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A detailed study of anisotropic ordering, line shapes, and relaxation is reported for the perdeuterated 
2,2,6,6-tetramethyl-4-piperidone N-oxide (PD-Tempone) nitroxide radical in several liquid crystal sol- 
vents. The line width results are analyzed in terms of the Polnaszek, Bruno, and Freed (PBF) theory ap- 
propriately modified for anisotropic ordering both in the motional narrowing and slow tumbling region. 
The motional narrowing results are usually consistent with isotropic rotational diffusion, but under a weak 
(asymmetric) ordering potential, (go) = -0.1, and activation energies characteristic of the twist viscous 
properties of the liquid crystal. Anomalous line shape behavior in the incipient slow tumbling region is ob- 
served, which is not explained by the extrapolation of the appropriate parameters from the motional nar- 
rowing region. This anomaly is discussed in terms of anisotropic viscosity and director fluctuations. The 
latter is predicted to be of negligible importance for the weakly ordered spin probe, as well as qualitatively 
of the wrong behavior. Anisotropic viscosity, while apparently able to “explain” the anomaly, leads to 
physically untenable conclusions. The anomaly is then discussed in terms of slowly fluctuating intermolec- 
ular torques, leading to a frequency-dependent diffusion coefficient. While this latter may in part offer an 
explanation (when one distinguishes between torque components parallel and perpendicular to the direc- 
tor), the implied slowness of the fluctuating torques suggests, from general theory, a new model based upon 
a local solvent structure around the spin probe which may persist over longer periods than the reorienta- 
tion time of the spin probe. A simple model calculation of the effects on the ESR relaxation is given. This 
limiting model is also appropriate for highly structured isotropic liquids. It is shown that such a model 
could have the same formal spectral effects as anisotropic rotational diffusion, and it would yield non- 
Debye-like spectral densities of the type that could potentially “explain” the observed incipient slow tum- 
bling anomaly. More general theoretical approaches for the analysis of these effects are briefly discussed. 

I. Introduction 
In a recent series of papers we have shown the wide 

range of information that one is able to obtain from ESR 
relaxation studies about rotational reorientation in liquid 
and frozen media, when careful studies are made of ESR 
spectra over the full range from the very fast motional re- 
gion to the rigid limit.2-4 These studies, from which esti- 
mates could be made of (1) anisotropic rotational diffusion 
coefficients; (2) frequency dependence of the rotational 
reorientational correlation functions; (3) the non-Brownian 
nature of the reorientational process (e.g., large angle jump 
diffusion); (4) spin-rotational and angular momentum re- 
laxation, were all performed on isotropic liquids containing 
spin probes. There is currently great interest in the dynam- 
ical reorientational properties of liquid crystals which may 
also be studied by ESR, and this has been reviewed in sev- 
eral There have been several recent studies of the 
dynamics of nitroxide free radicals in oriented systems 
such as nematic liquid crystals and lyotropic liquid crys- 
t a l ~ . ~ - ’ ~  However, these studies have been based upon anal- 
yses appropriate when the probe motion is rapid, an as- 
sumption, we shall see, which is not always justified. Nor- 
dio and coworkers have presented a useful analysis of mo- 
tional narrowing ESR line widths in liquid crystals for 
Brownian re~r ien ta t ion l~  which is appropriate for such 
studies. Polnaszek, Bruno, and Freed (PBF)14 have gener- 
alized this approach to cover the slow tumbling region 
based on the slow tumbling theory of Freed et al.I5 In that 

work PBF also developed improved methods for analyzing 
the motional narrowing widths; they considered other mod- 
els for rotational reorientation; and they obtained solutions 
for rotational diffusion with very strong restoring poten- 
tials. 

The present work was undertaken to attempt to perform 
an extensive study of relaxation of nitroxide spin probes in 
liquid crystal solvents in the spirit of I and I1 (i.e., to obtain 
detailed information on rotational anisotropy and the de- 
viations from Brownian motion in ordered fluids) utilizing 
the PBF theory for the analysis. 

I t  was shown in I1 that the need for a high degree of 
spectral resolution for accurate spin relaxation studies 
could be fulfilled by the use of a perdeuterated spin label 
2,2,6,6-tetramethyl-4-piperidone N-oxide (PD-Tempone), 
for which inhomogeneous broadening due to unresolved in- 
tramolecular proton or deuteron interactions is minimized. 
Thus, this probe was used in our most extensive studies, al- 
though other nitroxide probes were also used for compari- 
son purposes. Another advantage of using the PD-Tem- 
pone probe is the fact that careful and extensive results on 
isotropic liquids given in I1 are available for comparison 
purposes, so that those results in liquid crystals, which are 
peculiar to these solvents, could be readily distinguished. 
In fact, as will be seen, such studies proved useful in shed- 
ding further light on molecular dynamics in liquids in gen- 
eral, as studied by ESR. 

Actually, it was found at  an early stage of this work, that 

The Journalof Physical Chemistry, Vol. 79. No. 21, 1975 



2284 Carl F. Polnaszek and Jack H. Freed 

the PBF theory required some generalization before it 
could be applied to the experiments described here. This is 
because the ordering of the spin probes is, in general, not 
axially symmetric. In section I1 we give the appropriate 
analysis for rotational diffusion under more general mean 
field restoring potentials. Also, a more complete discussion 
of motional narrowing line widths is given, and the impor- 
tance of frequency-dependent spectral densities, usually ig- 
nored by other workers, is stressed. The experimental pro- 
cedures including analysis of any non-lorentzian line 
shapes (in the motional narrowing region) are summarized 
in section 111. The rigid limit spectra and magnetic parame- 
ters are discussed in section IV. A detailed discussion of the 
motional narrowing results including the asymmetric or- 
dering and line width analyses-appears in section V. The 
limitations of the motional narrowing analysis as the mo- 
tion slows is also discussed there. It was possible, with the 
small spin probes, to obtain results in the incipient slow 
tumbling region, and the analysis of these spectra in terms 
of the PBF theory is discussed in section VI. It is shown 
there that these spectra have distinctly anomalous behav- 
ior. 

We have in I1 and in a recent theoretical study16 under- 
taken a detailed statistical mechanical analysis of molecu- 
lar reorientation to serve as the basis for analyzing unusual 
relaxation behavior not predicted by simple models of rota- 
tional reorientation. This general theory and its applicabil- 
ity to ordered fluids is summarized in section VII. The con- 
cept of relatively slowly fluctuating torques is then first 
discussed from the viewpoint of its effects on a frequency- 
dependent diffusion coefficient in a manner analogous to 
that given in I1 for isotropic liquids. However, because 
these results imply the existence of torque components 
fluctuating significantly more slowly than the molecular re- 
orientation, one has, from the general theory,16 that it is 
probably more accurate to treat these components as per- 
sistent torques (by analogy with the mean field director), 
against which rotational reorientation takes place, but 
these torques then relax on a slower time scale. A simple 
“local structure’’ model is given in section VI1 for analyzing 
such effects, where it is shown that such a mechanism may 
(1) contribute to “apparent” anisotropic diffusion observa- 
tions; (2) yield non-Debye-like spectral densities; and (3) 
possibly explain in part the experimental slow tumbling 
anomalies. An analysis of ESR effects of hydrodynamic 
fluctuations in the director based on the approach used in 
recent discussions of NMR r e l a ~ a t i o n l ~ - ~ ~  is given in the 
Appendix. It is related to, but different from, the nonhy- 
drodynamic “local structure” model of section VII. 

Further discussion of the spin relaxation results appears 
in section VI11 and a summary of the conclusions appears 
in section IX. 

11. Rotational Diffusion in Anisotropic Liquids and 
ESR Line Shapes 

The theory for analyzing slow tumbling as well as mo- 
tional narrowing ESR spectra in liquid crystals has been 
discussed in detail by PBF. For purposes of the present 
work, it is necessary to generalize their methods to cases 
where the ordering of the solute molecule is of lower sym- 
metry than cylindrical, since this was, in general, found to 
be the case in our current work. Also we give more explicit 
expressions for line widths in the motional-narrowing re- 

nc,(a,\k) = 

(2 .1)  ( L , M )  
(-l)KDL - K M ~  ( ~ ) D & M ( @ ) F ‘ ~ ,  i(L’K)A p ,  i 

L,K,M 

where the F’B,i(L,K) and Ap,i(L,M) are irreducible tensor com- 
ponents of rank L, with F’ in molecule-fixed coordinates, 
while A is a spin operator in the laboratory axes (whose z 
axis coincides with the applied dc field). Equation 2.1 is 
based upon two sets of rotations of the coordinate systems: 
first from the molecular axis system (x’, y’, z’)  into the di- 
rector axis system (x”, y”, z”)  with Euler angles R = (a, p, 
y); and then into the laboratory axis system x, y, z with 
Euler angles \k. The orientation of the director relative to 
the laboratory frame can be specified by the two polar an- 
gles 0 and ~7 such that \k = (0, 0, q). More precisely, we 
mean by the molecular coordinate system (x’, y’, 2’) the 
principal axis system for the orientation of the molecule in 
the mesophase. I t  may be necessary to transform from the 
principal axis system of the magnetic interactions (x”’, y”’, 
2”’) to the (x’, y’, 2’)  system with Euler angles 8, according 
to 

(2 .2)  

where 0 = (a’, p’, 7’). 
A. Rotational Diffusion. The problem of rotational dif- 

fusion in nematic solvents has been studied13J4 by means 
of adding the effects of an orienting potential to the rota- 
tional diffusion equation for isotropic liquids. The previous 
authors considered a cylindrically symmetric potential in 
the diffusion equation, but our results and that of other 
w0rkers~~.~3  have shown that the ordering tensors for sever- 
al different free radicals dissolved in various liquid crystals 
are not axially symmetric. These latter observations imply 
that the ordering potential is not axially symmetric, and an 
asymmetric potential should in general be included in the 
diffusion equation to explain ESR relaxation in the meso- 
phase of liquid crystals. The diffusion equation for a parti- 
cle undergoing Brownian rotational diffusion in the pres- 
ence of a potential U is given by16,24 

-r,p(a, t )  (2.3) 

where U(R) can be taken to be the orienting pseudopoten- 
tial for a liquid crystal, M is the vector operator which gen- 
erates an infinitesimal rotation, and is identified with the 
quantum mechanical angular momentum operator for a 
rigid rotator, while R is the diffusion tensor of the mole- 
cule. Both R and Mare  defined in the (x’, y’, z ’ )  molecular 
coordinate system. The angular momentum operator 
iW4-26 is defined by 

