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A formalism for computing 2D ESR lineshapes with nuclear modulation is developed 
in a form which is useful for planning phase cycles for particular purposes. A simple 
method of processing spectra, utilizing quadrature detection, is shown to enhance the 
selectivity of the phase cycling techniques. Computed ESR-COSY, ESR-SECSY, and 2D 
ELDGR lineshapes are presented for several kinds of polycrystalhne and single-crystal 
samples which exhibit nuclear modulation, due to one or several nuclei. The two-dimen- 
sional methods are found to give more detailed structural information than the corre- 
sponding ESEEM spectra. New phase cycles are found to eliminate completely all trans- 
verse and axial peaks in 2D ELDOR and in ESR-COSY, and at the same time eliminate 
all artifacts arising from incomplete image rejection. Other phase cycles are presented for 
selecting in those experiments only axial peaks, for measuring T, . It is also shown how 
selective phase cycles may help to distinguish between coherent and exchange cross 
peaks. In the special case of nitroxides in typical Zeeman fields, there are no significant 
nuclear modulation effects from the 14N nuclear spin interaction, but those from the 
protons (or deuterons) will, in general, be significant. 0 1990Academic press, I X .  

It has been known for a long time that hyperfine interactions can be investigated via 
the so-called “nuclear modulation” which they induce in electron spin-echo envelope 
lineshapes ( I- 7). The magnitude of this modulation is appreciable if the hyperhne 
coupling of nuclei to the unpaired electron is similar in magnitude to the Zeeman 
frequency of these nuclei. The details of the modulation depend on the nuclei in- 
volved (8, 9) and their arrangement relative to the electron ( 10). This has been used 
to investigate structural properties, such as the environment of ions and radicals in 
single crystals and in disordered systems ( 7, II ). 

Traditionally such investigations have been carried out mainly with the spin-echo 
experiment or the stimulated spin-echo experiment (2, 7). In a recent work, phase 
cycling was used to eliminate certain artifacts from the stimulated echo experiment 
( 12). Moreover, 2D FT versions of the stimulated echo sequence ( 13) and of more 
general pulse sequences (14) have been developed, which yield more accurate and 
more general structural information than the one-dimensional experiments. These 
experiments, however, were limited to a narrow bandwidth. At the same time new 
pulsed ESR techniques which are capable of broadband coverage appropriate for 
nitroxides have been developed and have consequently been used for various applica- 
tions (15-23). The purpose of the present work is to explore the potential of these 
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2D ESR WITH NUCLEAR MODULATION f, 1 

techniques of two-dimensional ESR (2D ESR) for systems which exhibit nuclear 
modulation. 

We start with general formulas for the lineshapes in sequences of two, three, and 
four pulses, including phenomenological relaxation terms. The expressions clearly 
distinguish different types of contributions to the spectrum. The effect of various 
kinds of stochastic processes is then briefly considered. It is shown directly that for 
N-site exchange it is impossible to separate the coherent from incoherent cross peaks 
by means of phase cycling, and then the same conclusion is reached for other kinds 
of exchange as well. 

It is then shown how to design phase cycles which cancel particular parts of the 
spectrum for the ESR-COSY and ESR-SECSY pulse sequences. In particular we 
show how to simultaneously eliminate axial peaks and effects of incomplete image 
rejection, in order to focus on the interesting parts of the spectrum, which contain 
important information on the nuclear modulation. We also show how to retain only 
axial peaks for measuring Ti . It is shown that quadrature detection enables one to 
enhance the selectivity of phase cycling by a simple method of spectral processing. 
Both the various phase cycles and the new way of spectral processing can be applied, 
of course, also to heteronuclear NMR. Several computed lineshapes for ESR-COSY 
and ESR-SECSY are then presented, demonstrating the kinds of information that can 
be obtained with these techniques in systems with significant nuclear modulation. It 
is evident, both from the single crystal spectra and from the polycrystalline spectra. 
that when nuclear modulation gives rise to spectra which contain nontrivial informa- 
tion on molecular structure, the 2D techniques give more detailed information on 
the structure of the sample. 

We then treat in a similar way the 2D ELDOR sequence and some of its variants, 
including the addition of a refocusing ?r pulse, on systems with nuclear modulation, 
and simulated lineshapes are presented. The results show the potential of the method 
for investigating structure, and also demonstrate the potential of some new phase 
cycles together with the new way of data processing. In particular it is shown how 
simple data processing after the collection of the phase cycled signals can be used to 
facilitate the distinction between coherent cross peaks, resulting from nuclear modu- 
lation, and exchange cross peaks. A short summary and a discussion are finally given. 

GENERAL FORMALISM 

Calculationfor the rigid limit. In order to calculate the ESR signal one has to follow 
the evolution of the density matrix p, governed by the equation (in angular frequency 
units) (23-25): 

$ P = -iI*(t), p(t)1 - Up(t) - pdt)). 

The difference between the time-dependent density matrix and the equilibrium den- 
sity matrix p. is denoted as x(t) = p(t) - po, yEp( t) is the spin Hamiltonian, and I’ is 
a relaxation superoperator. 

The relevant Hamiltonian between pulses is the internal Hamiltonian &in,. In the 
present calculations we assume for convenience that the anisotropic part of the K 
tensor is axially symmetric. Therefore tii,t is, in the rotating frame. 
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where, in angular frequency units, 
[21 

131 

includes the Zeeman terms and the isotropic hyperfine couplings, and 

includes the anisotropic parts of the g and hyperhne tensors. In these equations gis 
the isotropic part of the g tensor, w,i is the nuclear Larmor frequency for nucleus i, D 
denotes the Euler angles which describe the orientation of the g tensor with respect 
to the static magnetic field, whereas Qi denotes the orientations ofthe electron-nuclear 
vectors with respect to the magnetic field. The following definitions are used: 

For nuclei with Ia 1, the internal Hamiltonian includes, in general, also a quadru- 
pole term, given for the ith nucleus by 

e%$Qi = DQiCBz,,( Cli)(I~i - 31i(Ii + 1))~ if-51 
where (26) 

D, = 3e2qQi 
41j(2Zi - 1)h . 

As is often assumed, the quadrupolar term will be regarded here for convenience as 
only a small perturbation in the internal Hamiltonian. 

For a polycrystalline sample the signal has to be averaged over orientations. If slow 
rotational diffusion is present, the calculation procedure is more involved (23, 25, 
27,28), but most of our considerations in the present work assume the rigid limit. 

The microwave pulses are assumed for simplicity to be sufficiently strong, so that 
the irradiation Hamiltonian satisfies the requirement ; 9 s&t - g( ,8, Ho/ h. ) S, . Thus 
during each pulse the Hamiltonian can be approximated as 

&a@ = 2 = w,(&c0s(~) + S,sin(4)). 181 
Here 4 is the phase of the pulse, and its tipping angle is 8 = wltP, where tp is the 
duration of the pulse. 

A phenomenological relaxation model is assumed here, with angle-independent 
T, and T2. Relaxation during pulses is neglected. Free evolution is then described by 
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5 X(t) = -i[+int, X(t)] - rX(f) z r’X(t>3 

where, in the basis Of &in,, 

rb,k[ = b&j/ 

( 
-iWij - 6, f - ( 1 - 61,) + 

I 2 1 

with wO the transition frequency. Equation [ 91 is readily solved by 

x(fo + t>ij = eX”~x(fo)ip 

where X,, = I’: ,,,,. During each pulse, the density matrix evolves according to 

2 p(t) = -i[k p(t)1 

which leads to (29) 

P(to + fp) = e-i~s~e-;~s~eimSzp(tO)e-imS--eiHS\ul~S: 

using the standard phase convention (24). 
Equations [ 111 and [ 13 ] can be used for the respective parts of the pulse sequence. 

The expressions are somewhat simplified by the fact that e’+‘z commutes with I’, even 
if some relaxation processes are present (30)) since we neglect nonsecular terms; this 
will be considered below in greater detail. Perfect spectral coverage is assumed here 
for simplicity. If the spectrum is not uniformly irradiated (as is often the case) the 
spectra may be corrected by the method explained by Gorcester and Freed ( 19). 

