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and 0.33) fluorescent quantum yields of the longest chain 
pair, 3 and 6. 

The somewhat longer intrinsic lifetimes of the sulfur 
compounds ,are almost compensated by their lower fluo- 
rescent quantum yields SQ that the oxygen and sulfur 
compounds of comparable chain length have nearly the 
same predicted lifetimes. 

Since t:hese predicted observable lifetimes were deter- 
minedl in dilute solutions without the presence of obvious 
quenchers or energy receptors and since the composite 
rate of all decay processes from the excited state is the in- 
verse of the observable lifetime, a minimum may be 
placed on the rate of energy transfer from the first excited 
sing1e.t state of these dyes to quenchers or acceptor mole- 
cules. 1nvest.igzition of the energy transfer rates .to accep- 
tors in dilute solutioins is a logical step which we plan to 
investigate. 
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The general theory of Freed for steady-state saturation and double resonance in esr spectra of free 
radicals is extended to cover time-dependent experiments. The solution is again found to depend on 
the same matrix representations developed in the earlier work. Particular attention is paid to saturation 
recovery in the light of recent such experiments. It is shown that while the general solutions yield sums 
of many exponential decays, the dominant observation may, to a first approximation in many cases, be 
described in terms of single TI  = l/zW,, where We is the electron-spin flip rate, in agreement with 
recent observations. This TI is characteristically the slowest decay constant, and is either well sepa- 
rated from the much faster decays (due to nuclear spin flip, exchange, and/or reorientational effects), or 
may be difficult to distinguish from decay constants of comparable magnitude (due to the same type of 
effects). Both conventional saturation recovery and eldor-type recoveries are discussed from this point of 
view. The general approach given is equally adaptable to cases of esr spectra in the motional narrowing 
region as well as esr spectra characteristic of slow tumbling. Both cases are discussed in detail with sev- 
eral examples given. In particular, in the slow tumbling region for the case of a radical with hyperfine 
structure (eg.,  a nitroxide), it  is shown that, in general, both direct reorientational effects as well as nu- 
clear spin flip processes contribute directly to the relaxation modes. The analysis given emphasizes ana- 
lytic aspects although the general expressions, appropriate for accurate computer simulation, are given. 

I. Introductioni 
Recently, there bas been growing interest in pulsed esr 

experiments on free radicals in liquids, in particular, sat- 
uration recovery-type experiments.2 The relaxation behav- 
ior of such systems in ,  in general, rather complex, and has 

been the subject of a series of papers (I-V) analyzing 
steady-state saturation and double resonance b e h a ~ i o r . ~ - ~  
A review of some of these aspects has recently been 
given.1° In the future, one may expect to see an increase 
in importance of pulsed techniques, so i t  was deemed ap- 
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propriate to adapt the steady-state saturation theory to 
such techniques, and this is the main objective of the 
present paper. Our main emphasis is on saturation recov- 
ery, but we also include some comments on pulsed e l d ~ r , ~  
which, in principle, may be thought of as a saturation re- 
covery, but with observation at  a frequency displaced 
from the high .power pulse frequency. Our methods, how- 
ever, could be extended to free-induction decay and echo- 
type experiments for the free-radical systems. 

In developing our analysis, we are struck by the close 
similarity between the values of We obtained by steady- 
state saturation techniques involving an analysis of the 
complex relaxation p a t h ~ " I l - ~ ~  and (27'1)-~ obtained (but 
not analyzed) from the saturation recovery experiments 
for similar systems also involving complex relaxation.2 
'rhus, another objective of the present work is to demon- 
strate that over a wide range of types of systems, the satu- 
ration recovery experiment is simply interpreted. In this 
context we emphasize analytic results, but we also give 
the general expressions which are amenable to computer 
methods already developed. 

Also, recent theoretical and experimental work, which 
has focused 0x1 esr spectra in the slow-tumbling region, 
has (1) extended the range of motional reorientation times 
over which accurate analyses could be made of these mo- 
tions and (2) d i ~ ~ o ~ s t r a t e d  that interesting features of the 
motion ( i e . ,  d ~ ~ v ~ a t i ( ~ n s  from Brownian motion) could be 
obtained.15 'There have been some studies of saturation 
effects in such cases12,1637 and a theoretical framework 
has been pg21 It is another objective of the 
present work ta  how how slow-motional saturation-recov- 
ery (and eldar-type) experiments may be analyzed by an 
extension of the theories already developed. We are able 
to take advantiige of a number of formal similarities be- 
tween a ~ o t i o ~ ~ ~ i ~ n a r r o w i n g  theory and a slow motional 
theory to cast twth in a single general framework. We are 
then abie to establish analogies to clarify the more com- 
plex slow mof,ional analysis. 

We give In st:ction HI the extensions of the general for- 
malism to tinw dependent experiments. Our discussion 
here borrows heavily from the previous notation and 
methods3 8~12~1F-21 anid the reader is referred to these 
sources for morc: complete discussion. Motional narrowing 
examples are discussed in section 111, while slow tumbling 
is discussed in section W. A summary i s  given in section 
v. 

We start with the usual density-matrix equation of mo- 
tion for a ( t ) 3 - 8  J( 322 

where X 0 is the zero-order Hamiltonian, e ( t )  the interac- 
tion with the radiation field, R the relaxation matrix, a0 
the equilibrium value, and the superscript times sign 
implies that for two operators A and B, AX B- [A,B]. 

This is the usual expression one obtains for the motion- 
al narrowing region, where rotational modulation of the 
perturbing Hamiltonian X ,(Q) is sufficiently rapid that 
(X1(Q)zlrR2 K 1. More generally, we may write a stochas- 
tic Liouville expression for a (Q ,t) wherein the assumption 
of motional narrowing need not be madelOJs v Z 1  

&(Q, t )  - i (J€ ,X+~( t ) 'C  Xi(Q)X+I*R'- 
iI?nXu(Q, t> - Uo(f2)) (2.2) 

Here Fa is the Markov operator for the rotational tum- 
bling, R' is that part of the relaxation matrix which is ori- 
entation independent, while 

d t )  = JdMQ, t)P&Q;t) (Po(Q)ld% d)lPdQ)) (2.3) 
where the convenient bra-ket notation is introduced. 
When \%?.l(Q)l/lI'al e l e q 2 . 2 a g a i n  becomeseq2.1. 

We first study the general approach to the time-depen- 
dent solution of eq 2.1, and then we generalize to cover eq 
2.2.  Thus we introduce the definitions 

(a( t ) - .o>x ~ 3i X G h ,  (2.4a) 

X(t>x,  2 e l n w l Z ( t ) h j n )  (2.4b) 
nE-m 

and 

Z ( : t ) p  = Z ( t p  + iZ(t)X,(nJ" (2.4c) 

for the hjth transition. Then by analogy with the steady- 
state ,lo we obtain the coupled partitioned- 
matrix equations 

+ 

where we have introduced the definitions 

xx, = xi,+- xx,- 
and 

? xi, = xx,+ + xi,- 

x 

(2.5) 

(2!6a) 

(12.6b) 

(where AI+ are the m, = f states corresponding to the 
X,th transition) with the matrices d,d. the transition 
probability matrices, W, W, and W, the width matrix R, 
the coherence matrix K, and the Q vector defined else- 

Equation 2.5 is of the form of a complex sym- 
metric matrix, which may therefore be solved by first di- 
agonalizing the matrix of matrices (ie., partitioned ma- 
trix) on the right-hand side. 