(2.4a) M2VL (0) = L(L + l ) V k M ( n )  
KM 

1 / 2  L M*4‘k~(a) = [(L T K)(L f K $. 1)1 ( P K * i , M ( a )  

(2.4b) 
M ~ ( P K L M ( ~ )  = K ( P ~ M ( ~ )  (2.4c) 

where &M(Q) are the eigenfunctions of M 2  and M,: L is 
the “angular momentum quantum number”, and K is its 
component along the z‘ axis and 

gion. 
Following PBF we may write the perturbing hamiltonian M, = M x ,  f iM,, (2.4d) 
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Then &M(Q) are the normalized generalized spherical har- 
monics, i.e., eigenfunctions of the rigid rotor: 

TABLE 1: Comparison ofthe Different 
Schemes of Ordering Parametersa 

2 L  + l Wigner rota- Saupe’s ordering Snyder’s mo- 
<‘kFK(’) ( 8n2 ) DkM(O2) (2- 5)  tion matrices tensorb tional constantsC 

When U = 0, eq 2.3 is simply the equation for (asymmet- 
ric) Brownian rotational diffusion in isotropic liquids. 
Equation 2.3 is based on the assumption that the external 
torque T is derived from the potential U(Q):16,24,27 

T = iMU(SZ) (2. 6) 
The equilibrium solution to eq 2.3 is given by 

 PO(^) = exp(--u(a)/kT)/Sdn exp(-U(a)/kT) ( 2 . 7 )  

It is convenient to transform the Markov operator rQ de- 

rsa = q,(a)-*/2rnpo(a)’/2 (2. 8a) 

P(s2, t )  = P,(s1)-”2P(a, t )  (2. 8b) 

fined in eq 2.3 to a symmetrized form: 
N 

and 
N 

Then one obtains the diffusion equation 

(2. sa) 

where 

The restoring potential for liquid crystals can be written in 
its most general form as 

The assumption of cylindrical symmetry about the director 
axis, A, implies that all averages taken over the angle y 
vanish unless M = 0.28 The uniaxial property of nematic 
liquid crystals (i.e., A 3 -A) implies that L must be even. 
I t  is useful to use the linear combinations of the a. which 
are of definite parity, i.e., the real linear combinations: 

(2. 11) 
These have simpler properties for molecular symmetries 
less than cylindrical. 

Usually one considers only the leading term t:G,,(Q), i.e., 
the Maier-Saupe p ~ t e n t i a l . ~ ~  WeI4 have already considered 
the cylindrically symmetric case when e: tt 0 as well, but 
we have shown that typical ESR spectral predictions are 
not very sensitive to having # 0. In general, however, one 
expects the terms for L > 2 to be less important than those 
for L = 2, and we may approximate 

(2.12) 

The t;, e;, = 6; f (with K positive) are themselves sec- 
ond rank irreducible tensor components, so that, in the 
principal axis of molecular orientation system (x’, y’, 2’) 
their Cartesian components t$ are diagonalized, with Triti 
= 0, and complete specification is given by just ti and ti+. 
(Equation 2.12 may be thought of as the scalar product of 
second rank irreducible tensors.) 

(D”,,> 0 2 2  (5)-i /2C3,?,r2 
+ o”,,,) (6)’/2/2(0yy - 0,J -(2/5)112C,2_y~ 

(Go - @io)  (8/3)’ ’Ox2 (2/5)’ l2Cx2 

(Die - D”0) -i(8/’3)”’~Oxy +(2/5)C,, 
Luz and Meiboom, J.  Chem. Phys., 59, 275 (1973), use a set of 

orientation parameters, CqnL, which are simply related to our order- 
ing parameter: <Dkn2> = C n 2 .  b Reference 29. Reference 30. 

+ Q,,) i(8/3)1’20y2 i(2/5)CY, 

The ordering tensor is defined by 

(D&(O)) = dQP&S1)@,(a) (2.13) 

where L = 2 and M = 0. I t  is also a second rank irreducible 
tensor whose symmetry properties are related to those of 
the &. Thus from eq 2.7 and 2.12 and the orthogonality of 
the &,(a) terms it follows that in the (x ’ ,  y’, 2’) system 
only ( ao(Q)) and (@io + 6-20) are nonzero, i.e. ( D h d Q ) )  
is also diagonalized. The correspondence between the or- 
dering tensor ( I&(Q))  and those of SaupeZ9 and Snyder30 
is given in Table I. Thus the “diagonalized” potential (re- 
taining only L = 2 terms) becomes 

UQt)  = E@&(Q) + €:+(Di&n) + D120(S2)) (2.14) 
or equivalently 

U(cr,P) = cos2 /3 + E sin’ B cos 2 a  (2.14’) 

where e: = 2yz/3 and ti+ = 2t(6)-lk. For molecules in 
which the molecular x’ and y’ axes are aligned to different 
extents, t is nonzero. If one chooses the orientation coordi- 
nate system such that the z’ axis tends to align to a greater 
degree either parallel or perpendicular to the director than 
both the x’ or y’ axes, one should have lyzl > 14. From 
Table I it is seen that t is proportional to the difference in 
the ordering parameters for the y’ and x’ axes, and the case 
t < 0 corresponds to the y’ axis being ordered preferential 
to the x’  axis along the direction of A and/or to the x’ axis 
being ordered to a greater degree perpendicular to the A 
than the y’ axis. Note that, if the director is not parallel to 
the magnetic field, but is rotated by ?Fr = (0, 0, p), the po- 
tential parameters for the orientation of the molecule rela- 
tive to the director are not affected. [Note also that the 
two-parameter potential enables one to permute the label- 
ing of the principal axes, i.e., if we have y ~ , ~ ,  tt as the po- 
tential terms when the magnetic z axis corresponds to the z 
axis defining the generalized spherical harmonic, then one 
can write the potential terms with respect to y alignment as 
Y Z , ~  = - ( Y Z , ~  - 3t2)/2 and ty = - ( y ~ , ~  + t,)/2; similarly 
Y Z , ~  = - ( ~ z , ~  + 3t2)/2 and t, = ( ~ 2 , ~  - cz)/2 (cf. discussion 
below eq 2.12). It is sometimes true, as will be seen in se’c- 
tion V, that such a relabeling of axes can reduce the specifi- 
cation of the potential to just the one parameter 72, or else 
it may still succeed in keeping t small.] 

We may utilize eq 2.6 and 2.4b,c to obtain T from the po- 
tential in eq 2.14z6 in terms of its components in the (x’, y’, 
2’) coordinate system 
T, = T,, f iTy, = *i sin 2P[€di” - y2eii0] (2.15a) 

(2.15b) T,, = - 2 ~  sin2 p s in  2a 
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This permits the determination of the last term on the 
right-hand side in eq 2.9b once R is given in the (x’, y‘, z’) 
coordinate system. We shall assume axially symmetric 
rotation about z’, such that R x y  = R,~y = R I  and R z y  = 
Ril. The second term on the right-hand side of eq 2.9b is 
found from the well-known form of the operator M.R* 
M.244-26 We introduce the definitions 

X = -yz/kT ( 2  .lSa) 
and 

p = - € / k T  (2.16b) 
and obtain for the symmetrized Markov operator defined 
in eq 2.9 

N r = Me RoM - f(R,, R,,, A, p, 51) (2.17a) 

with 

80 = -(2/15)[R,(X2 + p2)  + 2R,,p2] (2.18a) 

(2.18b) 

( 2 . 1 8 ~ )  

X2,o  = 2[R,X - [Rl(X2 + p2) - 4R,,p2]/21] 

Go= 4[2R1(X2 + p2) - R,,p2]/35 

go= (6)’/2p[(R1 + 2R,,)/3 + 2R,,X/7] (2.18d) 

$0 = 4(10)’/2R,pX/35 (2.18e) 

Xjo  = (8/35)’/2R,,p2 (2.1 8f) 

One may also write the diffusion equation in terms of the 
general angular momentum operator N referred to the di- 
rector frame.24 This is appropriate when R is diagonal in 
this frame, i.e., anisotropic viscosity. One then generates an 
analogous set of expressions.24Jl In particular we assume 
R,, = R,, = kL, R,, = kit, and one finds for the compo- 
nents of T in the (x, y, z )  coordinates: 

T, f iT, = [ 2 ~  s in  /3 s in  2 0  T 

T, = 0 
i sin 2/3(y2 - E cos 20)]4“y (2.19a) 

and 
rn = N.R, ,*N - ii,i(~, p ,  0) (2.20a) 

where 

h, P, 0) = c (%oofj,(s2) + 
L=0,2,4 c *;o(*Om) + D$o(51)) (2.20b) oac 4L 

with 

?to = -2(h2 + 3p2)/15 

zio = 2[X - (A2 - 3p2)/21] 

(2.21a) 

(2.21b) 

&& = 4(2X2 + p2)/35 ( 2 . 2 1 4  

(2.21d) 

?jo = 4(10)’/2Ap/35 (2.21e) 

g;o + 6’”p[l + 2A/7] 

kjo = (8/35)”2p2 (2.21f) 

The procedure for solution now follows the general ap- 
proach of PBF, utilizing the normalized generalized spheri- 

cal harmonics of eq 2.5 as an orthonormal basis set. Actual- 
ly, it is more convenient, as seen from the above discus- 
sions, to use the real functions of definite parity: 

&.,M(C2) = N<i’2 Jz [ @ , ~ ( 0 )  f (-1)KDL,,~(51)] 
1 

for K + 0 (2.22) 
Computer programs based on the PBF theory were written 
for calculating nitroxide line shapes when (1) the asymmet- 
ric potential defined by eq 2.14’ describes the orientation of 
a nitroxide radical for which the principal magnetic (x”’, 
y”’, 2’”) and orientation (x’, y’, z ‘ )  axes are coincident and 
(a) eq 2.17 and 2.18 apply or (b) eq 2.20 and 2.21 apply; (2) 
a Maier-Saupe potential is used, but the z‘ and 2”‘ axes are 
tilted by angle (3’; (3) different reorientational models are 
used for a Maier-Saupe potential with either an axial ni- 
troxide or asymmetric nitroxide. All these programs con- 
tain the correction terms for nonsecular contributions to 
the resonant frequency shifts. Further details, as well as 
computer-program listings, appear in Polnaszek’s thesis.31 

B. Motional Narrowing Region. Many of the special sim- 
plifying features which may be applied to spectra in the 
motional narrowing region have been discussed by PBF. 
We extend and apply that discussion to the problems of in- 
terest here. 

