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The theory of saturation and line widths in the electron spin resonance spectra of dilute 
solutions of free radicals has been extended to include incipient effects of chemical exchange 
and spin-spin or Heisenberg exchange processes as well as the effects of intramolecular 
terms such as the g-tensor, spin-rotational, and electron-nuclear dipolar (END) inter- 
actions. The development is based on an assumption of the statistical independence 
of the exchange and molecular rotational processes and involves combining the Bloch- 
Redfield density matrix treatment with the Kaplan--4lexander exchange formalism. It 
is shown that exchange effects act to average out the differences in widths of components 
of a composite hyperfine line, so that when the exchange frequency is significantly greater 
than any such differences, the composite line may be treated as a simple Lorentzian line 
with an averaged width. In such cases, the esr saturation behavior is again describable 
in terms of a simple Lorentzian and one may average over the degenerate states. This 
result is in contrast to the case when exchange effects are weak, while the END effects 
are important. In an electron-nuclear double resonance (endor) experiment, simple 
averaging over degenerate states and transitions is no longer adequate because of the 
specific selection rules of the radiofrequency-induced nmr transitions, and the appropriate 
modifications are discussed. It is found that a chemical exchange mechanism, in which 
the diamagnetic species are polarized by the radicals under esr saturation, has effects 
identical with Heisenberg exchange on any spectra with well-resolved hyperfine structure. 
They both affect esr saturation parameters as though they yield nuclear-spin transitions 
between all pairs of states for which AMs = 0. However, they do not lead to endor en- 
hancements, but rather are found to diminish the enhancements resulting from other 
processes. If the diamagnetic species remain unpolarized by the radicals under esr satura- 
tion, a situation that does not appear likely, then the exchange would lead to endor en- 
hancements, which, however, could in many cases be distinguished from those induced 
by an END mechanism. The endor experiments of Hyde are discussed and are found to 
agree well with the predictions that the END mechanism is the dominant nuclear spin 
flip process and that exchange effects act to reduce enhancements. Temperature-dependent 
effects on enhancements are also considered. 

I. Introduction “independent molecule” theory, intermolecular effects 
In a previous paper,$ a detailed theoretical analysis such as chemical exchange’ (CE), where an unpaired 

was presented of the saturation behavior of hyperfine 
lines in well-resolved electron Spin I‘eSOnanCe Spectra (1) This study was supported in part by the Advanced Research 
of free radicals in liquids. Projects Agency and a grant from the National Institutes of Health. 

(2) Alfred P. Sloan Foundation Fellow. the general Boltzmann equation for the spin-density (3) J. H. Freed, J .  Chen.  Phys. ,  43, 2312 (1965). References to this 
matrix given by Bloch4 and modified by Redfield’ work are designated by I. 
and Abragama6 Since this theory is essentially an (4) F. Bioch, Phys.  Rev., 102, io4 (1956). 

The analysis was based 
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electron exchanges from free radical to (electronically) 
diamagnetic parent molecule, and also spin-spin or 
Heisenberg exchange (HE)8-’0 between pairs of free 
radicals were not explicitly included. Such intra- 
molecular spin effects as rotational averaging of 
the g tensor and the electron-nuclear dipolar (END) 
interactions were, however, considered in detail,3 
and effects such as spin-rotational interactions11i12 
may also be readily included. 

The emphasis in I was on situations in which nuclear 
spin transitions occur at rates that are significant com- 
pared to electron spin transitions, so that the satura- 
tion effects of the hyperfine lines were interdependent. 
The rather specific selection rules of the END mecha- 
nism leads to predictions that are different from an 
earlier theory of saturation given by Stephen and 
Fraenkel,13*14 who assumed that a multiple (or degener- 
ate) hyperfine line behaves as a simple saturated 
Lorentxian, an assumption which is without funda- 
mental ju~tification.’~ Thus, for a set of completely 
equivalent nuclei, only states of the same total nuclear 
spin quantum number J can interact via the END 
mechanism, so that in general a multiple line is a super- 
position of components with different J values each of 
which saturates differently. Such considerations lead 
immediately to the conclusion that saturation can lead 
to deviations from the theoretically predicted intensity 
ratios of unsaturated hyperfine lines, a phenomenon 
that was investigated experimentally by Schreurs 
and Fraenkel‘G and which the Stephen-Fraenkel 
theory attempted to explain, but with an assumption 
of relatively weak nuclear spin transitions. 

It was also shown in I that steady-state electron- 
nuclear double resonance experiments such as those 
of Hyde and Maki17 are predicted to occur if the lattice- 
induced nuclear spin transitions are comparable to 
the electron spin transitions. Thus in this new tech- 
nique, closely related to saturation effects, the impor- 
tance of nuclear spin transitions in the experimental 
observations is greatly magnified. One can then 
ask the question about the importance of mechanisms 
other than the EXD one in inducing nuclear spin 
flips. It was suggested in I that the CE and HE 
processes might play such a role, and one of the pur- 
poses of the present work is to elucidate their satura- 
tion and endor effects in detail. While their effects 
on unsaturated line widths have received considerable 
theoretical and experimental attentionj7-10 little has 
been said about their saturation effects. We note, 
first of all, that exchange processes will not depend 
directly on the particular nuclear-spin configurations 
of the exchanging molecules, so that their ‘(selection 
rules” will be entirely different from those of the END 

mechanism. One may then expect that the exchange 
processes could be distinguishable by means of their 
detailed effects on esr saturation and endor en- 
hancement. Such a possibility is suggested by more 
recent experiments of Hyde,ls where unusual endor 
effects were observed. We attempt, here, to analyze 
some of these effects in terms of the relative contribu- 
tion of the END and exchange mechanisms. 

The general method adopted in this work is to aug- 
ment the Bloch formulation by introducing a spin- 
exchange expression that was developed by Kaplanlg 
and Alexander.20 

11. Exchange Processes and Relaxation Theory 

by a spin Hamiltonian of the form 
We describe a spin system in the absence of exchange 

fi@(t) = f ig50  + f i@l(t)  + fi4 (2.1) 

where & is the time-independent Hamiltonian given 
in the high-field approximation by 

