we will use here, 
this interaction is represented by 

zHyp = SAI 7 Ill 
where tr( A/ 3 ) is identified with the strength of the SC interaction and the remaining 
traceless part A’ of the second-order tensor A with the DD interaction (14). The 
DD interaction and the SC coupling of the two spins can be important as relaxation 
mechanisms. We are going to perform the calculations of the spectrum for such a 
system in the presence of some other interactions acting on one or both spins. The 
spins might be either nuclear or one nuclear (I) and one electronic ( S) . The Zeeman 
interaction of the electron spin with a dc field is described by the g tensor (14). For 
S > 1 the unpaired electrons interact and give rise to the zero-field splitting (ZFS) 
with associated tensor D . Thus we get 

zsR = ZZEE + ‘,L$+* = SgH+ SDS, [Z] 

where R refers to the reorientational degrees of freedom (see later in this section ) . 
For a nuclear spin, I, the relevant interactions are the chemical shift tensor and the 
quadrupolar tensor which are formally equivalent to the g tensor and the ZFS tensor, 
respectively. The quadrupolar interaction (QDR) can be written in standard spheri- 
cal tensor representation as 
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“Z(z+ 1)(2z+ 1) 
4(2Z- 1) 

and 

e2qQ 
‘dQ = -  

h 
in s-‘, 

where e is the electronic charge, q the electric field gradient, and Q the quadrupole 
coupling constant. The quantity up will depend on the given system. Explicit for- 
mulas for the remaining interactions which are used in this work can be found in 
Benetis ( Z4). 

All the interactions will be treated by the stochastic Liouville equation (SLE) for- 
malism ( Z5-Z 7). The SLE does not require any restriction on the relative strength of 
the different interactions (18) such as imposed by perturbation or Redfield type theo- 
ries. Note also that the complete interactions are retained here, e.g., both pseudosecu- 
lar and nonsecular along with the secular terms are included. This allows the theory 
to be valid even near zero field. The molecular reorientation is treated classically, but 
it is allowed to be strongly coupled to the spin degrees of freedom, as it is in the case 
of slow reorientation ( 16, 19, 20). 

In these calculations, it is assumed that all the tensorial interactions possess cylin- 
drical symmetry and that their principal frames coincide (21) . Furthermore, we are 
dealing only with intramolecular interactions. In addition, we treat only a single dy- 
namical model for the modulation of the time-dependent interactions, viz., molecu- 
lar tumbling, as the single source of relaxation. Any other type of broadening, such 
as inhomogeneous broadening or broadening due to faster processes than reorienta- 
tion, can readily be incorporated in the present theory as a single parameter for each 
of the two spins (Z4,16). 

Strongly Correlated Two-Spin Systems. If the correlated spin dynamics of the two 
spins S and I is important (see later in this section), the two-spin density operator psi 
cannot be separated into a product; e.g., the equation 

PSI(t) = Ps(O-P,(t) 141 

is not valid (22-24). In this case, e.g., for strong correlation, the equation of motion 
of the full density matrix psi must be solved before the calculation of any macroscopic 
observables ( Q( S, I)), according to 

(Q<s, I>>, = trd QN Zhdt)). [51 
The usual way to deal with this complication is to use the equation of motion of psi 
and Eq. [ 5 1, in order to obtain the equation of motion for one spin observable, but 
with the following approximation for operator products of different spin, when they 
occur: 

(QdS)Q2(0) g (QICS>>(Q~CZ>>. [61 
This method has been used by Abragam (25) in the derivation of the equations for 
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the spin-lattice relaxation of two spin S and I coupled by DD interaction. In this 
manner, some correlation is retained in the equation of motion of the macroscopic 
quantities (I=) and ( Sz) represented by the time constants T,,sf and TI,IS, e.g., the 
cross-relaxation times. This theory has been applied in interpreting the relaxation 
behavior of the HF molecule (25). For spin-spin relaxation, the correlation is not 
retained by Abragam, but Solomon (26) discusses the conditions for which it is im- 
portant, and Vasavada and Kaplan (27) give the expression for the T2,sI and T2,1s. 
The effects of correlation for the transverse magnetization are negligible in the fast- 
motional regime even when the Larmor frequencies of the two spins are compa- 
rable. 