The steady-state solutions to eq 2.5 may be calculated 
by the methods already developed in I-V. In particular, 
the form of eq 2.5 is 

M(t) = LM +Q" (2.7) 
Then the steady-state solution MsS is formally given as 

M" = -L-'Q' (2.8) 
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R S i K  0 

-Bj; - 0 

Ifwe define 
AZ( t )  3 IZCt) - ZIES 

etc. ox" 

AM(t) 5 M(t) - MSs (2.9b) 
then eq 2.7 may be written in terms of these deviations 
from steady state value as 

AM($) = LAM(t) (2.7a) 
or 

AM(t)  = eLtAM(o) @lo? 
soast-, m, AM(t ) -  0. 

the matrix elements of W obey 
We now assume that we may let '7"i, = 0. This is so when 

(2.11a) w e * ,  6 7  = war, i3i 

Wa*,/3t= Wan113r (2.11l-3) 
(where a and /? represent any nuclear spin configurations 
and the rt signs refer to m,) which is a common situa- 
tion.697 We further assume that only esr tranitions are ex- 
cited, so that d = 0 (For endor d # 0) and the 2 ( t )  may 
now be decoupled from the relevant part of the solution, 
Le., eq 2.5 becomes 

(2.12) 

In the simple two-level, one-line case, the substitutions K - My,  lhX - (Mo -- M,) yield the familiar Bloch equa- 
tions, which may be :solved by standard methods (e .g . ,  La- 
place transforms).29 However the more general eq 2.12 in 
operator form are more conveniently handled by diagonal- 
ization methods. (The R and K matrices are M x M 
square matrices in the "space" of induced transitions 
while W is an lhM x IhN square matrix in the "eigenstate- 
pair" space; thus d is an M X l/ZN rectangular matrix.) 
Note that since the Z" elements are typically detected, 
we shall need the unitary transformation 

+ AWA, -R --i" T'z-'> 2d - W I ,  W ---* Ti-', Z Mx, Z" 

&I 0 

-41 0 

0 1 

R -iK 0 

-iK R 2id̂  

0 2i;itr -ii 

A=l 
B - i J Z  

. -  

0 

iQ 

0 
- -  

1157 

(2.14) 

with the new symmetric matrix on the right-hand side of 
eq 2.14. 

We now particularize the solutions to saturation recov- 
ery-type experiments, such that observations are made 
only for small d. We thus wish to develop a perturbation 
scheme to lowest order in d. For this purpose, the matrix 
of eq 2.12 is more satisfactory than that of eq 2.14, since it 
lacks the two degenerate submatrices (R) along the parti- 
tioned-diagonal which appear in eq 2.14. Note, however, 
that for K A  = 0, i .e. ,  Xth line is on resonance, that if --&A 

T2,h-l = T1,x-l then a triple degeneracy occurs with 
respect to the Xth transition which is lifted by d h  Z 0. We 
must consider the case of T ~ J  # T l , h  separately from that 
for T2.h = T ~ J .  We develop the perturbation scheme by 
a generalization of the Van-Vleck transformation proce- 
dure.24 We first introduce the partitioned matrices 

r R - x  o 

I 

(215b) 

where L = A 4- B and consider a vector M (cf eq 2.7) and 
solve for 

OAO-'(OM) + OBO-' (OM) zz (A + b)M' (2.16) 
where the partitioned matrix B is transformed approxi- 
mately to the form of A, ( i e . ,  partitioned matrices along 
the diagonal) by the (complex) orthogonal transformation 
0 to lowest order in d. That is we let 

(2.17) 
where S is found to be the (complex) antisymmetric oper- 
ator 

and 

M' = eISM = ( I  + iS)M 

S = + i(AX)-'B (2.18) 

(2.19) 1 1 b = 2B"S -zB'[(A")-'B] 
That is 

0 -(Ao ")-'fiq 
0 ( A c d ' ) - ' f i i  I O % ) - - l f l i t r  (Ad,cx)-1f2dtr 0 

(220) which transforms eq 2.12 into 

The Journalof Physical Chemistry, Vol. 7e. No. 12, 1974 



1158 Jack H. Freed 

Here the inverse operator (AJ,”)-l  for j , k  = o,c,d may 
be conveniently defined by the prescription 

(A’ ”)-li = lim- Jomdr exp[-~r] exp[A’r]d”exp[-Adr] 

j = oor c (2.21a) 
and 

(A ) d = l i m -  d r  exg-cr] ex~Adr$exp[-AJr] 

J = oorc (2.21b) 

t -o+ 

= n  d j X  -1 ti 

f -- o+ 

where 
h 

A” = IR--iK. Abc = R +iK A’*, Ad = - W (222) 
(The convergence factor > 0 is always taken as large 
enough to guarantee vanishing of the integrand as r - m, 

and the limit is taken only after performing the integra- 
tion.) Thus in an M dimensional basis set a, b . . . in which 
A0 (or AC) is diagonal and an N/2 dimensional basis set 
a,@ . . . in which Ad is diagonal, one has, for example 

Thus the expansion is; in terms of 

l f l i a a l / l ( - R u u )  -@eo + Z a J I  << 1 
for any nonvanishing dan, or more simply for a simple line 

I@ h~‘,/,’jT~-l- TI-’ + iAw/ << 1 

(2.24) 

(2.24a) 

One finds, utilizing the fact that the AJ are symmetric 
matrices, that 

J = o,c (2.25) 
from which it follows that S is antisymmetric, as re- 
quired. Also we have 

where ~* 0 

1.1 (226) 

g: = i(Ad,OX)-l$ (2.27a) 

2 

[,(A) dX)-li]tr = -[(~d,lX)l-l$] 

c d- ctr -(Cfr+C*) 0 

= -(C f p*) c* +p* 

E = 2dtr  Re[(Aos”)--4]d (2.2%) 
When the transformation of eq 2.13 is utilized, then in the 

0 _I 
while 

2i Im Ctr 0 

b =  ’2 2iImC 2Re(C+Ct’) 0 r 
I!! 

(2.28) 

(2.29) 

Thus one may solve either eq 2.12 or 2.14 in the approxi- 
mations used as 

( 2.304) AM’(t) g (A + b)AM’(t) 

AMYt) E exh[dA + b)t]AM’(O) 

SO 

(2.30 b ) 

and 

AMl(t)r(l-iS)exp[-(A+ b)tX1 +~IS>AMI(!) (2.30~) 

Note that A + b given either by eq 2.15a plus eq 2.26 (in 
the representation of eq 2.12) or by uAuLr plus eq 2.29 (in 
the representation of eq 2.14) have the eigenstate-pair 
space (represented by superscript d )  (approximately) un- 
coupled from the transition space (o and c superscripts) so 
-W’ + (E + IF) may be diagonalize separately. How- 
ever 

-i(K - 4 Im Ctr) 

-i(K - 4 ImC) R + 4 Re (C -+ et’ i“ 
will in general couple Z’ to Z” (or alternatively the cou- 
pling can be written for Z and Z” from eq 2.15a and eq 
2.26). 