5 4 0  = B~P~BOS,  - fiC-iJzi~o - ~ ~ ~ , C B ~ S , T , ~  (2.2a) 

where the three terms on the right are, respectively, 
the electron spin and nuclear spin Zeeman terms and 
the isotropic hyperfine interaction, and the notation 
is the same as in I. &(t) includes the perturbations, 
which are randomly modulated by the lattice, leading 
to relaxat,ion effects, while ~ ( t )  gives the interaction 
of spins with the radiation field. Under the assump- 

z i 

~~~ 

(5) A. G. Redfield, IBM J .  Res. DeueEop., 1, 19 (1957); see also 
J. S. Waugh, Ed., “Advances in Magnetic Resonance,” Vol. 1, 
Academic Press, Inc., New York, N. Y., 1965. 
(6) A. Abragam, “The Principles of Nuclear Magnetism,” Oxford 
University Press, London, 1961. 
(7) (a) P. J. Zandstra and S. I. Weissman, J .  Chem. Phys., 35, 757 
(1961); (b) R. L. Ward and S. I. Weissman, J .  Am. Chem. SOC., 79, 
2086 (1957). 
(8) (a) D. Kivelson, J .  Chem. Phys. ,  27, 1087 (1957); (b) D. Kivel- 
son, ibid., 27, 1094 (1960). 
(9) G. E. Pake and T. R. Tuttle, Jr., Phys. Reu. Letters, 3, 423 
(1959). 
(10) J. D. Currin, Phys. Rev., 126, 1995 (1962). 
(11) P. S. Hubbard, ibid., 131, 1155 (1963). 
(12) P. W. Atkins and D. Kivelson, J .  Chem. Phys., 44, 169 (1966). 
(13) hX. J. Stephen and G. K. Fraenkel, ibid., 32, 1435 (1960). 
(14) 31. J. Stephen, ibid., 34, 484 (1961). 
(15) J. H. Freed and G. K. Fraenkel, ibid., 39, 326 (1963). 
(16) (a) J. W. H. Schreurs and G. K. Fraenkel, ibid., 34, 756 (1961); 
(b) J. W. H. Schreurs, G. E. Blomgren, and G. K. Fraenkel, ibid., 32, 
1861 (1960). 
(17) J. 5. Hyde and A. H. Maki, ibid., 40, 3117 (1964). 
(18) J. S. Hyde, ibid., 43, 1806 (1965). 
(19) (a) J. I. KapIan, ibid., 28, 278 (1958); (b) J. I. Kaplan, ibid., 
29, 462 (1958). 
(20) (a) S. Alexander, ibid., 37, 966 (1962); (b) S. Alexander, ibid., 
37, 974 (1962). 
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tion that the hyperfine lines remain well separated 
even under saturation, one obtains the equation of 
motion for the spin-density matrix u 

i = - i [ ~ ~  + e( t ) ,  - - uo) (2.3) 

where r(u  - uo) is a relaxation matrix containing the 
effects of Q,(t)  and is discussed in detail in I. The 
validity of eq 2.3 for well-separated hyperfine lines 
requires that 

(2.4) jreBol, IrtBol, Iysiiil, rC-l >> e ( ~ ,  I r ( u  - ao>l 

as well as a high-temperature approximation 

where uo is the equilibrium density matrix, N is equal 
to the number of eigenstates of Qo and p = f i /kT.  
In  eq 2.4, rc  is a correlation time for the random motions 
modulating Ql(t). 

In  the presence of exchange effects, we augment eq 
2.3 following KaplanlO and Alexanderz0 to obtain 

i = -i[@o + e@),  a] - 
r(a - uo) + - uo) (2.6) 

where @(u - uo) includes the effects of exchange. 
That is, we assume that the exchange effects and the 
Q , ( t )  effects are statistically independent. This is 
reasonable provided that: (1) the duration of “col- 
lision” or rather of contact between the exchanging 
pair, T d  obeys 

T d  << re2 (2.7a) 

where T,, is an effective exchange time, so that the 
interaction pair is too short-lived to introduce observ- 
able effects other than the exchange; and also (2) 

re << re, (2.7b) 

so that rotational (and translational) relaxation 
occurs in times short compared to intervals between 
“exchange collisions.” Finally, in order to preserve 
the resolution of the hyperfine lines, we must assume 
that 

-fe61: >> rez-1 (2.7~) 

These conditions together with eq 2.4 yield as the 
general conditions for validity of eq 2.6 

I ‘YeBOlf I YiBOl i I - f e c i ] ?  T e - ’ ,  7 d - I  >> 
~ ( t ) ,  r(u  - u0), (2.4a) 

Now, although in dilute solutions the exchange proc- 
ess is bimolecular, it is possible to  linearize the term 
@(u - no) by recognizing that a high-temperature 

approximation equivalent to eq 2.5 will still be appro- 
priate for a nonequilibrium value of u. That is, we let 

X E g -  a0 g N-yl - p )  (2.8) 

where p is of the order qQ0 or less. Here x is the de- 
parture of u from its thermal equilibrium value. Now 
the evaluation of @(x) involves the construction of the 
appropriate exchange operator P according to the 
prescription given by Alexander. 2o The exchange oper- 
ator essentially permutes nonequivalent spins be- 
tween the two exchanging molecules, so that a “strong 
exchange” approximation is inherent. For both CE 
and HE processes it is seen that the initial and final 
states differ a t  most by magnetic energies of the order 
of hyperfine frequencies (that is, the exchange commutes 
with the Zeeman terms in eq 2.2 but not with the Fermi 
term) which should be small compared to lattice energy 
available via the rapidly changing exchange interactions 
between collision pairs.21 A further property of P is 
that it is invariant to the choice of spin representation 
of the exchanging parts of the molecules as well as of 
the nonexchanging parts, but it requires a representa- 
tion utilizing a product of the exchanging part with the 
nonexchanging part. Thus the basis functions uti- 
lized in I are appropriate. They may be abbreviated 
by 

= Im, = f l / ~ ) ~ ~ J r u ( k ) M , . , )  (2.9) 

that is, the product of an electron spin wave function 
m,) with the products of nuclear spin functions 
Jru(k)M,u), where I JTu‘k’M,u) is the eigenfunction of 

J,: with eigenvalues JT,(J,, + 1) and M,,, respectively, 
and k orders the different degenerate states belonging 
to the same value of J,, and Mru. The subscript r, 
refers to the uth completely equivalent subgroup 
of nuclei of the rth group of equivalent nuclei, so that 

vu 

J r ,  = CIi (2.10) 
i in T ,  

( A )  Heisenberg Exchange. It is assumed that when 
two paramagnetic species collide, they exchange their 

~~ 

(21) We note that there are other intermolecular magnetic inter- 
actions besides the exchange processes, such BS the dipolar inter- 
action between electron spins on different paramagnetic molecules. 
This mechanism can lead to exchange-type effects aa well as electron 
spin flip relaxation processes. It is, of course, dependent on radical 
concentration, but it differs from HE in that it is weaker but more 
long-range (with a l / r *  dependence) and must be treated in a some- 
what different fashion theoretically (cf. ref 6, Chapter VI11 for the 
related nmr case). Order-of-magnitude calculations (J. H. Freed, 
unpublished work) indicate that a “strong HE mechanism” should 
dominate over this intermolecular dipolar mechanism for normal 
liquids. 
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electron spin states with frequency WH = T H - ~ .  

utilizing eq 21 of Alexander,20b we obtain22i2a 
Then, 

These terms supply further relaxation effects to be 
added to those contained in r(x). We note that those 
