
ESR SYMPODIUM. LINE SHAPEW AND SATURATION 3385 

Electron Spin Resonance Line Shapes and Saturation in the 

Slow Motional Regionla 

by Jack H. Freed,*lb Gerald V. Bruno,lG and Carl F. Polnaszek‘d 
Department of Chemistry, Cornell University, Ithaca, New York 14860 

Piiblicatbn costs borne completely by The Journal of Physical Chemistry 

(Received November 26, 1970) 

The stochastic Liouville method is developed and applied in a manner appropriate to ana1yl;e the problem of 
esr line shapes and saturation in the slow-motional region with particular emphasis on rotational diffusion. 
Detailed unsaturated line shape solutions are obtained for axial and asymmetric g tensors and axial dipolar 
tensors. These line shapes are compared to the predicted rigid-solid spectral shapes. In particular, it is 
shown that the pseudo-secular dipolar terms make significant contributions to the slow tumbling line shapes 
expected for 14N-containing radicals such as nitroxides and may not be neglected in such cases, Saturation 
effects are analyzed for a two-jump model, as well as for rotational diffusion of the g tensor. It is found that 
even in the slow-motional region, a fundamental role is played by the Ti's that are obtained from the spin- 
relaxation theories. One finds that the significant line shape changes resulting from saturation are dependent 
on the rotational diffusion rates. 

I. Introduction 
There has recently been a growing interest in the 

character of esr line shapes in the region of slow tum- 
bling where the earlier relaxation theories2 are no longer 
adequate. The cause of the slow tumbling may be due 
to the use of a viscous solvent, a radical attached to a 
macromolecule, or a particularly large anisotropic term 
in the spin-Hamiltonian (e.g., for triplets and other 
spins of higher multiplicity). In  these cases, the condi- 
tion Ix,(t)I 7R << 1 required for the relaxation theories 
may no longer be fulfilled. Here Xl( t )  is the rotation- 
ally dependent perturbation in the spin-Hamiltonian 
and 7R is the rotational correlation time. 

Kubo has called attention to the stochastic Liouville 
method, in recent w ~ r k , ~ , ~  as a general method for cal- 
culating spectral line shapes even when the conditions 
for motional narrowing are no longer fulfilled. The 
method is, in principle, applicable to any stochastic 
modulation of Xl(t) provided only that the stochastic 
process is assumed to be Markoffian. In  Kubo’s recent 
work it was also assumed that the processes were Gaus- 
sian, but this is not necessary for the method and not 
the case for rotational diffusion. 

This method seems simpler and more general than 
the recent work on viscous media by Itzkowitz5 using a 
model of randoms jumps with Monte Carlo techniques 
as well as the work of Korst and Laxarev,6 which like the 
present work is based on the diffusion equation. 

Of related interest is the straightforward manner in 
which we are able to include nonsecular effects in order 
to see to what extent they may be import,ant for line 
shapes and saturation. Our rigorous analysis of non- 
secular effects is based upon an approach utilizing fast 
motional spin states unlike the slowmotional “adia- 

batic” approximation used by Itzkowitz5 and Korst and 
Lazarev.6 We note that recent work by Sillescu and 
IGvelson’ and Freed8 represent generalized solutions 
which can readily include nonsecular effects, but the de- 
tailed analyses given remained essentially perturbative 
in t e ~ h n i q u e . ~  Also, in related work on triplets by 
Norris and Weissman, lo only secular terms were needed. 

Kubo’s treatment of line shapes is based on linear 
response theory (the autocorrelation function) and is 
therefore not applicable for saturation phenomena. 
We have modified the approach, by starting from the 
density matrix equations of motion, so that the radia- 
t,ion field is included explicitly and saturation effects 
may be studied. The method is readily seen to be a 
generalization to a continuous range of the random 
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variable of earlier and well-known techniques for han- 
dling relaxation resulting from jump phenomena occurr- 
ing between a finite number of sites. The correspon- 
dence with a two-jump model (as well as the nature of 
the approximations for saturation) are shown in Ap- 
pendix B. 

11. General Method 

random Hamiltonian X ( t )  is given by 
The density-matrix equat’ion of motion due to  the 

aP - = - i [ X ( t ) , p ]  
at 

It is now assumed that there are a complete set of 
random variables a, which sufice to describe the 
random behavior of X ( t )  and which is described by a 
Markoff process. Thus 

a 
at - - P ( Q , ~ )  = -rr,P(o,t) ( 2 )  

where P(3,t) is the probability of finding Q at the par- 
ticular state at time t .  The process is assumed to be 
stationary, so that I’ is a time-independent Markoff 
operator, and also that the process has a unique 
equilibrium distribution, Po(@, characterized by 

rpo(o) = o (3 ) 
Kubo4 shows that eq 1-3 lead to the equation of 
motion 

a - P ( W  = -;[x(Q),P(Qlt)l - rr,P(w) bt (4) 

where, however, p(Q,t) is now understood to be an 
average p [defined by fpP(Q,p,t)dp] associated with a 
particular value of Q for the bath, hence a particular 
value of %(a). 

The steady-state spectrum in the presence of a single 
rotating radiofrequency field is determined by the 
power absorbed from this field. One finds for tJhe Xth 
(multiple) hyperfine line at  ‘ ‘orientation’’ specified by 
a11 

@h(W) = 23”wCd$~j(1)”(0) ( 5 )  
9 

where BX is the power absorbed, X, the concentration of 
electron spins, and ZXj(l)” is defined by the series of 
equations 

( P  - PO)X, XX, (6) 

X h ,  = &notZXl(n) (7) 
m 

n =  - m 

and 
Z h , ( n )  = Zh,(n)’ + iZX,(d” (8) 

In  eq 6, p o ( 0 )  is the equilibrium spin density matrix 
whose Q dependence is such that Fopo = 0. In eq 7, 
the steady-state solution xX, has been expanded in a 
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Fourier series with time-independent coefficients Zh,(n). 
Thus pO( f l )  = p0(O). Equation 5 displays the fact that 
it is the n = 1 harmonic which is directly observed. 
(We will also use xa(0) as the zeroth harmonic for the 
diagonal element corresponding to state a,) 

In  the above notation pXi means the matrix element 
of P 

PXj E (b- lp lb+)  (9) 

where A,- and A,+ are the two levels between which 
the Ajth transition occurs, and a “raising convention” 
is implied. This notation is discussed elsewhere. l1 

Equivalent definitions apply to other operator matrix 
elements. 

Also in eq 5 dh, = l / I~eB1 for all allowed esr transi- 
tions induced by the radiofrequency field, and is other- 
wise zero. 

The total absorption is then obtained as an equi- 
librium average of eq 5 over all 0. Thus we introduce 
averages such as 

Zh,(n) = .fdnPo(Q)Z,,‘“’(Q) (10) 

@A = 23ZfiWCdX,ZX,(l)” (11) 

so that 

1 

where we have taken dh, essentially independent of 
orientstion.12 We now separate x into three com- 
ponents 

x = xo + %,(a) + 4) 

5x0 = BnPe&Sz - fiCrJ$o - heCaiSJz;  

(12) 

(13) 

yields the zero-order energy levels and transition fre- 
quencies 

where in the high-field approximation 

z i 

is the perturbation depending on orientation angles Q 
expressed in the notation of Freed and Fraenkel,lrs and 

5al(t) = l/direB1[S+ exp(-iwt) + S- exp(iut)] (15) 

is the interaction with the radiation field. 
When one takes the (Aj-l IX,+> matrix elements of 

eq 4 and utilizes eq 6-8, the steady-state equation for 
ZX2(l) is found to  be 

A ~ X Z X , ” )  + [%~(a),z(’)(Q) Ihi - 
i[rr,z(l)(Q) lX, + dht(Xh, ,(o) - 

x h , - ( o ) )  = P X d h ,  (16) 