We note here that it is always possible to choose basis 
sets a,b I , , for transition space and a,@ . . for eigenstate- 
pair space such that d has a simple structure with &; = 
&&,, where g refers to the eigenstate-pair corresponding 
to the j th  esr transition. Several examples appear be- 
low.2* However, this choice will not, in general, simulta- 
neously diagonalize Ao and Ad. In those cases where it 
does, and if &,; = d independent of i, it then follows from 
the above definitions that Ud = Uo (see below), Or = C, 
and Etr = E. Also the mixing of the Z and Z* components 
by the terms in b is, in general, not easily simplified. This 
mixing becomes important as elements Kz ,E  -* 0 repre- 
senting resonances. 

(A) Simple One Line Case. We illustrate the above for- 
malism for the simple one line case, which is otherwise 
well known, in preparation for the more complex cases 
given below. In this case we have C = Or, E = Etr and 

(2.31b) 

-iAw 0 

-(T2-1 - TL-I) 

in the Z’, iZ”, IJ&, representation. When we neglect 
terms of order wl2/[(T2- - T I - I ) ~  + Aw2] compared to 
unity, one has 
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--Ta-+ a 4 w  0 

A f b  Z -iAw -T,-'+6 0 

[3 0 -Tl-,i-J (2.32' 

where 

6 ir= m i 2 ( p p l ~ - 1 - . ~ l S 1 ) / [ ( ~ ~ 1 - ~ ~ 1 ) 2  +4w2] (2.32a) 

The 2 x 2 submatrix may be diagonalized by the orthogo- 
nal transformation U 

ri1- a + - Y  [l -a+ -1 ] -1/2 1 

swch that 

where 

and 
a,* = (6 f f6FZ!G)2/4Aw2 (2.33c) 

(2.33dl) 

For 16z/Aw2( 1, i.e., a line off-resonance, one has com- 
plex eigenvalues of eq 2.33 of X -Tz-I + (6/2) i iAw 
corresponding to the eigen solutions ( l / G ) Z  and (1/ 
.\/z)Z* (cf. eq 2.15a); while for /62/Aw2( >> 1, i .e. ,  a line 
close to resonance, one has simple decaying solutions X z 
-Tz-' and -1'2-1 -4- 6 for eigen solutions Z' and iZ", re- 
spectively (($ eq 2.32). I t  then follows from the above 
equations thiat f he complete solution is 

E t  = - T 2 - i + 6 / 2 & 3 j / a 2  1 

b 

where only t,erms linear in S are kept. Some simple and 
well-known limiting cases are25 

( 2 )  T 2 - I  >> TI- I, then for t 9 Tz- 1 

If we use conditions of partial saturation such that M,(O) 
= aM0, 0 5 a 5 1, with Mo the equilibrium magnetiza- 
tion, then 

M ~ O )  = CYAWW,T,~M~ 

AIy(0)  C Y W ~  TbMo (2.3) 

M*(O) = CY M ,  

and 

(2.39) 

while for case 2 we have 

B. General Case toor Tz << TI. The formalism given 
above permits the solution of a variety of situations in- 
volving saturation recovery for which eq 2.34 is immedi- 
ately generalized, and the general expression of eq 2.5 
may be used for more general cases. We will now, how- 
ever, particularize our solutions to the case for TZ << TI 
or, more generally, 1 R/ >> I WI . This is a useful case, espe- 
cially in the slow-tumbling region, and also one for which 
some relatively simple analytic solutions may be obtained 
even for spectra which otherwise appear complex to de- 
scribe. In this case we have from eq 2.14, 2.15, 2.28, and 
2.29 that for 

IRI t > 1 (2.41) 

AZ"( t )  E [Re (A"'dx)-'2d])e-i;'Ak~(l) (2.42) 

In eq 2.42, we have dropped the small correction E f Etr 
of eq 2.29 to W. In the simple line case, this is just the ne- 
glect of 6 of eq 2.32a compared to T I - I ,  which is valid 
since for Tz- 9 TI- 

w 2TIT," 
6T1E1iT,h2Aw2 SWI~T~TL~<<I (243) 

(where Tz*-I = T2-I - T1-I). The last inequality is a 
consequence of the no-saturation condition during the re- 
covery. Now if Uo, U,, and U' are the orthogonal trans- 
formations which diagonalize AO, Ac, and Ad, respective- 
ly, we may rewrite eq 2.42 as 

AZ"(t)z-Jmd;-iU," exp[rU,(R -iK)LJ;']U, i- 
o 

Uct' exp[rUc(R+iK)U,"IUddUdt' X 

exp[rUd(+W)1UdLr] e ~ p [ ~ ~ ~ ! - ~ t ) U ~ ' l U ~ ~ ~ X ( ~ )  (2.44) 

(The convergence factor has been dropped in eq 2.44 since 
lR/ > 1 WI implies satisfactory behavior of the integrals.) 
Note, however, by the functional properties Uo = &(R, 
-ik) and Uc = Uc(R, +iK) it follows that U, = U0". 
Then if we let 

r-ik E Uo(R-iK)UoE' (2.45a) 
and 

w = Ud(W)U? (2.45'0) 
eq 2.44 may be written more simply as 

AZ"( t)--Jod.r Rie (U,"r exp'[T(r-ik)W,,] (2d)U;' x 
0 

exlpI[( 7-  t)W]LJdAiX(0) (2.46) 

We now consider specific examples. 
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HI. Motional Narrowing Examples 
( A )  Well-Stparated Hyperfine Lines (Nitroxide). We 

first illustrate the application of our expression to a ni- 
troxide in the motional narrowing region when the three 
Lorentzian hyoerfine lines are well separated. If we con- 
sider just pure electron spin flip transitions or We, 
pseudo-secular ENTI terms ( b  We),  and spin exchange 
(b’’l4Tie), we 

1 .O- 4- b -b”- b --br 

@ = 2w2 -b” -- b 1-4- 2b“ + 2b +/- b i 1: b” 

Then 

and 

W =  2 W e  ji 0 
I 

I! 
We also kave 

I/@ 0 13.2) 

(3.3) 

0 0 

1 + 3b(’+ b 0 

0 

A 

-Ai[ j 2 r f z  I - 1  6, J +(wL,j - J )  (3.4) 
where the T’Z,~ - 3 give the purely secular contributions to 
the ith hyperfine line. Also 

and 
K ,  J = Aw,61,j (3.5) 

“Ti![ A 1  I = sWi16, J = SYeB1 1 (3.5a) 

where j refers to the eigenstate pair associated with the 
j th  transition. 