( 1 )  Effectiue Spin Hamiltonian and Ordering Parame- 
ters. Here one uses an effective spin hamiltonian 

x = XO‘ + X”(0) (2.23a) 
where 

Eo’ = xo + (Xi(0)) (2.23b) 
and 

x‘‘(51) = xi(@ - (Xi(51)) ( 2 . 2 3 4  
where the averaging implied by the angular brackets is ac- 
cording to the prescription of eq 2.13. When nuclear Zee- 
man terms are neglected the static spin hamiltonian in the 
high field approximation is 

= (g)P,BoS, - Ay,,C(@&& (2.24) 

The apparent g and a values, i.e. ( g )  and ( a ) ,  must be cor- 
rected for nonsecular static and dynamic frequency shifts 
according to the methods discussed by PBF. Thus, for ex- 
ample, for the potential of eq 2.14 and for a molecule in 
which the (x”’, y”’, 2”’) coordinates are the same as the (x’, 
y’, z’) coordinates, i.e., the magnetic tensor principal axes 
coincide with the orientational principal axes, one obtains 
the following equation (for a single nucleus of spin I )  for 
these nonsecular frequency shifts: 

woo,, - w,,, = A W ( ~ )  = -[(I(z + 1) - m2)2b2] - 

i 

1 
order 0 0  

{g(F,Z 20 + 2F:) + @(FoDo’ 10 + 2F2D2’) + 

&(7Z(Z 15 + 1) - ?n2)(Dt + 2D2? + 
3m [&(F$ - 2F;) + -(FoDo‘ - 2F2D2’) - 14 

(2.25) 
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where we are using the notation of I (except that Fa and Dz 
used here have opposite sign than the use in I for the con- 
sistent set of conventions needed for anisotropic liquids, cf. 
Polnaszek’s thesis31). In principle, terms including ( &) 
and (ao) + (D&) can be included but they are negligible 
(<1% of the sum of the terms retained). 

If the magnetic tensors are known, eq 2.13 can then be 
used to calculate the ordering parameters. For the case in 
which the asymmetric potential of eq 2.14 is applicable and 
\k = 0, the following equations result: 

((4 - a ) k x  - g,) - (k) - g)(a, - a,) 
(GO) = (a, - a)(g, - gy) - (9, - g)(a, - a,) 

(2.26a) 

(2.26b) 
[In eq 2.26 and hereafter we shall refer to magnetic tensor 
components in the x’”, y”’, z”’ axes as the x ,  y, z compo- 
nents, or else some cyclic permutation of the (x”’, y’”, 2”’) 

axes provided there is no confusion with the laboratory 
axes.] 

With the ordering parameters known, eq 2.13 can be ex- 
pressed as a system of two integral equations and the po- 
tential parameters X and p obtained. Note that, because 
there are only two experimental observables, viz. (g)  and 
( a  ), obtained from a motional-narrowing nematic ESR 
spectrum of a nitroxide, one can have at  most two adjust- 
able parameters, and one must then assume some knowl- 
edge of the x’, y’, z’ axis system.32 

For many compounds of appropriate molecular geome- 
try, the one-parameter Maier-Saupe potential may prove 
sufficient to describe its orientation, and a second parame- 
ter, which may then be determined, is the tilt angle of the 
magnetic z axis with respect to the z‘ axis. For this case, 
one obtains the set of equations 

( 2 . 2 7 4  (4 - a 
(o”o(S2N = (a, - a,) cos2 p’ + (a, - a) 

where the magnetic tensor components are in their princi- 
pal axis system. 

Note that the possible solutions of eq 2.27 for p’ are ip’ 
i n?r ( n  = 0 ,  1 ,2 ,  . . .) but, because of the uniaxial property 
of nematics, they are equivalent. 

If there is a static distribution of directors around the 
laboratory axis, then one would have to use eq 2.1 and aver- 
age the spectrum over the distribution in ?Ir (e.g., a poten- 
tial such as V ( Q )  = p cos2 

(2) Relaxation. If we define, as in PBF, the correlation 
function 
c ( L ,  L’;m, m‘,4,q’;T) = (D-’~rl(L)(t)D‘.m.,4~ (L’)*(t + 7)) 

[where the prime on a function is defined by f’,(Q) = f a ( Q )  
- ( f a ( Q )  )], and its Fourier-Laplace transform (the spectral 
density function): 
K(LL’, mm’,q, q‘, i w )  = 

Jo-d7 exp(-iw.r)C(L, L’; m,m’;q, q ’ ; T )  

then the line widths and other relaxation behavior may be 

described in terms of these functions, according to the 
methods outlined by PBF. In particular one has 

E 
Re K (LL’, KK‘, MM‘;iw) = X 

n E n + O  

(Go(S2) JDkM(a) 1 Gn(a))(Gn(n) I %::#(a) I Go(n)) (2 .28)  

where the G,(SZ) are the eigenfunctions of f ’ ~  of eq 2.9b 
with eigenvalues E,. Equation 2.28 may be simplified by 
noting that for general potentials of form eq 2.11 or 2.12, 
only those K for which M’ = M are nonzero, so 

K(L, L‘, K, K‘, M, MI, iw) = K(L, L’, K, K’,M, ~ ( J - ) ~ M M *  
(2.29a) 

We note further that the usual terms of xl(SZ) only require 
L = L’ = 2. Also it can be shown for the potential of eq 2.14 
that 
K(2, K, K’, M, iw) = K(2,-K,-K’, M, iw) = 

K(2,K,K‘,-M,iu) = K(2,-K,-K’,-M,iw) = 
K(2 ,K‘ ,K,M7io )  (2.29b) 

[For a cylindrically symmetric potential one also has K = 
K’ for nonzero values of K.]14 Thus, for the asymmetric po- 
tential of eq 2.14, the line widths are given 

T2-’ = Re K ( 2 ,  K, K’, M, iw)Fpi‘zlK)F ( 2 * K ’ ) *  X 
K , K ’ l M  ”I 
a1 a’tB1B’ 

For a single nuclear spin of I, one has the usual dependence 
of the line width upon the z component of the nuclear spin 
quantum number, mr 

where 
( A  - A‘) = 

3K(2,K,K‘, 1, w O ] }  (2.31a) 

K(2,  K, K‘, 0, 00) + 6K(2, K, K’, 1, ~ 0 )  - 

3K(2,K, K‘, 1, we) - 6K(2, K, K’, 2,  w,,)]) ( 2 . 3 1 ~ )  

where the DK and FK are defined as in I; also wa = w &  = 
&a, + n a l r $ .  Note A’, the residual width, includes all 
other nuclear-spin independent line-broadening mecha- 
nisms. [The units of A, E ,  and C are sec-l; for comparison 
with experimental results, they are multiplied by 2(3)-1/2/ 
174 to give values which correspond to peak-to-peak line 
widths in gauss.] Note that nonsecular terms are readily in- 
cluded in this treatment of ESR line widths in the motional 
narrowing region of the nematic mesophase. In previous 
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work nonsecular terms were either neglected or considera- 
bly complicated the m e t h ~ d . ~ - l ~ , ~ ~  

In the isotropic limit, the spectral densities are 

K(2, K, K', M, w) = 

and then eq 2.31 corresponds to the equation given for axi- 
ally symmetric rotational diffusion in I. 

For an axially symmetric potential, eq 2.31 can be used 
to calculate motional narrowing line widths by the substi- 
tution of G'LBKKI for the K(2, K,K',M,w). In this case the 
G2kfor 14 I 1 may be obtained by a perturbation theory 
approach and are given by PBF. (Their equations for K&, 
allow for the K and M to be permuted throughout, to ob- 
tain all the needed expressions.)33~3* 

Programs for the analysis of the motional-narrowing re- 
laxation of a nitroxide with asymmetric magnetic parame- 
ters oriented by the asymmetric potential of eq 2.14 are 
given in Polnaszek's thesis.31 

111. Experimental Section 
A. Sample Preparation. The nitroxide free radical 

2,2,6,6-tetramethyl-4-piperidone N-oxide (Tempone) and 
its totally perdeuterated analog (PD-Tempone) were syn- 
thesized by Dr. R. P. Mason using the method of Rozant- 
s ~ v . ~ ~  The bromoacetamide spin label, 3[[2-[2-(bromoace- 
tamido)ethyl]ethyl]carbamoyl] -5,5-tetramethyl-l-pyrrolin- 
dinyloxyl (BASL), was purchased from Syva Associates. 
The a-phenylnitroxyl nitroxide (PNN) was a gift of Dr. G. 
Rist. The di-tert-butyl nitroxide (DTBN) was synthesized 
by B. Kaplan using the method of Hoffmann et al.36 All 
free radical nitroxides were used without further purifica- 
tion. 

The liquid crystal bis(4'-n-octyloxybenzal)-2-chloro- 
1,4-phenylenediamine (BOCP) was purchased from Al- 
drich Chemical Corp. and used without further purifica- 
tion. The nematic compounds butyl-p-(p-ethoxyphenoxy- 
carbony1)phenyl carbonate (BEPC), p-(p-ethoxyphenyl- 
azo)phenyl hexanoate (PEPH), and p-[N-(p-methoxyben- 
zylideneamino] -n-butylbenzene (MBBA) were obtained 
from Eastman Kodak. BEPC was purified by several re- 
crystallizations from methanol, PEPH was recrystallized 
from absolute alcohol, and MBBA was purified by vacuum 
di~tillation.~' The p-ethoxy-p'-hexyloxyazoxybenzene 
(EHAB) and its nematic precursor p-ethoxy-p-hexloxyazo- 
benzene were synthesized as described by and re- 
crystallized from ethanol-water mixtures and then from 
absolute ethanol. The nematic compound p-[N-(u-hy- 
droxy-p -methoxybenzylidene)amino] -n-butylbenzene 
(OH-MBBA)39 was synthesized by refluxing p-n- butylani- 
line (Aldrich) and p-methoxy-a-hydroxybenzaldehyde pre- 
pared by the method of Zemplen et al.40 in absolute alco- 
hol. Upon recrystallization from methanol, OH-MBBA 
melted at  42OC. Nematic phase IV, a low melting nematic 
eutectic, was synthesized by the methods of Steinstrasser 
and Pohi4l" and recrystallized from a methanol-hexane 
mixture; it was also purchased from EM Laboratories. 
Nematic phase V,41b a lower melting nematic eutectic com- 
posed of 65% phase IV and 35% of another mixture, was ob- 
tained from EM Laboratories and used without further pu- 
rification. The dimethoxyethane (DME) was Eastman 
White Label and was purified by the methods of Bolton 
and Fraenkel.4* Deoxygenated samples were prepared by 

