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the normal two-transition routes, even when the topology 
of the differential paths qualitatively suggests a three- 
transition route. 

Appendix. Notation 
A,B,C,D = dxl/ay, values, defined byeq 13-14 
c = fluid-phase concentration of anionic or molecular 

species 
c = same, for sum of complexed and uncomplexed forms 
F = feed 
K = stability constant 
M,N,O = counterion species 
P = presaturant 
Q = resin capacity, equivalents/mass 
q = resin-phase concentration of an ionic species, equiva- 

u = composition velocity,'dimensionless; see eq 4 
V = fluidvolume 
u = packed volume of resin 
W = watershed 
X = coion, complex forming 
x = relative fluid-phase concentration, c/E, 
2 = same, for sum of complexed and uncomplexed forms 

lents/mass 

y = relative resin-phase concentration, q / Q  
01 = selectivity coefficient 
E = void fraction 
p = resin bulk density, mass/packed volume 
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Analysis of Inertial Effects on Electron Spin Resonance Spectra in the Slow Tumbling 
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An analysis is given of the inertial effects (which arise from the coupling of the molecular orientational 
degrees of freedom to the molecular angular momentum) on esr spectra of radicals in the model-sensitive 
slow tumbling region. The analysis is based on the stochastic-Liouville equation in combined spin, orien- 
tational, and angular momentum space, and it utilizes recently developed models of Langevin (or Brow- 
nian) diffusion and extended diffusion. The case of a simple line from an axial g tensor is studied in most 
detail. I t  is shown that the complete analysis for inertial effects in this case yields results similar to a 
very crude model of free diffusion found by Goldman, et al., to be in good agreement with experimental 
results in their analysis of slow-tumbling nitroxide spectra. Results of Langevin and extended diffusion 
were virtually the same. However, results obtained for a familiar approximate inertial model, which ne- 
glects noncommutativity of the angular-velocity components, disagreed sharply with all other cases (in- 
cluding the even cruder free diffusion model derived from it) indicating that it is an unsatisfactory 
model. The less complete results obtained for the case of nitroxide spectra indicate similar conclusions. 

I. Introduction 
In a recent set of esr experiments in the slow tumbling 

region where the esr line shapes are no longer simple Lo- 
rentzians, it was found possible to distinguish between 
different models for the molecular reorientation.2 The 
models considered were Brownian rotational diffusion, dif- 
fusion by molecular jumps of substantial angle, and a 
simplified model of free diffusion wherein the inertial ef- 
fects were introduced in a crude fashion. Qur results on 
small nitroxide molecules2 were found to be consistent 

with molecular jumps of moderate angle (the root-mean- 
square jump angle -1 radian) but the simplified model of 
free diffusion utilized gave equally good agreement. The 
present study was undertaken to determine whether a 
more complete analysis of inertial effects which result 
from the coupling of the molecular orientational degrees 
of freedom to the angular momentum could alter the re- 
sults previously obtained. 

The basis of our theoretical analysis of the slow tum- 
bling esr spectra has been the stochastic Liouville meth- 
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0d3 as utilized by Freed, Bruno, and P o l n a ~ z e k . ~  In the 
past work, it has only been employed in combined spin 
and orientational space, the random behavior of the latter 
being described by a Markoff process.5 However, the sto- 
chastic-Liouville method is quite general, and for the 
problem of inertial effects one may introduce the com- 
bined orientational-angular momentum degrees of free- 
dom in terms of which the Markoff process is defined. 
This generalization clearly renders the problem considera- 
bly more complex, but it has still been possible to obtain 
some useful results and insights. 