Here xx, and xX, -(O) represent the deviations from 

(11) J. H. Freed, J .  Chem. Phys., 43, 2312 (1965). 
(12) This is reasonable for free radicals with small Ag values. For 
large AQ values the orientation dependence of ye must be considered 
(cf. B. Bleaney, Proc. Phys. SOC. (London), A75, 621 (1960)). 
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spin equilibrium of the upper (+) and lower (-1 
electron spin states associated with the X,th transition, 
and haX = w - ai, where fiaX = EA,+ - EAi-. The 
Z(l)(Q) are matrices defined by eq 6 and 8. Also q = 
fi/kT(l/N) where N = number of spin eigenstates and 
the high-temperature approximation has been assumed. 
The equation for then becomes 

A W X Z , ~ ( ~ )  + SdQPo(Q) [Xi(fJ),z(l)(fi) ]A, - 
iSdQPo(Q) [rz(')(Q) Ix, + 

dh,(%X,+(O) - %X,-'O') = q ~ x d x ,  (17) 

To perform the integrations over i? in eq 17 we expand 
the matrix element Z(Q)Xl(n) in a complete set of 
orthogonal eigenfunctions of rn, call them Gm(i?), with 
eigenvalues E, 

z(Q,~)x~(") C[cm(")(~) l,,Gm(Q) (18) 

Z(Q)'"' = CCm'"'(w)G,(Q) ( W  

9n 

or in operator notation 

m 

where C,(") is still an operator in spin space and is a 
function of a, but is independent of 3. Then eq 17 
becomes 

AwxZX,(~) + C,fdnPo(fL)G,(Q) X 
rn 

[Xl(Q),Cm(')I,, + d~,( fX,+( ' )  - 
%A;-@)) = QWXdX,  (19) 

In  obtaining eq 19 we have assumed that Po(Q) gives 
an isotropic distribution of orientations. Thus Po 
GO@) with eigenvalue Eo = 0. Since Go(Q) = 1 is 
orthogonal to  all G,(Q) with m f 0 in the Hilbert 
space of Q, it then follows that the third term on the 
left-hand side of eq 17 vanishes upon averaging. 

Note also that 

= [Co(n)]Xl (20) 
from the definitions of eq 10 and 18. Thus the absorp- 
tion (eq 11) depends only on the [Co(l)]x, for all allowed 
transitions A,, 

When we premultiply eq 16 by Gm*(Q) and integrate 
over Q, we obtain for [C,(l)] 

N m t ( A ~ x  - i E m f )  [ C m r ( l ) ] ~ ,  4- 

CSdQGm,*(Q)Gm(Q) [Xl(Q),Cm(l) I X ,  + 
m 

N m d h , (  [Cm!(0)]h,C - [cm,(o)]A,-) = 

W X ~ X , ~  (m',O)Nm? (2 1) 
Here N,, is a normalizing factor 

N ,  = ,fdOG,*(Q)cf,(i?) (22) 
Thus the coupling to the Markovian relaxation process 
of rn comes about only if the perturbation X1(Q) can 
couple [CO(')]~, to  some coefficient Cm(l) where m f 0. 

A form of eq 21, but written for the diagonal elements 
[Cm(n)]X,*, is needed in problems involving a non- 
secular X1 which induces electron spin flips. It is 
given in section IIIB on saturation. 

The above approach, hence eq 21, is valid for any 
Markovian or diffusive process. Equation 21 will 
yield coupled algebraic equations for the coefficients 
[Cm(n)]X,, and one attempts to solve for the [Co(l)]X, 
utilizing only a finite number of such coefficients. The 
convergence depends essentially on the ratio IXl(Q) I /  
E,,. The larger the value of this ratio the more terms 
[Cm(')]h, are needed. The results obtained by second- 
order relaxation theory are recovered when only one 
order beyond [CO(~)]X~ is included. 

When we apply the method t o  rotational modula- 
tion, then 3 refers to  the values of the Euler angles for 
a tumbling molecular axis with respect to a fixed 
laboratory axis system. Thus we have for isotropic 
rotational diffusion 

rn --f R V ~ ~  (23) 
where On2 is the rotational diffusion operator and R is 
the diffusion coefficient. Although the method is fully 
applicable to problems involving anisotropic rotational 
diffusion, we have assumed isotropic diffusion for sim- 
plicity in obtaining and illustrating typical results. A 
complete set of eigenfunctions of rn for eq 23 are then 
the Wigner rotation matrices PKM(Q) with eigen- 
values E, 3. EL,K.M = RL(L + l ) , l S  Wenow express 
eq 14 as 

where both the F',,i(L'm) and the AP,i(L1m') are irre- 
ducible tensor component,s of rank L and component 
m and rn'. The F' in eq 24 are expressed in molecule- 
fixed coordinates, while A is a spin operator quantized 
in space-fixed axes. The 9-m,mj(L)(Q) terms include 
the transformation from space-fixed to  molecule-fixed 
axes. It follows from the orthogonality relationL4 of 
the DKML's that 

8 7r7 N K M L  = ~ 

2L + 1 
and 

1 1 
8n2 87r2 

Po@) = - = -Qo,oO(Q) 

The evaluation of the integral on the left-hand side of 
eq 21 is obtained utilizing14 

S d Q ~ m i m , ~ L 1 ( Q )  Dm?m?tLz(Q) ~ r n m s ' ~ ~ ( ~ 2 )  = 

(13) J. H. Freed, J .  Chem. Phys., 41, 2077 (1964). 
(14) A. R .  Edmonds, "Angular Momentum in Quantum Me- 
chanics," Princeton University Press, Princeton, N. J., 1957. 
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~ 

Table I :  Line Shape Devfations from Lorentzian as j51/R increases, for Single Line Broadened by Axial g Tensor 

Relative Relative Relative 
i/a-l/i Relative deriv deriv Derivative 1m widthd abs heighta Isbsa width height Iderivb asymmetryc 

0.2 1.00 1.000 1.00 1.00 1,000 1.00 1.000 
1.0 2.57 0.393 1.01 2.59 0.154 1.03 1 a 000 
2.5 5.50 0.188 1.034 5.62 0.034 1.074 1.008 
5.0 10.4 0.107 1.11 10.75 0,0103 1.20 1.11 
8.0 14.55 0,0815 1.185 13.9 0.0059 1.14 1.52 

Iabs relative l/&/2 width X relative absorption height; Iabs .- 1 for a Lorentzian. l d e r i v  = (relative derivative width)a X 
relative derivative height; I d e r i v  = 1 for a Lorentzian. Derivative asymmetry is the ratio of the height of the low-field derivative 
extremem to the height of the high-field derivative extremum. Note (811 - gl) is taken as negative. * Rotationally invariant width 
component of 0.61 is included. 

where the terms in parentheses in eq 27 are the 3 j  
symbols ; also 

(28) 

111. Applications 
A. N o  Saturation. The case of no saturation is 

achieved by setting xh,+ = xAl- = 0, so the last term 
on the left-hand side of eq 21 is zero. 

I .  Axially Symmetric Secular g Tensor. A particu- 
larly simple example of the above formulation is for a 
one-line esr spectrum broadened mainly by the secular 
anisotropic g-tensor term, for which gx = g, = gL and 
gz = 911. When w o 2 m 2  >> 1, the nonsecular term will 
make a negligible contribution compared to the secular 
term. 