standard methods, and further details may be found in 
Polnaszek's thesis?l 

B. ESR Spectrometer. Most of the ESR measurements 
were performed on a Varian E-12 spectrometer using 10- 
kHz field modulation, cf. I and 11. The temperature in the 
active region of the cavity was controlled by a Varian E-257 
variable temperature control unit and was stable to floc. 
The temperature gradient over the active region of the cav- 
ity relative to the center was found to vary with tempera- 
ture. At  room temperature the value was f0.5OC, while at 
15OOC the gradient increased to f2OC. Other techniques 
are as described in I and 11. 
C. Line Width Measurements. All line width measure- 

ments were performed with the modulation amplitude set 
at  a value of less than one-tenth of the line width and with 
the microwave power set well below that required to maxi- 
mize the signal amplitude. All the spin labels studied had 
unresolved proton or deuteron hyperfine structure in each 
of three principal ESR lines. This inhomogeneous broaden- 
ing causes the line shapes to be non-lorentzian and to ap- 
pear to be broader than the true peak-to-peak line width 
21 yd T2-1(3)-1'2. The correct line widths can be obtained as 
was done in 11. One measures the line shape by noting the 
variation of the derivative half-amplitude as a function of 
the distance from resonance. This line shape is then com- 
pared to a theoretical line shape calculated using a peak- 
to-peak line width and hyperfine splitting (hfs) constants 
for the nuclei causing the inhomogeneous broadening. 
Kreilick using an NMR technique has determined these 
hyperfine splitting constants in the isotropic phase for 
Tempone to be apH = -0.11 G and ayH = -0.01 G.43 Be- 
cause there are 12 p protons and 4 y protons and ayH is so 
small, the effect of the y protons was neglected in the line 
shape simulations. 

For Tempone in the isotropic phase of BEPC, a ,8 proton 
coupling constant of 0.125 f 0.003 G is needed to fit the ob- 
served line shape. In the nematic phase of BEPC the @-pro- 
ton coupling was found to vary with the temperature as a 
result of the increase of (ao) with decreasing tempera- 
ture. If one assumes an axially symmetric potential, the or- 
dering parameter can be determined from the nitrogen hfs 
using eq 2.27a with p' = 0. Then one may use this ordering 
parameter and the isotropic ,8 proton coupling to calculate 
the z component of the methyl proton hyperfine tensor in 
the principal axis of the nitrogen magnetic tensors (from eq 
2.27a). One obtains azH@ = -0.739 f 0.008 G and aiHP = 
%(az + a,) = 0.182 G, if one assumes axial symmetry of 
the methyl proton hyperfine tensor. For PD-Tempone in 
phase V a similar analysis applied to the ,8 deuteron split- 
tings yields aDiso = -0.0215 f 0.0005 G and azD = -0.093 
f 0.007 G. Since the isotropic splittings, aN and the aZN de- 
termined for the rigid limit were nearly identical for PD- 
Tempone in all the liquid crystal solvents, it was assumed 
that the U D  and azD were the same for all systems in the 
liquid and nematic regions. Then, after one has obtained 
(Go) relative to the molecular z axis, this can be used to 
calculate the (aD) needed for the line shape analysis. The 
intrinsic peak-to-peak line width for PD-Tempone, or any 
radical in which the inhomogeneous broadening is due to 
12 equivalent deuterons, can be obtained from Figure 1 and 
knowledge of the deuteron hfs. 

In the motional narrowing region, when the variation in 
the line width among the three nitrogen lines is small com- 
pared to the line widths, it is usually more accurate to de- 
termine one line width and use the relative amplitude of 
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Flgure 1. Calibration curve for obtaining the intrinsic derivative line 
width AH,,, from the observed (inhomogeneous) derivative line width 
AH,,* for PD-Tempone involving 12 equivalent deuterons. 

the lines to calculate the relative line width of all the lines. 
This procedure can be readily modified to the case of inho- 
mogeneously broadened lines. After determining ( U D )  and 
one line width as described above, one can use that value of 
( U D )  and vary the intrinsic line widths in the line shape 
program until one obtains the correct intensity ratios. This 
procedure was applied to all spectra in which the line 
widths were 1 G or less. For widths >1 G the corrections 
were less than 1%. [Magnetic field inhomogeneity will not 
cause serious inhomogeneous broadening of the lines, since 
it is -5 mG,2 whereas the minimum intrinsic line width ob- 
served for PD-Tempone in phase V was 134 mG at 67'C.I 

Another factor which can affect the observed line shapes 
in the nematic mesophase is the possibility of the director 
iz not being parallel to the dc magnetic field. deGennes has 
predicted that due to thermal fluctuations the director can 
have components which are not parallel to the field.44 One 
notes that the resonant positions of the lines will be differ- 
ent for each orientation of the director. If the motion of the 
director is taken as being slow on the ESR time ~ c a l e , ~ ~ ~ ~ ~  
then each observed line will be a superposition of reso- 
nances from different director orientations and any modu- 
lation by the motion of the director may be neglected, Le., 
one has a static distribution of directors. The total line 
shape for a distribution of lorentzians with the director dis- 
tribution also of a Maier-Saupe form is given by 

exp(cY sin2 0) s in  0 dQ (3.1) 
where 
B(e) = {B + m1[a + ~200(e)(~2,,(n))(a, - 41 - 

[ I ( I  + 1) - m?][a - '/z@o(0)(D&(Q))(a2 - 
a)12/2Bo}[1 - O;o(0)(I)?oo(Q>k, - g)/gI (3.2) 

where the (&(Q)) are the experimentally determined or- 
dering parameters, 8 is the angle between BO and b, Bo is 
the resonant field of the center line in the absence of a PO- 
tential = ( w o / l y d ) ,  and CY = -(kT0o2)-l where 80 is the root 
mean square fluctuation in Pa and we have assumed small 