terms off-diagonal in x lead to line broadening while 
the diagonal ones give spin transitions. 

(i) 08-Diagonal Elements of x .  There are three types 
of off-diagonal matrix elements. (a) Let a = a' but 
m # m' 

These terms are important in determining the line 
widths of esr spectra. The second term represents a 
simple line broadening, which is weighted to account 
for the fact that not all electron exchanges lead to 
changed molecular states.1° The first term leads to a 
coupling of all the different esr transitions, via the ex- 
change. As a result of eq 2 . 7 ~  and 2.3, it follows that 
those xy*,Yi may be neglected which do not contribute 
to the same (degenerate) transition that = X A ~  

does. Thus eq 2.12 becomes 

for the Xth degenerate esr transition. 
(b) Let m = m' but CY # a'. This gives 

where qr+ refers to the nuclear spin transition /a*) 
+ la'*). Again eq 2 . 7 ~  and 2.3 lead to the neglect 
of the first term on the rhs of eq 2.14. The remaining 
term leads to a broadening of the nmr lines. 

Let m # m' and CY # a'. (c) This gives 

(CY"]@H(X)l*'m') - WHXam,a'm' (2.15) 

or a simple line broadening. These terms will come into 
play when multiple quantum transitions are excited 
by endor. 

(ii) Diagonal Elements of x .  For the diagonal 
elements we obtain from eq 2.11 

(2.16) 

It is seen from eq 2.16 that the linearized transition 
probabilities (actually derived from second-order rate 
equations), appear to involve transitions to state a* 
from all other states where either an electron spin is 
flipped or the nuclear spin state changes. If we define 

2 
x* = Ex,* 

Y 

(2.17) 

then eq 2.16 may be rewritten as 

[@(x>Ia*  = OH - h a +  - Xa*> + X* (2.18) [: 1 
The steady-state solution obtained by equating eq 
2.18 to zero then gives 

Xa* - Xaz Z X ~  (2.19a) 

which (upon neglect of hyperfine terms in qQ0) yields 

u,* - a,+ = 2u* (2.19b) 

with 

2 
Qi = - C(Xy' + U O y 4  

N Y  
Now since a is arbitrary in eq 2.19, it follows that the 
effect of the HE mechanism is to cause the difference 
in population for all pairs of levels differing only in m, 
to be equal. It may be found from the unlinearized 
rate equation that at steady state the ratios of 
the populations are equal, and when linearized, this 
yields the result above. 

B. Chemical Exchange. We must now define sepa- 

(22) Alexander actually defined a p such that linearizing u gives 
u E N-l ( l  + p ) .  It then follows that for nondiagonal elements, 
rnon = xnon E p / N ,  while for diagonal elements, Udiag - uo = Xdlag E 
( p  + q@o)/N.  As long as only the Zeeman terms in eq 2.3 are 
included in 50, it is easily shown that the equations Alexander 
develops for p are appropriate for p + N x .  The hyperhe term in 
eq 2.3 is always small compared to the electron-spin Zeeman term a t  
high fields so that this assumption is certainly justified. If there is 
more than one exchanging species, as in chemical exchange, these 
remarks are still appropriate for both species. 
(23) In the case of HE, one may alternatively describe the exchange 
as due to the random turning on and off of the exchange interaction 
J S I .  SZ between pairs of electron spins with mean frequency WE. In 
the limit of strong exchange, J T d  >> 1 (while still requiring a i ~ d  << 1). 
we have WH = OM. The exchange operator in this case can actually 
be definedlgb as P = ' / z 1  + 2S1. Sz. It is possible in the case of HE, 
where the intermolecular interaction term JS1. SZ is specified, to 
consider weak, as well as strong, exchange.8v10 This was done by 
Kivelsons and by Currin,Io but we note that their results are, in fact, 
mutually incompatible. The detailed effects of the exchange process 
were recently reexamined by the present author by utilizing the 
Kaplan-Alexander method, and explicitly including a density matrix 
expression for the collision pair, whose lifetime is 7dr in a manner 
similar to that utilized by R. M. Lynden-Bell (Mol. Phys., 8 ,  71 
(1964)) for a somewhat different problem. Results substantially 
in agreement with Currin'O were obtained. However, this recent 
treatment (unlike Currin's or Kivelson's) readily allows for an anal- 
ysis of saturation effects. The result is that the effective exchange 
frequency WH = W M ( J T d ) * ( l  + J z T d 2 ) - '  provided that aird << 1. 
For further detaila see J. H. Freed, J .  C h .  Phys., 45, 3452 (1966). 
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rate spin-density matrices UR and UD for the radical 
and diamagnetic species, and they are separately nor- 
malized, although they are coupled by the exchange. 
They will, in general, have different lifetimes given, 
respectively, by TR and TD. If the rate constant for 
the exchange is kcE, then we have 

WR E TR-' = k c ~ [ D ]  (2.20a) 

OD 7 ~ - ~  = kc~[R]  (2.20b) 

where [R] and [D] are the equilibrium concentrations 
of the radical and diamagnetic species. Since the ex- 
change operator technique requires that the exchanging 
part of the molecules have the same representation, 
one must adopt the convention that the nuclei (not 
the electrons) exchange. This leads (in our notation) 
to the equation for X R ~ ~  

Again we may distinguish the different types of terms. 

but m # m'; then 

(a*l @R(xR) 1 a') = 

(i) 08-diagonal Elements of x .  (a) Let a = a' 

Equation 2.22 contributes to the esr line widths, and, 
except for the replacement of WH by WR, is identical 
with eq 2.12, so the same remarks apply. Thus, 
utilizing eq 2 . 7 ~  we obtain 

(b) 

( ~ * I @ R ( x R ) / ~ ' * )  = WR 2 ~ ~ , a , a '  - X R , ~ * , ~ ' *  

Let m = m' but a f a'. This gives 

(2.24) 

which, in general, couples the nmr transitions of the 
radical and diamagnetic species. However, since 
their transition frequencies [for the same configuration 
of nuclear spins] differ by a hyperfine splitting, we may 
drop the first term on the right-hand side of eq 2.24 
and obtain 

[' 1 

(ii) Diagonal Elements of XR. The equation for 
the diagonal elements becomes 

2 
[@R(XR)]a* = W R  + C X R , y *  - 

Y #  a 

It follows from eq 2.27 that, in general, there is a 
coupling of the diagonal density matrix elements of the 
paramagnetic with the diamagnetic species. It is 
thus necessary to consider the equation for the diagonal 
elements of XD equivalent to eq 2.27 or 

[@D(XD> la = [(XD)alCE = 

WD(XR,a+ + X R , a -  - XD,a> (2.28) 

Now, if no other processes significantly affect the dia- 
magnetic spin populations (viz., there is no radio- 
frequency radiation exciting the nmr resonance of 
diamagnetic species and there are no rapid relaxation 
processes), then ( X D ) ~  is completely determined by the 
chemical exchange process. Thus, if we assume a 
steady state with XD = 0, then eq 2.28 yields 