L 
B,,,,L* = ( - ) " - m '  9 - m .  - m f  

For this case eq 24 is 

xdt> = B o , o z ~ ~ ~ 2 / ~ ~ - ' P , ~ o ( g , l  - S i ) &  E 

90,c'2'(Q)5Ss (29) 

- [Sz ,C lm( l ) Ix ;  = [Cm(l)I , ,  (30) 

We have 

for a doublet state. When eq 29 and 30 are substi- 
tuted into eq 21 (for no saturation), and eq 28-28 are 
utilized, then one obtains 

[(w - wo) - iRL(L + l)][Co,oL(~>]x, -- 

(2L + 1)5C(L L' 0 0 0  "')' [ c o , o q W )  ] x i  = 

Now from eq 11 the absorption is proportional to 

7 r . Z - p ' '  = Im[co,oo(~)]~,  (32) 

Equation 31 defines an infinite set of coupled alge- 
braic equations for the complex coefficients C,,o"(w) 
(where we have dropped the superscript (1) for simplic- 
ity). The triangle property of the 3j symbols means, 
however, that the Lth equation is coupled only to the 
L f 2th equations, so only even L values appear. 
Approximations to the complete solution may be ob- 
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tained by terminating the coupled equations at  some 
finite limit by letting C O , ~  = 0 for L > n where r = 
(742) 4- 1 gives the order of the equations. The order r 
needed to obtain a satisfactory solution depends on the 
ratio lS/RI ; the larger this ratio, the greater the value of 
n needed. A crude discussion of the convergence prob- 
lem for this case appears in Appendix A, and it  utilizes 
the fact that the present simple case has a continued 
fraction representation. We have found the conver- 
gence to be very rapid. Thus for ls/RI S 10, r 6 4 is 
sufficient, for I ~ / R /  - 100, Y = 7, while for \s/R\ s 1000, 
r = 10 is needed (when Tn 151 = 75). (Note that the 
validity of relaxation theory2 requires /5/6R( << 1 since 
the rotational correlation time in this case is [L(L 3 
1)RI-l with L = 2.) 

The results, given as both absorptions and first de- 
rivatives, in Table I and Figure l ,  show the expected 
trends. As IS/R I increases to unity (the region where 
relaxation theory applies), the main effect of the line 
shape is a broadening (cf. Table I). In the region 
Is/RI of 1 t o  10 the resonance peak shifts downfield, 
and the shape becomes markedly asymmetric. Be- 
tween 10 and 100 a new high-field peak appearsj and a t  
1000 the solidlike spectrum is sharpening up (one is 
observing a decrease of "motional broadening") as it 
clearly is approaching the powder spectrum given in 
Figures 1C and D. The powder spectrum was com- 
puted from the expresRions given by Lefebvre and Mar- 
uani. l5 

The effect of including a rotationally invariant Lor- 
entzian line width, T2-', by letting 00 --+ 00 + i!!'~-' in 
eq 31 is shown in Figure 2 .  The effect of increasing 
Tz-l  is to smooth out the appearance of a solidlike 
spectrum. 

2. Asymmetric Secular g Tensor. If now we let g, f 
9 Y 7  then 

X,(W) = 5oa)o,o*x, + 52Sz[~--2,o2 + %021 (33) 

where 

(15) R. Lefebvre and J. Maruani, J .  Chem. Phys., 42, 1480 (1965). 
Their formulas were first converted into units of gauss from reoipro- 
cal seconds. 
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50 = 2/a[gz - l/z(gx + g,)]Ti--1PeBo (344 
and 

(34b) 
1 

52 = -&csx - q y ) f i - l P e B o  

The relevant coupled equations are given by 

(2L + 1) - l [ (w  - wo) - iT2-1 - 
iRL(L + l)]CK,OL - 

L 2 L' 
K - 2  - (K  - 2) )CK-270L' $. 

where K is positive, and eq 32 as well as the triangle 
rule requiring L' = L * 2 or L still holds. Also one 
must have K The superbars in eq 35 imply 
the following symmetrization 

L,  etc. 

G o L  = ' / 2 ( C K , 0 L  + G-K,OL) (36%) 

C0,oL = C0,oL (36b) 

and 

, . . .  
Gaurs - 

Gnu% - -1.00 -075 -0% -0.25 0 0.25 0.50 0.75 IO0 -100-0.75 -0.50 -0.25 0 0.25 0,50 075 1.b 
GDUII - 

Figure 1. Line shapes for an  axially symmetric g tensor as a 
function of p l /R:  A, absorption line shapes; B, first 
derivative. The different j 5 / / R  values are --, 2.5; * * * * ,  Yj; 

10; ---, 25; I-, 1000; C and D, rigid limit absorption 
and derivative line shapes. All correspond to (g11 - gl) = 
- 7.50 X low4, g = 2.00285 and are centered about %uo/gp, ze 
BO = 3300 G and a rotationally invariant ( ' ~ / & ) ! T ' z - ~ / I ~ ~ I  = 
0.02 G. 

I -1.00 L# - o n  -0.50 -0.2 
G w n  - kua - 

Figure 2. Line shapes for an axially symmetric g tensor as a 
function of the rotationally invariant component T2-1: A, 
absorption; B, derivative. The different values of 
(2/43)T2-1/lye\  are -, 0.01 G; ---, 0.05 G ;  
-,-, 0.500 G. In all cases 151/R = 1000. 

0.150 G, 

, "V 
i i  
! /  

-0 
Gmas - GOYII - 

Figure 3. 
of /5o)/R;  A, absorption; B, derivative. The different 15ol/R 
values are ---, 5; .-, 25; --, 100. C and D, rigid limit 
absorption and derivative line shapes. All correspond to g(z) 
= 2.00890, g(y), = 2.00610, g ( z )  = 2.00270 and are centered 
about BO = 3300 G, with a rotationally invariant 
(2/d)!7'2-1/lye\ = 0.1 G. 

Line shapes for an asymmetric g tensor as a function 

The order of the equations, when one terminates for 
L > n is now 1 + n(n + 6/8). However the proper 
value of n, again depends on (SO/R( for 1501 > IS2(, and 
values of n equivalent to those of case 1 are again 
applicable. 

The progress of the line shapes, as ISo/RI increases, is 
seen from Figure 3 to be similar to case 1, but in the 
region of 10 to 100 three peaks now appear. The 
limiting powder spectrum appears in Figure 3c, and 
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although there still is appreciable motion for ILTo/Rl = 
100, this case is seen to be beginning to approach the 
powder spectrum (note that intensities of separately 
computed viscous liquid and powder spectra are arbi- 
trary). 

8. g Tensor plus END Tensor Including Pseudo-Secular 
Terms. The power of the method is exemplified in this 
case, where the pseudo-secular (SJ*) terms, which can 
cause nuclear spin flips, can be comparable in impor- 
tance to the secular terms when wn, the nuclear spin 
Larmour frequency is The retentlion of the 
pseudo-secular terms results in [XI, XO] # 0, unlike 
the previous cases. 

a.  One Nuclear Spin o f 1  = ‘/z. This is the simplest 
case for illustrating the method. The labeling of the 
energy levels and relevant transitions is given in Figure 
4a. The resonance frequencies for the two allowed 
transitions (1 and 2)  and the two forbidden transitions 
(3 and 4) are 

01 = W,,! = we - /zyeCi .--t -u’ 
0 2  = Gob’ Z 2  W e  f ‘/2Y@d --3 a’ (37) 

= Wba‘ = We + w12. wn 

w4 = Wab’ = we - wn * 
Tho resonant frequencies become =tu’ = * 7eE/2  and 
z t w ,  when we is taken as the origin of the spectrum for 
convenience. 

For simpIicity me again assume axial symmetry for 
the g tensor and the dipolar tensor. Then 

Xl(W = a)0,o2S*[5 + D’.r,] + 
(Q1.1~1+& - Do,-i21Jz)D (38) 

D = -2i~4iDP (394 
where 

with 4( = l , l z n / y e / y ?  and 0,” is discussed elsewhere.lB 
Also 

D’ = - (5/3)1/9B (39b) 
If we write [ X , p ]  then one has 

[ X i Z I n u ~ p ~ ~  = C XI,,$^'^ 3Gp,,r6a~I (40) 

where cy, a’, p, and P’ are eigenstates of 320. XIz may 
be represented as a simple Hermitian matrix in the 
space of transitions 1-4 

1 

While eq 42a and b are applicable for L = 0, eq 42c 
and d require L,  L’ > 0,  and in all cases L and L‘ must 
be even and L’ = L * 2 or L. Equations 42 represent 
four infinite sets of coupled equations (ie., expansions 
in L)  which are then coupled among each other due to 
the pseudo-secular contribution from the END term. 