The simplest two-spin system where the coupling of the spin degrees of freedom is 
important is the case of scalar-coupled spins under the condition 1 wsc I/ 1 was - woI 1 
g 1, which is the condition for the usual AB spectrum. It can be shown, for example, 
that the cross-correlation function (Z! (O)S-( t)) does not vanish. On the other hand 
the same function of two weakly coupled spins in the AX system is always zero (see 
some more details for these systems under Results for Typical Cases). The scalar 
interaction in NMR is usually two orders of magnitude smaller than the DD interac- 
tion. The DD interaction is, however, time dependent and traceless, so for fast motion 
it can merely give a broadening. This is not the case in the slow-motional regime. 
especially for low fields, where the difference in the Zeeman terms, 1 was - wol 1, can 
easily be of the same order of magnitude as the DD interaction, and the two spins 
should be treated as strongly correlated. This is also suggested by considering the 
rigid-limit (powder) spectrum of such a system which has a width equal to the DD 
interaction. A similar effect, viz., the near equivalence of the Larmor frequencies was 
and woI, of the two spins in relation to their mutual interaction, can be obtained if 
the spin with the smaller gyromagnetic ratio possesses another strong interaction, 
such as a quadrupolar interaction in addition to the hyperfine coupling. The pure 
quadrupole spectrum (28) for a single spin shows that in the slow-motion and low- 
field region the quadrupolar spin can overlap with the other one due to the consider- 
able modification of its free Larmor frequency. 

The usual definition of strongly coupled spins is limited to the AB spectra of spins 
coupled by scalar interactions. The above discussion indicates that a clear manner 
for defining strong correlation cannot be given before the dynamical features of the 
system have been taken into account. It is always the case, however, that slow-mo- 
tional and low-field conditions lead to strong coupling. If the condition 1 was - ~0~ / ) 
w&L. T, (where wREL is the strength of the main relaxation source, viz., DD, QDR, 
ZFS, and 7, the relevant correlation time) is not satisfied, the spin must be considered 
strongly correlated. For NMR in paramagnetic systems, the nucleus can be strongly 
correlated to the electron spin when the relationship war < o j&r . TV is valid. 

In order to find out when these conditions are relevant and can give visible effects 
on experimental spectra, we review some orders of magnitude for NMR and ESR. 
The SC interaction for nuclei is of the order of kilohertz at most, the DD interaction 
of the order of 0.1 MHz at most, while the QDR interaction can be 10 MHz. If one 
of the spins is the electron spin, the above (and related) quantities scale up by about 
three orders of magnitude. Accordingly, the low-field condition is strongly system 
dependent. For example, in NMR studies of the peptide group in large proteins con 
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taining the pair ‘H i4N, a dc field of 0.3 T is considered low (6)) due to the large value 
of the quadrupolar interaction. In some cycling experiments on this system one goes 
down to fields corresponding to 10 kHz resonance frequency for the proton (2). 

THE SPECTRUM OF A TWO-SPIN SYSTEM 

In the case of a two-spin system all the dynamical information of the spins is con- 
tained in the quantity psl( Q, t ), the density matrix of the composite system, which is 
also explicitly dependent on the reorientational degree of freedom Q. Accordingly, 
the macroscopic magnetization p is in this case 

p(t) = h(M) = h(ysS+ YJ)~,, 171 

where M is the total spin operator. The mean value (Q(S, Z)) of the operator Q is 
defined by 

(Q<s, I>), = tr.drl s dfJ{ Q(s, OPSI(~~ t>> . [81 
The density operator psr( fl, t) satisfies a stochastic Liouville equation ( IO, II ) : 

akd w 
at = -iL( Q)p,( 9, t). [91 

The Liouville superoperator L consists of two parts. The first part is due to the total 
Hamiltonian operator for the two spins, which is explicitly reorientation dependent, 
and the second is a Laplace operator with respect to the orientational degree of free- 
dom; see ( 18) for example. 

For the sake of simplicity in testing the implications of strong correlation, we shall 
simulate the absorption spectrum obtained by Fourier transforming the free induc- 
tion decay signal after a single 90; pulse. Before the pulse the system is in equilibrium 
described by the appropriate time-independent density operator p r at thermal equi- 
librium with a lattice with temperature T. We define also the deviation from the 
equilibrium density operator x(t) = p(t) - p T, since we observe the deviation of the 
x magnetization from equilibrium and arrive at 

At) = ~((Ys$ + rLFiL’x(O>), 1101 
where x( 0) can be calculated from a ?r/2 pulse. Notice that the spectrum in the pres- 
ent case is the Fourier-Laplace transform of a cross-correlation function, since the 
operator x( 0) depends on the nature of the pulse and is not necessarily proportional 
to ysSx + -rlZX. This is in contrast to the usual definition of a spectrum as the Fourier 
transform of an autocotrelation function (25). Notice also that the above expressions 
allow for the possibility that, while observing one of the coupled spins, we might have 
an appreciable contribution from the spectral density of the other one. 