X D , a  = X R , a +  f X R . a -  (2.29) 

Substitution of eq 2.29 into 2.27 then yields 

1 
[@R(XR)la*  = u R [ i ( x R a T  - X R a + )  + x R * ]  (2.30) 

which is identical with eq 2.18 for HE, except that WR 

replaces wH. Thus, any further comments on HE 
will apply equally to this case of CE, which we desig- 
nate as polarized CE. 

If CE is to be a veritable relaxation mechanism, 
it must be possible to treat it in the sense of interaction 
of the paramagnetic species with a "thermal bath." 
That is, the polarization effects on the diamagnetic 
species must be negligible. This can in principle be 
achieved in two ways: (1) [D] >> [R] so that there 
is essentially an infinite amount of diamagnetic species; 
and/or (2) if the nuclear spin lattice relaxation time 
T ~ J I  of the diamagnetic species is short enough that 
T ~ , D  << TD, so that the diamagnetic species relax 
more rapidly than they are perturbed by the CE 
process. Perhaps the most obvious way of achieving 
case 1 would involve pulse-type "steady-state" ex- 
periments such that the duration of resonance td obeys 

WDtd << 1 << W R t d  

[The endor experiments to be discussed in sections IV 
and V are only partially of the pulse type, since the esr 
field is maintained while the nmr field is pulsed, so a 
mixed situation could ensue.] In  examining the like- 
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lihood of case 2, we first note that in the presence of 
paramagnetic species, the dominant mechanism con- 
tributing toward T ~ , D  should be the intermolecular 
dipolar interaction with the unpaired electrons.'j 
Since both T~,D-'  and WD are proportional to [R], 
their ratio T~,D-'/wD is independent of [R]. Typical 
values of T~,D- '  in ordinary solven$s tend to range 
-0.1 to 10 sec-l when [R] = lod3 M.24 Thus for 
case 2 to be applicable, WD << -1 sec-', which is un- 
reasonably low if WR = WD [D]/ [R] - lo3 to lo6 sec-', 
so that CE may have non-negligible effects on the esr 
spectrum. It therefore appears that an unpolarized 
CE mechanism is not important in steady-state esr 
experiments in normal liquids. However, we shall 
consider it further, since it will be found to give in- 
teresting comparisons with the other mechanisms. 
An unpolarized CE mechanism amounts to setting X D  = 
0, so the rate equation 2.27 takes the simple form of 
first-order transitions among all states with the same 
m,; Le., it tries to equalize the populations of all spin 
states having the same m,. In  this limit we have a 

(3.4) 

Thus REX can couple degenerate transitions as a result 
of the terms which appear in eq 2.13 and 2.23. Rr can 
lead to more complex effects involving mixed transi- 
tions X t l  involving different degenerate nuclear spin 
configurations (see I), but for simplicity we shall 
neglect any such effects and in fact set RrXjXkl  = Rrh,,X, 
6,&1 which is valid if each equivalent set of nuclei is 
completely equivalent. 

We note that when the Xth esr hyperfine line is 
being observed, one sees an absorption proportional 
to the imaginary part ofz5 

2, = czx, (3.5) 
3 

with 

zx, = ZXj' + iZXj" (3.5a) 

Thus, from (3.2) to (3.5) we obtain 

Amxz - iCRx,,xkZxt + (dxZx+ - dxZx-)  Dxqiwxdx situation similzr to the EYD mechanism, but with 
different selection rules. j , k  

(3.6) 

(3.7) 

111. Esr Spectra and Saturation Effects 

Xth degeneratc transition of resonant frequency wx 
A. Absorption. Following I, we note that when the where 

Z A +  = DXxX* = CXX,' 
is excited by an oscillatory radiofrequency field at  
frequency w there will be a steady-state solution 

(3.1) 

3 

and Dx is the degeneracy of the Xth transition. Here 
the subscript X j +  refers to the m, = + states between 
which the X,th transition occurs. Now from eq 2.13 
and 2.23 

X X ,  = zk, exp(iwt) 

where Zx, is time independent. From eq 2.6, we find 

AwxZx, = exP(--4{ [r(x)lx,  - I+(x)lx,l + 
dX(Xhj+ - xX,-) = '&'XdX (3.2) 

where Aw = (c' - wXt and xh,+ and xx,-  correspond to 
the diagonal density matrix elements for the states 
between which the X,th degenerate transition occurs 
and d x  is its transition moment multiplied by the radio- 
frequency magnetic field strength. We note that the 
relaxation terms in eq 3.2 may be written as 

where 

with WEX = wH + WR. Thus, by studying zx, the line 
width coupling between the Z x j  due to the exchange 
may be circumvented. However, because in general 
Rrxj  # Rrhkl this averaging procedure is unsatisfactory 
unless 

IRXEX( >> / R h i r  -. RXkrl (for a l l j  # k) (3.8a) 

That is, t,he exchange effects dominate over END 
effects. When eq 3.8a is not valid because both effects 
are comparable, it is then necessary to diagonalize the 
R matrix obtained from eq 3.4 for the Xth transition 

R,,I,,, arises from r(x) and is discussed in I. REX,,~Bst, 
which arises from @(x), includes all the terms arising 
from exchange mechanisms that are Still important 
under the weak exchange condition eq 2 . 7 ~  and include 
eq 2'12-2'15 
From the nature of these terms it readily follows that 

(24) Reference 6, 328. 
(25) In I, the power absorbed was calculated and it is proportional 
to ~ d x i Z " x j  = dxZ"x since dxi  = dx .  However, as is well known, 

it is the magnetization, proportional to 2"x. which is actually ob- 
served in a magnetic resonance experiment, c j .  ref 6, p 48. 

i 2*18 for HE and eq 2'23-2'27 for 
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in order to find the “normal modes” of the For 
simplicity in analyzing exchange effects, we shall 
assume eq 3.8a to be valid. 

Rxr = Dx-’CRrAi 

Then by defining 

j 

and 

Rx = Rxr + RAEX 

eq 3.6 becomes 

(k - iRx)Zx + Dxdx(Xx+ - XX-) = Dxdxqmx (3.9) 

In the absence of saturation, xX+ = xh- = 0, so eq 
3.9 gives 

Zx = DxdxQuxTx[AuxTx + i]/[l + Aux2TX2] (3.10) 

with Tx-’ = - (Rx)  and is the width of a Lorentzian 
line. The statistical factor of ( N  - 2DJN)  in eq 
3.8 is the result of Zandstra and Weissman’a for CE 
and Currin’O for HE and indicates that exchange 
processes involving degenerate nuclear spin states lead 
to no observable line broadening effects as long as 
eq 3.8a applies. 

B .  Transition Probability Matrix. Now eq 3.9 
in the presence of saturation includes the diagonal 
matrix elements xxi whose relaxation is found from 
eq 2.6 to be3 

[r(x) ] X i *  - [@(d ]hi* = * a h j Z X j ”  (3.11) 

Also 

[r(x)las - [ N X ) I @ B  = 0 (3.12) 

where /3 refers to all eigenstates except (A,*), and there 
are N - 2Dx such states. For completely equivalent 
nuclei, we find 

[r(~)Iajaj  = CWraph(xa, - x Y J  (3.13) 

where WrulYk is the transition probability between the 
ajth and Ykth states and is discussed in detail in I. 
[In this notation, j represents the j t h  degenerate state 