Our analysis builds on some of the extensive recent 
work on inertial effects in rotational diffusion. In particu- 
lar, we have found the work of Fixman and Rider6 lends 
itself quite naturally to adaptation to our stochastic-Liou- 
ville approach for slow tumbling esr spectra. Also, some of 
the earlier discussion by Sack on this subject has been 
u ~ e f u l . ~ * , ~  Hubbard has also very recently discussed this 
subject .7c 

11. General Approach 

tion for the spin-density matrix4 
R e  start with the stochastic-Liouville equation of mo- 

(W 
and 

ruPo(w = o (la) 
Here x(f2). is the superoperator of the orientation-depen- 
dent spin Hamiltonian and r* is a Markoffian operator 
for the collection of variables @, which include the orien- 
tational angles 9 .  In particular, for the consideration of 
inertial effects, \Ir includes the angular momentum (or ve- 
locity) variables as well. PO(@) in eq l a  is the unique 
equilibrium distribution over all the variables in \p. We 
shall consider specifically (1) motion about a fixed axis, 
i.e., one-dimensional free rotational diffusion and ( 2 )  
three-dimensional free rotational diffusion of a spherical 
top. 

The unsaturated absorption of the Xlth transition is ob- 
tained from Im zxj where4 

d 
SP(*.t) = [ - m ( ~ ) ~ - r ~ ~ ] ~ ( w )  

_- 
Z(O)~, J d\kZ(Q’,u)x,Po(Q’) (2) 

and 
p( \ k ,  t )A, = el%(*, (3) 

That is Z(9,w)xJ is the steady-state solution of p(\ I r , t )  for 
the X,th transition and is time independent in the frame 
rotating with impressed frequency w. Also, z ( w ) x j  is the 
equilibrium average over all vatiables comprisifig @. 

Substituting of eq 3 into 1 leads for the case of no satu- 
ration to4 ,5 

- 
1 {rW - xox + x,(mX - zr~b~z(\k,u)h) = o,cs-x polx 

(4) 

where x 0 is the zero-order orientation-independent and 
XI( Q )  the perturbing orientation-dependent parts of 
x(Q), WI = Y ~ B I  with BI the magnitude of the rf field, S- 
is the electron spin lowering operator, and po the equilib- 
rium density m_atrix. The averaging of. eq 4 to obtain an 
expression for Z ( w )  must follow the prescription of first 
postmultiplying eq 4 by PO(@) and then integrating over 
all q.3,5 One generally expands Z(\Ir,w)xj in a complete 
orthonormal set of eigenfunctions (when available) of I?* 
to solve eq 4.4 However, when PO(@) # constant it is usu- 

ally more convenient to defines 

.z(\k,u) = P,-’/2(\k)Z(\k,W) ( 5 )  
and then expand the z ( \ k , w ) ,  and this is illustrated below. 

(A) One-Dimensional Free Rotational Diffusion. By 
one-dimensional rotation, we mean rotation about a fixed 
axis. This model has been discussed in detail by SackT*,b 
and others.9 It is a simple generalization of the one di- 
mensional Fokker-Planck equation to cover rotational 
motion.lO 

Thus we may write 

where y is the angle of rotation about the fixed axis and 
9 its angular velocity. Also (3 is the damping coefficient 
and R = kTjI@ is the diffusion coefficient for reorienta- 
tion. This two dimensional Markovian operator will have 
the equilibrium probability distribution 

PO(%+) = P,(yP,(j.) = 

(1 /2~)([2xPRI- ’ /~  e x ~ [ - j / ~  /2PR]) ( 7 )  

corresponding to a uniform distribution in orientation and 
a Boltzmann distribution in angular velocity. Because the 
latter is nonuniform, Ily,$ given by eq 6 is a nonsymmetric 
operator. We may symmetrize by the transformation 

F = P;1/2(y,+)rP;/2(y,+) = 

One then immediately notes that the second term on 
the right-hand side of eq 8 is (within the constant term of 
-%) just the operator for the one-dimensional quantum- 
mechanical harmonic oscillator. Thus it has harmonic os- 
cillator eigenfunctions as its eigenfunctions with the ei- 
genvalues n@ (n  = 0,1,2 . . .). Thus one first transforms eq 
1 to be 

(9 )  
a 

-- X?,(r,i.,t) = [-iXX - FIp(y,j / , t)  
at 

where ( c f .  eq 5 )  

?(?,+A = P,-’/2(y,+)p(y,+,t) (9a) 
Then the matrix elements of z(y,q,w) for the relevant 
transitions may be expanded in complete sets of eigen- 
functions for y and 9 as 