The absorption is proportional to 

21’’ + 22’’ = ImICo,*(l) + C0,*(2)]x-l (43) 

When the series of eq 42 are terminated for L > n, thc 
coupled algebraic equations are of order r = 2(n + 1) 
(the coefficients C0,oo(3) and CO,oO(4) &re not needed to 

2 3 4 
0 S 
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Figure 4. Energy levels and transitions for A, S = I/z, I = 
The notation is IMs,Mr). case; B, S = 1/2, I = 1 case. 

A E l 

Goua1 - 0ouSI - 
Figure 6. Comparison for S = I / t ,  Z = I/z of line shapes 
which include pseudo-secular contributions to line shapes for 
which they are omitted, when wn is small; IFj/R = 100. 
other parameters as in Figure 5: A, absorption; B, derivative. 
-- corresponds to inclusion of pseudo-secular 
terms; ---- corresponds to their omission. 

All 

A 

Gouaa - 

Figure 5. Line shapes for S = I = 1/2 with axially 
symmetric g tensor and hyperfine tensor and small wn: 
absorption; B, derivative. The different 5 / R  values are --, 
2; --- , 15; e.., 100. 
derivative line shapes. All correspond to g1 I = 2.00270, 91 = 
2.00750, ,811 = 32 G, A1 = 6 G, Iwn/-yel = 0.36 G, 
(2/~‘3)!G-~/I-y~l = 0.1 G, and are centered about BO = 3300 G. 

A, 

C and D, rigid limit absorption and 

obtain the spectrum from eq 43). When /Dl << 
la f onl, then it is possible to use a perturbation tech- 
nique to uncouple the coefficients for X = 1 and 2 
from those for h = 3 and 4. (This technique is dis- 
cussed in some detail in section €32.) 

The solutions to eq 42 and 43 for the case of a small 
w e  are given in Figure 5. This is a situation wherein a 
perturbation approach is not applicable. The param- 
eters utilized for Figure 5 are appropriate for a nitrox- 
ide,” except that here I = (An 16N nucleus is 
thus moderately well represented.) One again sees the 
gradual transition from liquidlike to solidlike line shapes 
as ISl/R is increased, and even a t  Isl/R = 100 the 
correspondence to the rigid limit (Figure 5C)  is clear. 

Gnu11 - 
Figure 7 ,  Comparison for S = I/%, I = ‘/z of line shapes 
which include pseudo-secular contributions to line shapes for 
which they are omitted, when w,, is large; lSl/R = 100. 
/wn/yel = 23.0 G. All other parameters as in Figure 5 :  A, 
absorption; B, derivative. -- corresponds to inclusion of 
pseudo-secular terms; ---- corresponds to their omission. [Spin 
parameters ( g ~  1 - gi), Iwn/ye( ,  A I  1, A l ,  and the abscissas of 
graph scale to a typical ring proton case when divided by 4.6.1 

Figures 6 and 7 show the results of a study to deter- 
mine the importance of the pseudo-secular contributions. 
Figure 6 corresponds to  the same parameters as Figure 
5 with ISl/R = 100, but the complete solution is com- 
pared to the simplified solution obtained by the neglect 
of the pseudo-secular terms (ie., the terms in eq 42a 
and b which couple in forbidden transitions 3 and 4). 
There is no question but that the absorption and deriva- 
tive line shapes are significantly altered by the presence 
of pseudo-secular terms. In Figure 7, a similar compari- 
son was made, but herc wn was increased by a factor of 
65 while all other parameters were kept constant. 
With this choice of con, the relevant spin parameters 
scale reasonably well to those for a typical aromatic 

(17) 0. H. Griffith, D. W. Cornell, and H. M. McConnell, J .  Chem. 
Phys. ,  43, 2909 (1965); T. J. Stone, T. Buckman, P. L. Nordio, 
and H .  M. McConnell, Prac. Nat.  Acad. Sci. U .  S., 54, 1010 (1965). 
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ring proton when one divides them by 4.6. In  this case 
it is seen that the pseudo-secular terms make only a 
minor contribution to the line shapes, as expected, since 
ID1 << la’ f unl. Such small effects can be accounted 
for by perturbation techniques. Similar results are 
obtained a t  lower values of ISl/R, although for Is\/R = 
10 the primary effect of the pseudo-secular terms is to 
further broaden and shift the peaks rather than to 
change the spectral shapes markedly, 

b. Oiae Nuclear Spin of I = I (14N). The energy 
levels and three allowed and six forbidden transitions 
are shown in Figure 4B for this case. We again assume 
axially symmetric tensors, and following a procedure 
similar to that used in part afor I = l / 2 ,  we obtain sets 
of equations which couple all nine transitions and are of 
order r = (9/2)n + 3. They can be summarized as fol- 
low% 
( 2 ~  + 1)-1{ [u + ( 2  - ~ ) 2 a ’ ]  - 

i[Tz-’ + RL(L + 1)l]Co,o”(X) - 

f(L‘,X) = 
fi (L 2 L’)(L 2 L’ ) 

Co,oL’(X) + -DE 
2 L’ 0 0 0  0 1 - 1  

(for X = 4, 5, 6, or 7) (45) 
where Y = +1 and E = 1 when X = 4 or 5 and v = 
-1 and E = 3 when X = 6 or 7; also v‘ = 8 for X = 
4 or 6 and Y‘ = 9 for X = 5 or 7. Also 

(2L + l)-q [(w - (-)X2wn] - 
w 2 - ’  + RL(L + l)ljco,2(-,x”(X) - 

(for X = 8 or 9) (46) 

where 

f(L’,8) = Co,iL’(4) -I- c0,iLr(6) (464 

f(L’,g) = co,-iL’(5) + co,-iL’(7) (46b) 
The above equations are valid for even L and L’. 
Finally 

1 
I (u)  = -Im[Co,oO(l) + CO,oO(2) + Co,00(3)] (47) 

.rr 

Computer simulations of these equations for the nitrox- 
idelike values employed in part a are given in Figures 
8 and 9. In  Figure 8 results for a range of iSl/R 
values are given, and they show the progress from 
liquidlike to solidlike spectra. In  Figure 9 a com- 
parison is made between line shapes obtained (for 
1Sl/R = 100) when pseudo-secular terms are both 
included and omitted. Again it is clear that these 
terms make important contributions. Also shown in 
Figure 9 is a comparison of the rigid limit spectra pre- 
dicted for the two cases when pseudo-secular terms are 
either included or omitted, and the ddference is sig- 
nificant. 

B. Saturation. To describe a saturated spectrum, 
one needs, according to  eq 21, expressions for the 
[Cm(0)]A,+. These may be obtained by taking the 
(X,*l- I X p )  matrix elements of eq 4 and performing a 
derivation like that which leads to eq 21. We obtain 

N ,  (inw + E,,~’) [Cm’‘n)]Aii = 

ridx,N,t( [Cmr(n+l)]xi_+ - [Cm!(n-l)]X,c) - 
i CfdflG,r* (a) G,(Q) [X1(”Onaeo) ~cm(n) l~,* ,x i *  (48) 

(Here, the subscript A,+ X j  refers to the (h,-I-IX,+) 
matrix element, while Xj, refers to the (X,+I-IX,-) 
matrix element.) The superscript (nonsec) refers to 
the fact that only the nonsecular part of XI need be 
retained. Equation 48 is also needed for problems 
involving no saturation, but a nonsecular X1 which 
induces electron spin flips. 

m 

A d 

Figure 8. Line shapes for S = 1/2, I = 1 (l4N nucleus) with 
axially symmetric g tensor, hyperfine tensor, and small con: 
absorption; B, derivative. Parameters same as in Figure 5 
except (2/2/?)T2-1 /Ire\ = 0.3 G. 