In order to analyze the lineshape by its components one has to separate terms 
which differ in their dependence on the pulse phases, and work in the basis of the 
internal Hamiltonian. We can discuss both objectives on the basis of Mims’ represen- 
tation of such operators, which was originally used for cases with nuclear modulation 
but with zero phases and standard tipping angles of the pulses (2,8). 

For one electron with spin S = 4 interacting with one or more nuclei, the relevant 
Hilbert space is a tensor product of the Hilbert spaces of the electronic spin and the 
nuclear spins, so the matrix of each operator in the 1 SzZz> basis is composed of four 
submatrices. Each of the submatrices can be regarded as operating in a reduced Hil- 
bet-t space, defined just by the nuclear spin functions. An element of a submatrix 
between states ) k) , 11) of the full Hilbert space can thus be regarded as an element 
between the corresponding states I k’) , I I’) of the reduced Hilbert space. If the free 
Hamiltonian %?i”, is diagonalized by 

(where (Y and /3 refer to the S, = t and - 1 subspaces, respectively), then we define M 
= TLT,. Choosing an initial condition of p. a S,, which corresponds to the high- 
temperature approximation for equilibrium, the ESR signal of a two-pulse sequence. 
described schematically as ( 0, ,$, ) - 7 ,-- ( &, & ) - TV, depends upon 
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The premultiplying factors in this sum are equal to 

(2) _ (a) (~1 - - ~ei6~sin(8,)( 1 + cos(02)) 

(b) (~2 
(2) _ i id 1 _ 

--e 2( 
2 

cos(8,))sin(f12) 

(cl a3 (2) = i ei(2~2-@l)sin(t9i)( 1 - cos(&)) 

(d) pi” = - f e’%in(&). [I61 

[I51 

In the next section, each of these prefactors will appear in a more general form, appro- 
priate when phase cycling is performed. The time-dependent terms in the signal are 

(4 6 (2) = C exjc'2exji'l ) M.,., 1 2 
I/ 

l j 

(b) a2 
(2) = e-',/T, 2 @ii'2 1 Miyf 1 2 

(cl a3 (*) = 2 exjt’2&f lM.,.,MI,k,Mk,l,Mt. 
I/ 1’1’ 

ijkl 

(d) b:2’ = C exlir2 1 Miyf 1 2. 
ij 

1171 

In these summations the indices i, k denote states with m = S, = f and j, I denote 
states with m = -4. The primes indicate that M operates only on the nuclear spins, 
being defined only in the restricted, dI -dimensional space of the nuclear spin func- 
tions. The basis states chosen for the full space are those which diagonalize JEC&, 
which are products of electronic spin functions and nuclear spin functions. They are 
assumed to be ordered in the way implied by Eq. [ 141, so the indices of states in the 
restricted (nuclear) space, which are indicated by primes, are related to the indices 
in the full Hilbert space by 

i’ = i, k’ = k, j’=j-d,, 1’ = l- d,, 1181 

where dI is the dimension of the restricted Hilbert space, which is 21+ 1 for a single 
nucleus. The time intervals T, , 72 are not necessarily identical with the two indepen- 
dent time variables in the experiment, which are denoted as t, , t2. For example, in 
ESR-COSY 71 = t, and r2 = t2 but in ESR-SECSY 71 = t, and r2 = t, + t2. 

It was shown by Mims that when several nuclei interact with the electron, the signal 
is a product of the individual signals that would be obtained if each of the nuclei were 
the only nucleus to interact with the electron (2). This is because M is a direct product 
of appropriate matrices. In our case, this rule applies separately to each of the summa- 
tions in Eq. [ 17 1, and not to the whole signal such as in Eq. [ 15 ] (as noted in a more 
restricted context by Dikanov et al. (8)). Thus, each of these summations has to be 
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TABLE 1 

Coherence Orders in a Two-Pulse Sequence 

calculated for the system electron-nucleus for each of the nuclei, and then, for exam- 
ple. the product 

i 

with the index j running over the nuclei, replaces the simple term for a\‘), and the 
same is done for the other terms. In this product, the term a(,fj) contains the informa- 
tion about the orientation of the electron-nucleusj vector with respect to the molecu- 
lar coordinate system. The form of Eq. [ 15 ] is also convenient for a second reason. If 
a phase cycle is applied, we do not have to calculate the whole signal repeatedly- 
only the prefactors have to be summed over, as will be done in the following sections. 

Table 1 characterizes the individual summations in Eq. [ 171 by the quantum order 
of the transitions which each of them involves in the first time period. Since the mea- 
sured signal involves transitions with WZj - mj = - 1, the Fourier transformed trans- 
verse interference term A, = alal includes in ESR-COSY only autopeaks on the “pos- 
itive diagonal” ( wI = w2). On the other hand, the “echo term” A3 = cy3a3 includes 
peaks on the “negative diagonal” ( w I = - o2 ) as well as an array of cross peaks which 
is symmetrical around the negative diagonal. Each frequency wji = -Im( Aji) (in the 
o2 domain) has cross peaks with -a& (in wI domain) for all w{k. The sum of B, = P,b, 
and A2 = a! ,a1 represents longitudinal magnetization which relaxed back from the X- 
y plane to the z direction during the first time interval, 7,, and was then rotated by 
the second pulse into the transverse plane. In the doubly Fourier transformed two- 
dimensional spectrum determined by 

(S+)h, w2) = 
s s 

mdt, m dt2e-iu~‘~ e-iw2f2( S,.)( t, , t2) r201 
0 0 

these two terms will give rise to axial peaks, on the wi = 0 axis. In a polycrystalline 
sample, the signal in Eq. [ 201 has to be averaged over all orientations of a molecule- 
fixed coordinate system with respect to the laboratory coordinate system, delined by 
the direction of the static magnetic field and the direction of microwave irradiation. 

If the second time interval, r2, is not varied independently of 71 the directions of 
the axes and diagonals will of course be changed. For example, in ESR-SECSY, in 
which T, = t , and 72 = t , + t2 ( t , and t2 are varied independently), the line of the A, 
peaks is rotated to the line o , = 2w2, the line of the axial peaks is rotated to the positive 
diagonal, and the array of peaks of A3 is rotated to the wl = 0 axis. This means that 
the A3 term is the one responsible for the echo, if we do the echo experiment with r2 
= T, , and inhomogeneous broadening occurs. The frequencies and line intensities 
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TABLE 2 

Coherence Orders in a Three-Pulse Sequence 

ANT21 -I 0 I 

derived in that case from a$*’ are the same as in Mims’ formulas for the spin-echo 
modulation (2). The frequency doubling along the o, axis results from our definition 
of tl, which corresponds to the convention in electron spin-echo experiments. The 
apparent doubling is avoided if one defines T , = t,/2, r2 = t, /2 + t2, as is commonly 
done in NMR (24). Unlike in ESR-COSY, here the off-diagonal peaks for each Wji 
(in the w2 domain) are with Wji - w/k (in the aI domain) for all w/k. 

If the sequence consists of three pulses, schematically given as ( 19, , & )- 7 1- ( 02, 
@2)-~2-(63, &)-T~, the signal is 

($ + i&y)(3) = ; aj3)aj3) + ;: p;3’@’ + y(13)p. [211 
j=l j=l 

The prefactors and the time-dependent sums are listed in the Appendix. We present 
here only the two summations that are important in 2D ELDOR: 

(3) _ 
a4 -  2 eAji73( &2e’,k’l + exki’2e~U’I)~i~,~~,k,~k,,,~~,i, 

ijkl 

(3) _ 
a6 -  2 $ji’3( &2exkf 1 -f- exki72exkf l)Mi’j,Mf’k,Mk,l,M:,i, [=I 

tjkt 

The transverse terms are, in the present notation, A,, A,, A3, and A9. It should be 
noted that, unlike in the absence of nuclear modulation, most of the transverse terms 
(A7, A3, and A9) include off-diagonal peaks, interfering with those of the “2D 
ELDOR terms” A4 and A6. Only A, does not have any cross peaks. The ax& terms 
are in the present notation A2 + B1 and A8 + B3, while A5, B2, and C, are the axial, 
terms. All these components of the three-pulse ESR lineshape are discussed below in 
detail for the 2D ELDOR sequence. 

As in the two-pulse case, there are two independent time variables, which are Fou- 
rier transformed. These are often, but not always, identical with 71 and TV. The addi- 
tional time interval in the three-pulse case is regarded as a parameter, but could be 
utilized in a 3D technique. 