For the general spectrum of well-separated lines we 
have for I # 7 

I ~ R ,  = / W l  I I ~ I ~ I - w I I  i # j (W 
Thus R f 11< -- r i ik is diagonal in the basis of the sep- 
arate transitions, and UO = 1 (except for higher-order 
terms in 2 Web ’ and 2 Web us. (ut - w,)) .  Then elements 
of eq 2.46 are 

It is necessary, in order to complete the solution, to spec- 
ify the initial cotidition 

,X;(Cl)=-(jM,;(O)-M,;)=(l-a,)M,; 1 ^  (3.8) 

or 
a; M ,  ;( 0 )  / Mo j (3.8a) 

It is now convenient to consider two limiting cases de- 
pending upon whether b, b” << l or >> l. 

(1 )  Uncoupled Relaxation. b, b” << 1. For this case a 
saturating pulse on the j th  transition leading to a, # 0 
will not appreciably affect the i # .j lines (except for 
terms higher order in b, b” see below). Furthermore 

wpp zz Awe Ti-’ all /3 (3.9) 

Then, sinceza(Udtr);fi(Ud)p; = 8i,j, eq3.7 becomes 

which is just eq 2.40 for each line. 
(2)  Coupled Relaxation. b‘, b“ >> I .  For this case, a 

saturating pulse on the jtli transition will have its effects 
transmitted equally to all the eigenstate pairs so that a; = 
CY; = CY = Ysytotal) # 0. Then since zl (Ud)o;  = 6a,l& eq 
3.7 becomes 

e- t i  TI 
AZ” , ( t )  =-Re w,(l - a ) M ,  ; (3.11) 

for i = 1, 2 ,  or 3 (corresponding to transitions with nuclear 
spin of -1, 0, and +l). Thus only one of the eigenvalues 
ofw (Le., 2We = 2’1-l) is seen. 

Tf i t  were possible to saturate one of the lines relative to 
the other two, then one could obtain a superposition of 
three decay terms each decaying by one of the eigenvalues 
of w. Such would be the case if b and/or b” is of order of 
magnitude unity. But then the three eigenvalues of w 
would not be much different, so that the superposition of 
three decay terms would not differ much from a single av- 
erage exponential decay. A rigorous solution of this inter- 
mediate region-would require a calculation from eq 2.12 of 
the values of X resulting from a pulse of finite duration, 
At’.  However if A t ’  1 w ~ p - l  5 T I  = then one 
may use as the ratios a j /a ;  N= qsa /$ ;ss ,  Le . ,  the steady- 
state values obtained in the presence of the saturating 
field. Thus for case 3, the steady-state approximation on 
the pulse duration, one has 

-2W-’ ldsa td t rz r /= td  (3.12) 
with Z”satd calculated by standard means.3-8 Then we 
can use the relation (appropriate when only pure esr tran- 
sitions are generated) for the saturation parameters ClL,17 

4(Ik1), j = a, j (3.12a) 

( -Ri ,k l -  Ti-* + L A W ,  

2 a t d  = 

to rewrite eq 3.7 as (with &,I satd= Y&c 1s). 

ztt sa id  
(Ud);13”(L/‘d)i:*hk-‘5--ai5 h (313) 

where the second equality follows because 

w-l (3.14) 
Case 1 is obtained from the second form of eq 3.13 by set- 
ting only one Z”ksatd unequal to zero and then using eq 
3.9. Case 2 is obtained from the first form of eq 3.13 by 
recognizing that for b and/or b“ >> 1, Q,,k becomes inde- 
pendent of j and k ,  i.e., Q, ,k  - 2 / ( N / 2 )  We.6 (These Q, ,R  
are given explicitly for the nitroxide case in Table V of ref 
8.) Then one may use Z,(Ud)pj = ?ip,1~‘7V72. (Recall, how- 
ever, that our original derivations of cases 1 and 2 did not 
require the “steady-state pulse” approximation.) Cases 
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intermediate between (1) and (2) exhibiting effects of all 
three decay constants are also obtained from eq 3.13. 
(Note that eq 3.13 also covers eldor-type situations.) It 
follows from eq 3.13 that the exponential decays of larger 
1060 have the weaker amplitudes.26 

In particular, let us assume that the w b ~  are nearly 
equal so b,b” << 1. Then if the line observed is i = 1, 
while k = 1 has been saturated (simple saturation recov- 
ery), one obtains from eq 3.13 
AZ”i(t)gTT,w, R e  i r l  4- T1-l - iAwl)-le-”Ti X 

[1-(2~b”-t- b ) ( l + t / T ~ ) ] Z ” ~ ” ~ ~ w l ~  (3.15) 

However, if we let k = 2 (an eldor case) 

This emphasizes how the relaxation is dominated by TI ,  
and how an eldor efifect would be weak (but potentially 

ared to the direct saturation recovery ef- 
fect for this case. 

( B )  Single Auerage Hyperfine Line (Nitroxide). Here we 
assume the oppcrsite of eq 3.6, i. e. 

l-R1,,1 =I: ,I >> /w,-w,j i # j  (3.17) 
or 

2W,b andlor 2W, b” >> Iw,- w,l-aN (3.17a) 

so the original three-line spectrum has collapsed into a 
single average Lorentzian. If we also assume I T Z , ~ - ~  - 
Tqj-11 2Web and/or 2W.b” then U, N ud of eq 3.2 
and eg 2.46 becomes 

where ZL’II = 2We 

and 

(3.20) 

Corrections due to the incomplete averaging of effects of 
the b and b‘’ terms can be obtained by perturbation 
methods in the usual fashion. Again the relaxation is 
dominated by 7’1 = 1/2We. (Note that eq 3.17 does not 
violate the validity of the perturbation approach as long 
as T2’- 

(C) General Case. The discussion given above in terms 
of the example of a nitroxide in the motional narrowing 
region i s  seen to apply quite generally to the case of any 
hyperfine spectrum in the motional narrowing region. 
That is, eq 3 7 is still applicable in the well-resolved spec- 
tral region as are the discussions and conclusions of cases 

> 2 We - )  

1, 2, and 3; also eq 3.18 applies in the limit of a single av- 
erage hyperfine line. When there are degenerate hyperfine 
lines, it is only necessary to replace the vectors (e.g., Z, 
X) and matrices (e.g., R, V@ by their appropriate symme- 
trized forms as given in V, which then properly include 
the degeneracy factors. (Care must be exercised in de- 
scribing the (coupled) relaxation of the components of the 
degenerate line, but the methods of I-V are applicable.) 

Note that in the diagonalization of @ (and R), one can 
take advantage of the symmetries of these matrices. Thus 
the feature of spin exchange for nondegenerate transitions, 
uiz. that it leads to equal transition probabilities among 
all the eigenstate pairs (i.e., -%,lex = 2Web”, i # j ) , 4  
means that @ in the presence of exchange (but absence of 
END terms) is invariant to all permutations of the N / 2  
nondegenerate eigenstate pairs, i. e., it commutes with the 
permutation group P N , ~ .  It is then a simple matter to 
show from the properties of this group that there is one ei- 
genvalue. 