A, 

The jSl/R values are ---, 2; 
...., 15; --, 100. 
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oouu- mu - 

C 0 I 
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I ,_-" 
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Figure 9. Comparison for S = l/2, I = 1 (14N nucleus) of 
line shapes which include pseudo-secular contributions to line 
shapes for which they are omitted, when on is small; 15//R = 
100. A, absorption; B, 
derivative; C and D, rigid limit. - corresponds to inclusion 
of pseudo-secular terms; --- corresponds to their omission. 
Arrows are used to locate derivative extrema in D when 
otherwise unclear. 
normalized to a common integrated intensity, while in C and D 
they are normalized to the same total height. 

All other parameters as in Figure 5 :  

Note that in A and B the shapes are 

It is often convenient to look a t  the difference 

(49) [b,J(")IAi = [C,, (d IXi+ - [Cm'(n)]Xi- 

which is found, from eq 48, tJo obey the equation 

N,t(inw + Emt) [bm,(")]xi = 

- i2dA,N, I ( [ c m  ,(n+ ' ) ] A j +  - c m  ,(n - IX,) - 
izs dOG, I * (52) G, (52) ( [Xl("OneeG) ,Cm(n)]Xi*Xi+ - 

m 

[X1(nonBeo) c (d 
I m lXr-Xi- )  (50) 

It follows from the Hermitian properties of p and pa 

as well as eq 6, 7, and 18 that 

N m t  [ C m r ( n ) ] , a  = [Cm(-")]aa*SGml*(52)G,*(52)d~ (51) 

Equation 51 also applies for b = a. 

m 

Thus in eq 48 

SGm~*(Q)G,*(Q)dQ (52)  

A form of eq 21 generalized to any n (not just n = 1) 
is sometimes needed. I t  is 

[Cm~'"'l~, + Z f d Q G m R * ( Q ) G m ( Q )  X 
m 

[Xi(O) ,Cm(n) ]A, + dx,Nm! [brni'"- ') ] x i  = 

wvLiNm',O) 6 (n, 1) (53) 

In  eq 48 (or 50) and 53, one sees that it is only 
through effects of the radiation field, where the strength 
of interaction with the spins is given by dA, E l/zwl, 
that the nth harmonics [Cm~(n)] are coupled to harmonics 
[Cm(n*l)]. An analysis of these equations (which is 
given in more detail for the simple two-jump case in 
Appendix B) leads to the result that the extent of cou- 
pling depends essentially on the ratio wl/wg, which is 
very small in the presence of large applied dc fields. 
Hence, it is sufficient for high-field saturation cases to re- 
tain only the n = 1 terms (which include [Co(l)]~r, the 
observed signal) and the n = 0 terms (which include 
[bo(O)IA,, the dc population differences). Higher 
harmonics become important in a variety of multiple 
resonance schemes or experiments done a t  lower dc 
fields. 

1. Rotationally Invariant TI .  We consider a sim- 
ple case of saturation. The unsaturated line shape is 
assumed to be due mainly to  the secular part of an 
axially symmetric Q tensor just as in section IIIA1, 
while there is a rotationally invariant T I  = (2We)-I, 
where We is the lattice-induced electron spin flip pro- 
cess. This is introduced by replacing in eq 50 E,t + 
E,, + 2 V e a  We also include a rotationally invariant 
Ta 5 TI by letting iEmr --t i(E,t + T2-l) in eq 53. 

For the secular perturbation of eq 29, it is only 
necessary to consider [CO,O~( ' ) ]A~ and [ b ~ , o ~ ( ~ ) ] A , ,  and 
one obtains from eq 50 and 53 

[(0 - 00) - iRL(L + 1) - 

Im[Co,oL(l)lX, = qwxdx,G(L,O) (54) 

Equation 54 wit,h eq 32 then determines the saturated 
spectrum. Note that the saturation term (vie. the last 
term on the left-hand side of eq 54) for L = 0 is unaf- 
fected by the rotational motion; while for L > 0 we find 
W ,  3 W e  + 1/2RL(L + l),  Le. ,  the rotational motion 
aids the spin relaxation by spreading the spins over all 
orientations, which, due to Xl(52) have different "static" 
resonant frequencies. 

The computer solution to eq 54 is conveniently de. 
veloped after the real and imaginary parts have been 
separated. The results for /51/22 = 10 and 100 are 
given, respectively, in Figures 10 and 11. Each figure 
shows curves corresponding to  values of B1 covering a 
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Figure 10. Saturation of single line with rotationally invariant 
T1, as a function of B1 for 151/R = 10: Q ~ I  = 2.00235, QL = 

The different values of (1/2)B1 are --, 0.01 G; --, 0.0333 
G ;  --, 0.0667 G; ---, 0.100 G. These correspond to intensity 
factors of 1418,913,481, and 280, respectively. A, absorption; 
B, derivative. 

2.00310, TI = TI = (2We)-' and ( 2 / ~ ) 5 " 1 - ' / ~ ~ e ~  = 0.02 G. 

A 6 6 

Figure 11. Saturation of single line with rotationally invariant 
TI, as a function of BI for 15l/R = 100. The different values of 
(1/2)B1 are --, 0.01 G;  ---, 0.028 G; "", 0.050 G; -.-, 0.075 
G. These correspond to intensity factors of 1414, 1052, 580, 
and 352, respectively. All other parameters as in Figure 10: 
A, absorption; B, derivative. 

range in which saturation is important. A measure of 
the extent of saturation of a particular line shape is 
given by the integrated area under the absorption curve. 
These are given as intensity factors in relative units in 
the figure captions. They aid cross-comparisons be- 
tween the different figures. Thus we note that, roughly 
the same degree of saturation is achieved for a given 
B1 in both figures. In general, one sees that the 
effect of the saturation on the line shape is to broaden 
out the spectrum while acting to  "wash out" the asym- 
metric appearance. This is similar to the effect of in- 
creasing Tz-l for the unsaturated spectrum ( c f .  Figure 
2) (except for the reduction of intensity in the case of 
saturation). 

We now include 
the norisecular portion of the g tensor to give 

2. g Tensor (Axially Symmetric). 

El = 5[roO,O2Sz - (8/*)l'yrB0,12S+ - 90,-12X-)] (55) 
Equation 55 substituted into eq 53 and 50, respectively, 
leads to 

and 

We find from eq 25, 28, and 51 that 

so [bo,oL(")]~, is real, and eq 57 can be more conveniently 
rewritten. 

We now employ the high-field, moderate saturation 
approximations (ie., Iwl/wol << 1, where w1 = 2 4 ,  and 
l5//woI << l) ,  as well as the ad hoc relaxation to  thermal 
equilibrium assumption, which are discussed in Ap- 
pendix B. This loads to simplified coupled equations 
between the coefficients Co,oL(l)  and bo,oL(') and between 
Co,oL(0) and b 0 , 8 @ )  as a result of the nonsecular part of 
eq 55, while Co,oL(l) and bo,oL(o) are coupled via the 
saturating microwave field. However, the assump- 
tion that 15/woi << 1 further allows one to employ 
second-order perturbation theory and decouple CO,oL(*) 
from bo,oL(') and bo,oL(0) from Co,oL(o). The resulting 
equations are 

{ ( w  - wo) - i[Tz-' + RL(L + l)])co,oL(l) - 

I =  52 
terms in Co,oL"(l) of order -___ 

- 0 0  + iRL(L + 1) 

and 
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where 

( E ) [ R L ’ ( L ’  + 1 )  + Tz-lI (604 

In eq 59 we are neglecting terms of order 52Co,oL”(1)/  
[-a0 + iRL(L + l)] since when RL(L + 1) << Iwo(, 
as is the case for slow tumbling, then these nonsecular 
terms are of order IS/wol smaller than the secular terms 
in 5 ;  i.e., we are neglecting the nonsecular contribu- 
tions to the unsaturated line widths as compared to the 
secular contributions for slom tumbling (cf .  section 
Al) .  These nonsecular terms must, however, be 
included in eq 60 since this equation predicts the TI- 
type behavior and is not explicitly affected by the 
secular terms in 5. IYote that for RL(L + 1 )  << 
IwoI, then [V(L,L’)”IV(L’’,L’)/ << wo2 and the terms in 
V z  in the denominators of the last terms on the left- 
hand side of eq 60 may be omitted. Furthermore, in 
this limit a perturbation analysis of the coupling of 

to bO,oL’’(O) in equation 60 shows that it is suf- 
ficient to  restrict the summation over L” in this 
equation to  just L” = L. This, then, just leaves the 
terms diagonal in bO,oL(O) in eq 60. However, these 
diagonal corrections are of order of magnitude [5/’wo12R 
and are thus negligibly small compared to l/&L(L + 
1). T h u s ,  the contribution of the nonsecular terms in 
eq 60 i s  negligible in our approx imat ion  except for the 
diagonal term for  L = O! This contribution to L = 0 
is readily calculated, and is 

We(‘) = (’/IO) ( ~ / W O )  ‘R (61) 
which i s  j u s t  the result obtained f r o m  relasation theory 
for IR/uol << i,2a,11 even though we are now allowing f o r  
slow tumbling:  jS/R[ > 1 (c f .  Appendix B). The net 
conclusion is that for /51,R, << 1 ~ 0 1 ,  the solution to the 
present case is just given by eq 54 for the rotationally 
invariant TI, but with We + We + We(‘)GL,O in that 
equation, where We(’) is given by eq 61. 