As seen previously, if more than one nucleus is present, one has to take the appro- 
priate products for each of the 13 summations a;3 , bj3’, ~1” separately, while phase 
cycles involve only the prefactors. Table 2 characterizes each of the components of 
the signal by the quantum order of the related transitions during the first two time 
intervals. On Fourier transforming the signal, Al, A4, and A7 create peaks on and 
symmetrically around the positive diagonal, A3, Ag, and A9 generate peaks on and 
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symmetrically around the negative diagonal, and all other terms generate axial peaks 
If one measures just the echo for 73 = T , , the term which is observed (in the presence 
of inhomogeneous broadening) is A6, which is in this case the same as the expression 
given by Mims for the stimulated echo experiment ( 2). The axial term A8 + B3 is the 
corresponding echo term for 73 = TV. 

In some cases one may be interested in adding a fourth, refocusing, pulse to avoid 
dead-time problems. It is therefore important to know how the refocused spectrum 
is related to the ordinary 2D ELDOR spectrum. The four-pulse lineshape is generally 
given by the expression 

(S, + is1,,y4’ = C (S, + iSy)ijex,i'4e-i~4'",-"~) 2 @4(“k- “O( vi) jk( 1/4)lip$), [231 
b kl 

where pt3) is the density matrix just before the fourth pulse and V, = ei8dSx. If the 
fourth pulse has a tipping angle of a, then the important terms in the lineshape are 

In the three-pulse sequence, A4 included for each frequency wil only cross peaks 
with frequencies wjk or W/i, i.e., frequencies which had one level in common with it. 
After the refocusing pulse, cross peaks appear with frequencies wrk or wlS, which do 
not necessarily have any level in common with aji. In A6, on the other hand, a full 
array of cross peaks existed already after three pulses, so the fourth pulse is not ex- 
pected to significantly affect the form of this part of the spectrum. This different be- 
havior of the two spectral terms is manifested in simulated results presented below. 

Calculation with stochastic processes. So far relaxation has been included only in 
a phenomenological manner. In practice one is often concerned with nontrivial 
effects of relaxation processes. In one type of stochastic process the spin probe has N 
different sites, differing by their spin Hamiltonians (23, 31-34), and a random ex- 
change process transfers spins between the different sites (23, 25). Another type is 
rotational diffusion, isotropic or anisotropic, which involves a continuous range of 
orientations with respect to the magnetic field, which are the “sites” in this case (23, 
25, 27). In both types of processes, the m value of the electronic spin functions is 
unaffected by the random exchange or diffusion. In Heisenberg exchange, the total 
SZ value of the two electrons is unaffected by the process, so the same situation holds 
( 35, 36). We shall outline here the way in which the lineshape calculation is modified 
when stochastic processes are included. In particular we shall show that one cannot 
separate coherent from incoherent cross peaks without resorting to methods which 
involve either many repetitions of the basic experiment with random changes in the 
mixing time or decreasing the resolution (37). 

In each of these cases, the superoperator I” of Eq. [ 91 may be diagonalized, so that 

(er’%],kl = 2 @rj,mneXmn’@$kl, [253 
mn 

where X,, = A,,?,, are the eigenvalues of I”, and the columns of 0 are the eigenvec- 
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tors of I”. In general, this expansion of the time-dependent exponents implies the 
appearance of exchange cross peaks. Of particular interest are the Al term for ESR- 
COSY and A, for 2D ELDOR, the only terms in the respective spectra which lead 
just to autopeaks in the absence of exchange. 

Consider first the case of N-site jumps. In that case, the equation of motion for the 
density matrix is (omitting TI, T, terms which could result from other relaxation 
processes) (38) 

d 
dtp 

(0 = i[p(O, &CO] - 2 riiP(j). 1261 
0 

For the simple case of N = 2, the jump matrix is given by (25) 

r=I l -1 7 ( 1 -1 1 * v71 

The relevant Liouville space for N-site exchange is a direct sum of the Liouville spaces 
of the Nindividual sites (39,&J). Its basis states may be denoted as ( i’“‘) (j(‘) I , where 
y1 is the site index and 1 i’“‘), ] j(‘)) are basis states of the Hilbert space for site n, 
assumed to diagonalize the Hamiltonian of that site. It is convenient to order the 
basis states so that for each ( i, j) all y1 values are scanned before changing ( i , j) : 

li(‘))(j(‘)l, li’2’)(j’2’l,. . .) IF’) (p-)1, Ii’(‘))(j’(‘)l,. . . . 1281 
Since there are 2 d, X 2 dl different Liouville space vectors for each site, the superma- 
trix I now consists of, 2 d, X 2 d, blocks along its diagonal, each block being of dimen- 
sion N X N. 

The ESR signal for such a system is an average over the signal resulting from all N 
sites. Since the exchange process does not change the electronic m value, I’;,, Z 0 
only for WZi - mj = mk - ml, and the same condition is required in order to have @ij,k, 
Z 0 or O,$ Z 0 (30). Using these facts it is easy to show that for a two-pulse sequence: 

A, = - +l(O,)( 1 + co~(8~)e’@l C 2 eAYr~eAPrl 
i j mnkpr 

x j$~!&$)~$5;) Q,~,~~,P)~~~~~)Q,~,~~~,~). [ 29 1 

[For each 0 operator in Eq. [ 291, the first two subscripts are related to the first super- 
script, and the last two are related to the second superscript]. 

For each index pair (ij), the contribution to the summation in al is therefore 
(omitting for simplicity the i,j subscripts) 

2 eXcn)r,eXcm)r,M(k)Mt(r)O(k,n)e-l(m,r) 2 @-l(n,a)@f~m) 

mnkr 

= ; eX(“)r*eXw ,M(k)Mt(r)Q(k,n)e-l(n,r) - [301 
nkr 

Thus even in the presence of N-site exchange, A, has only autopeaks, so that only in 
the A3 term, which includes coherent cross peaks, will exchange cross peaks also ap- 
pear. Phase cycling can at most isolate a term, like Ai or A3, which has a distinct 
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phase factor, but cannot extract a specific part out of such a term. It is therefore 
impossible to separate coherent from incoherent cross peaks in ESR-COSY on such 
an exchanging system just by means of phase cycling. The result found here applies 
also to A, of a three-pulse sequence, so that also for 2D ELDOR the desired separation 
cannot be obtained for N-site exchange. As explained above, this conclusion applies 
to Heisenberg exchange as well. 

For rotational diffusion one has to expand the density matrix and the Hamiltonian 
in eigenfunctions of the stochastic superoperator I’, which are Wigner’s rotation ma- 
trices (25). Equation [ 91 is then transformed to a similar equation for the expansion 
coefficients, in which Eq. [ 301 could still be used, provided we truncate the infinite 
set of equations at some point (25, 27). Thus the same conclusion, concerning the 
absence of exchange cross peaks in A i , is also valid here. 

Although the two types of cross peaks cannot be separated, they can be distin- 
guished by their temperature dependence and field dependence. For sufficiently low 
temperatures, exchange cross peaks would have very low intensities, so that nuclear 
modulation would dominate away from the main diagonal. On the other hand, a 
significant change in the nuclear Zeeman terms, which can be caused by a corre- 
sponding change in the static magnetic field, will have a marked effect on the intensity 
of nuclear modulation. The intensity of exchange cross peaks is practically indepen- 
dent of the external field, as long as the magnitude of the change in electronic Zeeman 
interaction, which is affected by the jump process, is not the largest part of the internal 
Hamiltonian. 