TABLE 11: Magnetic Parameters for Nitroxides 
in Liquid Crystalsa 

~~~ 

(A) PD-Tempone in Phase V 

g, 2.0097 * 0.0002 A,,G 5.01 * 0.2 
g Y  2.0062 * 0.0002 A,, G 33.7 * 0.3 
g2 2.00215 0.0001 (A), G 14.77 i 0.3 
(g) 2.0060 * 0.00017 oN,G 14.78 rt 0.02 
gs 2.00601 i 0.00005 A ,  G 2.2 
A,,G 5.61 * 0.2 B,G 0.2 

(B) Other Systems 

System 4 aN 6 

PD-Tempone in Phase N 33.5 14.75 2.00602 
PD-Tempone in BOCP 33.9 14.74 
PD-Tempone in BEPC 33.8 14.79 2.00600 
PNN in BEPC 18.1 7.62 
Bromoacetamide spin 33.2 14.62 2.0058 

label in BEPC 
a Polycrystalline matrices. 

-3735-3096 -2453-1319 -1131 -542 097 735 1374 2012 2651 3230 3923 
GAUSS 

Flgure 2. Rigid limit spectrum for PD-Tempone in phase V and simu- 
lation based on magnetic parameters given in Table II. 

ordering parameters to get a simple result in eq 3.2. [In 
general, Tz-l will depend on 8, a matter to be discussed in 
section VII. However for small values of 80 expected for this 
mechanism, it is reasonable to neglect this effect.] 

We have observed in our work with PD-Tempone in 
phases IV and V, marginal asymmetries of the hyperfine 
lines, which would require values of a > 100 he. ,  let R be 
the ratio of the low-field to high-field extremum intensity 
of a hyperfine line, then we see R - 0.94 to 1.0). These 
values for a are very much larger than those used by 
Brooks et al.45 for VAAC in PAA. Furthermore (1) our ob- 
served asymmetries increase with decreasing temperature, 
or the opposite direction expected for director fluctuations, 
but in the correct direction if due to slowing of the rate of 
molecular reorientation; also (2) the high-field line is pre- 
dicted to have R > 1 while we observe R < 1, etc. Thus, 
within experimental error it does not appear that we ob- 
serve any effects from a static distribution of directors.46 
Dynamic effects of fluctuations in the director are dis- 
cussed in section VI1 and the Appendix. 

IV. Determination of Magnetic Tensor Components. 
Rigid Limit 

In order to simulate slow motional spectra and to analyze 
the data in the motional narrowing region, one must know 
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the components of the g and A tensors which occur in the 
spin hamiltonian X,(Q). We have made our measurements 
on polycrystalline samples in the manner given in I and 11. 
All of the liquid crystals used froze into amorphous solids 
when cooled slowly below their nematic range. However, to 
prevent some residual ordering from being frozen in, the 
samples were frozen outside the magnet gap or inside the 
cavity with the magnetic field turned off. MBBA and OH- 
MBBA, if quick-frozen in liquid nitrogen, formed rigid 
glasses. However the spectra of PD-Tempone in all the fro- 
zen nematics was virtually identical and independent of 
whether the sample was amorphous or glassy. Also the iso- 
tropic a and g values for PD-Tempone in all the liquid 
crystals studied were nearly equal as shown in Table 11. 
Thus, it was decided to determine accurately the magnetic 
tensors for PD-Tempone in one system and use these 
values for all systems and also for Tempone. 

The rigid limit spectrum of PD-Tempone in frozen phase 
V at  -190OC is shown in Figure 2. Note the resolution in 
the central region. For Tempone in the rigid limit, the cen- 
ter region is not resolved because of inhomogeneous broad- 
ening due to unresolved proton hyperfine structure. Thus 
deuterating the nitroxide spin label is seen to aid in the 
analysis of the rigid limit spectrum as well as the motional 
narrowing and slow motional spectra. Further resolution 
can be obtained by deuterating the solvent (cf. I and 11). 
The parameters which gave the best fit are given in Table 
11. A lorentzian line shape gave the best overall fit, al- 
though a gaussian shape function appears to fit the extre- 
ma better. Note that the theoretical spectrum is slightly 
lowered from the experimental one, so that the fit in the re- 
gion -24.53 to -13.19 G is an artifact of the drawing; it is 
this region for which a gaussian gives a better fit. [We note 
that rigid limit spectra for PD-Tempone in toluene solvent 
were more successfully fit with a lorentzian shape, although 
some features of the spectrum in 85% glycerol were better 
fit with a gaussian (cf. II).] The form for the orientationally 
dependent intrinsic line width was assumed to be2 

T2-' = A + B COS' p (4.1) 

It was found that the values of A and B of 2.2 f 0.1 and 0.2 
f 0.1 G, respectively, gave the best fit to the experimental 
spectrum. It was shown in I1 that the magnetic parameters 
and intrinsic line widths for PD-Tempone vary with sol- 
vent in nonliquid-crystalline solvents. The near equiva- 
lence of these quantities for all the liquid crystals is proba- 
bly due to chemical similarity of these compounds. Also 
these results are very similar to the magnetic parameters 
obtained in I1 for nonhydrogen-bonding isotropic solvents 
(e.g., toluene) as one might expect. 

There are some differences between the theoretical and 
experimental spectra. One of the possible causes, which 
was discussed above, is the residual motion present. It was 
not experimentally convenient to reduce the temperature 
further; however the observed spectra changed very little 
with temperature in this region. The deuterium inhomo- 
geneous broadening is expected to be negligible, since the 
largest component of the methyl deuterium hyperfine ten- 
sor is -0.09 G. Quadrupole terms were neglected in the the- 
oretical hamiltonian used. Dinse et al.32 have measured the 
quadrupole splitting of a chemically similar nitroxide to be 
-0.9 G, but the effect of the quadrupole splitting will be to 
shift the lines corresponding to the x and y orientations 
bsp7 

which is negligible; also there will be no shift in the lines 
from the z orientations. Spectra simulated with nuclear 
Zeeman terms included did not differ from those in which 
these terms were neglected. It was thought that the small 
bump appearing near -13 G might be due to the presence 
of a spectrum arising from 15N ( I  = Y2). However, simula- 
tion performed with parameters appropriate for the I5N 
species, that was added to the line shape calculated for 14N 
using the correct isotropic abundances, did not show such a 
bump nor was the rest of the spectrum affected. Another 
source of error is the assumption used in the hamiltonian to 
simulate the spectra that the principal axes of the g and 
hyperfine tensors coincide. It has been reported that the x y  
planes differ by 6' for DTBN.48 If this were true for PD- 
Tempone the values for the x and y components may be 
changed somewhat, but it would be within our error limits. 
Thus one can be confident that the magnetic parameters 
given in Table I1 are fairly accurate. 

The spin parameters determined from the rigid limit 
simulations give the same isotropic values (obtained at 
temperatures 300° higher) when one averages the values of 
the principal components. Thus, it is reasonable to believe 
that the magnetic tensors are temperature independent, so 
they may be used for all the line shape analyses. 

'V. Motional Narrowing Results 
A. Preliminary Observations. The motional narrowing 

ESR spectra of all nitroxides consisted of three sharp lines 
in the isotropic and nematic phases in all liquid crystals 
studied. If one refers to PBF, one finds that this observa- 
tion need not in itself be indicative of motional narrowing. 
The analyses will be given for only the nematic mesophase. 
[Several of the liquid crystals had underlying smectic me- 
sophases. All the smectic solvents gave spectra which had 
splitting constants nearly identical with the isotropic split- 
tings and thus were indicative of randomization of the di- 
rector in the smectic phase. The lines were much broader 
than the nematic phase and in some cases were asymmet- 
ric. This is indicative of the local ordering present in the 
macroscopically disordered smectic pha~es .1~  The nematic 
compounds which did not have underlying smectic phases 
all froze to amorphous randomly oriented solid phases. All 
mesophases could be supercooled considerably below their 
melting points, and no sudden changes (or discontinuities) 
were observed in the ESR spectra in this region until the 
samples froze. Below the freezing point in all systems, the 
spectra varied continuously with temperature until the 
rigid limit was reached. 

The nematic-isotropic transition point, TK, was deter- 
mined to be the temperature at  which the observed split- 
ting constant changed from its isotropic value to a smaller 
value indicative of the ordering in the nematic phase. Be- 
cause of the temperature gradient in the cavity as well as 
impurities in the liquid crystal solvent, it  was possible to 
observe spectra from both phases simultaneously if one was 
a t  or near TK. These transition points and freezing points 
were dependent upon the concentration of the radical and 
also upon the specific radical which was dissolved in the 
nematic solvent. Thus the values of the transition points 
and freezing points could vary by several degrees from 
sample to sample. 
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Flgure 3. Ordering parameter (d&, vs. reduced temperature T' = 
T/TK for PD-Tempone in several liquid crystals: (0) phase V; (A) 
phase IV; (0) MBBA; (V) OHMBBA; (V) BOCP; (A) BEPC; (0) Tem- 
pone in BEPC. 

One finds that phase V and BOCP should be the best liq- 
uid crystals in which to do an ESR relaxation study, since 
they have nematic ranges of over 100'. However phase V 
freezes at  least 80' below BOCP and thus would be a more 
suitable solvent in which to look for slow-motional effects. 
When the experimental study was performed, phase V was 
the lowest melting nematic compound readily available. 
Radical stability is another factor to be considered in the 
choice of lower temperature liquid crystals. If the radical is 
volatile, it may distill out of the liquid crystal when heated 
in the evacuated sample tubes. Also, as noted previously 
the temperature gradients in the cavity are much greater a t  
the higher temperatures. 

The radical chosen for most of the motional narrowing 
studies was PD-Tempone. As we have shown, the contribu- 
tion from inhomogeneous broadening can be completely 
neglected for spectra having all lines of width 1 G or great- 
er, and the contribution is quite small for narrower lines. 
The accuracy of the line width measurements is considera- 
bly increased compared to proton inhomogeneously broad- 
ened lines. The only apparent disadvantage in using PD- 
Tempone is that, because of its size and geometry, it is not 
ordered to a large extent in the nematic phase. 

B. Order Parameters and Potential Expansion Coeffi- 
cients. In order to perform relaxation studies, one must 
know the coefficients in the potential (cf. eq 2.14) which 
determines the distribution function for the orientation of 
the radical in the nematic phase. These coefficients can be 
determined from the ordering parameters calculated in the 
motional narrowing region. 

The ordering parameters ( I # O ) *  determined for PD- 
Tempone in several liquid crystals for the Maier-Saupe po- 
tential are plotted vs. T* in Figure 3 where T* = T/TK. 
The magnetic parameters used are those given in Table I1 
for PD-Tempone in phase V. The ordering parameters for a 
solute molecule in different solvents might be expected to 
lie on nearly the same line when plotted against T*. The 
fact that they do not in all cases shows X = -YZ/kT is a 
function of the solvent to some extent as well as the radical. 
In general, :t is found that liquid crystals of nearly the 
same geometry but with different chemical groups in the 
center orient PD-Tempone to the same amount. For in- 
stance, phase V, phase IV, and MBBA have similar alkyl 
end groups and OH-MBBA and BOCP are laterally substi- 
tuted liquid crystals with an atom or group on a benzene 