.%,uh, = [C, n ( d l x j f r ( ? ) h n ( j / )  (10) 
r n  

with 

(lob) 

PJY?,+) = fo(y)h,(i.) (10c) 

and 

where H n ( x )  are the Hermite polynomials. Thus 

F f r ( ~ ) h n ( i / )  = E ,  .f,(y)h,(j.) =(np + ir(r,i.)fr(y)hn(j.) 

and the “matrix elements” of f may be obtained from the 
known properties of the Hermite functions hn(?). Then in 
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a manner analagous to eq 16-21 of I we have for the Xjth 
transition (from eq 4 and 10) 

[Note AOA = w - W A ,  dxj = l/zwl(S-)hj, q = h/NkT, with 
N the number of spin eigenstates.] We have, in obtaining 
eq 12, utilized the fact that x 1 x  does not depend explicit- 
ly on angular velocity, but it does depend on orientation. 
The absorption for the Xjth transition is given by 

= I m  [ C o , a l X ,  (13) 

It  is possible to replace the Brownian diffusion case by a 
“strong-collision-in-angular-velocity-space” model which 
has been referred to as an extended diffusion or J-diffu- 
sion model.ll This possibility, as well as related ones, are 
discussed by Sack.7a-b For our purposes, it is easy to show 
from Sack’s expressions ( c f .  eq 2.11 of 7a) that  for the case 
where each collision results in 4 being restored to its equi- 
librium distribution given by PO(?) (but with y un- 
changed by the collision), one merely may replace 

nP-P(1-6,,0) (14 1 
in eq 12. (Such simple changes with model have an analo- 
gy in the methods of treating orientational-jump mod- 
els.)2a 

Equations 12 and 13 may then be solved in the usual 
manner for different values of R and /3 by truncating the 
eigenfunction expansion in n and r after a sufficient num- 
ber of terms are taken. We are, however, primarily inter- 
ested in the three-dimensional case which may be handled 
analogously, although it is considerably more complex. 
This one-dimensional model is, however, useful in illus- 
trating how the general format of the theory may be ap- 
plied. Also we shall use it later to attempt a simplified 
treatment of the three-dimensional case. 

( B )  Three-Dimensional Free Rotational Diffusion. Here 
we make considerable use of the treatment of Fixman and 
Rider.6 They treat the cases of both Brownian (or Langev- 
in) diffusion and extended diffusion from a stochastic 
Liouville-type approach. In particular one has for a spher- 
ical-top in these cases 

-r = ius+ b: (15) 
where 6: is the relaxation or diffusion operator for the an- 
gular velocity v, which for a Brownian model is6g7b 

(16) 

The inertial or streaming term U S  (where u = I v ~ ) ,  de- 
scribes the dynamical coupling of angular momentum (L 
= Iv) and orientation.6.7b One has 

where 

d: = Pro,. v + RPVL21 

S = ] . j  

1 = v / u  and j u  -iux 0, (17) 
where u is a unit orientational vector, the components of 
which give the projections of the laboratory unit z axis 
vector (k) in a molecular coordinate frame.6 (This repre- 

sentation is adequate for an axially symmetric xl(n), and 
we are only considering. spherical top motion.) Thus S de- 
pends on the orientation of u: &, pu as well as the orien- 
tation of 1 in the molecular coordinate frame or Bu, p,. 
The products of spherical harmonics Ynm(Ou,pu) and 
YJp(Ou,pu) form a basis set in which to evaluate S. Fixman 
and Rider find for their purposes that the coupled linear 
combinations which are eigenfunctions bf the “angular 
momentum-type’’ operators J = j, + j, and M = m + 
m’ (the components of j, and j, on the molecular z axis) 
are more desirable for evaluating S simply. However, in 
the slow tumbling problem, where the perturbation xl(f2) 
enters in a more complex fashion, it appears a little more 
convenient to choose the natural basis set for Xl(fl2) (a 
Yno(Ou,pu) in the simple axially symmetric secular g ten- 
sor case, see below), which is the simple product represen- 
tation.12 