of the ath manifold of degenerate states.] The tran- 
sition probabilities arising from eq 2.18 for HE (or 
2.30 for polarized CE) and eq 2.27 for unpolarized CE 
are different, so we treat them separately. 

(i) Unpolarized Chemical Exchange. Assuming that 
XD may be neglected in eq 2.27, we obtain 

Yk 

(3.14) 
2 
N 

WCE = -OR W C E U j Y k  = 

for all aj and -yn including a = y, so that 

- [ @ ( ~ ) I a p ,  = WCEC(xOj - xrh) (3.144 
Yk 

If we now assume that 

1 W r o j Y k  - WrulYml << PEUY (for all j ,  k, 1, m)  
(3.15) 

which is similar to eq 3.8a for the line widths, then we 
may combine eq 3.13 and 3.14 and sum over j to obtain 

E(  XI ~ a p j  - [@(XI l a p , ]  = C’W’,JX, - x,) 
i Y 

(3.16) 

where 

W ’ U Y  - - (DaD,)Wa, (3.17) 

W u y =  wCE + wray (3.17a) 

= (D>,)-’CWrajYk (3.17b) 

the xu and xr are average values (e.g. ,  Xa = Da-’ Za 
with D, the degeneracy of the ath set of states). 
Utilization of eq 3.16 in place of eq 3.12 requires then 
that the right-hand side of (3.12a) becomes f DxdxZt’x. 
This formulation, in which the dimension of W’ is 
considerably reduced over that of W, is a consequence 
of the fact that X a j  = xa ,  independent of j and results 
from eq 3.15 as well as dhj = dx. If eq 3.15 does not 
hold, it will no longer be valid. 

As was done in I, we can define cofactors Ci, and 
double cofactors Ctj lkl  of the transition probability 
matrix W’. However, the matrix W’j with cofactors 
Cjik is now defined by replacing each of the Wt,a  of 
the j th  row by D,. This is necessary in order to re- 
move thesingularity of W’ and amounts to utilizing 
the normalization condition in terms of x or 

with 

j . k  
wr,, 

D Y X Y  = 0 (3.18) 
Y 

The relationships expressed by eq 2.41 of I for the Cij, 
Cu,nl, and Ci,, are again found to hold true with A = 
N so that the method of solution is identical. Letting 

(3.19) 

we find that 

Zx DxdxTxQmx(AwxTx + i)/ 
[1 + ( A u A T ~ ) ~  + Dxdx2TxQ2x] (3.20) 

This is, in fact, formally identical with the Stephen- 
Fraenkel result, but is valid only because END effects 
have been assumed to be small. Furthermore, the 
details of Qx are different for CE effects. In Table I, 
we give the results of Qh for one and two equivalent 
spins of I = 1/2 assuming that W r  contributes the im- 
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Table I: 
END and Exchange Eff e& 

Esr Saturation Parameters for 

Z = n = 1" 

I = 112) n = 2 

(A) END Mechanismb 

(1 + b )  Qe(l,0) = 2We-'--- 
(1 + 3b) 

Qe(0,O) = awe-' 
(B ) (i) CE-Unpolarized" 
or (ii) HE (and Polarized CE)d 

portant terms to We,  the lattice-induced electron spin 
transitions (which are taken to be equal for all hyper- 
fine lines), 26 while WCE yields the lattice-induced 
nuclear spin transitions. 

(ii) Heisenberg Exchange (or Polarized CE).  We 
rewrite eq 2.18 as 

[a(x) lui+ai7 = WHEai*uj~(Xai~ - xai*)  + 
C W H E a j Y r X y k  (3*21) 

Y k  

where 

(3.22a) W H  WHEai*ajF = - 
2 

2WH 

N WHEuftYk+-+ = -WHEUiyk++ = - (d l  rkt) (3.22b) 

and 

w ~ ~ ~ ~ * ~ ~ - ~  = o (all r k - )  (3.22~) 

We note that the matrix WHE is not symmetric due to 
the presence of the "one-way" transition probabilities 
WHEaiyp. When eq 3.13 and 3.21 are combined 
(assuming eq 3.15 holds) and summed over j ,  one ob- 
tains 

[ r ( x ) ~ a ~ a ~  - [ * ( ~ ) I a j a j J  = C ' W ' U J X ~  - X J  - 
i Y 

CW'ur-Xr (3.23) 
Y 

where W',  is given by eq 3.17 with the superscript 
HE replacing CE, and 

DUD, 
N W'a+y++ = (*)-OH (for all 7) (3.23a) 

One may again define the cofactors C f j  and Cf,k where 
eq 3.18 is again employed in the latter, but the non- 
symmetric matrix W' no longer has the property 
that the sum of all elements in a row yields zero, al- 
though the sum of all elements in a column still does. 
Thus we obtain the following restricted relations 

(1) cf5 = c k 5  (all i, j, k) 

(2) c5,i = - C f !  = c,," - Cflk (i z j z k) 
(3.24) 

Now define 

(3) c k /  - c k i  N c k Z , f 5  (1 f k; i # j )  

Then 

(4) C k f , f j  - c t l , f j  = e l k , , ,  (1 f k; i # j ,  k) 

(5)  c k I , f j  = - c Z k , t 5  = C i k , j i  ( I  f k; i f j )  

where the are not simply the double cofactors 
c f j  ,kl*" 

It is also noted that 

det)W'l = c c 5 k  = C c i k  E N C  (3.25) 
k k 

independent of j. 
3.24 and 3.25, the procedure follows that for CE. 
again obtains eq 3.20, but now 

With the relations given by eq 
One 

(3.26) 

The matrix WHE, which is an N X N matrix, is of rank 
N/2. This is seen by noting from eq 3.22 that the 
sums 

WHEuty + WHEu-y = 0 (for all Q! and 7) (3.27) 

so that each pair of rows labeled a+ and a- according 
to their spin states are linearly dependent. This is a 
simple consequence of the fact that HE does not act 

(26) We are assuming that nuclear-spin independent processes such 
aa the 0 tensor and spin-rotational mechaniams dominate the We, 
while the END mechanisms does not make a significant contribution 
to it (cf. section V and ref 3). 

(27) In fact, one finds that 
N 

N6kl.ij E Ckii - Ckj' N C k l . i j  + (DaDrwH) E( -I)'+'Ck~,ij' 
a#k,l 

where a will be even (odd) if it corresponds to a state with m. = - (+). 
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to change (xQ+ + x Q - ) ,  but rather to equate all (xQ+ - 
x Q - )  independent of CY (cf. eq 2.19a). However, a 
singularity of order N/2 prevents one from obtaining 
eq 3.26 (that is, one is attempting to invert the highly 
singular matrix WCE). We note that addition of Wr 
does not reduce this high order singularity if it con- 
tains only W: electron spin transitions, but it will if 
it contains nuclear spin transitions Wnr connecting 
the states of different nuclear spin configuration. 
In  examining the effects of WHE, it will therefore be 
useful to introduce a fictitious Wnr with selection rules 
similar to the exchange processes, so that eq 3.9 and 
3.23 may be employed.28 Once the are obtained, 
the “fictitious” transition probabilities can be set equal 
to zero and any finite f2h,x (for which the singularities 
of Ch,X and C cancel) will be retained. This procedure 
has been carried out for one and two equivalent spins 
of and the results are given in Table I .26  It is 
noted that the results for the unpolarized and polarized 
CE mechanisms are identical. 

IV. Endor Effects 
In  an endor experiment, nuclear (nmr) as well as 

electron spin resonances are excited. As was shown 
in I, the steady-state equations may be written in 
matrix notation as 

(K + iR)Z = Dx + Q (4.1) 

and 

(4.2) 

Z and x are vectors whose elements are all the non- 
vanishing transitions and nonequilibrium population 
deviations, respectively. The K matrix contains the 
frequency differences (e.g., dux) and would be diagonal 