The vector representation of the operator on the left side of the exponential in 
Eq. [lo] shall contain the relative observing transition moment of the different spin 
operators. On the right side of the exponential x( 0) contain exciting transition mo- 
ments of the different spin operators. We proceed by defining an appropriate operator 
basis set. 
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By using the basis set ( I Sk&) ( Sk& I } f or one spin S we can generate the operator 
space ( Q:(S) } , which constitutes an irreducible representation of the full rotation 
group ( Z4,24). Analogously the operators QF( I) can be defined for the spin I. Now, 
by taking the external product of the above operator spaces for the spin S and I, we 
can generate the appropriate irreducible spherical operators Qf( Z, Z) (with I: + H 
G A G I Z - z I) of the combined spin system, or what we call the coupled spherical 
operators or multipole operators ( Z2, 24). In general ( 2 S + 1 )*( 2Z+ 1)’ coupled 
spherical operators Q(*) must be generated and be normalized with respect to all the 
spin degrees of freedom within Liouville space. We can express the density operator 
of the two-spin system in the following way, 

PSI(f4 t) = c G,k&, E’)Qf(T E’)@~MW~ [Ill 
*AL,K,M 

where (P are the normalized Wigner matrix elements D (31) . The reorientation aver- 
aged quantities 

which are obtained by using Eqs. [S] and [ 111 are observable polarizations ( 12) also 
called statistical tensors (24). In a standard one-pulse NMR experiment of isotropic 
liquids the first-order multipole of either spin is directly observed. Some higher-order 
multipoles are, however, observed in two-dimensional NMR, or multipulse NMR 
experiments such as the Jeener-Brochaert pulse sequence, or acoustic resonance; see 
examples in Sanctuary ( Z2) and references therein. The time dependence of the mul- 
tipole operators is the simplest possible in comparison to other observables due to 
their simple transformation properties under rotations. The definition of the “spec- 
trum” of a given multipole Cy ’ ( I;, z) is given in general by the following expectation 
value: 

= trslR{Q?)+(I:,E)[i(-C + l,,,w)]-‘x(0)). I131 

The deviation density operator from equilibrium directly after the pulse x( 0) can also 
be expanded in the basis of the coupled multipole operators ( Z2). The preparation of 
the spin system enters into the calculation of the lineshape by the initial condition 
x( 0) and is studied immediately. 

Preparation of the two-spin system. The description of the general behavior of the 
system during a given RF pulse can be very complicated in the general case. For 
simplicity we disregard relaxation during the pulse. This is accurate provided the 
relevant relaxation times are long compared to the pulse width. The following calcu- 
lations are thus limiting cases of real pulses. The main purpose of this section is to 
establish some reasonable values of the observing transition moment x( 0) in a fairly 
simple way. These values are used later in order to calculate carefully the relevant 
spectra in next section. 

We approximate the equilibrium density matrix p ‘by the following time-indepen- 
dent part of the total Hamiltonian z0 
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e- hS?dkT 

P 
T- 

- PC,- PRT = 
tr( lop) ’ 

[I41 

where R denotes the reorientation degrees of freedom. In the high-temperature ap- 
proximation we keep only linear terms in the exponential and accordingly we have 
for isotropic liquids 

pTE {l,- ~[wosS,+wolZz+wscS.I])/(2S+ 1)(2Z+ 1)87r2. 1151 

Under typical conditions we apply a selective pulse to one spin, say I, and observe 
the spectrum of the same spin. For high fields, this corresponds approximately to the 
following deviation density matrix x( 0) 

x(O) = -hq,Z,/kT. [I61 
The same initial conditions would be appropriate when irradiating the I spin while 
we observe the other one in a cross-polarization experiment ( 12). 

For a nonselective pulse we would have on the other hand 

x(O) z -h(q,& + woIZx)/kT. iI71 

It can be shown that in this case the multipole Qi”’ ( 1, 1) is not affected at all by the 
RF pulse. 