The solutions for different W I  = yeB1 in the region of 
saturation are given in Figures 12 and 13 for values of 
ISl/R = 10 and 100, respectively. One notes, from the 
intensity factors given in these figures, that roughly the 

-1.50 -112 -075 -038 0 038 075 112 I 50  - 1  
Gauri - Gaulii - 

Figure 12. Saturation of single line with g-tensor relaxation as a 
function of B1 for 1Fl/R = 10; 
We = Tt-’ = 0. The different values of (1/2)B1 are --, 

Corresponding to intensity factors of 1053 342, 139, 
respectively. A, absorption; B, derivative. 

= 2.00235, gl = 2.00310; 

1 x 10-6  G ;  ---, 5 x 10-1 G; .-, 1 x 10-4 G. 

Gaur9 - Gwro- 

Figure 13. Saturation of single line with g tensor relaxation as a 
function of B1 for 18//R = 100. The different values of (1/2) 
X B1 are --, 3 X 
G. These correspond to  intensity factors of ld82, 914, 308, 
respectively. All other parameters as in Figure 12, 

G ;  ---, 7.5 X loW6 G .  “”, 2 X 

same degree of saturation is achieved for cases 15//R = 
10 and 100 when B1 is only about three times weaker for 
the latter case. One again finds that the effect of satu- 
ration is to  broaden out and to tend to  reduce the asym- 
metry of the spectrum. 

The rather surprisingly weak dependence of the in- 
tensity factors as a function of B1 for the different lSI/R 
values in the slom tumbling region is most likely due to  
the fact that different portions of the spectrum are 
found to saturate to a different extent. This is most 
clearly seen in Figures 11 and 13 for the cases of I F / /  
R = 100. What should be an equivalent point of 
view is suggested by the nature of the coupled eq 54 
(also as modified by inclusion of eq 61) .  We note that 
as l5l/R becomes larger, coefficients CO,oL(’) for the larger 
L values play a greater role in the coupled equations. 
But these terms have “effective” TI’S of [2We + RL(L + 1)I - l  in eq 54, so that while R may become smaller, 
L(L + l ) R  for the contributing terms is not decreasing 
as fast. Similar comments apply to the width com- 
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ponents where 1’2-l replaced by RL(L + 1) + Tz-l 
(although here their relative value compared to 5 be- 
comes important). The components of higher L value 
are therefore not as easily saturated as the components 
of lower L value, and the latter are expected to make 
the major contribution to an unsaturated spectrum. 
This, one would expect, is the reason for the significant 
line shape changes obtained as a resulting of saturation. 

A comparison of Figures 10 and 11 for a rotationally 
invariant TI and Figures 12 and 13 for the g-tensor con- 
tribution suggests that appropriate experimental studies 
might distinguish between such cases. The differences 
are clearer from the absorption plots. Thus in Figure 
13A the line shape appears to be “squaring-up” more 
than in Figure 11A, for comparable intensity factors. 

IV. Conclusions 
It has been shown that the stochastic Liouville 

method may be successfully applied to obtain rapidly 
convergent solutions for a wide variety of esr line shape 
problems in the slow tumbling region. These included 
esr line shapes in the presence of g tensor arid dipolar 
perturbations as well as the effects of saturation on the 
slow tumbling line shapes. The method may also be 
readily applied to include other relaxation effects ( e . g . ,  
nuclear quadrupolar terms), to spins of higher multi- 
plicity, and to multiple resonance effects. Further, 
Markovian processes other than isotropic rotational dif- 
fusion could be incorporated. 

Our results on unsaturated line shapes have clearly 
demonstrated the importance of the pseudo-secular di- 
polar terms in determining the line shapes in the slow 
tumbling region. The criterion for when they have 
major effects is D 2 la‘ f w,j; ;.e., the anisotropic 
dipolar terms are comparable to or larger than the pure 
nuclear-spin transition frequencies. This is the usual 
case for I4N nuclei in nitroxide compounds but not for 
typical ring protons. No recourse had to be made in our 
work to the “adiabatic” approximation used by earlier 
workers5lB which is valid in the near rigid limit, but 
begins to break down as the tumbling becomes faster 
due to “pseudo-secular” contributions.’ 

Our results on the effects of saturation have shown 
that rather significant line shape changes are predicted 
to be induced as a function of the saturating fields 
(Figures 10-13). This suggests that experimental satu- 
ration studies, in which the line shape changes are moni- 
tored, could be useful in extracting out spin relaxation 
information in the slow tumbling region. Also, our 
analysis of both a simple two-jump case (Appendix B) 
and a rotational diffusion case show that, even in the 
slow motional region, a fundamental role is played by 
the TI’S that are obtained from the spin relaxation theo- 
ries (where /x17,/ << 1 is assumed). 

One of us (J. H. F.) wishes to 
thank Professor R. Kubo for his kind hospitality a t  
the University of Tokyo, where this work was begun, 
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Appendix A 
On. the Convergence of the Solutions. We examine 

some aspects of the convergence of the simplest case: 
section IIIA1, the axially symmetric g tensor. This 
solution is of the form (in matrix notation) 

(A + kl)(C) = (U) (-41) 
where A is a complex continuant matrix with diagonal 

(,” : 3 elements ALL = -iBL(L + 1) - (2L + 1)s 
and the only off-diagonal elements, A,,L*~ - - 

L 2 L*2 

) . The unit matrix of eq A1 is multi- 
L 2 L h 2  2 1 

plied by k = (U - w0) - iTz-l; C is a column vector 
of the coefficients Co,gL, and U is a column vector where 
UL = 6(L,O). Let us partition A as 

where AO,O is the first diagonal element of A. Then 
let t define the transformation which diagonalizes 
AP; t-’APt = a. Note that AP is symmetrized by 
the similarity transformation 

S-IAP S =  A P  (A31 

where S is a diagonal matrix with elements SL,L = 
[ 2 ~  + i]? Specifically A,,,,, = [ ( 2 ~  + 1)-1 x 
@EL * 21 + 1)11’zAL,Lh2 while = -AL,,. Then 
we may write t = SO where 0 is the complex orthogonal 
transformation ( i e , ,  0 - 1  = Qtr) which diagonalizes 
tip. If we define T as partitioned according to eq A2 
by 

then by transforming eq A1 by T and solving for Co,oo 
we obtain 

I C )  -‘O-’L ,2]-l (A5) 

Note that if \A, , ,  - An-2,n-21 >> lan,n-21, then in the 
diagonalization by 0, the nth coefficient C0,O” will mix 
in very weakly with Co,02, so that 02,, and 0,,2-l are 
very small. Thus unless (a, + IC)-l is unusually large 
(e.g., a resonance) we can neglect its contribution to 
CO,$ compared to the other terms in eq A6. Since, 
AL,L > AL-Z,L--2 for both the real and imaginary parts, 
we expect that a, > a,-z. We can then terminate the 
expansion with reasonable confidence when the above 
inequality is fulfilled. This is undoubtedly too strong 
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a condition, because we have not considered the chain 
whereby CO,O" couples via Co,o"-2, CO,O"-~,  . . . to C O , ~ ,  
which further reduces the magnitude of O Z , ~ .  