except for the introduction of coherence effects, which 
amount to multiple quantum transitions. For sim- 
plicity, we shall neglect such effects, although they are 
not always negligible.29 Q is a vector in “transition” 
space whose components are quhdxi for each of the 
X,th transitions which are excited. D is a matrix 
of transition moments dki whose nonzero values indi- 
cate a dependence of the Zxj on the xQj*  such as in 
eq 3.2, and Dtri is the transpose of D with the j th  row 
replaced by zeros. When a summation over degenerate 
transitions and states is performed, as discussed in 
section 111, and eq 3.8a and 3.15 hold, these equations 
are modified to 

(4.3) 

(Wj)x = -2Dtr32” (4.4) 

(I( + iR)Z = D’x + Q’ 

and 

where Z involves sums over degenerate esr (but not 
nmr) transitions, and x involves averages over de- 
generate spin states. R and W’ matrices are altered 
accordingly, so R becomes diagonal (cf. section 111). 
The D’ and Q‘ are obtained from the D and Q by re- 
placing dx in any elements of the latter pair (where dx 
now refers only to the Xth degenerate est- transition) 
by Dxd,. For more than one equivalent nucleus, this 
treatment is not sufficient, since it is no longer neces- 
sarily true that xQ*ti = x ~ + - ~  or that Z h j  = Zxk (where 
A, is the  CY+^ tf CY-, transition). This is because the 
d,,, for the q set of degenerate nmr transitions obey 
selection rules governed by J,* (just as the END 
mechanism) so degenerate states of different J value 
are differently affected. It is then necessary to in- 
troduce appropriate difference terms such as Z h j  - 
Zxk and xai - xQk into the z and r. vectors. Never- 
theless, the summations (cf. eq 3.5-3.9), which are ini- 
tially called for to render R diagonal, still lead to con- 
siderable simplifications. We illustrate with the two 
equivalent spins of the I = ‘/2 case for which there are 
triplet J = 1 and singlet J = 0 nuclear spin states. 
The labeling of states is given in Figure 1. We use 
a new notation 

1 
x c *  = -(xc + x c r )  (4.5a) 2 

(4.53) 

a = l +  ; I ,  I> C ’ I  + i I ,o> c ’=  I + ;o,o> e = /  + ; I,-I> 1% 1_ lw 1% 
d =  I - ;  I,O> d ’ = I  - ;O,O> f =  I - ;  I,-I> b = I  - ; l , l >  

t-t- 
@n2 

Figure 1. Transitions and eigenstates for 
double resonance in a radical with S = 
two equivalent nuclear spins of I = 1/1.  

and 

(28) Of course, the effects of an END mechanism may be included 
but this leads to complications including the necessity of diagonaliz- 
ing the R matrix and of treating separately the matrix elements 
X Q j  and X a k  of degenerate states. 
(29) Their effect is probably most important in coupling the dif- 
ferent degenerate nmr transitions which may be excited; cf. ref 3. 
A sufficient condition for their neglect on the esr transitions when 
de N d, may be simply stated as requiring that the dominant con- 
tribution to the esr line widths be secular and nuclear-spin inde- 
pendent.3 This is realized if the secular g tensor effects dominate 
the width, while WerR >> 1, so the nonsecular effects are small. Then 
the exchange processes do not make an appreciable contribution to 
.the width when we= is comparable to the We resulting from non- 
secular terms in the Q tensor. 
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and assume that the excited esr transitions are WD, 

wOJ, and the excited nmr transitions are wnl and un2. 
Then for an unpolarized CE mechanism, one has 

a b C+ d+ 

-1  -b’/2 0 

0 2 + b ’  -2 

f - b’/4 0 -b’/2 

d- 

a b C+ d+ e f c- d- 

0 -de +de 0 0 0 :n] 

(4.7) 

D = n1 “[D 0 -dn 0 d, 0 0 0 
122 0 0 0 -d, 0 +dn 0 -dn 
0- 0 0 0 0 0 0 -de de 

Equation 4.6 for W is written in units of We and b’ = 
w R / W , .  The separation of W into two blocks results 
from the form of the W,, given by eq 3.17 as well as 
eq 3.22 for HE. It is always possible to choose linear 
combinations of the degenerate x a i ,  for any value of 
D,, such that they will be “orthogonal” to x, = Da-l 
Cxa,. The matrix R is diagonal with Rot,ot given 

by eq 3.8, R,,,,, = R,,,, given by eq 2.25 and Ro-,o- = 
Rkr - wR. The diagonal elements of K are KO* = 
Awe and K,, = K,, = Awn. 

3 

The solution to eq 4.3 and 4.4 is 

[K(-R)-’K - R + S’IZ’’ = Q’ (4.9) 

with 

S’Xl,,k = [2D’(W’)-’Dt’’ IXl,?k (4.10) 

Now, from the form of Wi 

it follows that 

(4.11) 

(4.12) 
0 [W-1-1 O I  

[wj ] - 1 

e f c- d- 

- b’/4 0 

0 - b‘/4 

0 - b’/2 

1 + 3/4b’ -b’/2 

- b‘/2 0 

-1 1 + 8/4b‘ 
1 + 8/4b’ -1 

-1 1 + 8/4b 

So partitioning D similarly, D = (D+; D-) we obtain 

S’k,,, = d$,kQki,,k + [2D’-(W-) -lDtr-] (4.13) 

with Q2Xi,vk determined solely by the W3+ matrix 
according to eq 3.19 (or 3.26). It is found that there 
are no terms of type in eq 4.13, and the only 
nonvanishing contributions from the second term are 
of type  AS'^-,^-, Ste-*, ,  and their transposes. I n  this 
notation e+ refers to the sum over the eth set of de- 
generate esr transitions and e- to an appropriate dif- 
ference combination of the eth set of transitions. It is 
because terms of type Se- , ,  and 2,- vanish for d, = 
0, that the saturation treatment in section I11 is not 
affected by these considerations. The solution for 
Z”,+ then becomes 

Z ” e +  = DeqWedeTe/[l + (AeTe)’ + 
- Ee)Tede’I (4.14) 

with 

(4.15) F t j  
m 

Dede2fe = C S ’ i , e + S ‘ e + , j ~  
i j  

where F is the m X m determinant with elements 

= Tt/(l + di2Ti2 + Tis’,) (4.16a) 

fu = SI,,, (i # A (4.16b) 

and m includes all the nuclear transitions as well as 
the transitions of type e-. For m > 1, the nuclear 
line shapes given by eq 4.16a will be mixed in eq 4.15 
so that, in general, E ,  will not exhibit simple Lorentzian 
behavior as the nmr frequency is swept. Perhaps the 
simplest but still meaningful parameter to  study is 
the value of Z“,t for de = dn + w and Ae = A, = 0 
for which eq. 4.17 hold. 
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Z”e+yde,dn ----f 03) = qw -e [ ___ ] (4.17) 
d e  Qe - ( e  

Then the difference signa130 

[Z”e+r(d,,d, ---j a)(endor) - 
- - 

Z ” e + ’ ( d e  + a>(esr)] = - -(!le - [e)-1] (4.18) 

The values of .$, are given for both HE and CE for one 
and two spins of I = ‘ / z  in Table 11. From the n = 
1 case, it is clear that HE and a polarized CE mech- 
anism cannot yield an endor signal. It is necessary 

-~ 

Table 11: 
and Exchange Effects under Very Strong Fields 

Resonant Endor Enhancement Parameters for END 

(A) Unpolarized C E  

(B) Polarized CE 
Wn 

1 1 I[ I 
2W, + W e  + ~ ( W R  + WH) Wn + We + $WR + WH) 

I = I / $ ,  n = 2 b  

[ 
5: = 

(A)  END Mechanismc 

4b 
( 1  + 6b)(l + 3b)We-1 SC‘(lJ0) = 

LT0,O) = 0 

(B) CE-Unpolarizedd ( W ,  = 0) 
b‘ 

( 2  + b’)(3 + 2b’) 
Ee‘( 41) = We-l 

4b’(l + b’) 
3(2 + b’)3 

fe ‘ (0 )  = W,-1 