(3.210) 

corresponding to Uzl = I/- (for all I . )  or the totally 
symmetric linear combination of eigenstate pairs. Fur- 
thermore, all the other eigenvalues are found to be degen- 
erate (belonging to an (N/2  - 1 dimensional representa- 
tion of PNI 2) and equal to 

wll = TI-’ = ZW, 

i f .1  

The END int,eraction shows less symmetry. However, 
for the eigenstate pairs of a single nucleus of 1 (or for the 
JjK)th set of eigenstate pairs corresponding to n complete- 
ly equivalent nuclei with J = &=,.& and K refers to a par- 
ticular partner3) the WC,jEND are symmetric in the quan- 
tum number M. Thus the only symmetry-operation in- 
volves W M , M & ~  - W-M,-M*+~,  and XM - X-M; However, 
one may also take advantage of the structure of W 

$7 1 = 2IW,6, , + @(END); ; (8.22) 
so only w(END);,; the END contribution, needs to be di- 
agonalized. Then since7 

W(END)T; = -Z,I@(@D);~ = - ~ T / ~ ~ ( E N D ) ; ;  (3.23) 
j f l l  i f 1  

the matrix W(END) must have a single eigenvalue of zero 
corresponding to the eigenvector Z,X,  (by analogy with 
the equivalent property of symmetric W matrices corre- 
sponding to the conservation of probability). Thus one 
again has 

~ 1 1 ~  TI-‘ = 2We 
corresponding to = l/m with w,, = 2We[1 + f i ( b ) ]  
> 2 We for i f 1 where the function f l  ( b )  is of form seen in 
eq 3.3. (The above symmetry considerations are sufficient 
to determine the wc, for the nitroxide.) 

When both END and exchange are present, then the 
lower symmetry of the END interaction is to be used. 
Also, if the hyperfine pattern is degenerate with different 
degeneracies for the different lines, then the W s  matrix 
(the symmetrized form, cf. V), in the presence of ex- 
change only, one no @ger has P N / 2  symmetry but usually 
symmetry such as W(END), since, D(X), the degeneracy 
of the Xth transition, is symmetric about the center of the 
spectrum. 

One can further generalize the problem to include a W 
which depends upon M (i.e., effects of the crciss term be- 
tween g and dipolar tensors). This will, however, destroy 
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the symmetricxs discussed above. When cross transitions 
are not negligible, then the ‘w1 matrix is nonzero and one 
must return to eq 2.!5 but perturbation methods compara- 
ble to those of riection I1 may still be employed. 

On Contributions of T2-Type Decays. We now wish to 
discuss the validity of the neglect of the terms appropriate 

1 cf~ eq 2.41-2.42. Such an approximation 
is valid, for example, for dilute solutions of semiquinones 
where the se1:ular g tensor broadening dominates the 
widths, except a t  higher temperatures when spin rotation 
is most important arid T1 = T2.14 In the latter case, each 
hyperfine line is uncoupled from the others, and one 
treats each suzh line separately.12 This latter case is also 
the case for the nitroxides a t  low viscosity; a t  higher vis- 
cosity the secular g tensor broadening is, however, not 
dominant, and T2j1- I - Wn in eq 3.4, so is only 
somewhat larger than Wn. However, b zsz Wn/ We is then 
usually substantially greater than unity. Thus, while w11 

= 2kVe < T ~ Z , ~  in this case, the ~ 2 2  and w33 of eq 3.3 are 
of comparable order of magnitude to T Z , ~ - ~ .  We have al- 
ready seen that for b >> l we can neglect the effects of w22 
and 1033 in tht3 saturation recovery, and for the same rea- 
son of rapid decay we can neglect terms decaying with 
time constant of order T2. A similar argument applies 
when exchangc, makes a major contribution to the widths. 
However, in that region where We and Wn (or OEX 

Nb”We) are of the same order, and T Z ’ ~ - ~  is-not large, 
then the complicating effects of the decay of T2-type 
terms from the complete solution of eq 2.30 might become 
important to ronsida?r. Note further, that in the well-re- 
solved region, where only a single hyperfine line is ob- 
served, this so utioin may be achieved fairly simply utiliz- 
ing the techniques grven above, since Uo = 1 (even though 
Ud is not so simple) 

(4.5) 

with eigenvalues En for isotropic motion 

where 1 CR is the rotational diffusion coefficient.lOJ8 For 
models involving reorientation by appreciable jumps, it is 
found that the functions of eq 4.5 are still good eigenfunc- 
tions, and eq 4.6 becomes 

En - E K  M~ B&(L 3- 1’)@ (4.6’) 

where the model parameter, & ranges from unity for 
Brownian motion to BL = [L(L -t 1)]-l, L f 0 (and BL = 
1 for L = 0) for a strong collision model. It is discussed in 
detail el~ewhere.l9,~1,23 (We note that there is a simple 
analog between Brownian rotational diffusion with an 
END mechanism on the one hand and strong jump diffu- 
sion with a Heisenberg exchange mechanism on the other 
hand. The former pair have significant “selection rules” 
while the latter have none.) 

In particular, if we assume the orientation-dependent 
perturbation in eq 2.2 is an axially symmetric g tensor, 
one finds only the GO, & ( t )  and the bo, 8 ( t )  for L even af- 
fect the observed signals (cf. eq 4.8b below). For this case 
the terms in eq 4.1 and 4.2 are18 

with 

(4.&) 

These expressions include only the secular contribution of 
the axially symmetric g tensor. (The nonsecular contribu- 
tions have been omitted in eq 4.1 and 4.2 (cf. FBP section 
IIIBl).) Also 

amd 

= 2,-1 3 &Bok,,- gl) 

1 -  1 
- ~ m ( t ) = , x ( ~ m  n - . a K m  n )  - ~ n ( t ) - i f i d m , Z  X 0- J n 

1 ,. 
W L , L ~  = WL,LJL%L? = (awe + EL@, L’ (4.9) ( $ n ( t ) )  + i f iQ,  (4.1) 

as well as the complex-conjugate form of eq 4.1, and 

where the absorption is proportional to Im C, E C,”. 
Equations 4.1 and 4.2 have been obtained by expanding 
the orientation- dependent terms 

Z Q .  f ) ~ ,  = C V m ( t > l G m ( Q ) )  (4.3a) 
m 

and 

X(G,  t )x ,  Z: b ijj(t)lGm(Q)) (4.3b) 

in eigenfunctions 6, (a) of the Markov operator rn 

and in this seclion we drop the A, subscript, since only a 
simple line is being considered. (We also let ni - m.) 
These eigenfunctions Gn(Q)  may be written for Brownian 
rotation in isotropic liquids as the normalized Wigner 
rotation matrices 

T’nGm(Q) = E m G m ( Q )  (4L4) 

QL = quhdX6L,o (4.10) 

We have introduced an orientation-independent width 
T2-l and TI-1 = 2We into eq 4.7a and 4.9, respectively. 
Equations 4.1 and 4.2 are seen to !e of the same matrix 
form as eq 2.12 (with the matrices d and dtr defined by eq 
4.1 and 4.7. So, provided the inequality of eq 2.24 for the 
present case applies, then the same perturbation treat- 
ment in d~ utilized for solving eq 2.12 may be utilized for 
the present case. 