AL - AL+2 = +iR(4L + 6) 4- 

Now 

It is sufficient to consider just +Im(AL - AL+2) in 
place of IAL - AL+al. Thus we want 

4n + 6 

(e.g., for n = 12 we have lSl/R < 143) as a reasonable 
guide to convergence. We have found from the com- 
puter simulations that for ISj/R = 100 a value of 
rz = 12 is sufficient. Also, these criteria are found to 
carry over into the more complex cases studied. 

When a rotationally invariant Tz-' is introduced, i t  
both increases the value of (Ao,,,  + k) in eq A6 while re- 
ducing all values of (a ,  + k) - l  in the summation term 
of this equation. It thus reduces thc importance of 
each term in the summation by the factor Ao,oaL/ 
(&,o + k).(aL + k ) .  Finally as w (or wg in a field 
sweep) is swept away from resonance, thus increasing k, 
one again gets a suppression of the summation terms, 
except for resonances that appear for Im(aL + k) = 0 
(as well as coupled resonances of these terms with the 
(A0.o + k )  term). The effect of these resonances is 
found to yield spurious "local peaks" when the cut-off 
value, n is too small for n good approximation. 

We note that if the above diagonalization scheme is 
applied to the full A matrix, one then obtains solutions 
of c0.0~ in the form of a superposition of Lorentzians 

where the terms in eq A7 are defined as before but now 
as applied to 0 diagonalizing the full A. This pro- 
cedure (for the case of only secular terms) is similar to 
the approach of Korst and Lazarev.6 Similar diagonal- 
izations should be appropriate for the more complex 
cases. (Notc that to the extent 0 0.~ is complex, there 
will be "dispersion-shaped" components in the absorp- 
tion.) 

Appendix B 
The Two-Jump Case and Saturation. 

modulation of XI is assumed, such that 
A two-jump 

X d i )  = S ( i )  [S, + '/z(S+ + SJl (B1) 

where F(1) = -5(2) = 5 a real quantity. A simple 
two-level esr transition is considered. 

I n  the space of the two jumps 

where WJ is the mean jump rate between the two sites, 
and clearly Po(1) = Po(2) = l / z .  We now write eq 53 
and 50 for this case, but in the form appropriate before 
the substitution of eq 18 is made (cf. eq 16) 

(nu - 0 0  + (--)Is - 'kJJ)z(")(i) f 

ioeZ(")(j) + dY("-')(i) - (-)"/2S[Yn(i)  - 
po06(n,O)I = l/mod6(n,l) (i Z j) (B3) 

and 

(llZnu - ' / g i ~ j  - iWe)Y"(i) + 
l/&oJY"(j) = d(Z("+l)(i) - Z(l-")*(i)) + 
(-)i1"/5(Z(")(i) - Z(-")* ( i ) )  (i # j) (B4) 

Note that we have let Y(")(i) = xh+(") - xX-("), and 
we have dropped the X j  and Xj& subscripts for this 
single transition. A rotationally invariant electron 
spin flip rate, We has been introduced. 

The eigenfunctions of eq B2 are just the sum and 
difference of the two-jump sites with eigenvalues of 
zero and -2UJ, respectively. Thus we introduce the 
sum and difference modes 

Z(")(*) = Z ( y l )  * Z y 2 )  

Y(")(*)  = Y'"'(1) I Y ( y 2 )  
(B5a) 

(B5b) 
and rewrite eq B3 and B4 as 

(nu - o0)Z(")(+) - 5 Z ( n ) ( - )  + dY("-')(+) + 
1/25Y(n)(-)  = qwod8(nJl) 

(nu - wo - 2iwJ)Z(")(--) - sZ(")(+) + 
dY("-l)(-) + 1/25Y(")(+) = -5Sqwo6(n,O) 

and 

(llZnw - iW,)Y"(+) = 
-d(Z("+l)(+) - Z(-.+1)*(+)) - 

l/,S(Z(")( -) - Z(-")*( -)) (B6a) 
( ' l Z n w  - iw - iW,)Y"(-) = 

(-1) - -d(Z("tl)(-)  - Z(-"+l)* 

The spectrum is given by ImZ(l)(+). In  the absence 
of saturation, the secular term in X 1  (proportional t u  
5 in eq B5) couple Z(")(+) with Z(")(-) ,  and the 
extent of coupling depends on the ratio / 5 / 2 W J I .  (This 
is seen by comparing the off-diagonal elements with 
the differences in diagonal elements for the matrix of 
the coupled equations of B5 and B6.) The non- 
secular terms (proportional to 5/2 in eq B5 and BS) 

'/25(2(")(+) - Z ( - n ) * ( + ) )  (B6b) 
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couple the Z(")(=k) with the Y(")(i=) by eq B5, while 
the Y(")( F) are coupled to both Z(")( =k) and Z(-")*( A )  
by eq A6b. The extent of these latter couplings 
depends essentially on the ratios S/lno + 2 i k W  and 
S/l3nw + 2 i k U J 1 ,  respectively (with k = 1 or 2 depend- 
ing on whether one has Z(")(+) or Z(")(-)), where 
we want w - won For small values of S / 2 w ~ ,  relaxation 
theory sufices. 

In  the presence of saturation, the interaction with 
the radiation term leads to a coupling of Z(")(rt) to 
Y("- ')(*) (via eq B5), and the Y("- ')(*) are coupled 
to Z(")( +) and Z(-n+2)*(  *) via eq B6. Here the extent 
of coupling depends on the ratios loll/l(n + 1). - 2w0 + 
2iWeI and /w1 l / l ( -n  + 3)w - 2w0 - 2iWe1, respec- 
tively, for the plus signs (with We + We - OJ for the 
minus signs), and we have taken We to be small. Thus 
in the high-field saturation case where Iw1/woi << 1, the 
Z(l)(*)  and Y(O)( +) terms are dominant. The Z(O)( rt) 
and Y(l)(  * ) terms coupled in by XI must also be con- 
sidered. Also we are neglecting Z(-l)*( *), since j5 /3w0/  
is assumed small. 

1. Neglect of Nonsecular Terms, but W e  # 0. Equa- 
tions B5 and B6 need only be written for Z(l)( 't) and 
Yo(*)  for this case. The solution for Z(')(+) is given 
by 

where 

The resonance frequenci(es) and width(s) are obtained 
from the coefficient of Z(')(+) in eq 137, while the 
saturation parameter or T1 appears in the coefficient 
of Z(l)(+)". In the motional narrowing region, where 
S 2 / ~ J 2  << 1, we have S2/X << 1, and we may set (w - 
w , ) ~  = 0 in eq B7a for X for the region of resonance. 
We then get a single line at  w = wo; with 

and 

Thus T2 can be affected by the strength of the radio- 
frequency field. The slow motional region (S2 /wJ2  >> 
1) is recovered by first letting W J  = 0, and solving for 
the zeroes in the coefficient of Z(l)(+) which are, of 
course, w - wo = + 5 .  Then we let (w - = S 2  
in eq B7a. This yields, for each of the two distinct 

Again it is possible for a large d 2  to affect the relaxa- 
tion times. Note that for We >> w J (and small enough 
d 2 ) ,  T I  = We-l and is thus twice as long as the motional 
narrowing result of eq B8b. 