Now eq 16 leads to the equilibrium distribution in u 

and one may symmetrize 6: (and I’) by the analogous 
transformation to that used in eq 8. The eigenfunctions of 
2 (the symmetrized form) are 

where 

For an (axially symmetric) secular perturbation, one only 
needs terms for which M = m + p = 0 and M’ = m‘ + p’ 
= 0. In view of the complexity of the problem, we only 
consider here this simplest of esr cases, i.e., a single line 
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broadened 
discussion 
symmetric 
write4 

by an axially symmetric g tensor. (A detailed 
of the expressions for the case of an axially 
nitroxide is given by Bruno.13) We may then 

5 2/3fi -lPJ%(gl,- g,> (24a) 
where Bo is the magnitude of the dc magnetic field, and 
g , and gL are the parallel and perpendicular compo- 
nents of the g tensor. The matrix elements of xl(f2) are 
simply 

(Lm;  k j pl xlJQ)l L’m’; k’j’ p’) = 

-m 0 m 
6 ,  m ~ 6 h  h 1 6 j , j ! 6 p  p t  ( 2 5 )  

We may then expand the spin-density “matrix elements” 
as 

z ( o u , ~ ? ~ , ~ ? , ~ ~ , L , ~ > X  = [CL m k j(W)lA x 
L m  k j  

Y L m ( o u , P u ) Y j . m ( O , ,  P L ) R h j ( u )  (26)  

and in an analogous manner to eq 13 one obtains 

I m Z ( u )  = Im [C,,,,o,o(w)lA ( 2 7 )  
for the single (Xth) transition with matrix elements equiv- 
alent to eq 12 

[(w - ZT,~-’ICL m k + 
(L ,m;  k j -  ml Xl(Q)1 L’,m; k i  - m) CLj h , ,  - 

L‘ 

( L ,  m; k j  - m lvS1 L,m’; k’, .? - m’) CL,,,,,, h’,,’ = 
k’,j’,m’ 

qwAdA6L o 6 m , o 6 k , o s j , o  ( 2 8 )  

The solution may be simplified by noting that only the 
following linear combinations are needed 

where the + sign is for even j and the - sign for odd j .  
( C )  An Approximate Approach. As may be seen, the 

coupled equations defining even the simplest esr problem 
are themselves very complex. It is thus not very practical 
to attempt to solve a free diffusion model for more com- 
plex slow-tumbling esr cases such as a nitroxide. We 
therefore have examined a highly simplified description of 
inertial effects, Essentially what we have done is to em- 
ploy the one dimensional model in modified form. That is, 
we replace eq 15-17 simply by 

where lj,21 is defined by 

In this fashion the angular velocity diffusion of the spheri- 
cal top is treated simply in terms of its magnitude, while 
the effects of the orientation of v on the description of the 
orientational motion of the molecule are neglected. We 
show below that this assumption results in a description 
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of inertial effects on molecular reorientation which is 
equivalent to an earlier approximate treatment by 
Steele.14 In Steele’s analysis the approximation amounted 
to defining a rotational-diffusion tensor as 

R,,(t) = ( u , ( 0 ) u j ( t ) )  dt 

This assumption neglects the noncommutativity of the 
angular momentum operators. 

A comparison of eq 30 with 6 immediately shows that 
the treatment given in section A for one-dimensional free- 
rotational diffusion applies. One need only make $he re- 
placements in eq 12 of f r (r )  -+ YL,(B,,cp,), rz  - L(L + 
l), and JoZrdy - J0rdOuJ02TdcpU. In particular, we have 
for the a.xially symmetric g tensor mechanism 

L 2 L t 2  
( 0  0 0 ) CL‘.n + 

and again 

For the case R/P << 1, one expects that eq 31 should be 
equivalent to the spectrum for simple Brownian reorienta- 
tion. One may readily show this to be so by considering 
the third term on the left-hand side of eq 31 as a pertur- 
bation compared to diagonal elements np. Then, to sec- 
ond order in this third term, we obtain for the coefficients 

which is identical with the equation obtained in I for sim- 
ple rotational diffusion. 