We wish to point out at this stage, that the eigenfunc- 
tion expansion method immediately yields RmTn and v,,, 
in diagonal form. Thus, when E, j T*>> 1 corresponding to 
motional narrowing, the R f iK is approximately diagonal 
in this representation. However, K ,  which arises from 
xl(Q), is diagonal in the space of orientational unit vec- 
tors IS(Q - 00)).l5 We note that from the representation 
of the 6 function 

where, here, IG,(Q)) are any complete O.N. set of func- 
tions, one has 
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CLf@atd)$& (420)  

with the obvious modification when eq 4.15 is appropriate. 
Equation 4,16 may be rewritten as 

where it is again clear that only WOO and those W L , L  com- 
parable to woo would contribute substantially. And the 
saturation recovery spectrum given by A C”(w, t )  is ob- 
tained by integrating eq 4.21 over Q,, and utilizing 
(GL(Q,) IZ”(Q~))  = CL.  The case of W L , L  comparable to 
w0,O for all L contributing appreciably to eq 4.21 may be 
dealt with in tlw manner of eq 3.13 to yield 

and y~ is defined by W L L  = w o d y ~  with y~ << 1 for all 
values of L contributing appreciably to eq 4.21. (The 
prime on eq 4 22a indicates i t  may be calculated over this 
restricted set of L values.) Note also that 
~ L ‘ G L ( Q L ) G L * ~ J ~ ~ )  = 6(Q, - Qj) compared to the much 
slower varisltioii of Z”(Ol) with 0,. For Brownian diffusion 
y~ = L ( L  f l)6i/2We; while for the limit of strong jumps 

____ ._ 1 yen,, 12,) -- [S!Q, -4,) -8;f?] (R / 2we  (4.23) 

Equation 4.22 again emphasizes how the dominant relaxa- 
tion is via T i  = 1/2We, and i t  shows how one may calcu- 
late the magnitude of the weak recovery signal for an 
eldor experiment in this case when QL and Qj are quite 
different. Equation 4.23 substituted into eq 4.22 gives the 
simple orientation-independent result expected for a 
strong-collision modid (for Q t  # Q]). For this model, the 
more general expression, eq 4.21, takes on the simpler 
form 

where w’ = woo f a. 
Other Aspects of I I  Simple Line. (1) Orientation-Depen- 

dent 7’1 and ‘T2. Near the rigid limit, it  is possible that 
orientation-deoendent effects of T I  and T2 begin to show 
up. We can examine such effects by introducing terms 
TkQ--l oo2(R) and Tz, - l ~ o o ~ ( Q ) .  Then 
Rf,L/ =-(T,-‘+E,)6, Ll- 

and 

‘ T I  I!-’[(2L+lX2Lf+l)]”* (o  ”)’ (4.26) 

When eq 4.25 is compared with eq 4.7 and 4.8, it  is seen 
that its only effect on the previous results is to change 5 - 5 - iTz ,n-I ,  but eq 4.26 renders VL,L nondiagonal. 
When T1,n& >> 1 (or more precisely T I ,QE~ >> I)  then 
these orientation-dependent effects mag be neglected, but 
for very slow motions it would be necessary to diagonalize 
WL,L (where, in the limit & - 0, one would obtain the 
IS(Q - 9,)) representation). 

(2)  Asymmetric g Tensor. The correct expressions may 
be obtained for this case by direct comparison of the 
above expressions with the steady-state case given by 
FBP. The main feature to note is that the 9 K & ( Q )  for 
even L and nonzero K appear in the problem, so effects of 
anisotropic rotational diffusion can appear.12 Otherwise 
the discussion is analagous to that given for symmetric g 
tensors. 

(3 )  Contribution from Tz-Type Decaying Terms. In gen- 
eral, one finds that Tz- is significantly larger than 2We 
in the slow motional region, so the Tz-type decaying terms 
should decay much faster. However, it  is possible for EI, = 
@L(L f 1) to play a dominant role for large L in eq 4.7a 
and 4.9, i.e., @ L ( L  + 1) >> TI-1 and T2-l. Rut this is the 
case where these terms of large L decay too rapidly in 
e-$t to be important compared to the W O , O  case, and sim- 
ilar comments would apply to the T2-type decaying terms. 
Again one can return to the complete eq 2.30 for a de- 
tailed examination of such effects. We note that in the 
slow tumbling region, the KL,L of eq 4 8 will result in 
contributions from slightly off-resonant components of the 
line, and their T2-type decay (but not TI-type decays) 
will have some oscillatory character, cl: eq 2.32-2.33. Our 
analysis given above can be further refined by distin- 
guishing between that portion of the line broadening 
which is homogeneous, and that which is inhomogeneous 
(assumed Lorentzian), This is unimportant- for unsatu- 
rated effects, but is important when considering satura- 
tion.12 ,22 -23 

( B )  Complex Spectra. E.g,  Witroxides Very often, a 
slow tumbling spectrum is not just describable as a sim- 
ple line, but is rather a complex one involving the cou- 
pling of the different transitions. Methods for solving the 
steady-state spectra in such cases are given in detail in 
FBPis and Goldman, et a1.,12J9 and in Bruno’s thesis.21 
However, the partitioned-matrix concept of eq 2.12 may 
again be applied in a manner analogous to the simple line 
case treated in the previous section. The important gener- 
alizations are just to regard each of the coefficients 
C K M L ( t )  and b ~ ~ & ( t )  as vectors in spin space,ls such that 
C~>1L(t,i) refers to the component representing the ith esr 
transition. For the particular case of nitroxides, one need 
only consider the three allowed transitions (1  = 1, 2, or 3) 
and three (mixed) forbidden transitions.12 J ~ , ~ ~  

These forbidden transitions are coupled into the (high- 
field motional narrowing) allowed transitions by the 
pseudo-secular terms in X l(0) which itiduce nuclear spin 
flips and, as the motion slows, they also affect the actual 
resonance frequencies. (For very slow motions, one 
achieves the rigid-limit resonance frequencies, which may, 
to a good approximation, be described bv three allowed 
transitions, for each orientation.) 

Similarly there are six components ~ K M ~  (t,i) repre- 
senting population differences between parrs of eigen- 
states: z.e., three for the allowed transitions (1 = 1, 2, or 3) 
and three which are really (mixed) nmr transitions. These 
latter arise from the pseudo-secular terms in 3C1(0), and 
thus play a role closely analogous to the three forbidden 
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transitions for the C ~ d ( i ) .  As the rigid limit is ap- EL’-EL-2We+ TZbn-l 
(4.28) -____ V (  L,  L’) = -,+ 

ML/2+(ELi-EL-2W, + T ,  n-1 )2  
proached (in particular for Ixl(0) I /  >> 1) they become 
equivalent to representing the diagonalized eigenstates 
characteristic of the rigid limit. 