We now consider the low-field case in some detail. For a selective pulse, at low 
fields, it is very likely that, for certain ranges of the strength, duration, and RF fre- 
quency, some other mixed multipoles such as Q!‘/ ( 1, 1) can be excited. This multi- 
pole can be expressed in terms of standard operators as 

For example, we study the spectrum of a two-spin system after a selective 90; pulse 
leading approximately to the following initial deviation density operator (some irrele- 
vant parts, such as, for example, z components have been disregarded) 

x(O) E -h[wo,Zx + wscQ:‘)( 1, l)]/kT. [I91 

The multipole Q!r/ ( 1, 1) has one term which may be set to be exactly on resonance 
as can be seen in Eq. [ 18 1. The contribution of this multipole to the observed magne- 
tization should be a manifestation of the “lost identity” of the two spins, since x( 0) 
contains products of the two operator spaces. Usually the multipole Q!‘/ ( 1, 1) can- 
not be excited by the RF field, unless the scalar coupling is comparable to the Zeeman 
terms and unless we can irradiate preferentially only one spin at the time. We find, in 
general, that the effect of this multipole on the spectrum is to enhance the “forbidden 
singlet-triplet” transitions of a two spin spectrum (see Results for Typical Cases). 

Before describing the calculations of the spectra we consider two complications 
occurring in low field. Although, for high field, only one of the multipoles Z+ or I- is 
in resonance, in the low-field case both of them can give comparable contributions 
to the spectrum. However, due to the relation (I+( -w)) = (I-( o))* one does not 
need to calculate the different spectra separately. Instead, the calculation of one mul- 
tipole (here I-) is adequate, while the total spectrum, i.e., (IX) = (I- + Z+)/2, is 
obtained by folding the negative part of the frequency axis over to the positive and 
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FIG. 1. H-F spectra for low field and slow motion. Spectrum (a) is equivalent to letting transition proba- 
bilities Pu,l, cc 1 (u 1 J, 1 b) I’, whereas in (b) the difference in frequencies of the two species is taken into 
account (cf. text). The effect of the excitation of the multipole Q( ’ )( 1, 1) is shown in (c) . The parameters 
used are magnetic field, Ho = 3.2 X 10m3 T, & = 2.0, & = 2.0, Ag = gt - g-L = 1.0 X 1O-5 units for both 
HandF,wW=7.0X 103rad/s,woo/w sc = 30. The isotropic rotational correlation time rR = 5.627 X IO-* 
s and additional line-broadening contributions T; = 0.5 X 10m3 s for both nuclei. In (a) the exciting and 
observing transition moments are taken as equal for H and F, whereas in (b) and (c) they am in the ratio 
1:0.94 1, respectively; also in (c) Q( ’ )( 1, 1) in the observing transition moment has nonzero relative weight 
of 0.082. The matrix dimension N = 78 based on an LMax = 10, and 45 Lannos steps were used. 

taking the sum of both parts. This makes the total spectrum symmetric about the 
origin(9). 

The CW absorption lineshape L(w), which is equivalent to the spectra calculated 
in the present work, is defined by (9,29) 

L(w) = x”(w)/w, WI 

where x”(w) is the imaginary part of the complex susceptibility (cf. Eq. [ 1] in Ref. 
(9)) and is a scalar quantity if we assume that the sample is isotropic. Since, for a 
high-frequency narrow line, we can neglect the variation of the factor w in Eq. [ 20 ] 
over its width, both the susceptibility and the absorption lineshape have a very similar 
frequency dependence for a high-field experiment, and consequently the shapes of 
both x”( w ) and L(o) are the same. For a low-held experiment, however, the differ- 
ences are sign&ant ( 9). For example, no zero-frequency component (4) is expected 
for the susceptibility, while the absorption lineshape may have zero-frequency com- 
ponents (see later under Results for Typical Cases). 

NUMERICAL METHOD 

The calculation of the matrix elements of the Liouville superoperator in this work 
is simplified by using the coupled multipole representation and the Wigner-Eckart 
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FIG. 2. The effect of selective irradiation of the proton while observing at the frequency of F is shown 
for a system similar to that of Fig. 1. All parameters are the same as those in Fig. 1 except that (a) and (c) 
uDD/usc = 30, and (b) woD/wsc = 100. In (c)a substantial independent exchange or cross-relaxation time 
T,, = 1 X 10e4 s has been added in order to simulate the effect ofwater on the spectrum. 

theorem in operator space (32 ). In this way, the matrix elements can be expressed in 
terms of only one reduced matrix element and the numerical calculations become 
more systematic, which also enhances the speed of the calculations. Furthermore, 
this makes it possible to use the same program in the calculation of the spectrum of 
arbitrary two-spin systems and even to calculate the spectra of one spin system as a 
limiting case by taking one spin equal to zero. 