In addition to these two methods, phase cycling can also be helpful in simplifying 
the problem of separating coherent effects from exchange effects. As noted in the 
previous subsection, in the absence of exchange the A4 spectral term in 2D ELDOR 
has only some off-diagonal peaks, unlike A6 which has a full array of offdiagonal 
peaks. If an exchange process is present, one may follow the same steps which led to 
Eq. [ 29 ] to obtain for A4 : 

Thus ~1:) has exchange cross peaks with ~2’ and w$‘, but not with frequencies 
which have no index in common with it. Therefore, A4 not only has a limited array 
of coherent cross peaks, but also has (at different points in the two-dimensional 
spectrum) a limited array of incoherent cross peaks. In the same manner, A6 has not 
only a full array of coherent cross peaks, but also a full array of exchange cross peaks. 
This means that if one selects the spectral term A4, in ways that will be shown here, 
the spectrum will be simpler than the ordinary 2D ELDOR spectrum, and it will 
therefore be easier to disentangle the exchange part from the spectrum. 
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PHASE CYCLING FOR TWO-PULSE SEQUENCES 

Theory. The lineshape formulas given above determine the type of peaks that are 
observed in specific experiments. For example, in the spin-echo experiment, in which 
8r = 7r/2, & = R, and 6, = & = 0 the only nonzero prefactor in Eq. [15] is tiy), so 
that only A3 is observed. Choosing r2 = 7l this is reduced to the standard version of 
the spin-echo spectrum. 

We shall now investigate phase-cycling effects, focusing on sequences with: 8, = ti2 
= r/2, in which the prefactors of Eq. [ 161 are 

1321 

(the “( 2)” superscript is dropped from now on). The two axial terms can then be 
combined to the familiar expression 

A,+B, =a2(a2-b,)= -ie’4(1 -e-71’Tl)Cexiir21~i,j,(2. I331 

Selection of particular parts of the signal can be achieved in general by applying a 
phase cycle to the pulses, and possibly also to the receiver (24, 41) . 

If the complex signal is written as a + ib, there are four ways of entering it into the 
“real” and “imaginary” buffers of the register, RegR (memory address 1 or 3) and 
Reg, (memory address 2 or 4) : adding-RegR = a, Reg, = b; subtracting-Reg, 
= -a, Reg, = -b; interchanging real and imaginary parts after changing the sign of 
b-RegR = -b, Reg, = a; or after changing the sign of a-Reg, = b, Reg, = -a. 
These four operations are equivalent to multiplying the signal byfk = ei@’ where the 
receiver phase 4R is equal to 0, a, a/2, or 3?r/2 (in this order), and they also corre- 
spond, for example, to steps 1, 3,4, and 2 (in this order) in each of the phase cycles 
in Tables 3-5. Given a set of factors fk, a prefactor, which had the form (Y 
= Kei(p1’1+‘2’2) for a single-pulse sequence, becomes for the phase cycle 

(k) 
cy = K c e’@R @@IQ, (k’+~2dJk’) E K 2 fkei(fi,6:k)+r2b:ki)s I341 

k k 

Specifically, 

aI = - $ C fkei9\“‘, 

k 

[351 

For our purpose, it is immaterial whether the “receiver factors” fk are created by 
cycling the receiver phase or by manipulating the data in the computer. We shall 
consider here only two simple cycles of these receiver factors, focusing on the various 
phase cycles of the pulses that are useful with each of them. 

In Table 3a the eight-step phase cycle used by Gorcester and Freed for ESR-COSY 
is listed (19). The values of the receiver factors and the “memory addresses” are 
based on those given for the four-step CYCLOPS by Hoult and Richards (42)) differ- 
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TABLE 3 

Phase Cycles for ESR-COSY 

Phases Memory addres& 

Phase cycle Step $1 $2 1 2 3 4 Eliminates 

(4 I x .x 1 2 - 
2 J Y 2 -1 (Nonselective! 
3 -X -X -I -2 
4 -.t -.Y -2 I 
5 J Y -1 -2 
6 -x Y -2 1 
7 -.I’ -x I 2 
x x -J 2 -1 

(b) I x x 1 2 .4xial terms 
2 Y Y 2 -1 
3 -x x -I -2 
4 -.v 4 -2 1 
5 .1 X -. I -2 
6 -x Y -. 2 1 
I -J X I 2 
x x !’ 2 -1 

(c) I x x 1 2 Nonaxial terms 
2 I Y 2 -I 
3 .k --x -1 -2 
4 Y -Y -2 1 

’ The contents of memory addresses 1 and 2 forms the real and imaginary parts respectively of s’, while 
addresses 3 and 4 give the real and imaginary parts of s”. 

’ In addition to the phase cycling, the signals, s’, s” may be combined using Eq. [39] or Eq. [41] (see 
text). 

ing from those of Gorcester and Freed. The reason is that in the latter work the phase 
convention was the opposite of the standard one (see Eq. [ 131 in the present work), 
and their receiver factors were modified accordingly. The second half of the eight- 
step sequence is almost a repetition of the first half, except that 6, is advanced by 
x / 2 and, in our phase convention, the phases of the receiver factors are inverted. This 
doubling of the CYCLOPS sequence is useful for additional manipulation of the 
signal, as will now be explained. 

In the special case of no nuclear modulation and no phase cycling. the ESR-COSY 
signal is (cf. Eqs. [ 15]-[ 171) 

S’ = - -!j C eA,~r21m(eAjiTI)~i,,, - f ( 1 - eeTIiTl) C eA,i62~,i. 1361 
GJ ‘.J 

and upon advancing the phase of the first pulse by 7r / 2, the corresponding signal is 

,‘j”’ = - k c eAjir~Re(eAj~‘~)~i,J, - f ( 1 - ~.-‘I/~I) C eh,t72di,,,. [371 
LJ i.J 

These expressions are similar to Eqs. [ 331 and [ 341 of Ref. ( 19)) with a minor correc- 
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TABLE 4 

Eliminating Transverse and Axial Terms in 2D ELDOR 

Phases Memory addres@ 

Phase cycle step $1 62 $3 1 2 3 4 

(4 1 
2 

(b) 

3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

X 

Y 
X 

Y 
X 

Y 
X 

Y 
Y 

--x 

Y 
-X 

Y 
-X 

Y 
-X 

X 

Y 
X 

Y 
-Y 

X 

-Y 
X 

Y 
-X 

Y 
-X 

X 

Y 
X 

Y 

X 

Y 
X 

Y 
--x 

-Y 
--x 

-Y 
X 

Y 
X 

Y 
-X 

-Y 
-X 

-Y 

-Y 
X 

-Y 
X 

X 

Y 
X 

Y 
-Y 

X 

-Y 
X 

X 

Y 
X 

Y 

X 

Y 
-X 

-Y 
-X 

-Y 
X 

Y 
X 

Y 
--x 

-Y 
-X 

-Y 
X 

Y 

X 

Y 
-X 

-Y 
--x 

-Y 
X 

Y 
X 

Y 
-X 

-Y 
--x 

-Y 
X 

Y 

1 
2 

-1 
-2 

1 
2 

-1 
-2 

1 
2 

-1 
-2 

1 
2 

-1 
-2 

2 
-1 
-2 

1 
2 

-1 
-2 

1 
-1 
-2 

I 
2 

-1 
-2 

1 
2 

2 
-1 
-2 

1 
2 

-1 
-2 

1 
-1 
-2 

1 
2 

-1 
-2 

1 
2 

-2 
1 
2 

-1 
-2 

1 
2 

-1 

-2 
1 
2 

-I 
-2 

2 
-1 

’ The contents of memory addresses I and 2 forms the real and imaginary parts respectively of s’, while 
addresses 3 and 4 give the real and imaginary parts of s”. 

*In addition to the phase cycling, the signals s’, s” may be combined using Eq. [39] or Eq. [41] (see 
text). 

tion (Re( . . . ), Im ( . . . ) should be interchanged in their equations) and with the addi- 
tion of the axial terms. In terms of the register, the “real” and “imaginary” buffers 
Reg, and Regl are the real and imaginary parts, respectively, of s’ (if the signal is 
collected in memory addresses 1, 2) or S” (if the signal is collected in memory ad- 
dresses 3,4). 

More generally we denote by A: the components of s’, and by A 7 the components 
of S”. With the phase cycle 3a, all three terms (A,, A3, and A2 + B, ) are present. 
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TABLE 5 

Selecting AxialM Terms in 2D ELDOR 

Phases Address” 

Phase cycle Step 41 42 43 1 2 

(a) 1 X x .r 1 ‘2 
2 J Y J’ 2 -I 
3 x .Y --.Y -I 7 
4 Y J’ -,l .- 2 I 
5 X -X s 1 I! 
6 Y -y J 2 -1 
1 x -.x --.r -1 1 
8 Y -2 -J -2 1 

(b) 1 X Y .Y 1 1 
2 Y -x J 2 -; 
3 X J’ -Y -1 -3 
4 Y -x -J’ -2 I 
5 1 .r .x 1 I! 
6 -x J J’ 2 .- I 
7 Y x --x -. I -2 
8 -X Y -J’ -2 I 

’ The contents of memory addresses 1 and 2 forms the real and imaginary parts respectively of s’. 