/ 

0 a-.-.-*-. 9-0-0 ,.-.---, I 
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Flgure 4. Ordering parameter (l#) , vs. reduced temperature T' = 
T/TK for several nitroxide radicals: (A) PNN in BEPC; (0) BASL in 
BEPC; (0) Tempone in BEPC; (V) DTBN in EHAB; (0) MSL in PEPH. 
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Figure 5. Calibration curve of ordering parameter (did) vs. X for the 
Maier-Saupe potential. 

ring ortho to the center group. The discontinuity in the or- 
dering a t  the transition point is indicative of a first-order 
phase transition, whereas the deviation of the observed 
( @oo) vs. T* from near linearity for phase V and to a lesser 
extent phase IV at  low T* is a result of the breakdown of 
the assumption of motional narrowing upon which eq 2.26 
is based. 

for different radicals are given 
in Figure 4. The relationship between X and (o",) accord- 
ing to eq 2.13 is given in graphical form in Figure 5 for the 
range of values of interest. The most ordered system in Fig- 
ure 3, Tempone in BEPC, is included for comparison. [Also 
note in Figure 3 that Tempone and PD-Tempone appear to 
order to a slightly different degree in BEPC. We have not 
determined whether this is a true effect or whether it re- 
flects differences in sample preparati0n.1~~ The radical 
PNN oriented the largest amount, but was found to decom- 

Further results of ( 
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Flgure 6. Asymmetric ordering parameters vs. reduced temperature 
for PD-Tempone in various solvents. The ordering parameters are 
defined with respect to the z-molecular axis (see text). Solvents are 
denoted by (-) phase V; (. - - - -) phase IV; (- - - -) MBBA; (- - - - -) 
BEPC; (- - - - -) Tempone in BEPC; (A) for A, and V for pz in BOCP; 
(A) for X, and V for p, in OH-MBBA. 

pose to another radical after 1 hr or more in the liquid crys- 
tals used. The larger bromoacetamide spin label orients to 
a lesser degree, but it is beginning to show slow motional 
effects at much more elevated temperatures than PD-Tem- 
pone. The curves for DTBN and the maleamide spin label 
(MSL) are representative of nitroxides which are very 
weakly ordered and almost not ordered, respectively. How- 
ever, for MSL this may be due to a tilt of the z axis with re- 
spect to the z' axis such that p' is close to the magic angle. 
[The DTBN reacted to give another spectrum after 1 hr in 
the isotropic phase of PEPH.] 

We now recall that the magnetic tensors of PD-Tempone 
are not axially symmetric. An examination of a molecular 
model of PD-Tempone indicates that there is no particular 
axis in the molecule about which it would prefer to align in 
a nematic phase. Because of these two reasons, one should 
be able to determine an ordering tensor for PD-Tempone 
that need not be axially symmetric. In fact an asymmetric 
potential (cf. eq 2.12, 2.14) is needed to describe the or- 
dering of PD-Tempone in the mesophase. The second po- 
tential parameter is determined utilizing the g values mea- 
sured for the nematic and isotropic phases. These mea- 
sured g values were corrected for the static and dynamic 
nonsecular shifts using eq 2.25. The corrected g and hyper- 
fine values permit the calculation of the two ordering pa- 
rameters from eq 2.13. It is found that PD-Tempone in 
phase V orients weakly with the magnetic z axis tending to 
be perpendicular to the director, the y axis tending to be 
parallel to the director, and the x axis tending to be orient- 
ed nearly at the magic angle. [This implies that if there is a 
single axis of cylindrical symmetry, it is not one of the mag- 
netic principal axes.]49 The values of the two ordering pa- 
rameters were then used to calculate the potential parame- 
ters X and p from eq 2.13. The results are shown in Figure 6 
for the z-axis parameters for PD-Tempone and Tempone 
in several liquid crystals, It can be seen that 14 > lpl for all 
solvents except BOCP and OH-MBBA. However, if one 
calculates X and p with respect to the y magnetic axis as the 
primary axis of PD-Tempone from the known values with 
respect to the z axis, one obtains the result that p, 0 for 
these two solvents. Thus for BOCP and OH-MBBA, the 
orientation can be described by a Maier-Saupe potential 
with respect to the y axis. Therefore (by a proper choice of 
labeling of the magnetic principal axes) it is the first term, 
i.e., the Maier-Saupe potential, which predominates in the 
potential expansion for all systems studied. This encourag- 
es us in the belief that the two-parameter potential of eq 

Temperature R) 
,0, 10: 9: 80  70  6p 5: 4 0  3: 2: I: 0 -10 -20 . 

Figure 7. A, B, and Cvs. l / T f o r  PD-Tempone in phase V 

2.14 is adequate for dealing with the molecular dynamics. 
For phase IV and phase V the X and p curves were extrapo- 
lated for those values of T* corresponding to the slow mo- 
tional region. These values of X and p were used for simu- 
lating slow motional spectra. 

C. Line Width  Analysis. The ESR spectra of PD-Tem- 
pone in the nematic phase of a liquid crystal are now ana- 
lyzed in the motional narrowing region. Because all ob- 
served spectra consisted of three lines, one might think 
that the motional narrowing limit will apply for all temper- 
atures. However, the lines become asymmetric at lower 
temperatures and the two hyperfine splittings become con- 
siderably different. It is in this region that one must use the 
slow-tumbling theory to simulate the observed spectra. 
The slow motional spectra of the weakly ordered PD-Tem- 
pone are expected to be sensitive to model dependence, an- 
isotropic viscosity, asymmetric molecular reorientation, 
and the type of liquid crystalline potential used as is readi- 
ly seen from the examples in PBF. A thorough analysis of 
the motional narrowing region should help to show which 
of the above-mentioned processes are important. It is ex- 
pected that in the absence of any second-order phase tran- 
sition, the same sort of diffusion process will occur at  all 
temperatures, and one should be able to extrapolate the re- 
sults of the motional narrowing region into the slow mo- 
tional region. 

The first case to be discussed, will be that of PD-Tem- 
pone in phase V, a system which exhibits slow motional ef- 
fects, but, nevertheless, has a long mesomorphic range over 
which one can observe motional narrowing behavior. The 
other systems will be analyzed in terms of their similarities 
or differences to this system. All line widths were measured 
by the method of relative amplitudes (cf. I and 11) and cor- 
rected for deuterium inhomogeneous broadening using the 
ordering parameters given in Figure 3 to calculate the deu- 
terium hfs (cf. section 111). All line width data can be ex- 
pressed as coefficients A, B, and C of eq 2.30b. 

(1) Isotropic Phase. The line width results for PD-Tem- 
pone in the isotropic phase of phase V are shown in Figure 
7. Our analysis of the line widths in the isotropic region is 
identical with that given in I and 11. For PD-Tempone in 
the isotropic phase of phase V, one is in the region U O ~ T R ~ - ~  

1 where nonsecular terms are expected to be important. If 
nonsecular terms are included in the calculation of TR, one 
gets the result that TR determined from B does not equal TR 

from C for isotropic rotation. In fact T R C / T R B  varies from 
1.3 near TK to 1.5 at 99O. If nonsecular terms are neglected, 
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Flgure 8. 7R vs. 1/ T for PD-Tempone in phase V. The points given 
by 0 represent the best fit obtainable for an axial potential allowing 
for anisotropic viscosity. The results for asymmetric potential with 
(A) anisotropic rotation and with"(0) anisotropic viscosity. For aniso- 
tropic vis-- = 7dL = (6RL)-', while for anisotropic rotation, 
7 R  = (6 RiiRL) ', The best results for an c' # 1 are also the 
same as 0 except for the lower temperatures where they are given 
by V. 

the ratio varies from 0.9 to 0.8. The same sort of behavior 
was found in I and I1 in the region where U 0 2 7 R 2  - 1 and 
was fit in an ad-hoc manner by changing the spectral densi- 
ty function for the nonsecular terms only. That is, the 
quantity En(En2 + w o 2 ) - l  in eq 2.28 is changed to En/(En2 
+ cwo2) = 7 R / ( 1  + E ~ T & . ~ ~ )  where E is an adjustable pa- 
rameter. Calculated rotational correlation times are shown 
in Figure 8. The standard deviations for the calculated 7R 
are 13% whereas the average value of E is found to be 4.6 f 
1.7. The parameter c is believed to be indicative of devia- 
tions from the assumption of simple Brownian rotational 
diffusion due to relatively slowly fluctuating torques that 
induce the reorientation (cf. section VII). This value of c is 
comparable to the values found in I1 for the same radical in 
several isotropic solvents. Another effect which can cause 
T R ~  to be unequal to 7 R c  is anisotropic rotational diffusion. 
In fact, one may analyze for this in the usual way (I, 11) to 
obtain an N y  = 3.2 f 0.5, which would imply rotation about 
the y axis (in the magnetic tensor principal axis system). 
This alternate explanation conflicts with the observations 
in I1 that the motion is virtually isotropic in a variety of 
isotropic solvents. Thus by comparison with the results in I 
and 11, we favor an E = 4.6 and isotropic motion for PD- 
Tempone in phase V. [One cannot distinguish between the 
contributions from the two sources from our present data 
in the isotropic phase, as there are always contributions 
from nonsecular terms in the range of 7 ~ ' s  available. It was 
possible, however, to make such a distinction in I and 11.1 

The isotropic-phase results for the other liquid crystals 
are similar to those for phase V. Results are plotted in Fig- 
ures 9-12. Again the TR'S are all in the range where nonse- 
cular terms will contribute to the line widths. For the case 
of Tempone in BEPC the data could only be fit by assum- 
ing anisotropic rotation about the y axis and one obtains 
N ,  = 2.3 f 0.6 for c = 4.6. For the other samples N y  is 
equal to one within the experimental error for e = 4.6. [It is, 
of course, possible that the magnetic parameters have been 
sufficiently altered in BEPC to cause an apparent N ,  # 1, 
cf. 11, but it is not likely since a and a,  are essentially the 
same for BEPC as for the other solutes, cf. Table I.] In the 

c 10 

d 

001 ~ B (gauss) 

Figure 9. C vs. 8 for PD-Tempone in several liquid crystals: (0) 
phase IV; (V) MBBA; (A) OH-MBBA; (0) BOCP; ( 0 )  BEPC; (4) Tem- 
pone in BEPC. 

Flgure 10. 7 R  vs. 1/ Tfor PD-Tempone in phase IV. The points given 
by 0, A, and 0 are as given in Figure 8. 

Flgure 11. 7 R  vs. 1/ T for PDTempone in various nematic solvents. 
The points 0, A, and 0 are for MBBA solvent, but are otherwise de- 
fined as in Figure 8. The points 0, A, and are equivalently de- 
fined, but for OH-MBBA solvent. The dashed line connects the 
points for BEPC solvent. The small triangles represent the points for 
BOCP solvent (A for E = 1 and V for c = 4.6). 

analysis of motional narrowing spectra in the nematic 
phase, it will be shown that a smaller value of c approxi- 
mately equal to 2.2 is needed to satisfactorily explain the 
line width data in the region where nonsecular terms are 
expected to contribute to the line widths. 

(2)  Nematic Phase. The line width behavior in the 
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I 

nematic phase will now be considered. Again we first ana- 
lyze results for phase V. 

The measured A, B, and C for PD-Tempone in the 
nematic phase of phase V are shown in Figure 8. These re- 
sults were first analyzed in terms of Brownian rotational 
diffusion in the presence of an orienting potential. It was 
first assumed that, except for the orienting potential, the 
description of the motion should be very similar to that for 
the isotropic liquid, since the values of TR do not change 