Two observations simplify the calculation of the spectrum. They both rely on the 
scalar property of the Liouville operator (14): (a) In the lineshape simulation we 
only need the multipoles with projection quantum number 1 X 1 = 1 for the expansion 
of x(O) (four for two spins I = 1). (b) We only need the combinations Q: X cPifi 
with ( X + Ml = 1 for the calculation of the transverse magnetization ( 1 X + MI = 0 
for the longitudinal magnetization). The superman-ix elements of the Liouville oper- 
ator are given in the Appendix and in references cited there. 

However, the calculation of the matrix elements is the slowest part of the program 
because of the numerous couplings and the large dimensionality of the representation 
of the reorientational degrees of freedom. To make this part more efficient a symbolic 
matrix is first calculated for every interaction only once, and it is then used for differ- 
ent values of the strength of the interactions. The sparceness of the matrix is exploited 
here by saving only nontrivial element of the symbolic matrix in a one-dimensional 
array which has much smaller dimensions than the square of the matrix. Due to the 
structure of the Lanczos calculation of the spectrum, a huge speedup of the calcula- 
tions is gained up to approximately lo3 in some favorable cases when compared with 
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FIG. 3. The slow-motion spectrum of two protons with nearly equal chemical shifts and co@ed with a 
dipole-dipole interaction. From (a) to (f) one of the protons has chemical shifts 2.OOQOO0, 1.999990, 
1.999968, 1.999945, 1.999923, 1.999900, while the other proton’s shift is retained at the value 2.OOOOOO. 
Spectrum (a) corresponds to the case of like spins of Abragam ( 25 ) , while spectrum ( f ) almost cormapomis 
to the case of unlike spins. The 3 / 2 effect of Abragam is also present in the figures, e.g., the width of the 
line in (a) is approximately 1.5 times broader than the width of either lines in spectrum (f). The other 
parameters are H,, = 3.2 X 10-l T, Ag = 1 X 10e5 for both protons, wsc = 0.23 rad/s, w&wsc = 1 X lOn, 
TV = 6.00 X IO-’ s, r; = I X 1O-2 s with the same matrix size and convergence parameters as those in 
Fig. 1. 

conventional algorithms for diagonalization (11,32). This makes the simulation of 
higb-spin spectra possible even for small computer facilities. For the systems calcu- 
lated in this work the total time for a spectrum varied between 0.5 and 10 min of 
CPU time on a Prime computer. 

As shown above, the calculation of the spectrum, i.e., the F-L transform of the 
cross-correlation function, reduces to essentially calculating the following off-diago- 
nal elements of the resolvent matrix (33,34) 

L(w) = (ul[i(L + lo/+))]-.‘Itl), j21] 

where I u) and I V) are real column vectors well dehned in the basis set { Q:( Z, 
E) . ( %k,M) } . Since the Lanczos algorithm can only be used directly to calculate di- 
agonal elements (autocorrelations), the calculation of Eq. [ 2 I] relies on the identity 

(uSu~M-‘~u+u)=(u~M-‘~u)+(u~M-‘~u)+2(tl~M-’~u) t221 

assuming that the matrix M is symmetric, which is the case here. The convergence of 
the spectrum is tested by choosing a larger L quantum number, e.g., by using a larger 
basis set to represent the reorientation subspace and by checking for the consistency 
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FIG. 4. Proton-proton spectrum showing the effects of a scalar interaction. One of the protons has 
chemical shift (a) 1.99999, (b) 1.99995, and (c) 1.99990, whereas the other is kept fixed at 2.oOOOOO. 
Observe that even though u&usc = 103, wsc gives important effects. All other parameters are as in Fig. 3. 

of the results for the different L. The slower the motion the larger the L,, required 
for convergence. The second test for convergence in using the Lanczos algorithm is 
the number of iterative steps needed. For simple spin systems only a few steps are 
needed in fast motion (II). What we find here is that, even for fast motion, a large 
number of iterative steps are needed, suggesting that the coupling of the quantum- 
mechanical spin degrees of freedom is significant. Before using the program for the 
actual calculations some tests were made with well-studied systems in slow motion. 
Accordingly ESR nitroxide spectra were reproduced ( 16). Also the program was used 
to reproduce doublet and triplet ESR spectra in slow motion, e.g., the g tensor and/ 
or ZFS interactions in a single-spin system (9, 16). Also higher spin NMR spectra 
were tested (25). Another test was to reproduce the low-field slow-motion spectra in 
triplets (9). 