(C)  HE Mechanism (and CE-Polarized); ( W ,  = 0 )  
&C‘(llAl) = Fer(0) = 0 

a n is number of equivalent nuclei of spin I .  * The notation 
here is ( J ,  M,) for END mechanism and (M,) for exchange 
mechanisms. b = W,/W,. b’ = WR/W#. 

there is no distinction in the “selection rules” of the 
two. These remarks carry over into the n = 2 case 
except that now the difference in ‘(selection rules” 
of the unpolarized CE vs. the END mechanisms yield 
different enhancements. It is expected that for n > 
2 these remarks are again appropriate. 

V. Comparison with Experiment 
The most detailed experiments appropriate for com- 

parison are those of Hyde.’a Perhaps their most in- 
teresting aspects are the observations of relative 
signal heights of the saturated esr hyperfine lines and of 
the endor signals obtained from each hyperfine line 
when a particular nmr transition is excited (ie., endor- 
induced epr18). These were found to be strongly tem- 
perature dependent. (Changes in absolute signals 
which are dependent on instrumental factors as well 
as radical concentrations are probably more difficult to 
analyze.) 

The simplest case is for the two spins of I = l / ~ ,  

for which we may define the ratios (Zo/Z,),,, = r and 
(ZO/Z+)endor = R as the ratio of center- to end-line 
signal intensity for esr and for endor-induced epr 
(cf. eq 4.18), respectively. They are plotted in Figures 
2 and 3, respectively, for the ESD mechanism (as a 
function of b = W,/W,) and for the unpolarized CE 
mechanism (as a function of 6’ = WR/W~) .  The mag- 
nitude of the endor-induced epr signals for each hy- 
perfine line relative to its own saturated value is given 
from eq 4.18 as 

E e ( Q e  - . $ e ) - 1  

and is given in.Figures 4 and 5 for the two different 
mechanisms. Strong saturation and resonance condi- 
tions have been assumed for all induced transitions. 
It is seen that there is a significant variation of all 
these observables as a function of b and b’. This 
variation is more pronounced for the unpolarized CE 
mechanism. Now for a given value of b (or b’) one 
obtains an associated pair of values for r and R and 
this may readily be compared to experiment. In  
Table 111, such a comparison is given with Hyde’s 
experimental results on 2,5-di-t-butyl semiquinone. 
The agreement of experiment with that predicted from 
an END mechanism is seen to be quite good (while 
that from the unpolarized CE mechanism is not nearly 
so good) at the various temperatures studied. There - 
is a discrepancy, however, in that the prediction from 

are expected at lo”, while experimentally they were 
actually found to be rather weak. This might possibly 

to have a nonvanishing w?Z such is induced by the Figure 2 (or 3) is that large (absolute) enhancements END mechanism’ In the presence Of a wn’ these 
exchange processes actually diminish the magnitude 
of E,. An unpolarized CE mechanism is found, as .. 
expected’ to the Same enhance- 

(30) This is observed by means of a differential-pulse technique; cf. 
ment as an END mechanism, since in the n = ‘ / z  case ref is. 
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ESR 

ENDOR 

ESR ._ w 

ENDOR -- OD 

I I 
0' 015 IlO 2.0 4.0 

b 

Figure 2. 
center to oubide lines for esr and endor-induced epr as a 
function of b = WJW,  for an E N D  mechanism. There 
are two equivalent nuclear spins of Z = l / 2 .  

Relative saturated on-resonance signals of 

+I 

I I I 
8 16 

Figure 3. 
outside lines for esr and endor-induced epr as a function 
of b' = wR/WS for an unpolarized CE mechanism. 
are two equivalent, nuclear spins of I = 1/2. 

Relative saturated on-resonance signals of center to 

There 

be due to the presence of either a significant HE or 
polarized CE mechanism a t  the high temperature, the 
effect of which would be to reduce the observed en- 
hancement (cf. Table II).31 Concentration-dependent 
studies of Hyde's on the tetracene cation are also 
consistent with the idea that exchange mechanisms 
act to reduce the intensity of the endor signal. 

We note also that the variation of b (or b') with tem- 
perature (as given in Table 111) is again consistent 
with an END mechanism. That is, as long as WJR >> 
1, where T R  is an (isotropic) rotational correlation time, 

Table In: 
Relative Saturated Esr and Endor Signals from 
2,5-Di-t-butyl Semiquinone 

Comparison of Experimental" and Predicted 

Temp, r 7 T 
R OC (exptl) (END) b (CE) b' 

1 . 5  10 2 1.97 0.40 1.65 2.25 
1 . 0  -20 2 1.83 1.18 1 .45  4 . 4  
0 .6  -40 1.4 1.60 4 . 0  1 .25  14.0 

'See ref 18. 

Figure 4. Per cent enhancement of saturated esr signal 
due to endor given as a function of b = W J W ,  for an E N D  
mechanism. It is given for the center and outside lines 
relative to their own saturated esr signal. There 
are two equivalent nuclear spins of I = l /2 .  

" I  

1 0 Line 

I I 
8 16 

Figure 5. 
due to endor given as a function of b' = OR/W. for an 
unpolarized C E  mechanism. It is given for the center 
and outside lines relative to their own saturated esr signal. 
There are two equivalent nuclear spins of I = l / ~ .  

Per cent enhancement of saturated esr signal 

we find for such terms as the g tensor and END mech- 
a n i s m ~ ~  

We a T R - ~  (5.la) 

while 

WnEND a T R  (5.lb) 

since W,TR << 1 is usually ~ b e y e d . ~  Utilizing a Stokes- 
Einstein model, one has 

T R  = 47r?aa/3lcT (5.2) 

where 
Thus we may definea2 

is the viscosity and a is a molecular radius. 

T 
? 

? 

(5.3a) 

(5.3b) 

w, = A- 

w, = B- 
T 

(31) This is borne out by calculations including effects of both W,r 
and WH. When END and HE terms are comparable, the calculations 
are more difficult than those presented here: cf. section 111. 
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where A and B are temperature independent and may 
be written in terms of the spectral densities given in 
I and ref 15. Then 

(5.4) 

Now for most liquids, q ~ T e ~ ’ ’ ~ ,  W > O.aa Thus b 
should increase significantly with decreasing T as ob- 
served. 

The effects of viscosity and temperature on exchange 
processes are not so easy to analyze. Experimental 
line-width studies on HE9 are consistent with a strong 
exchange, for which we may writeab~’O 

WHE = 4nDa[R] (5 .5)  
where D is the translational diffusion coefficient given 
in a Stokes-Einstein model by 

D = k T / 6 n a q  (5 .6)  

Thus, the effect of H E  should decrease with decreasing 
temperature. For weaker exchange, eq 5.5 should be 
multiplied by p ,  the probability of exchange per en- 
counter which will, in general, be temperature and 
viscosity dependent.abv’O Similar remarks should apply 
to CE exchange processes.’ 

Assuming that it is the END mechanism which is 
the dominant nuclear-spin flip process that is “endor- 