Using this phase cycle there is a simple relation between the signals registered in the 
two sets of memory addresses 

A’; = -i/l’,, (A; + B;) = -(A$ + B;), A; = i-4;. [381 

The two parts of phase cycle 3b are related to each other as the two parts of cycle 3a, 
so Eq. [ 381 also applies to 3b, although the axial term A2 + Br vanishes in this case, 
and the equation for this term becomes trivial. On the basis of the quadrature combi- 
nation that was developed in NMR for obtaining pure absorption lineshapes ( 43,44 ) 
Gorcester and Freed suggested forming the combination 

S, = Re(S’) + iRe(S’) 1391 

after Fourier transforming t2 and before Fourier transforming tl ( 18, 19). For ESR- 
COSY, this is equivalent to taking, when all spectral terms are present, 

S, = A; + (1 - i)Re(A’, + II\) + A$*. [401 

This expression remains valid when some terms vanish due to phase cycling, as in 
the case of phase cycle 3b. Because this combination is done between the two Fourier 
transformations, the complex conjugation of A3 changes the sign of the frequencies 
in the w1 domain but not in the w2 domain. This has the effect of rotating the peak 
array of A; from the negative diagonal to the positive diagonal, while A’, remains 
along the positive diagonal, and the axial peaks are not significantly af5zcte.d. Baseline 
subtraction is then needed to eliminate axial peaks, and Al and A3 remain unsepa- 
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rated. They can be separated, however, by combining the signals in one of the two 
following ways: 

SC+ = s’ + is” or SC-=S-is. [411 

In the present case, this gives 

s,, = 2A; + (1 - i)(Ai + B;) 

and 

SC- = (1 - i)(A$ + B’,) + 2A;. 1421 

Again, these expressions are also valid when part of the terms vanish due to phase 
cycling. The axial peaks still have to be eliminated directly by phase cycling, but 
either A, or A3 is exactly canceled by these combinations. Thus quadrature detection 
enables one to get greater spectral selectivity. If inhomogeneous broadening is pres- 
ent, the effects of nuclear modulation are maximized in SC- and minimized in Sc+ . 
This is because So- is the “echo term,” whereas SC+ is the “FID term.” Thus collect- 
ing both S’ and S” and then calculating S c+ and Sc- should be very useful when 
exchange cross peaks are also present. If SC- is used one may get A3 in the familiar 
location, along the main diagonal, by taking the complex conjugate of SC- after the 
Fourier transform on t2 and before the transform on t, . This is the actual procedure 
that we employed in the ESR-COSY and 2D ELDOR (but not ESR-SECSY) compu- 
tations done with the SC- combination. 

We have carried out a systematic computer search for phase cycles which eliminate 
axial peaks with the same receiver factors as CYCLOPS. A typical cycle which meets 
these requirements is given in Table 3b. Instead of incrementing the 0, r/2 phases of 
both pulses by r, only the phase of the first pulse is incremented in this manner. The 
result is that the axial terms are canceled together with DC offsets which may distort 
the FIDs. Also, the full effect of CYCLOPS is retained. For ESR-SECSY experiments, 
the selection of specific parts of the spectrum is done in exactly the same way as for 
ESR-COSY. If one wants to measure Ti with ESR-COSY, one needs phase cycles 
which select just A2 + Bi by making (Y~ = 1y3 = 0. This can be accomplished using the 
phase cycle of Table 3c. 

Results of simulations. A few examples will now be given in order to demonstrate 
potential applications of the phase cycling and spectral processing methods to systems 
which exhibit nuclear modulation. All the lineshapes to be presented are absolute 
value lineshapes in the two-frequency domain, as in Eq. [20]. For convenience in 
comparison with experimental results, the calculation was done by FFT of the time- 
domain spectrum, with 64 values of tl and 64 values of t2 in each case, where the time 
increments are denoted by At, and At2 respectively. 

Figure 1 shows a typical simulated ESR-COSY rigid limit spectrum of a single 
crystal, in which a single proton is coupled to the unpaired electron. The Zeeman 
term corresponds to a magnetic field of 3300 G, and the hyperline parameters were 
chosen as Ali = 6.5 G and A, = -3.25 G, as an example of strong nuclear modulation 
(27). The hyperfme tensor makes an angle of 30“ with the magnetic field. Axial peaks 
were not included in the calculation, which is equivalent either to having infinite T, 
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FIG. 1. ESR-COSY spectra of a single crystal, having one proton coupled to the electron, with the hyper- 
fine tensor oriented at 30” with respect to the magnetic field. The spectra are obtained with (a) S,, (b) S,, . 
and (c) &- (see text). The parameters used are ki= 0, D = 18.2, Y, = 14.0, and F = 0 (all in MHz). The 
time parameters are t’Io) =20,t~‘=130,At,=Sf2=20andT,=500(allinns). 

and using phase cycle 3a or to having any value of T, and using phase cycle 3b. Figure 
la results from the S, spectral combination, giving A, + A3. It contains two strong 
autopeaks due to “allowed” transitions, which are present even when only secular 
hyperfine coupling is present, and weaker “nuclear modulation” autopeaks, due to 
the pseudo-secular part of the hyperfme coupling. In addition to these peaks, which 
are also observed in CW experiments, the nuclear modulation also gives rise to coher- 
ent cross peaks. The location of all these peaks is simply related to the parameters in 
the Hamiltonian. If one writes the Hamiltonian of Eqs. [ 2]- [ 4] for this case as 
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the frequencies w,; in Eq. [ 171 are 

c-+ $(wa - Wa) (“allowed” transitions) 

Ck i(wa + W@) (“forbidden” transitions) 

with the definitions 

[431 

Wal 

[44bl 

Figure 1 b shows the A, component, selected by computing Sc, . Figure 1 c shows 
A3, selected with SC- and “rotated” by complex conjugation, as explained in connec- 
tion with Eq. [ 4 11. Both components have four lines on the diagonal, but with differ- 
ent relative intensities, corresponding to the different expressions in Eq. [ 171. The 
forbidden peaks are weaker in the A3 spectrum. On the other hand, cross peaks appear 
only in A3 and not in A,, corresponding to the fact that in Eq. [ 171 each frequency in 
the w2 domain is connected in A, only with the same frequency in wI domain, whereas 
in A3 it is connected with all frequencies. This results here in the array of 12 cross 
peaks. Even in this simple case the inclusion of Al in S, (Fig. la) causes interference, 
complicating the spectrum somewhat. Note also that the SR spectrum has only half 
the intensity of the sum of the two spectral components, SC+ and Sc- , because of the 
factor of 2 in Eq. [ 42 1. 

Figure 2 shows the ESR-SECSY simulation for the same case. The Sc+ spectrum, 
shown in Fig. 2b, differs from the corresponding ESR-COSY spectrum just in the 
apparent frequency doubling in the wI domain, resulting from our definition oft, . 
The SC- spectrum, on the other hand, is changed by having its diagonal peaks moved 
to the w1 = 0 axis, and its array of cross peaks is “twisted,” because in the w1 domain 
its peaks are located at frequency differences, as explained in the previous section. 
Thus the cross-peak array is now symmetrical with respect to rotation by 180“, rather 
than with respect to reflection along the diagonal. 