RESULTS FOR TYPICAL CASES 

The Generalized AB Spectrum. The calculation of an AB spectrum is traditionally 
restricted to finding the relative transition probabilities with respect to the x compo- 
nent of the total angular momentum operator J, = S, + 1, (30). This implies that 
the total magnetization is proportional to the total angular momentum which is accu- 
rate if the two nuclei are the same magnetic isotope, as, for example, two protons 
with slightly different chemical shifts. A corrected AB spectrum should correspond 
to calculating the magnetization ~1 &fined by Eq. [ 71, and using the appropriate 
initial conditions, such as those discussed under The Spectrum of a Two-Spin System. 
The present formalism also allows for different preparation of the system as well as 
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FIG. 5. Low-field proton spectrum coupled to nitrogen-14. The different spectra (a)-(e) have been 
obtained for different values of quadrupolar interaction of the nitrogen- I4 nucleus. A comparison of spec- 
tra (a) and (c) illustrates the differences of the lineshapes of a strongly correlated spin system (a) and a 
weakly correlated spin system (c). The parameters used are Ho = 3.2 X low4 T, S;t = 2.0, 3~14~ = 2.0, 4 
= 1.0X 10-5forboth’4Nand’H,w,= 103rad/s,wno/w~= 102,rR=6.0X IO-‘s, F;= 1 X 10.“sfor 
both nuclei. The values of the quadrupole splitting given as oo/ wsc are (a) 10, (b) 30, (c ) 90, ( d) 270, ( e ) 
8 10. The exciting transition moments for H and 14N are taken as 1 .O and 0.0722, respectively, whereas for 
observation they are taken as 1 .O and 0, respectively. The matrix dimension is 178 based on an LMar. = 10, 
and 100 Lanczos steps were used. 

the calculation of cross-correlations while it reduces correctly to the usual AB spec- 
trum for ys r yI. Using an initial condition x(O) a wO.& + wOllr, for example. the 
relative transition probability Pa,b a I (a 1 J,I b) I 2 should be replaced by Pa,/> 
a I(alwdx + wdxlb)12 = I(QITJJ, + -v&lb)12, where YJ = (YS + YI)/~, YK 

= ( ys - 7,)/2 and K = S - I. This type of AB calculation would be reasonable for 
systems like HF in low enough fields that a single pulse could irradiate both nuclei. 
In addition to a field-independent overall relative increase of the signal of the species 
with the larger y this expression also gives field-dependent corrections to the intensity 
of the “allowed” versus “forbidden” transitions, which is of great importance for the 
present work. 

In general, the DD interaction between the A and B nuclei should be incorporated 
giving the appropriate broadening to the spectrum. Figure 1 a shows a low-field, siow- 
motional HF spectrum where the correction due to the difference in y is not taken 
into account. The DD interaction has been included (see legend for details). This 
figure is to be contrasted with Fig. 1 b where the effect of the difference in the gyromag- 
netic ratios has been included in the calculation. In Fig. 1 c the effect of the excitation 
of the multipole Qr:‘( 1, 1) by the RF field has also been included in the calculation 
which enhances selectively the forbidden transitions. The effects of magnetization 
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FIG. 6. Proton-nitrogen spectrum for the same system as that in Fig. 5 for very slow rotation (TV g 6 
X 1O-6 s). The field is Ho = 3.2 X lo-* T. The values of up for 14N are (a) 1.5, (b) 3.0, (c) 4.5, (d) 6.0, 
and (e) 7.5 M&/s. Observe that under the present conditions the nitrogen resonates at the frequency up 
instead of uw (&man). The other differences from Fig. 5 are that the exciting and observing transition 
moments are both taken as 1 .O and 0.0722 for H and 14N, respectively, and the matrix dimension is 248 
corresponding to LMax = 15 with 180 Ianczos steps taken. 

transfer are shown in Fig. 2. They are obtained by applying a pulse to one spin 
(proton) while observing the other one (fluorine). One effect here is an inversion of 
the forbidden singlet-triplet transition. 

In the spectrum of two protons with very similar chemical shifts, we can immedi- 
ately observe the effects of strong correlation. Figure 3 shows the two-proton spec- 
trum for considerable DD interaction but negligibly small scalar interaction as a func- 
tion of the chemical-shift difference. Notice the characteristic doublet with somewhat 
“burned” overlap which agrees with Ref. (27). This effect is due to the pseudosecular 
terms of the DD interaction. The pseudosecular terms can be shown not to induce 
any “singlet-triplet” transition. In Fig. 4 the effect of incorporating the scalar interac- 
tion is also shown. Figure 4 is drawn for a scalar interaction three orders of magnitude 
smaller than the DD interaction. Nevertheless, a new property appears which is not 
negligible. The present theory predicts that a transition with a resonance at the mean 
value of the two Larmor frequencies can be observed directly in the one-pulse one- 
dimensional spectrum. This signal is due to the superposition of the “triplet-triplet” 
transitions which broaden more than the remaining two transitions in the strongly 
correlated spin system but are still visible for the conditions chosen here. 