One may thus generalize all our above procedures to 
such c a m  wherein the vector spaces of eq 2.12 include the 
product spare sf the C ~ d ( t )  for the different L, K, M (or 
alternatively the / 6 ( Q  - Q,) representation) with the qps- 
propriate spin space as just described. In the slow tum- 
bling region where 

witb 

D = - /ye/  ( ~ ) 6 - 1 ’ 2 ( A ~ ~ - a ~ j  (4.29a) 

and 

- !j [aN + DQL + 1) b L = - -  1 Xl(Q2)( 63 21 
Le., the unsaturated slow tumbling spectra still show im- 
portant motional effects, the detailed diagonalizations re- 
quired for eq 2.46 foir example are complex although trac- 
table.1z~1’~~1’3 ,21 However, t,his is typically the region where 

2w,< (R 

and any saturation effects are transmitted throughout the 
spectrum.. In this event, we again have a case where the 
W matrix: is eliaracterized by a W O O  = (2We) and WLL >> 
WOO for L # O ,  and. tlne dominant (slow) decay will again 
give just TI- = 2 We. 

A more careful ainalysis of the slow tumbling region 
shows that two types of saturation transmission effects are 
operative: i(1) the motional effect, which contributes 
terms of type PJLL(L + 1)a to the W L , L  and (2) nuclear 
spin flip prmesses, which in the fast motional case depend 
on b (cf .  section 111). For I%I(Q)I/R 5 1 ( i e . ,  7 R s - S  loL9 
sec) one gets values of b 20-40 representing strong cou- 
pling of the hyperfine lines.12J3 But when 1 %  l(0) I /  CR >> 
1, and only residual motional effects are important, one 
must examine their effects more carefully. 

In order to obtain some insight into the nuclear spin flip 
aspect of the problem, we consider a “quasi-nitroxide?’ 
case, such that for an axial hyperfine tensor one has 
(A,l - CAN) being considerably smaller than U N  (see eq 
below) where a~ is the isotropic hyperfine splitting and 
A is the rigid limit value of A,,,,, (in reality UN x 15 G 
and -(A - a*<) = 11 G).13J9 For this “quasi-ni- 
troxide” case, one may effectively decouple the C&# (t,i) 
for the t h e e  idowed transitions from the three (mixed) 
forbidden transitions and the b K M L  ( t ,  i) representing the 
three eigenstate pairs from the three (mixed) nmr transi- 
tion terms, by means of a perturbation theory approach 
which is closely equivalent to that discussed in Appendix 
A of ref 23 for the C K M L  ( t , i )  and to that plus the general 
perturbational approach given here in section II for the 
b ~ M L ( t , i ) . ~ 7  In the limit of fast motion, i e . ,  / X ~ ( Q ) ~ T R  << 
1, the resuks axe indeed quite general (independent of the 
smallness of / A  , - a~ I )  and are just the’ familiar END 
terms discusse~d in section 111. For slow motions, however, 
the nuclear spin flips persist and our axial “quasi-nitrox- 
ide” calculation gives‘an idea of their effects. In particu- 
lar, one obtains a nuclear spin flip rate coupling bo$.(t,i) 
with !IO,& ( d , i  141 I)  where i = 1 , 2 ,  or 3 given by 

WA(i> L, O,O .+-+ i f I, L”, 0, 0) E Wn’(i, L; if I, L”) = 

[ v ( L ,  L’) + V(L”+ L’)] (4.27) 

whlere 

with 

D‘ =!-;(8/3)rl4D (429b) 
and EL is given by eq 4.6 (or 4.6’) with Tz ,n - - l  being the 
orientation-independent width component for the nmr 
transition.3.6.7 This result for the nuclear spin flip rate is 
to be compared with the relaxation term for bKML(i) itself 
of ZW, + EL. In particular, the diagonal contribution to 
the L = 0 term is just (when we drop 2 We- - T2,n- 

with 

(4.30a) 

or essentially the fast-motional result, but it is correct for 
slow motion (for the quasi-nitroxide) where its asymptotic 
behavior goes as (D2 /5 )62-27~-1 .  Note that we can define 
a term in this limit 

which for (R/We >> 1 will still allow b 2 1, and nuclear 
spin flips are an important part of the problem. Fora  /We 
5 1, then the contribution of nuclear spin flips decreases 
relative to effects of We. 

The analysis of this case would thus appear to be a gen- 
eralization and combination of our previous discussions of 
a simple line in slow tumbling, e .g . ,  eq 4.9 and the fast 
motional nitroxide case, e.g. ,  e,s 3.3 for an END mecha- 
nism. We must thus consider a W matrix of type 

*(i,L;j,L”j = ( 2 ~ W , + E L ~ ~ W , ( ; , k : ) ~ ~ : j l  h 9 

cwn’(1,L; k,L”)6i j -[wn(l, J ) 6 L  L” + 
k 

Wn’(i,L; J,L”)]6, r + i  (4.32) 
Note that this introduces off-diagonal terms between dif- 
ferent L values of the type similar to ey 4.26 (e.g., 
Wn’(i,O;i f 1,2) = W,’(L,O;~ f 1, 0) ( m 4 ) ) .  Thus’the 
diagonalization of the W matrix of form of eq 4.32 is not, 
in general, trivial. When Wn type terms are neglected, 
each of the three allowed transitions behave independent- 
ly as simple lines, while the W, type terms couple the re- 
laxation of all three lines, and mix L values. Our general 
arguments apply for R >> We, such that the whole spec- 
trum relaxes together. In our quasi-nitroxide model CYn‘/a 
is of order of 0 2 / 6 2 2  << 1, so Wn‘ becomes small sooner 
than EL, but for a true nitroxide where D z / 0 z 2  is not 
much smaller than unity, our perturbation analysis is not 
quantitative but suggests that  the importance of nuclear 
spin flip terms persists roughly almost as long as the 
terms in EL. 

Some other comments about the application of eq 2.46 
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to nitroxides me appropriate. First we note that d just 
couples Cp&(i’$ with b ~ & ( i ) .  The diagonalization of the 
R-iK matrix in the vector space of the C m L ( i )  may be per- 
formed as discussed elsewhere, but for the “quasi-nitroxide” 
model, the perturbational decoupling of the forbidden 
transitions renders the three allowed transitions separable, 
with the pseudosecular contribution between CK&G) and 
&;CML‘ ’ 6) for R -iK given by 

I,’ 2 U t )  ( L  2 L’ ) ( L t  2 Ltt) x 
0 0 0  0 1-1 0 -1 0 

I -  2[fib,/  --(Jq2~--EJ--~ + [fib,,-(E,, -Ef)]-I  (4.33) 
where the plue and rninus signs are for j = 1 and 3 respec- 
tively, and for j = 2 one uses the sum of the two expres- 
sions for j = 1 and 3. Equation 4.33 is of closely similar 
form to eq 42“, but it includes the frequency shifts due to 
the pseudo-secular terms as well as the line-broadening 
effects due to the nuclear spin flips. Secdar g tensor con- 
tributions have been neglected for simplicity, but they 
can readily be addeld in. (One also takes the terms in eq 
4.33 as small compared to 6, in decoupling the transitions 
for the “‘quasi nitroxide” and we have neglected the small 
effects of weakly mixing in allowed character into the 
forbidden transitions). 