very markedly at  the phase transition (cf. Figure 8) nor is 
the ordering very substantial (cf. Figure 6). Thus we used 
an e - 4.6. When the best single parameter Maier-Saupe 
potential was used, it was impossible to fit the results, ex- 
cept with a TRB # T R ~ .  However, with the two-parameter 
potential, one has T# and T R ~  more nearly equal. The final 
adjustment (to the results for TR 5 sec for T > 23’C) 
was made by fitting E assuming isotropic rotation under the 
two-term potential. This yielded t = 2.9 f 2.4 (or e - 2.2 f 
1.4 neglecting one result). [Alternatively we could. have in- 
troduced an anisotropic viscosity factor fi’ = fliilR1 = 2.8 
f 1.3 to “explain” the CIB ratio with e - 1, but with10 de- 
creasing as the motion slows to T R ~  - sec.] Here we 
let TR = T R ~  = (6fll)-’ and T R , ~  = (6f l11)~~.  However, for T 
< 2OoC (or T R  > 2 X 10-lo sec) the CIB ratio is increasing 
suggesting TR‘ > T R ~ .  It is possible to “explain” the in- 
crease in CIB as due to anisotropic viscosity (which only af- 
fects the C term, since (1) only it has pseudosecular contri- 
butions and (2) nonsecular terms are already negligible, cf. 
eq 5 of I). Such an analysis yields the strange result that for 
T < 2OoC, T R ~  continues to increase normally (cf. Figure 8) 
but T R , ~  would have to remain virtually constant (Le., fi’ 
would now be increasing rapidly). An alternative explana- 
tion, based on the fact that a similar but weaker effect was 
observed for PD-Tempone in isotropic glycerol-H2O sol- 
vent (11), is that one must modify the pseduosecular spec- 
tral densities to 

by analogy with the nonsecular corrections; but, in general 
e’ > e. It was found that e’ - 5 in glycerol. Our results for 
PD-Tempone in phase V yield e’ - 20, provided only the 
pseudosecular spectral densities are corrected in this fash- 
ion and this will be discussed in section VII. [Note that this 

TABLE 111: Activation Energies and Preexponential 
Factors for Rotational Relaxation of PD-Tempone 
Dissolved in Several Liquid Crystal Solvents 

E a  3 

Solvent kcal/mol A ,  sec 

Phase V 9.6 i 0.3 (1.3 + 0.6) x lo-‘? 
Phase V (solvent)“ 8.7 
Phase V (isotropic phase) 
Phase lV 8.9 f 0.2 (4 .4  i 1.3) x lo-‘’ 

BOC P 9.4 * 0.3 (1 .5  5 0.8) x 
MBBA 10.2 i 0.2 (7.0 * 1.6) x lo-** 
MBBA (solvent)“ 11.3,11.9,10.5 

8.0 * 0.6 (2.2 * 1.2) x 

Phase lV (solvent)R 10.1 

The result for the twist viscosity coefficient from ref 54. 

analysis gives values for TR that are very nearly the same as 
the T R ~  obtained from an analysis of anisotropic viscosity.] 
An alternative explanation in terms of the onset of aniso- 
tropic molecular reorientation about the molecular y axis, 
with Ny increasing from 1 to greater than 2, could also “ex- 
plain” our observation, but, again, we are loathe to accept 
such a mechanism which “suddenly appears’’ as a function 
of TR when there are no phase transitions (cf. I and 11). Fur- 
thermore, such a prediction ultimately leads to a prediction 
that the residual line widths A’ would tend to become neg- 
ative at  the lower temperatures for this mechanism. Our re- 
sults for isotropic liquids indicate that A’ should be in- 
creasing linearly with TR for TR > sec (cf. I and 11). 
These matters are further discussed in section VI, since the 
anomaly becomes more dramatic as the slow tumbling re- 
gion is reached. 

The activation energy and preexponential factor from 
the best linear fit (i.e., with the t’ correction) of log TR vs. 
1/T in Figure 8 are given in Table 111. The somewhat dif- 
ferent results for the isotropic phase are also given in Table 
111. 

The line width results for B and C for Tempone and 
PD-Tempone in the other liquid crystalline solvents are 
shown in Figure 9. One can see that the CIB ratio for PD- 
Tempone in BOCP is quite different than for the other sol- 
vents, and it is slightly changed for BEPC. As noted from 
the results for the isotropic region, PD-Tempone in BEPC 
appears to rotate 2.3 f 0.6 times as rapidly about the mo- 
lecular y axis than the other two axes (provided the correct 
magnetic parameters are being used) thus one would ex- 
pect to see differences in the nematic phase. [No line width 
data were taken for BOCP in the isotropic phase because 
PD-Tempone either decayed or distilled out of solvent a t  
the high temperatures >18OoC at which BOCP is isotropic. 
Note the large errors for B and C in Figure 9 which occur at  
temperatures > IOO’C.] 

The results for PD-Tempone in phase IV are very similar 
to those in phase V, and were analyzed in the same manner. 
One has in Figure 10 graphs of log TR vs. 11T for the differ- 
ent assumptions of model. One finds isotropic motion with- 
in experimental error and e’ = 20-25. The activation energy 
and preexponential factors are given in Table 111. They are 
close to the results for phase V. 

As noted, C/B for PD-Tempone in BOCP differs consid- 
erably from CIB in all other nematics (cf. Figure 9). The 
other line width results for this system are given in Figures 
11 and 12. We have already noted that the ordering data 
for PD-Tempone in BOCP could be fit to a Maier-Saupe 
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potential with the magnetic tensor y axis as the principal 
axis for orientation. We have used this potential in the line 
width analysis. All attempts to calculate correlation times 
using a modified pseudosecular term or an anisotropic vis- 
cosity failed. C/B ratios as large as those observed experi- 
mentally could not be predicted.50 The magnetic parame- 
ters used were those given in Table I1 for PD-Tempone in 
phase V, but note that a and a, are equal to within the ex- 
perimental error for phase V and BOCP. Thus anisotropic 
rotation (about the molecular y axis) was introduced to an- 
alyze the experimental data. The mean value of N, was 9.4 
f 1.5. This result is somewhat surprising considering the 
molecular structure of PD-Tempone. There can be no hy- 
drogen bonding in this system. Other nonbonded interac- 
tions between the oxygens in either the nitroxyl groups or 
carbonyl group in PD-Tempone and the atoms (even the 
Cl’s) in BOCP seem unlikely. However, BOCP is known to 
form a smectic C state below the nematic phase. Unfortu- 
nately, spectra in this smectic phase were indicative of ran- 
domization of the director and could not be used to obtain 
additional information about this system. The observed an- 
isotropic rotation might possibly be due to pretransitional 
effects; that is, the layered structure characteristic of the 
smectic mesophase is beginning to form in the nematic 
phase. One observes the transition to the smectic phase 
when this layering phenomenon overwhelms the magnetic 
free energy, and the layers are oriented randomly with re- 
spect to the field. In a very strong magnetic field, one might 
have an ordered smectic, but that was not achieved in the 
present case. If one is observing pretransitional effects with 
the PD-Tempone located in the layers, it should be freer to 
reorient about the direction in which it aligns, e.g., the y 
axis, with diffusion about the other axes more strongly hin- 
dered. Note that 7 R L  - 5.0 X at 58’C, whereas it is 
-4 X for isotropic rotation in phase V and phase IV 
a t  that temperature, which is approximately the value of 
7R1, - 4.3 X 

Another possibility is that the molecule is rotating slowly 
enough about the y axis that one must simulate the spectra 
using the slow-tumbling formalism, but this was ruled out 
by performing the appropriate simulations. They showed 
that only slight differences -3% could be caused between 
the calculated values of B and C and the experimental 
values. However these differences can be accounted for by 
the fact that 7Rll is rapid enough to include some nonsecu- 
lar contributions to the line widths, and our slow motional 
program neglects these contributions. 

The calculated A’, however, was found to decrease with 
increasing correlation time, which, as already noted, is not 
the expected behavior. It was believed that a fully sound 
analysis of the results should involve fitting an E’ # 1. 
Rather than add another adjustable parameter to the anal- 
ysis of the available data, we have set E’ = 15, essentially 
the proper value for phases IV and V. The calculated corre- 
lation times are changed by no more than 2%, while Ny = 
9.1 f 1.0 or virtually unchanged. The results are given in 
Figures 11 and 12. The adjusted A’ for E’ # 1 looks some- 
what flatter with TR than expected. This may be due to (1) 
our use of an isotropic spin-rotational formula which may 
well be inadequate for very anisotropic diffusion in an ori- 
ented mesophase and/or (2) the anisotropy in the diffusion 
has been a little overestimated. 

The results on Tempone (and some of PD-Tempone) in 
BEPC show a slightly larger C / B  ratio compared to phases 
IV and V (cf. Figure 9) as was the case in the isotropic 

observed in BOCP. 

phases. However, the nematic results fit better to an N,  = 
1.6 f 0.2 VS. 2.3 f 0.6 for the isotropic phase. We cannot, of 
course, be certain about such small anisotropies without ac- 
curate magnetic parameter measurements in the solvent 
BEPC. Given, in part, the rather short nematic range for 
this solvent, no further analysis was made, other than that 
displayed in Figures 11 and 12. 

The liquid-crystal MBBA is one of the most commonly 
used nematic solvents. Line width results for PD-Tempone 
in this nematic are given in Figure 9, and are found to be 
very similar to those in phase IV, cf. Figures 11 and 12 and 
Table 111. The last system studied in the motional narrow- 
ing region is PD-Tempone in OH-MBBA. The results in 
Figure 9 and analysis in Figure 11 indicate it too is rotating 
isotropically. Not enough data were taken to determine an 
accurate E,. In fact this was the only system where the 
freezing point was not reproducible even for the same sam- 
ple. 

Note that the TR vs. 1/T behavior shown in Figures 8, 10, 
and 11 for the different systems differs only slightly if one 
uses an axially symmetric potential rather than the correct 
asymmetric potential. However, as we have already noted, 
the different potentials predict quite different results for 
the detailed dynamics of asymmetric viscosity about the di- 
rector. Also, if one has anisotropic rotation about a molecu- 
lar principal axis, but the molecule is aligned asymmetri- 
cally, the axial and asymmetric potentials will give quite 
different results for the correlation times. 

VI. Slow Motional Analysis 
In this section the theory developed by PBF for simulat- 

ing slow tumbling ESR line shapes in an anisotropic sol- 
vent is applied to the analysis of ESR spectra in the nemat- 
ic phase. 

One must use a slow motional approach, such as that of 
the stochastic Liouville method, to explain ESR spectra 
when the motional narrowing theories break down, For iso- 
tropic solvents, this occurs when the lines start to become 
asymmetric and/or the splitting constants begin to deviate 
from a constant value. In the liquid crystalline phases, 
however, splitting constant deviations are also due to 
change of ordering with temperature. Also, one may have 
asymmetric lines in the motional narrowing region if there 
is a static distribution of director orientations in liquid 
crystals. In the previous section the slow motional region 
was considered to begin when the ordering parameter curve 
begins to deviate from a smooth curve (nearly linear) when 
plotted against the reduced temperature T* as shown in 
Figures 4 and 6. This begins to occur when the two “ob- 
served” splitting constants for the three line nitroxide 
spectrum became unequal. The two splitting constants 
should not be exactly equal because of the nonsecular cor- 
rections discussed in section 11. However the effects ob- 
served are much larger than those predicted for nonsecular 
shifts and also of the wrong sign. In all the nitroxides stud- 