The 3 / 2 effect discussed by Abragam is also shown in the same spectrum, viz., the 
width of the single line in Fig. 3a (like spins) is approximately 1.5 times the width of 
either line in Fig. 3f (unlike spins). As seen from the plots, however, the intermediate 
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FIG. 7. The proton spectrum of the H- ’ ‘B system for strong correlation conditions. (The intensity axes 
of(b) and (c) are multiplied by 5 and 10, respectively.) Compare with Fig. 3 of Jbhwekr et al. ( 36). The 
parameters used arc Ho = 3.2 X 10e3 T, gH = 2.0000, g, = 2.0000, Ag = 1 .O X 10 -’ for both nuclei, wsc 
= 1.0 X lo3 rad/s, wDo/wsc = IO, w. = 1 X 10’ rad/s. The values of ‘~a are (a) 3.38 ns, (b) 33.8 ns, (c) 
338 ns. Also T; = 1 X lo-’ s for both nuclei. The exciting transition moments are taken as 1.0 and 0.32 1 
for H and ’ ‘B, respectively, and the observing transition momenta am taken as 1 .O and 0.0, respectively. 
For case (c) the matrix size is 186 corresponding to an L,,, = 6, and 100 Lanczos steps were used. 

cases, which cannot be treated by the formalism given by Abragam, can ako be of 
interest. The experimental significance of this finding is that one can decide if two 
protons with similar chemical shifts are located geometrically close to each other in 
the same macromolecule, or not. 

Proton Spectra Coupled to Quadrupolar Nuclei. For high fields and fast motion, 
the proton spectrum of an ‘H- 14N pair is a triplet with the outer lines of equal width 
which is 5 the width of the middle line. In this limit ( 1) the triplet coalesces for 
stronger quadrupole coupling constant (and sharpens with further increase quadru- 
pole coupling constant). This was also observed with the present theory for a variety 
of the reorientational rates, e.g., even outside of the extreme narrowing regime for 
the quadrupole interaction, where Pople’s theory is not applicable. Even for low fieki, 
the fast-motional spectrum with respect to the DD interaction is a resolved triplet 
due to the nonaveraged scalar interaction. The slow-motional spectrum of the whole 
system is totally different, however. 

We discuss the fast-motional limit first, in the extreme-narrowing condition. For 
low field two regions are distinguished, with respect to the relative magnitude of the 
quadrupole (ho) and the dipole-dipole ( wDD) interactions, e.g., the low WQ and the 
high wQ regions. The high wp region resembles three superimposed Lorentzians, 
which is very similar to the results of Pople valid for no appreciable cross-correLation. 
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In the superimposed triplet that is predicted, the outer lines are broader than the 
middle one and shifted toward the middle one. This is the area where the broadening 
of the proton triplet is due to the lifetime of the nitrogen spin states. This mechanism 
for broadening is not restrictive for the proton transitions and implies “reencounters” 
of the same S state; hence the early shift and the final triplet collapse for large wQ. 

The low wQ spectra, where the multiplet broadens mainly by the hyperfine interac- 
tion, are characterized by “burned” overlap regions between the peaks, Figs. 5a, 5b, 
which is in contrast to Pople’s predictions. There is also another difference with re- 
spect to Pople’s theory, viz., the central peak appears to be broader than the outer 
peaks. The differences from the high wQ case are as follows: The lines are almost 
equally broadened, they do not show any shift, and they tend to separate. 

The slow-motional spectrum of the same system is plotted next in Fig. 6 for higher 
field. The parameters are chosen, however, to be in the low-field area; e.g., the Zee- 
man interaction of the proton is comparable to the quadrupole interaction. In this 
spectrum the proton triplet has collapsed due to the fast relaxation of the 14N spin. 
Another effect is observed in this spectrum. The resonance frequency of the 14N is 
equal to wQ instead of the regular Larmor frequency aON, and can even be superim- 
posed on the proton resonance for appropriate values of the parameters. The 14N 
resonance is much broader, however, than the proton resonance, and consequently 
the experimentally expected effect in high-resolution NMR is at most a distortion of 
the baseline of the proton spectrum. A resonance at zero frequency is characteristic 
for a slow-reorientation low-field spectrum; this resonance is revealed in Fig. 6 be- 
cause the absorption lineshape L(w) is plotted here, not the imaginary part of the 
susceptibility. This resonance is due to the reorientational degree of freedom and has 
a width of the order of magnitude of the inverse reorientation correlation time TR. 
The 14N resonance also has a broadening of the same order of magnitude. As the 
reorientation gets faster both the resonance at zero and wQ disappear. 