We note that in n pulsed eldor experiment, if the ob- 
serving and pulsed pumping modes are set at different 
frequencies corresponding to the same hyperfine transi- 
tion, one may approximate the analysis in terms similar 
to those discussed for eq 4.22, etc. However, when they 
are set to  different hyperfine transitions, the combined 
effects of reorientation and spin flip will, in general, be 
seen. 

V. Summary 
We have sh3wn how our general methods applicable to 

steady-state saturatwn experiments in both the motional 
narrowing and slow tumbling region may also be generally 
applied to time-dependent experiments such as saturation 
recovery. The solution is again dependent upon the same 
matrix representations including the relaxation matrix R, 
the coheyence matrix K, the transition-probability matrix 

(or W), and the transition moment matrix d which 
have already been extensively discussed. The complex 
coupled differential equations are most effectively solved 
in terms of separate diagonalizations in transition space 
(in which IR and 3; are defined) and in eigenstate (or 
eigenstate-pair) space (in which W (or W) is defined). 
This is because of a general feature of these problems, 
such that usually the different eigenstates (pairs) exhibit 
coupled relaxation even while their associated transitions 
are uncoupled 

Particular attention has been given to the saturation- 
recovery-type experiment, which also includes pulsed 
eldor with a weak observing mode. A general procedure, 
based on having a weak nonsaturating observing mode, 
has been developed, which permits convenient solutions. 
The procedure is illustrated with examples of the well- 
known case of 81 single line. 

The analysis of spectra with hyperfine lines exhibiting 
coupled relaxacion (with a nitroxide being a particular ex- 
ample) has shown that quite generally, the saturation re- 
covery signal ils dominated by a single exponential decay 

of time constant TI = (2We)-I despite the complexities of 
coupled relaxation which may exist. Simply stated, this is 
because when W, or WEX are much greater than We, so as 
to strongly couple the, relaxation of the eigenstate pairs, 
then the whole spectrum first rapidly adjusts to a com- 
mon level of saturation with time constants -W,-I or 
W E X - ~ ,  and then proceeds to relax to equilibrium more 
slowly with 2’1, which is the slow decay observed experi- 
mentally. When a steady-state pulse approximation ( 2 .  e. ,  
the saturating pulse is on for times 2 the TI’S) is applica- 
ble, then one finds the fast decays also have much weaker 
amplitudes (proportional to their decay time constants). 
For W,, WEX << We, the lines are essentially uncoupled 
and all decays are -TI. However, when Wn, WEX ,-+ We, 
then more complex behavior may be seen with several 
(not very different) decay constants, which are weighted 
differently for eldor us. direct observation. ‘Thus eldor 
would be helpful in deciphering the different decays. 
When W,, WEX < We, it is still possible to observe eldor- 
recovery effects with time constant = TI,  but with a sig- 
nal attenuated by factors of the order of b = Wn/We or 
Nb“ = W H E /  We. T2-type decays (including oscillatory ef- 
fects) were not considered in detail in the examples, but, 
in those special cases where they could be important, the 
general methods given may be satisfactorily employed. 

The slow motional case has been discussed from the 
point of view of examples of (1) a simple line and ( 2 )  a ni- 
troxide (also a “quasi-nitroxide” in which the pseudo-sec- 
ular terms are taken as small but not negligible). Here the 
important comparison is between @i us. W,, where (A is the 
rotational diffusion constant. For @i > We (a frequent sit- 
uation even in the slow niotional region), the rotational 
reorientation spreads the saturation over the whale spec- 
trum, and the observed slow decay is again given hy TI = 
2We. For (R < We each component of the spectrum is sep- 
arately saturated and it relaxes with T I  LZ 2We. The re- 
gion of 6 (R - We allows for the superposition of several de- 
cays of comparable order of magnitude which might be ef- 
fectively explored by a combination of direct and eldor- 
observational techniques. Effects of model dependence on 
the reorientational motion are also given. The aaiftroxide 
case involves a combination of reorientational, and nu- 
clear-spin-flip effects. Advantage is taken of t he simplicity 
of the quasi-nitroxide model to analyze effecis of the lat- 
ter, showing their importance even when the pseudo-secu- 
lar terms are small, thus implying their importance for 
real nitroxides. (The comments given for effects of W, in 
the motional narrowing case apply here in a qualitative 
sense.) Computational techniques already well developed 
for computer simulation are fully a ~ ~ ~ ~ c a ~ ~ ~  to a more 
thorough analysis of this case. 
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A simple molecular orbital method is proposed to deal with chemically reacting systems in terms of the 
molecular orbitals of two isolated reactants. The electron population of a reacting system is partitioned 
into several orbital interaction terms, allowing a tracing of the origin of intermolecular bond formation 
and of the intramolecular reorganization of the electron distribution. The method is applied to the inter- 
action between singlet methylene and butadiene. Both 1,2- and 1,4 addition are electronically allowed, 
but the 1,4 addition is discriminated against by excessive closed-shell repulsive interactions. 

Introduction 
The interpretation of chemical interactions between two 

systems in terms of the electronic structures of isolated 
reactants i s  a problem of crucial importance to chemistry. 
Some useful reactivity indices and generalized stereoselec- 
tion rules have been derived by rather simplified molecu- 
lar orbital (MO) methods.1-8 There perturbation theory 
and orbital correlation diagrams have been found to be 
quite powerful. Several more detailed MO theoretical 
methods have been proposed in order to calculate the in- 
teraction energy and the electron distribution of chemical- 
ly interacting systems from the wave functions of two iso- 
lated r ea~ tan t s ,g -~ '~  AJthough the application of the "iso- 
lated-molecule-approximation" is limited to the case of 
relatively weak interactions, e.g. ,  the early stage of chemi- 
cal reactions, it can often be very informative in disclosing 
the governing factors of complicated chemical reactions. 

The typicitl reactions of methylenes, namely, addition 
to a double bond, insertion into a single bond, and dimer- 
ization, have proven a useful testing ground for approxi- 
mate calculations of bimolecular potential energy surfaces 
and reaction  coordinate^.^^^^* In the present work we con- 
tinue our study of methylene reactions, returning to the 
addition reaction. We seek to understand a negative re- 

sult; experiments on the reaction of singlet methylene 
with dienes have given no direct evidence of 1,4 concerted 
addition.21 Normal 1,2 addition apparently prevails as the 
initial step.22 This is so despite the least-motion cheletro- 
pic reaction of 1,4 addition clearly being a symmetry al- 
lowed process.? 

In this paper we first present a simple way of discussing 
the reorganization of the electronic distributions of two 
interacting molecules, and then apply our formalism to 
the reaction of singlet methylene and butadiene. 

Population Analysis of Chemically Reacting Systems 
Let us consider an interaction between two molecular 

systems, A and B. The MO's of A and Et in their isolated 
states are given by linear combinations of atomic orbitals 
(AO's) as 
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