2. Nonsecular Terms Included and W e  = 0. We 
now must include contributions from Z ( l ) (  *), Y(O)( h), 
Z('))(j=), and Y( l ) (*) ,  and we neglect all other har- 
monics. It is useful to employ the other high-field 
condition: S2/wO2 << 1, to facilitate the solution, which 
after some algebra (and an important assumption; 
see below) is 

1 + a(wo)- l  Z(l)(+)' '  = quod (B10) 

where 

(BlOa) 

S = AWO" + 4wj2(1 + d 2 / w j 2 )  (Blob) 

duo' = w - wo - S2/2w, and Aw0" = w0 - w0 - (w/2wJ) a 

a(w).  The imaginary term ia(w) in the coefficient of 
Z( l ) (+)  in eq B10 gives the nonsecular contribution to 
the width according to eq BlOa (for w - wo) .  This is 
a well-known result from relaxation theory, but it is 
obtained in the present case without any assumptions 
regarding the magnitude of S2/wJ* .  This is also true 
for the T1 contribution of l/lza(wo) in the coefficient of 
Z(l)(  +)" (but see below). The associated dynamic 
frequency shift is (U/2WJ)a(w). The terms in eq B10 
shown explicitly with FF2 all arise from the secular con- 
tribution (compare eq R7). The motional narrowing 
result, wherein we have 5 2 / w ~ 2  << 1, and P / S  << 1 is 
obtained as in case 1, and we neglect the small dynamic 
frequency shifts. Then we have for the single line at 
w 5x wo 

T2-l = FF2/{2uj[1 + d 2 / w ~ l z ] )  + a(wo) (Blla)  

and 
T1-1 = 2a(wo) (Bllb)  

The dependence of T2 on the strength of the saturating 
field is equivalent to the result discussed by Abragam18 
and Blochlg for the case of a "viscous liquid" where 
5 2 / 4 W J 2  << 1, but d 2 / ~ ~ 2  >, 1. The methods of this 
paper (including rotational diffusion) allow for soh-  

resonance lines 
(18) A.  Abragam, "The Principles of Nuclear Magnetism," Oxford 
University Press, London, 1961, Chapter XII. 
(19) F. Bloch, Phys. Rev., 105, 1206 (1957). T2-l = 2 ~ ~ [ 1  + 4 d 2 ~ ~ / 5 2 ( ~ ~  -k We)]-' (B9a) 
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tions even when 5 2 / 4 ~ ~ 2  is not small. When S2/4WJ2 >> 
1, i.e., slow motion (and we let C Z * / ~ ~  << l ) ,  then one 
has two lines a t  AWO’ = * 5  each having T2-l = 2 W J  
and TI-’ = 2a(wo) with T I  >> Tz .  Thus TI is given by 
the second-order relaxation theory result even though 
the condition for validity of the theory no longer 
applies. 

An important assumption was made in the above in 
order to guarantee relaxation to equilibrium. The 
nature of this assumption can more clearly be seen by 
writing the solution for the case where the secular 
terms have been omitted with We # 0, but small. 
Then one has 

(B12a) [Awe" - i a ( ~ ) ] Z ( ~ ) ( + )  + dY(O)(+) = quod 

and 

dZ(’)(+)” = ‘ /za(~o)  [Y(”(+) - 
QUO] + ‘/2WoY(O’(+) (B12b) 

In  eq B12b we see that a(wo) plays a role identical 
with We in causing spin relaxation except for the term 
in quo = (Pb)0 - ( P J 0  (the difference in spin popula- 
tions at  equilibrium). That is, Y(O)(+) - quo = 
paa - P b b  and the effect of a(wo) in eq B12b is to  tend 
to relax the spins to infinite temperature (where (Po)o = 
(P,)o) rather than to the proper thermal distribution. 
This is the well-known fundamental difficulty in semi- 
classical relaxation theories, which in the present 
method may be overcome in a manner analogous to 
those theories by letting Y(O)(+) + quo + Y(O)((+) for 
such terms (where we are assuming a high temperature 
approximation) and the equivalent has also been done 
in section IIIB. The question remains of a rigorous 
justification for such an ad hoc assumption for small 
W J  (hence small a(wo))  when a rigorous spin relaxation 
theory approach is no longer applicable.20 We note, 
however, that should the extra term in quo be included, 
i t  would affect an unsaturated as well as a saturated 
line shape equally and merely in their absolute intensi- 
ties. That is from eq B12 one has 

so the relative intensity changes due to the onset of 
saturation are unaffected by the assumption, and for 
small enough ~ ( w o )  << We, even the absolute effects 
become negligible. 

Discussion 
J. HARRIMAN. Can you handle anisotropic rotation? What 

J. FREED. Let me illustrate with the case of axially 
symmetric rotational diffusion. For this case the eigenfunctions 
for eq 23 are still the Wigner rotation matrices: D I C , ~ ( ~ )  but now 
with eigenvalues 

will the effect be? 

Yes. 

with R, = R,  and R, the principal values of the diffusion tensor 
and the molecular z axis as the axis of symmetry. If the x axis 
also corresponds to a principal axis of the g and dipolar tensors, 
then it is an almost trivial matter to correct the equations in 
our paper for effects of S U C ~  diffusion. One then sees that the 
K-dependent term in E L , K , M  will only affect the spectrum if 
gz # g, and/or the dipolar terms D,(*’)# 0. 

When the rotational diffusion is asymmetric, the proper eigen- 
functions for eq 23 become linear combinations of spherical har- 
monics (see J. H. Freed, J .  Chem. Phys., 41, 2077 (1964), for 
further details), and while the method applies, the equations 
constituting a solution to the spectrum become more complex 
though tractable. 

We might note that a situation like R, >> R,, or the reverse 
inequality, allows for the interesting possibility that there is 
fast tumbling about one axis, while there is slow tumbling about 
another. 

0. H. GRIFFITH. In  your calculations of rotational correla- 
tion times, are there any other parameters in addition to the 
intrinsic line width and the principal values of the hyperfine and 
g tensors? 

J. FREED. No. A particular calculated spectrum is deter- 
mined solely by the rotational diffusion coefficient R, an intrinsic 
line width, and the principal values and axes of the hyperfine 
and g tensors. 

In our experimental studies (S. Goldman, G. Bruno, C. Polnas- 
zek, and J. H. Freed, J .  Chem. Phys., in press) we find that the 
intrinsic line widths needed to get good agreement between the 
computed and experimental spectra are temperature dependent, 
e.g., essentially zero in the faster tumbling regions to a few gauss 
in the near-rigid and rigid regions. 

Since the esr line shape depends critically upon 
the pseudo-secular contribution of the dipolar interaction, do you 
feel that it would be advantageous to study these slow tumbling 
systems by multiple resonance techniques such as Electron- 
Electron Double Resonance (Eldor) to extract more explicit 
experimental data? 

I think our predicted spectra showing effects of 
saturation on slow tumbling line shapes encourages one to think 
that useful information may be obtained by saturation studies. 
J. S, Hyde has independently come to similar conclusions from 
his experimental work. Eldor would certainly be a means of 
extending such studies, and we plan to  develop appropriate solu- 
tions utilizing the approach given in our paper. . 

D. E. WOOD, How much computer time is required to fit a 
series of spectra from slow to fast limit, for say a iiitroxide radi- 
cal? 

J. FREED. The following are typical computer times for the 
nitroxidelike spectra, Z = 1, S = I/$, given in our paper: 575, 
350, and 200 sec for FIR values of 100, 15, and 3, respectively. 
The computer is an IBLI 360/6S and the Gaussian elimination 
method was used, We anticipate order of magnitude reductions 
in computer time when we have converted our method of solution 
to diagonalization by the QR transform method, since only one 
diagonalization per FIR value is required to obtain the whole 
spectrum. Further reductions in time may be possible by 
utilizing more modern iterative computer methods. 

13. LEKIART. 

J. FREED. 

(20) That a(wo) still represents a relaxation mechanism resulting 
from modulation of the nonsecular terms even by a small WJ, can be 
illustrated in a manner analogous to  that  discussed by Abragam for 
scalar relaxation of the second kind (ref 18, p 312). For the present 
case one may formally let 5 = 2AIz( t )  where I = ‘ / z  and assume 
I,(t) is rapidly equilibrated. The process modulating Iz ( t )  must have 
a white spectrum up through frequencies of the order of wo in order 
to  recover eq BlOa. 
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