For this single-proton case we have from Eqs. [ 15 ]-[ 17 ] that the Sc- ESR-SECSY 
signal is given by 

s = e-(2fl+f~)‘r~ { k+cos( we&) + kLzos(w+t~) 

+ f [COS(w,f, + wA2) + COS(W&* - 0-Q - cos(w-(2t* + t2)) 

+ COS(W,ll + w+l2) + cos(w,t, + w+&) - cos(w+(2t, + l2))l) 

wherek=(w,Bw,~~)~,k,=$l -$+\/I),andw,=(w,fw,)/2. [45] 

The S, spectrum is again half the sum of these two components. The integral of peak 
intensities over w2 for each w, value would give the familiar ESEEM spectrum as a 
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FIG. 2. ESR-SECSY spectra, obtained with (a) S, , ( b ) S 
except that here 2:“’ = 0 and 

Ci,and(c)Sc-forthesamecaseasinFig. I, 
A t, = 12.5 (ns). Notice the doubling of frequencies in the w, domain due to 

our definition oft, 

function of ol. The spectrum of a spin-echo experiment without phase cycling has 
both the A, and the A3 parts, so it should be compared to the S, spectrum. if, however, 
the A3 term is selected in the spin-echo experiment by the method explained here, 
this would remove all the “allowed” peaks, which belong to A,, leaving only the 
“forbidden” peaks in addition to the central peak, which comes from the “auto- 
peaks” of A3. This would make it easier to ascertain whether nuclear modulation is 
present, even without going to two dimensions. 

In a polycrystalline sample, most of the cross peaks are averaged out by the inho- 
mogeneous broadening, as can be seen in Fig. 3, obtained by averaging over 180 
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FIG. 3. (a) SC+ and (b) SC- ESR-COSY spectra, and (c ) SC- ESR-SECSY spectrum of a polycrystalline 
sample of the same molecules as in Fig. I. In (c), t\“’ = 0 and At, = 10 ns. 

orientations of the hyperfine tensor with respect to the magnetic field. Nevertheless, 
some structure remains, which is helpful in studying the effect of nuclear modulation. 
Note that only A3 changes significantly with orientation, so it is this component of 
the spectrum that is interesting both in 1D and in 2D experiments. The sharpness 
of the lines on the diagonal results from the long T2 assumed in the calculation. The 
structure is smoother, and the cross peaks are somewhat stronger, in the ESR-SECSY 
spectrum for this case (Fig. 3~). If several nuclei interact with the electron, the relative 
orientation of their hyperfme tensors gives rise to a spectral structure, most of which 
is averaged out in a polycrystalline sample (the results of these calculations are not 
shown here), but in a single crystal the structure is very informative. 
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i 
I !, I/, 

FIG. 4. SC- ESR-COSY spectra for a single crystal with two protons coupled to the electron (parameters 
as in Fig. 3, except that At, = At2 = 12.5 ns). The electron-nucleus vector for one proton makes an angle 
of 30” with the magnetic field, and for the other proton, 30” + 8, where /3 is indicated in the figure. (a I d 
== 45”, (b) B = 60”, (c) 0 = 90”, (d) fl= 109.5”. 

In Fig. 4 the ESR-COSY spectra, in which SC- is selected, are presented for a single 
crystal with two protons coupled to the electron, with four different relative orienta- 
tions of the two hyperline tensors. The detailed lineshapes are sufficiently different to 
allow an unambiguous determination of the relative angle. The same is true for 
the corresponding ESR-SECSY spectra, in Fig. 5. But the simulated (Fourier 
transformed) ESEEM spectra for the same cases, shown in Fig. 6, are not sufficiently 
detailed for such a clear determination. The S,- ESEEM spectra (with no phase 
cycling) were computed here, in order to have a proper comparison with Figs. 4 
and 5. 

When a large number of nuclei interact with the electron, the lineshape is of course 
more complicated. In Fig. 7 simulated ESR-SECSY lineshapes are presented for a 
polycrystalline sample of a hypothetical molecule with one nitrogen nucleus, as- 
sumed here to be 14N, and 12 protons. These are the same nuclei as in the nitroxide 
Tempone, but the hyperline interactions of the protons are assumed to be much 
stronger than in Tempone (the same as in the previous figures), to show the cumula- 
tive effects of strong hyperfme interactions of many protons. The nitrogen hyperhne 
parameters were taken to be Al = 32 G, AL = 6 G, and the value of the quadrupole 
constant is chosen as D, = - 1.8 MHz, corresponding to the value found by Dinse et 
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FIG. 5. SC- ESR-SECSY spectra for the same cases as in Fig. 4 (with t :“’ = 0). In the w, domain there is 
a frequency doubling, due to our definition oft, . 

al. (26) (note that our definition differs from theirs by a factor of i ). All protons are 
assumed to have the same hyperhne interaction with the electron, as actually occurs 
in Tempone. For simplicity the proton hyperfme tensors are all taken to be collinear 
with that for the nitrogen nucleus. The lineshapes clearly have some features associ- 
ated with the nuclear modulation due to the protons. The separate presentation of 
A, (using S,, ) and of A3 (using SC- ) is evidently very convenient, because A3 has an 
interesting structure due to nuclear modulation. Note also that with the spectral range 
covered in these simulations, there is for A, some aliasing in the o, domain, which is 
the reason for the appearance of peaks in the upper left corner of Fig. 7a. The A3 
spectrum is shown here from two different angles. In Fig. 7b it is shown parallel to 
the w1 axis, to bring out the different modulation patterns as a function of o1 for each 
value of w2. Figure 7c is the same two-dimensional lineshape, viewed parallel to the 
w2 axis, showing the equivalent of a CW spectrum along the wI = 0 axis. 

The extra resolution one obtains from the ESR-SECSY experiment is due to the 
fact that it provides the nuclear modulation patterns for each position in the ESR 
spectrum from a polycrystalline sample. To the extent that each position in the spec- 
trum is (at least partially) associated with a particular orientation, one obtains the 
equivalent of “single-crystal-type” nuclear modulations along each slice parallel to 
the w1 axis. This is analogous to the ENDOR technique in polycrystalline samples, 
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where one can obtain a single-crystal-type NMR spectrum by saturating only a small 
region of the ESR spectrum, which corresponds to a particular range of orientations 
( 45). The advantage of the present method is that all the data are collected at once, 
with no need to sweep over RF frequencies. 

In Fig. 8 similar spectra are presented for “PD-Tempone,” with the same assump- 
tions about relative orientations and hyperfme interactions. For the deuterons the 
hyperfine parameters are chosen as All = -0.25 G, Al = 0.07 G, and the quadrupole 
term was neglected. These hyperfine constants are a little more than twice the values 
expected normally (but they actually yield ESEEM similar to those observed experi- 
mentally (28)) and are useful for enhancing the effect of nuclear modulation in the 
present case. In Fig. 8a it is seen that the SC+ spectrum is quite sharp, and its shape 
reflects the nuclear modulation. The Sc- spectrum, on the other hand, presented in 
Fig. 8b, is very broad, which means that for this component of the total lineshape the 
modulation only causes broadening. Again, viewing this graph from a different angle, 
one observes a typical nitroxide spectrum along the w1 = 0 axis (Fig. 8~). The separa- 
tion between the SC+ and SC- components is therefore very useful for extracting infor- 
mation about the modulation. It should be remembered, however, that in ordinary 
Tempone the effect of modulation would be weaker, because for I = 1 the modulation 
is stronger than for I = f (2). An important conclusion from these simulations is that 
there are, for all practical purposes, no 2D coherence peaks from the r4N nucleus. 
Only the deuterons or protons in nitroxides are expected to provide any significant 
coherence peaks. This is also borne out in the study of the three-pulse sequences in 
the next section. 

PHASE CYCLING IN THREE-PULSE SEQUENCES 

Theory. The 2D ELDOR pulse sequence is the ESR version of the NMR 2D ex- 
change pulse sequence (37,46,4 7). The usefulness of 2D ELDOR was demonstrated 
in several recent ESR studies, focusing on exchange cross peaks (18-20. 22). Our 
purpose here is to examine how it can be utilized to study nuclear modulation, and 
also how it can be used to investigate other effects--e.g., exchange effects by suppress- 
ing the influence of nuclear modulation when needed. For 2D ELDOR, o1 = 19~ = 0; 
= K / 2 and then the prefactors are ( dropping the “ ( 3 ) ” superscript ) 

i 
a2=-eL@2= -p, 

4 

a5 = p2 = 0 
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FIG. 6. The Fourier transformed SC- ESEEM spectra for the same cases as in Fig. 4. 