active,” then it is easy to understand another result 
of Hyde’s experiments, namely that for a given sample, 
the best endor signal is obtained at  a different tempera- 
ture for the different nmr transitions, and that further- 
more the optimum temperature is greater for those nmr 
transitions involving the nuclear spins with greater 
coupling constants. This observation was studied 
specifically for the tetracene cation.18 While there is 
no simple relationship between the magnitude of the 
isotropic coupling constant of a proton and its END 
term, since the latter depends on unpaired electron 
density distributed t houghou t  the molecule (i.e., 
on l / r 3  averaged over a delocalized orbit) while the 
former depends only on the localized density at  the 
particular nucleus, nevertheless we may expect that 
in many cases the larger END terms will be associated 
with the larger splittings. This is borne out for the 
case of tetracene by means of R!t~Connell-Strathdee~~ 
type  calculation^.^^ 

We again utilize eq 5.3 and 5.4 where eq 5.3b is 
written separately for each equivalent set of nuclei. 
These equations are quite appropriate here since 
Hyde and Browna6 have found that W ~ T R  << 1 over the 
relevant temperature range in the sulfuric acid sol- 
vent.3*va7 Now the endor enhancement is a maximum 
for b - 1, so from eq 5.4 we get 

31 A N (T)’ 
Thus the larger B,  (or END terms) require the higher 
temperatures. On the other hand, exchange processes 
will have effects independent of splitting ai provided 
that we, << ai, so they cannot yield the observed effect. 

VI. Summary 
For the case of esr spectra with well-separated hyper- 

fine lines, the theoretical analysis given has shown that 
all the observable effects of polarized CE and H E  
(including line widths, saturation, and endor be- 
havior) are identical. It is further shown that these 
exchange processes effectively act as nuclear spin tran- 
sitions when studied by esr saturation techniques, but 
are “endor-inactive” and merely diminish the endor 
signals resulting from other mechanisms (e.g., the END 
mechanism). While an unpolarized CE mechanism 
is not expected to be important (except, perhaps, as 
a result of the short duration of endor pulses), it 
was found in all cases analyzed that the effects of this 
mechanism on esr saturation are identical with those 
of the polarized CE mechanism, but in the case of 
endor it is an “endor-active” mechanism. Its  endor 
effects are quantitatively distinguishable from those 
of an END mechanism as a result of their different 
spin-transition selection rules. This emphasizes the 

(32) The dependence of W e  on T / v  also results if a spin-rotational 
mechanism contributes to ? V e . l ~ ~ l ~  That is, in a semiclassical treat- 
ment following Hubbard,” one finds that 

where I is the moment of inertia and C is the spin-rotational constant 
of the radical (and both are being assumed isotropic), and T J  is the 
correlation time for the angular momentum. We note that this 
mechanism is nuclear-spin independent. Now in liquids, TJ << T R  

and usually 7.1 << we- l .  Utilizing a Stokes-Einstein model one has 

TJ = I/&a%1 
so that Wppin-rot. 0: T / v .  
(33) J. Frenkel, “Kinetic Theory of Liquids,” Dover Publications, 
Inc., New York, N. Y., 1955, p 193. 
(34) H. M. hlcConnel1 and J. Strathdee, MOL Phys. ,  2,  129 (1959). 
(35) J. H. Freed, unpublished results. 
(36) J. S. Hyde and H. W. Brown, J .  Chem. Phys. ,  37, 2053 (1962). 
(37) We note that the apparent anomaly observed by Hyde and 
Brown35 that at  high temperatures, Ti N Tz, although W ~ T R *  >> 1, 
can be resolved if the spin-rotational mechanism is dominant a t  the 
high temperatures. Their TI actually corresponds to G,/4 which 
obeys ne 5 2/W,, where the equality is appropriate in the absence 
of nuclear spin-dependent relaxation transitions.3 The width con- 
tribution from the spin-rotational mechanism (since T J  << w e - 9  is 
found to be11 

[Tzspin-rot.] -1 = 2W, = [Tlspin-rot.]-l 

At reduced temperatures, the line-broadening effects of the spin- 
rotational mechanism are reduced, while those of the g-tensor and 
END mechanisms are enhanced. 
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possibility of using endor to analyze for different 
nuclear spin transition selection rules. 

showed that they are consistent with both the END 
mechanism as the dominant “endor-active” process prior to publication. 

and with exchange processes acting to reduce the 
endor signals. 

An analysis of the relevant experimental results Acknowledgment. We wish to thank Dr. James S. 
Hyde for communication of his experimental results 

The Isotropic Hyperfine Interaction’ 

by B. R. McGarvey 

Department of Chemistry, Polytechnic Institute of Brooklm, Brooklyn, New York 
(Received September 27, 1966) 

The isotropic contribution to the hyperfine interaction resulting from exchange polariza- 
tion of inner s electrons has been computed for first-, second-, and third-transition metal 
ions from electron spin resonance data. Various trends with respect to bonding and the 
periodic table are noted. A perturbation approach to the calculation of the isotropic 
hyperfine term is developed and used to explain some of the observed trends. 

Introduction 
The isotropic contact term in the hyperfine interac- 

tion of paramagnetic ions has been the subject of many 
studies.2 Abragam, Horowitz, and Pryce3 have ob- 
served that the quantity x, defined as 

is negative and of nearly constant magnitude for ions 
in the first transition series. Since unpaired electrons 
in d orbitals cannot contribute to x, they proposed that 
the finite value of x results from a polarization of the 
inner filled s orbitals by the unpaired d electrons. 
Their attempt to calculate x by using configuration 
interaction with the excited state resulting from the 
promotion of a 3s electron to a 4s orbital was, however, 
unsuccessful. More successful calculations4 of x have 
been made using unrestricted Hartree-Fock methods. 
These calculations revealed that the polarization of 
both 2s and 3s orbitals is important and that the nega- 
tive contribution of the 2s shell dominated the positive 
contribution of the 3s shell. 

Matamuras and Title6 have noted that x for d5 ions 
decreases as the electronegativity difference between 
the anion and cation of the host lattice decreases. 
A similar behavior has been assumed for x in copper 
complexes by several investigators’ when calculating 
molecular orbital coefficients from spin-Hamiltonian 
parameters, but Kuska and Rogers8 have recently re- 
ported some measurements on substituted copper(I1) 
acetylacetonates which contradict such an assumption. 
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