Suppose, on the other hand, RIP 2 1. Then coefficients 
C L , ~  for n > 0 become significantly coupled into the C L , ~  
coefficients that ordinarily determine the spectrum. Sup- 
pose one may initially neglect the term in F in eq 31, i . e . ,  5 

p ,  R. Then, for this case we need consider the coupling of 
C L , ~  to the other C L , ~ , .  Let us first consider the simplified 
coupled set of equations 

[ (w  - wo)  - i n ~ l a ,  +e( a L  + fi aL n - l ) ~ L  = 6, 

(34) 
where - y ~  = [RpL(L + 1)]1’2. Equation 34 may be solved 
for a L , o ,  and it generates a continued fraction, the solution 
of which is known.3 It yields 

i(w - wo)tl  d t  = i j L ( w  - w o )  (35 )  

which is the Fourier-Laplace transform of a type of corre- 
lation function well known in Brownian motion theory 
and obtained by Steele in his approximate treatment of 
inertial effects in rotational diffusion (for a spherical 
rotor).14 If we now introduce the effects of F to lowest 
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Figure 1. Comparison of line shapes for axially symmetric g ten- 
sor for different free rotational diffusion models: A, absorption 
line shapes: B, first derivative line shapes. The different rota- 
tional diffusion models are , , . . . . ,  simple Brownian; - , mo- 
tion described in ful l  three-dimensional angular momentum 
space for Brownian particle with @ = 4R and R = 0 . 1 3 1 ~ 1 ;  - - -  
- _ _  , motion described in one-dimensional angular momentum 

space for Brownian particle with p = 4R and R = 0 . 1 3 ) ~ 1 ;  -. - . - . - , sim~le free diffusion with B / R  = fRT)- ’  = 4 and 
R = 0.1051‘ 1 .  All have T R  = 1.72 X:lO-’sec, gl = 2.00235, 
91. = 2.00310,  60 = 3300 G ,  (2 /3 ’ / * )T2- ’ / l y , l  = 0.02 G.  

order, so that C,,, 1, we then obtain from eq 31 

(36) 

And since R,P >> 5 ,  one may let j z ( w  - wo - (2/7) 5 )  N 

jZ(0)  for values of w for which the resonance signal is not 
negligible. 

The approximation suggested by Egelstaff in another 
connection15 and which served as the basis of our earlier 
simplified model of free diffusion2a is to estimate the half- 
width for the (approximate) form of the j L ( w ) ,  given 
by eq 35 and then use it to replace the inverse eigenvalues 
[RL(L + 1)l-I appropriate for the rotational diffusion op- 
erator. (For RIP << 1, the result is of course just [RL(L + 
1)I-l cf. eq 33.) This is equivalent to approximating the 
j ~ ( w )  of eq 35 to a Lorentzian. In actual fact, it  is highly 

A 

+ 
-40  -30 -20 -10 0 10 20 

gauss 

n 
-+----- 

30 40 

-40 -30 -20 -10 0 10 20 30 40 
gauss 

Figure 2. Comparison of line shapes for axial nitroxide for differ- 
ent free rotational diffusion models: A,  absorption line shapes; 
B, first derivative line shapes. The different rotational diffusion 
models are . . . . . . ,  simple Brownian diffusion with R = 0.08561 F 1 
(TR = 2.10 X sec); -, motion described in one- 
dimensional angular momentum space with @ = 4R and R = 
0.1641 $ 1  (TR = 2.16 X l o - *  sec); - - - - - -, simple free diffusion 
with P / R  = (RT)-’ = 4 and R = 0 . 1 8 2 / ~ /  (TR = 1.58 X 
sec). All have g = 2.00270,  g i  = 2.00750, A l l  = 3 2  G, A i  
= 6 G ,  60 =3300G,and ( 2 / 3 1 ’ 2 ) T 2 - 1 / l y \  = 0 . 3 G .  

non-Lorentzian for L(L + 1)R/@ 2 1, becoming a Gauss- 
ian for L(L  + 1)R/P >> 1. Also, the deviations from Lo- 
rentzian character of j L ( w )  are greater for greater values of 
w ,  i.e., the short-time effects are more important.9 Thus 
as the tumbling slows down and 3 > R,@, then, e.g., jz(o - 
wo ’ -  ( 2 / 7 ) 7 )  is no longer well approximated by a‘lorent-  
zian over the region of w for which there is a nonnegligible 
esr signal. 