‘ys = _ 4. ei(2@3-92) = - 
4 P3 

[461 

Thus A2 + B, and As + B3 are proportional to ( 1 - e-r1’71). In the case of no 
nuclear modulation, i.e., when M is the unit matrix, the sum of these four terms 
reduces exactly to Eq. [ 35 ] of Gorcester and Freed for the “ax&” terms ( 19)) while 
C, reduces to their Eq. [ 36 ] for the “axial,” terms (in this case, A5 = B2 = 0 if the 
pulses are exactly a/2 pulses). For the special case of no nuclear modulation (and 
no phase cycling), the signal S’ is equal to (cf. Eq. [ 2 1 ] ) 

s’ = f e-r2lT, 2 eA,iT3Re(eA,i’l)6i,j, - i C eAji’3Re(eAj~‘2)Im(eA,~‘I)~,,,, [471 

and the corresponding s” signal, obtained by advancing the phase of the first pulse 
by ~12, is then 

s” = - f e-r21T, z eAd31m(eA,irl)&li, -i C eAjiT3Re(eAji’2)Re(eAji’l)~i~. 1481 
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FIG. 7. (a) Sc, and (b,c) &- ESR-SECSY spectra of a polycrystalline sample with an 14N nucleus and 
I2 ‘H nuclei, all assumed to have hypertine tensors with the same orientation with respect to the magnetic 
field. The parameters for the nitrogen nucleus are (in MHz) Z = 41.1, D = 48.5, VI = 1 .O. F = 14.8, L)Q 
= - 1.8, and for the protons as in Fig. 1. Also, ,y) = 20. t:“’ = 0, A\t, = AtZ = 4. and T2 = 150 (all in ns). 
Note that (b) and (c) show the same 2D spectrum from different viewing directions. The frequency dou- 
bling in the w, domain results from our definition oft, 

In these equations one has to substitute 7, = t, , 72 = T and TV = t2. These expres- 
sions for s’ and S” correspond to the combination of Eqs. [ 261 and [ 27) with Eqs, 
[ 3 l] and [ 32 J of Gorcester and Freed ( 19), except for a minor correction (in their 
Eqs.[31],[32]thefactorsRe(A,(tl)),Im(A,(tl))shouldbeinterchanged). 

Gorcester and Freed suggested two alternative phase cycles, a 16-step cycle and an 
8-step cycle, to cancel the transverse terms (which, in our notation, are A, , .A7. A,. 
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and Ag ) and the axialE terms, which in the present notation are A2 + B, and Ag + B3. 
On the other hand, in addition to the 2D ELDOR terms (here named A4 and Ah) 
their measured signal included also the axialM ( C1 ) peaks. As mentioned above, in 
the general case A5 + B2 would also be part of the axial, contribution to the signal. 
The axial peaks were indirectly eliminated by baseline subtraction. In order to cancel 
these terms exactly different phase cycles would be necessary. 

As in the two-pulse case, using the explicit form of the prefactors (Eq. [ 461) and 
the generalized form taken by each of the prefactors in a phase cycle, 

cr = K c fkei(u,~~k’+rz”~k’+~,~~k’), 1491 
k 

it is straightforward to search for a phase cycle which satisfies particular requirements. 
In Table 4 we present two typical phase cycles that were obtained by a systematic 
computer search, assuming a given Set Of receiver factorsfk. In pIinCiple the COIIIpUter 

search could also include more general choice of receiver factors, but this was not 
needed for the problem considered here. Both phase cycles cancel exactly all the 
transverse, axialE and ax& terms, and retain the 2D ELDOR terms. In the first of 
these (Table 4a) steps l-5 and 9- 12 are taken from the 8-step cycle of Gorcester and 
Freed (converted to our phase convention), which achieves the CYCLOPS image 
rejection together with the cancellation of the transverse and axial, parts of the 
spectrum. The additional steps are required in order to cancel simultaneously also 
the axialw part. The other cycle achieves the same selectivity. 

As in the two-pulse sequence, s’ and s” may be combined to form SR, according 
to Eq. [ 391 above. Using Eq. [ 461 we obtain for the individual terms, ifall are present, 

A’; = -iA;, A$ = -iAh, A’; = -iA; 

A’; = iA>, A: = iAh, A$ = iAb 

A; = -A;, A” = 5 -A’ 
5, 

A; = -A;, 

B’; = -B’,, B; = -B; B’; = -B;, 

c; = -c;. 1501 

As for the two-pulse sequences, this equation remains valid if some of the individual 
terms vanish due to phase cycling. Thus, without phase cycling, the S, combination 
would not affect the terms Al, Ad, and A,, which have peaks on and around the 
positive diagonal, and would complex conjugate the terms Ax, A6, and A9 , which are 
originally on and around the negative diagonal. If the combination S, is formed, as 
usual, between the two Fourier transformations, this rotates these latter terms to the 
positive diagonal. The axial peaks are essentially unaltered. If the Gorcester-Freed 
phase cycling is applied, only A4 (on the positive diagonal and around it), A6 (rotated 
to the positive diagonal and around it), and A5 -t B2 + C, (axial peaks) are present. 
With the phase cycles in Table 4, only A4 and A6 would appear in the spectrum, 
superimposed one on the other. 

If, however, the combination &+ is formed, according to Eq. [ 411 above, then 
As, Ah, and A9 are exactly canceled even without any phase cycling, whereas the 
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FIG. 8. (a) S,, and (b,c) Sc- ESR-SECSY spectra of PDTempone. Parameters are as in Fig. 7, except 
thatforthedeuterons~=-O.l,D=-0.6,v,=2.1,F=O,andD,=O(allinMHz),andin(b)and(c) 
AtI = 20 ns. Note that (b) and (c) refer to different viewing directions of the same 2D spectrum. The 
frequency doubling in the w, domain is due to our definition oft, 

combination SC- similarly excludes A 1, A4, and A,. Hence in the 2D ELDER se- 
quence, with the new phase cycles and with one of the two spectral combinations 
suggested here, only one term---A4 or A 6-survives the data processing. Thus&so for 
three-pulse sequences the use of quadrature detection enables one to separate the two 
spectral terms. Although each of these terms contains coherent cross peaks, so that 
neither of them allows a clean separation of exchange cross-peaks and coherent cross 
peaks, the spectrum is simplified when A4 is selected, as explained previously. Finally, 
if one wants to measure T, through the axialM peaks in the 2D ELDOR experiment. 
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FIG. 9.2D ELDOR spectra for a polycrystailine sample with one proton (same parameters as in Fig. 3, 
with the addition of the mixing time T = 300 ns). 

one has to make all the prefactors, except for q, exactly zero. This can be achieved 
by any of the phase cycles in Table 5. 

Results of simulations. A typical 2D ELDOR spectrum, simulated with the S, 
spectral combination which selects A4 and (after rotation) Ah, is shown in Fig. 9a. 
The sample is taken to be polycrystalline, with just one relevant proton. The corre- 
sponding S,, and SC- spectra, showing A4 and (rotated) A6 separately, are presented 
in Figs. 9b and 9c, respectively. These lineshapes clearly resemble very closely the 
corresponding ESR-COSY lineshapes of Fig. 3, but the existence of a mixing period 
with the parameter 72 = Tdoes not permit a perfect matching with ESR-COSY. The 
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FIG. 10. 2D ELDOR S,+ spectra for a single crystal with two protons (same parameters as in Fig. 9. 
except that Ati = & = 10 ns). The symmetry axes of the two hypetline tensors make angles of 30” and 
120” respectively with the magnetic field direction. (a) Ordinary 2D ELDOR. (b) Stimulated echo 2D 
ELDOR sequence (see text), but this is the “RID term” which continues into the region where the stimu- 
lated echo occurs. (c) Refocused 2D ELDOR (see text). 

similarity between these two types of spectra may be helpful if it is difficult to distin- 
guish in the 2D ELDOR spectrum between cross peaks resulting from nuclear modu- 
lation and those resulting from exchange. The ESR-COSY spectrum for such a sys- 
tem would be related to the “coherent” part of the 2D ELDOR spectrum, and this 
would help to identify the exchange part. 