The proton resonance of the ‘H- “B system is shown in Fig. 7. It is very similar to 
that for ‘H- 14N except for the spin quantum number of the quadrupolar nucleus, 
with Z = 3 for ‘Ii, and consequently we get a quartet instead of a triplet. Usually in 
the ‘H-“B system the ratio W&W SC is also smaller. Pople’s theory predicts equal 
broadening for all the elements of the proton quartet, which as seen by Fig. 7 is not 
always the case. The series of proton spectra for the system proton-boron obtained 
by Bushweller et al. (36) seems to be very similar to the spectral series obtained by 
the present theory. Note, for example, the earlier coalescence of the lines in pairs with 
one outer line in each pair. 

NMR Spectra in Paramagnetic Systems. The proton spectrum in a solution of 
paramagnetic complexes is usually observed under conditions of fast exchange, since 
the pure spectrum of a proton on the complex is too broad to be observed. The same 
is also true for some other Z = 4 nuclei such as 13C, 31P, and “N. The directly coupled 
protons have been observed in some favorable cases (35). 

To obtain the theory of the spectrum of exchanging protons, one first needs the 
spectrum of the protons attached to the complex. Usually the two spins on a complex 
molecule, the proton and the electron, are considered weakly coupled, and the elec- 
tron is considered a part of the lattice ( 18, 37, 38). This simplification is legitimate 
when the electron is strongly coupled to the lattice, which is almost always true for S 
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FIG. 8. The NMR spectrum of a proton in a paramagnetic complex ( S = f ) as a function of magnetic 
held in the slow-motional regime. The magnetic field is (a) and (b) 3.2 X IO-’ T, (c) 3.2 T (the same 
frequency axis is used in plotting (c)by taking an offset of 0.86 X lo9 rad/s). Spectrum (b) differs from 
(a) in the magnitude of T,, for the electron spin relaxation time; e.g., T,,, = 1.0 X lo-’ s in (b) and 1,,, 
= 1.0 X IO-’ s in (a) and (c). The other parameters are & = 2.0000 and & = 0.2 for the proton, T~ 
= 3.376 X IO-” s, wsc = 3.0 X 10’ rad/s, W&W sc = 10. The matrix dimension is Ri = 183 based on an 
L,,, = 25, and 100 Lanczos steps were taken. 

> i. A consequence of the above assumption is that the proton is in the Redfield limit 
due to the fast motion of the lattice. The Redfield theory predicts a Lorentzian line 
with T;’ oc rR. We can demonstrate that this is not true for low held and slow mo- 
tion. In Fig. 8a we obtain a more complex lineshape, instead of a Lorentzian which 
broadens down to near zero frequency which is the natural frequency of the pure 
dissipative lattice (reorientations) we assume. When we impose a fast relaxation on 
the electron spin we get a Lorentzian, however, Fig. 8b. In Fig. 8c the same parameters 
as those in Figs, 8a and 8b are retained except that the dc field is taken to be much 
larger. The spectrum of the nuclear spin is now more similar to a Lorentzian but still 
has a more complex structure at the wings. 

FURTHER COMMENTS 

The effects of strong coupling are expected to be more important in studying two- 
dimensional spectra and multipulse experiments as well as in experiments that ob- 
serve the same system in both low and high field (cycling). The present formalism 
can simplify the calculations very much in the above cases. ESR experiments can also 
be directly calculated by the present formalism, especially macromolecular systems 
with two coupled paramagnetic centers (39). 
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APPENDIX 

In Appendix A of Benetis ( 14) the Wigner-Eckart theorem for the matrix elements 
of the Liouville superoperator was given, along with a general reduced matrix ele- 
ment R$ appropriate for a coupled two-spin system. The matrix elements of 
different parts of the Liouville superoperator, along with some simple selection rules, 
were also given. Here we illustrate just the quadrupolar part of the Liouville operator 
which was not given there, 

(‘P&Q$‘(zlZ’)IL QDR) &,Q:( 2,s)) = &~&+M~,~+M -( - 1 )K+A+M+x’ - CQ*UQ 

x [(2L’+ 1)(2L -t 1)(2A’+ l)]“*. Rf&n(Z'X'; 20; ZE) 

where 

“*(I+ 1)(21+ 1) 
4(21- 1) . 

The matrix element yields the following selection rules: 
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