There is still another and more serious way in which an 
Egelstaff-type approximation breaks down for 5 2 R,P. In 
e q 3 1  Co,o is coupled to the CL, ,  ( L  > 0 )  by X I  and these 
C L , ~  then couple to the CA,n ( n  > 0 )  (by the inertial 
terms) which then bring in the effects of the angular ve- 
locity diffusion. As 5 becomes larger, the coupling of the 
C L , n  to the CL’,n (n  2 0 )  becomes important, leading, for 
example, to indirect coupling of the Co,o to the C o , n  ( n  > 
0 )  indicating that the mixing of effects of angular velocity 
diffusion into the spectrum is becoming more complex 
than even that predicted only by the frequency dependent 
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j,(w) given by eq 35.15 This represents the kind of compli- 
cation which sets in when several time scales (i.e., spin- 
relaxation, orientational relaxation, and angular velocity 
diffusion) all become comparable. 

While we have discussed the complicating effects of in- 
ertial motion on slow tumbling spectra in terms of the ap- 
proximate model, similar problems apply to the more 
complex situations for the more rigorous descriptions of 
inertial effects. However, as we shall find, they appear to 
have a cancelling effect. 

111. Results 
(A)  Single-Line Axially Symmetr i c  g Tensor. One finds 

that for p >> R the proper Brownian rotational diffusion 
results are obtained for all inertial models of section II in 
both the fast and slow motional region. However, for p I 
R they exhibit significant differences. This is illustrated 
in Figure 1 for /? = 4R for line shapes calculated from eq 
27-28 and 31-32. Also included for comparison are the lihe 
shapes for Brownian rotational diffusion and for the sim- 
ple free diffusion model. All models were calculated to .  
have the same rotational correlation time TR, such that, if 
the spectrum were in the fast motional region, all models 
would give the same Lorentzian width.2a While all the in- 
ertial-effect models yield spectra which deviate somewhat 
from that for Brownian rotational diffusion, one is struck 
by the fact that the approximate one-dimensional angular 
momentum model of eq 31 yields results qualitatively dif- 
ferent from any other case. I t  shows the inertial effects for 
this model lead to a sharpening of the features of the 
Brownian rotational diffusion spectrum, while the line 
shapes from the complete model of eq 28 as well as the 
simple free diffusion case show the inertial effects to cause 
a smoothing out of the features. The results for the latter 
two cases are quite similar. We have also found that line 
shapes calculated for extended diffusion (eq 21  for eq 28 
and eq 14 for eq 31) give results which deviate only very 
slightly from the line shapes for the Langevin diffusion 
model (eq 20 for eq 28 and eq 31). 

( B )  Axial Nitroxide. The detailed equations for all the 
inertial models considered above are given by Bruno.13 
We show in Figure 2 a comparison of the line shapes cal- 
culated for /3 = 4R for all models except the complete 
three-dimensional angular momentum case,13 since this 
case is extremely complex. The value of R was slightly ad- 
justed in each of the models so that the distance between 
the outer first derivative extrema would be the same. As 
was seen for the axially symmetric g tensor, the inertial 

effects from the approximate one-dimensional momentum 
produce line shapes with sharper features than the Brow- 
nian rotational diffusion. This is again in direct contrast 
to the simple free rotational diffusion model line shape (as 
well as any of the comparable appearing line shapes for 
the moderate jump models discussed in ref 2a). 

I t  is anticipated, from the results for the g tensor case 
and the similar structure of the equations in that case and 
that for the axial nitroxide,13 that the complete three- 
dimensional angular-momentum treatment will yield line 
shapes similar to those for the simple free-diffusion re- 
sults. In that case it would still be difficult to distinguish 
an inertial model from that of moderate jump models on 
the basis of line shape alone, and other considerations 
would be required.2b 
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