Figure 10a is the result of a similar computation for a single crystal in which two 
protons, at different orientations, are coupled to the electron. The SC+ combination 
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w 

FIG. 11.2D ELDOR SC- spectra for the same case as in Fig. 10. (a) Ordinary 2D ELDOR. (b) Refocused 
2D ELDOR (see text). 

was used here. Figure 10b results from such a computation for the stimulated echo 
version of 2D ELDOR, which is defined by r1 = ti , r2 = T, and 73 = t, + t2. This 
experiment is the 2D analog of the stimulated echo experiment, just as ESR-SECSY 
is the 2D analog of the ordinary spin-echo method. It is quite similar to Fig. 1Oa 
except for the frequency doubling in vI. In Fig. 1Oc we see the result of a similar 
computation for a four-pulse version of 2D ELDOR. To avoid dead-time problems, 
a fixed delay time and a refocusing x pulse are added, so that the sequence becomes 
(a/2, &)--t&r/2, &)-T-(7r/2, &)-T-(?r, 0)-T + t2. The length of T’ 
is chosen to be similar to a typical instrumental dead-time. The phase of the fourth 
pulse need not be varied, because a perfect ?r pulse is assumed. As expected for the 
&+ spectrum, the four-pulse lineshape is more complicated than the three-pulse 
lineshape of Fig. 1 Oa. If one chooses to use the Sc- combination, however, the four- 
pulse spectrum is quite similar to the three-pulse spectrum, as can be seen in Fig. 11, 
which again corresponds to the qualitative explanation given above. 
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FIG 12. (a) 5’,.+ and (b) S,.. 2D ELDOR spectra for the same system as in Fig. 7. with T = 300 ns. 

In Fig. 12 we show the ordinary 2D ELDOR spectra, simulated with phase cycle 
4a and the SC+ and Sc- spectral combinations, for a system with one nitrogen nucleus 
and 12 protons, with the same parameters as in the ESR-SECSY simulation of Fig. 
7. It is seen that nuclear modulation appears here both in A4 (Fig. 12a) and in Ah 
(Fig. 12b), but it is generally weaker than that which appeared in the ESR-SECSY 
spectra. The spectra can be smoothed by having a shorter T2 relaxation time. These 
spectra show that for 2D ELDOR on such systems one must take into account the 
effects of nuclear modulation in order to simulate the lineshapes correctly. 

The corresponding spectra for PD-Tempone, analogous to the lineshapes in Fig. 
8, are shown in Fig. 13. It is clear that in this case the modulation effects are quite 
small, implying that for nitroxides the 2D ELDOR spectra will not be significantly 
affected by nuclear modulation. 

SUMMARY 

A formalism was developed for computing 2D ESR lineshapes that can be obtained 
with two-pulse or three-pulse sequences, and for some four-pulse sequences, on sys- 
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FIG. 13. (a) SC+ and (b) SC- 2D ELDOR spectra for PD-Tempone, with the same parameters as in Fig. 
8 (except that At, = At* = 5 ns), and with T = 300 ns. 

terns with nuclear modulation. The expressions brought out explicitly the depen- 
dence of each component of the spectrum on the Hamiltonian of the observed moleo 
ular system on the one hand, and on the durations and phases of the pulses on the 
other hand. This allowed us to computerize the search for phase cycles which select 
specific parts of the spectrum. In addition to the phase cycles we showed how to gain 
further selectivity, when quadrature detection is used, with a simple way of spectral 
processing, which does not appear to have been used before. A new phase cycle was 
found, with which one can eliminate in 2D ELDOR all transverse and axial peaks 
and simultaneously achieve complete image rejection. An analogous phase cycle was 
found for ESR-COSY, eliminating axial peaks and achieving image rejection. Ways 
were also found to select in ESR-COSY only the axial term, and in 2D ELDOR only 
the axial, terms, for the purpose of measuring T, . Moreover, it was shown that by 
combining in 2D ELDOR specific phase cycles with the new way of spectral process- 
ing, one could facilitate the distinction between coherent and incoherent cross peaks. 

Simulated spectra were shown for various cases, demonstrating the potential of 2D 
ESR for investigating systems with nuclear modulation. Results were shown for ESR- 
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COSY, ESR-SECSY, and 2D ELDOR in its ordinary version and in two modified 
versions, including one with a fourth refocusing pulse. The computed lineshapes for 
single crystals and for some polycrystalline samples showed that when the spectrum 
contains structural information, the 2D ESR techniques result in more detailed infor- 
mation, in addition to their capability to probe exchange processes. The simulations 
also showed for which cases nuclear modulation does not have an appreciable effect 
on the spectrum, even in the absence of special phase cycling or manipulations of the 
spectra. 

APPENDIX 

In this appendix the explicit formulas will be given for the prefactors and the time 
dependent summations in the various components of the three-pulse ESR signal. The 
prefactors for Eq. [ 2 1 ] are 

(3) 
a1 = - ~Plsin(8,)( 1 + cos(&))( 1 + cos(&)) 

ff2 (3) = ;A( 1 - cos(r?,))sin(&)( 1 + cos(&)) 

(3) _ i a3 --e 
8 

i(2+2-‘p~)sin(0,)( 1 - cos(&))( 1 + cos(0,)) 

(3) _ i a4 --e 
8 

i(b3-62+“I)sin( fI1 )sin( &)sin( 0,) 

a5 (‘) = i e+( 1 - cos(ti,))cos(&)sin(s,) 

(3) _ i ffg --e 
8 

i(b3+02-@l)sin(01)sin(0z)sin(8,) 

(3) 011 =- Le 
8 

‘(2”3-2e2+~l)sin(BI)( 1 - cos(f12))( 1 - cos(0,)) 

(3) _ cyg -- 4 ei(*43-92)( 1 - 
4 

cos(0,))sin(&)( 1 - cos(&)) 

(3) _ i a9 --e 
8 

‘(*+3-@Q)sin(B,)( I + cos(&))( 1 - cos(82)) 

(I’,” = - f e%in( e,)( 1 + cos( 0,)) 

0:” = - i e%os( 02)sin( 0,) 

0:“’ = i ei(23-82)sin( &)( 1 - cos( 19,)) 

(3) _ YI - - i e’“3sin( 0,) 
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and the corresponding time-dependent factors are 

al (3) = C eA~rT3eAjir2eA~~TI ( M.,., I2 
[J 

(3) = e-r,/T, 
a2 2 eA,,‘3eAJl’2 ) Mi7, ( 2 

(3) _ 
a3 - C eAj~7~eA~rT2exk~r~Mi,j~M~~k~Mk~I~M~~i~ 

(3) _ 
a4 

- C exjiT3(exjir2exjkTl + eXki72eXiiTl)Mi~,Mit’k,Mk,l,M:,i, 

a5 
(3) = e -7,/T, e-~2f T, 2 &3 ( Mitjr ( 2 

(3) _ 
a6 

- 2 eAjiT3(&f2&T~ + eXkrT2eXkf I)Mi,,M~,k,Mk,,,M:,i, 

(3) _ 
a7 - z eAji’3exklr2eA~~r,Mi~,Mj’k,Mk~q,~~~~Mp,,,M~~i, 

a8 
(3) = e-T,IT, C eAji’3e”kf2Mi~,M~,~~M~,,~M~,i, 

(3) _ 
a9 

- z eXliT3e~kf2eXklTIMi~,Mit’k,Mk,l,M:,i, 

b13’ = C eA,i’3eA/t’2 ( Mi,j, 1’ 

bc3) = e-72/T, 
2 2 eA,ir3 ( Mi3, I2 

by’ = 2 eAj~‘3eXk/‘2Mi,j,M~,k,Mk,l,M~~i, 

~1~) = ( 1 - ~-‘z/~I) C e'ji'3 1 Mi7, ) *. [521 
In these expressions, the states denoted by i, k, p always belong to the subspace in 

which S, = h, and the states denoted by j, I, q belong to the subspace with S, = -1. 
The primes have the same meaning as in Eqs. [ 171. 

For a single proton, it follows from Eqs. [ 2 11, [ 5 11, and [ 521 that the SC- signal 
obtained from the stimulated echo 2D ELDER (when transversal and axial terms 
are eliminated by phase cycle 4 (a) or 4(b)) contains the decay factor e-(2’l+f2)~ and 
is proportional to 

S = e-T’Tl k+cos( w-t*) + k-cos( w+t2) 

+$[cos(~~2t*+t2))cos(~t2)+cos(~~2t~+t,~)cos(~t2)]] 

+$,-riT2 cos w,(tl + T)+Tt 
I ( 

,)[l -cos(y2t,+t*))] 

+cos(w,(t~+T)+~t2)[l-cos(~(2t,ffr))]] [53] 

with the same notation as that in Eq. [ 45 1. 
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