ied it was noted that a01 became less than a-10 as the tem- 
perature was decreased. This is shown in Table IV for PD- 
Tempone. [For PD-Tempone, a-10 remains nearly constant 
whereas for the other systems a-10 decreases as the tem- 
perature decreases. Some g-value measurements performed 
on PD-Tempone in phase V in this region showed that ob- 
served g values began to decrease with decreasing tempera- 
ture instead of increasing as they had throughout the mo- 
tional narrowing region.] Thus one should try to fit these 
effects plus the line width asymmetry (in the absence of di- 
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TABLE IV: Dynamic Frequency Shifts and Calculated Residual Line Widths for PD-Tempone in Phase V 
~ 

Calcd 

-6 0.94 -0.03 -0.23 0.00 -0.15 -0.10 -0.33 -0.13 -0.13 -0.03 -0.23 0.60 0.57 0.65 0.5 
-14 1.6 +0.07 -0.61 0.09 -0.61 -0.26 -0.66 -0.16 -0.66 -0.16 -0.66 1.0 0.85 -0.15 0.9 
-20 2.5 +0.14 -1.35 0.03 -1.27 -0.26 -1.27 -0.07 -1.42 -0.22 -1.47 1.45 1.35 -0.35 1.7 
-25 3.6 +0,17 -2.58 -0.21 -2.01 -0.41 -1.51 -0.61 -2.21 -0.51 -2.71 1.75 1.75 -0.4 2.25 

a S l . 0  is the difference in shift between the low-field and center lines. SO. -1 is the difference between the center and high-field lines. A 
positive (negative) AS means an apparent increase (decrease) in splitting compared to ( a ~ ) ,  which is extrapolated from the higher tempera- 
ture (QN), see text. A typical higher temperature result is at  +1”C: A&,o = -0.01, ASo, -1 = +0.01. Calculated with c’(sec) = 1.2,  c’(psec) 
= 19. Calculated with c’(sec) = 4.6, c’(psec) = 15.0. Calculated with c’(sec) = c’(psec) = 1.0. f Calculated with anisotropic viscosity mod- 
el. 

Figure 13. Comparison of experimental and simulated spectra in the 
incipient slow-tumbling region for PD-Tempone in phase V: (- - - - -) 
experimental result; (-) theoretical result based on isotropic Brow- 
nian diffusion with T~ = 2.5 X low9 sec at -2OoC, and T R  = 3.6 X 

sec at -25OC (A’ = 0 G). 

rector effects) in the simulation of slow motional spectra in 
the nematic phase. 

The system chosen for a careful slow motional analysis 
was PD-Tempone in phase V, because it had the largest re- 
gion of deviation of the splitting constants from near equal- 
ity, and a thorough study of the motional narrowing region 
over a long temperature range had been obtained as dis- 
cussed in the previous section. There, it was shown that 
PD-Tempone rotates isotropically, but anomalous line 
width behavior sets in for 7~ L. 2 X sec. Slow motion- 
al type simulations were performed for the spectra taken at  
l0C (where TR = 6 X sec). The results of this analysis 
were identical with those from the motional narrowing 
analysis demonstrating that the anomalous line width be- 
havior is not simply due to the onset of slow tumbling. One 
finds, from Table IV, that slow-tumbling effects begin to 
become important for TR 2 0.8 X 

We show experimental slow tumbling spectra in Figure 
13. The simulated spectra shown in that figure were from 
the PBF theory using values of X and p extrapolated from 
Figure 6 to the appropriate temperature with TR similarly 
obtained from Figure 8 for isotropic rotational diffusion. 
The agreement in Figure 13 is rather poor. This agreement 

sec. 

Figure 14. ,Comparison of experimental (- - - - -) and theoretical 
spectra (-) for PD-Tempone in phase V at -2OOC for anisotropic 
viscosity with ~ d , ,  = 0.05 nsec is assumed and T A ~  = 2.5 nsec (A’ 
= 1.8 G). 

can be improved by introducing an anisotropic viscosity 
(cf. section V), but the best fits here suggest that TR? must 
be decreasing with decreasing temperature! (In particular 
a t  -2OOC one gets T R ~ / T R I ~  GV 50, cf. Figure 14, while at  
-25OC one would need a negative T Q . )  Such a result ap- 
pears to be further demonstration of the invalidity of ex- 
plaining the anomalies in terms of simple anisotropic vis- 
cosity. An anisotropic diffusion mechanism is even less suc- 
cessful in “explaining” the anomaly (it requires negative 
residual widths, N y  increasing with decreasing tempera- 
ture, e.g., N ,  = 3.5 at -2OOC and the agreement is not sat- 
isfactory). In both cases, furthermore, one is postulating 
the sudden onset of anisotropy at  a stage when the spec- 
trum is undergoing drastic changes (incipient slow motion) 
although the liquid crystal exhibits no phase transitions. 
Again this is taken as clear evidence for the invalidity of 
such an analysis. In I and 11, it was shown that slow-tum- 
bling spectra are particularly sensitive to the reorienta- 
tional model, i.e., whether the molecule reorients by small 
(Brownian) or large angle jumps. We show in Figure 15 
model-dependent spectra simulated as described by PBF. 
It is clear that model dependence has only a small effect 
compared to the anomalous beha~ior.~’ 

It was then decided to introduce the fluctuating torque 
model discussed in I1 and in the next section, wherein an e‘ 
> 1 is introduced to account for moderately slowly fluctu- 
ating torques. Various attempts are shown in Figures 16- 
18. It  is clear that the spectra cannot be fit with a single e’, 
the best fits being obtained for elsec - 1-2 and Epsec - 15-20 
(cf. Figure 18). The main virtue of this analysis is that one 
is able to use a single set of parameters for all temperatures 
to achieve reasonable fits. Summaries of the effects of this 
analysis on the predictions of C vs. B and A vs. TR are given 
in Figures 19 and 20. 
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Figure 15. Model dependence and a comparison of experimental 
(- - - - -) and theoretical spectra (-) for PD-Tempone in phase V at 
-25OC and isotropic rotation with T R  = 3.6 X sec (A' = 0 0). 
Free diffusion, an approximate inertial model, gives results equiva- 
lent to moderate jump diffusion; while the result labeled jump is for 
strong jump diffusion, cf. ref 2 and 4. 

Flgure 16. Effects of e' and a comparison of experimental (- - - - -) 
and theoretical spectra for FD-Tempone in phase V at -25OC using 
a single e' where (-) is for 6' = 4.6 (A' = 1.05 G) and (a a .  .) is for 
e' = 9.4 (A' = 1.6 G). In both cases TR = 3.8 nsec. 

The implications of these fits are discussed in the next 
two sections. 

VII. Fluctuating Torque Analysis 
In 11, a detailed discussion was given of a simple dynamic 

molecular model involving relatively slowly fluctuating 
torques, and inertial effects only in very lowest order, 
which appeared to offer a unified explanation to the relaxa- 
tion anomalies such as the e, e' # 1. The existence of e' - 
15-20 >> 1 in this work again requires that one take cogni- 
zance of effects from a careful analysis of molecular dy- 
namics in liquids. In the present case, one has the feature 
of a highly structured liquid in which the nitroxide probe is 
dissolved. One may give a general statistical mechanical 
analysis for the rotational motion of the nitroxide probe 
(labeled B particle), and obtain a generalized Fokker- 
Planck equation:16 

Figure 17. Comparison of experimental (- - - - -) and theoretical (-) 
spectra for PD-Tempone in phase V utilizing e'sec = 4.6, e'psec = 15. 
The values at -6, -14, -20, -25OC are for 7 R  0.9, 1.6, 2.5, 3.6 
nsec, respectively, and for A' 0.5, 0.85, 1.25, 1.75 G, respectively. 

Flgure 18. Comparison of experimental (- - - - -) and theoretical (-) 
spectra for PD-Tempone in phase V utilizing elsec = 1 2, e' = 20. 
The values at -6, -14, -20, -25OC are for 7R 0.9, 1.tf7.5, 3.6 
nsec, respectively, and for A' 0.55, 1.0, 1.45, 1.75 0, respectively. 

In eq 7.1, WE is the angular velocity of the B particle, LA its 
angular momentum, JB = -irs X ( v r ) ~  = - M  (cf. eq 
2.3-2.4), f r w ( V ~ ) ~  is the precessional term, and (NR) is the 
mean-field torque, experienced by the B particle and is 
equivalent to T of eq 2.6. The quantity G ( t )  is the operator 
equivalent of the correlation function for the fluctuating or 
random torques on the B particle. When the assumption is 
made that angular momentum relaxation occurs very rap- 
idly, then it is possible to introduce a coarse graining in 
time interval such that the angular momentum is at its 
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Figure 19. Predictions of C vs. 5 for PD-Tempone in phase V. The 
experimental values are given by (0). The predictions for different 
values of E' are as noted on the figure. The solid curve (and points 
A) correspond to elsec = 1.2 and = 20. 

thermal equilibrium distribution, while the B particle has 
not appreciably reoriented, nor have the fluctuating com- 
ponents of the torque which are effective in causing the re- 
orientation necessarily relaxed. 

In this limit, one may expect to obtain a Smoluchowski- 
type expression for the reorientational relaxation of the B 
particle. This limit has been discussed in detail, and one 
may obtain the result:16 

aP(n,t) - - -  
at 

where the Fourier-Laplace transform of R( t )  is defined by 

R[s] = ( k T ) 2 K . 1 [ ~ ]  (7 .3)  

and K(t)  is a simplified, torque correlation function of only 
QB and t given by the average: 

K(t) E (R,(2 = O)R,(1)) where R, = NB - (NB) 
(7.4) 

over a canonical ensemble of solvent molecules (in the pres- 
ence of the potential field of the B particle). There is, how- 
ever, a simplifying assumption in obtaining eq 7.2, viz. that 
K(t) should be characterized by a relaxation time TM (or 
spectrum of times) such that TM 5 TR,' Le., the fluctuating 
torque components relax in times not long compared to the 
reorientation time of the B particle. It is then still possible 
to include any slowly relaxing torques into a redefined time 
dependent (NB(t,QB)) in eq 7.2 such that R( t )  - 0 in 
times t over which ( N B ( ~ , Q R ) )  changes negligibly. [How- 
ever, NR(~ ,QB)  will then still be a function of those local 

I a' 

rR ( s e d  

Flgure 20. Predictions of A vs. T R  for PD-Tempone in phase V for 
different values of e' as noted on the figure. The calculated values 
are due to g tensor and dipolar contributions. The experimental 
values are represented by the points (0) and the solid line through 
them. 

coordinates and orientations representing the slowly relax- 
ing solvent modes.] Thus the effects of the fluctuating 
torques are separated into two parts for simplicity: the 
faster components, which induce the diffusive-type reori- 
entations, and the more persistent components, which rep- 
resent systematic local torque effects over time scales 
greater than TR, but will average out in times T X  >> TR, TM. 

Fluctuating torque components of order of TR will contrib- 
ute both types of effects, but, because of the greater com- 
plexity of their analysis, they are implicitly included in the 
two limiting types. Our analysis in I1 for isotropic liquid 
solvents was based on the model of eq 7.2 where 
( NR( Q B , t )  ) = 0. The observation there of e,€' - 4 or 5, cor- 
responds to TM - 7~ and is thus probably a t  the limit of va- 
lidity of ascribing the "slowly fluctuating-torques" to 
&(t) .  The results in the present work requiring e' - 15-20, 
as well as the existence of a time-dependent mean-field 
(NB(QB)) # 0, suggest that this concept of slower fluctu- 
ating torque components characterized by a TX may well be 
significant. 

Clearly, a complete description of the molecular dynam- 
ics is not possible, so we use the above approach to analyze 
our results. We first discuss the analysis in terms of which 
the anomalous 6' is ascribed to R( t ) .  Then we discuss a sim- 
ple limiting model iy terms of a TX that is suggested by the 
highly structured properties of liquid crystals. Also, there 
exists a hydrodynamic model for cooperative fluctuations 
in the director due to d e G e n n e ~ ~ ~  and applied to NMR by 
Pincus.17 Such long-range hydrodynamic modes are natu- 
rally included in an ( N s (  QB,t )  ) where the time-dependent 
part of (NR) is characterized by persistence times T~ >> TR. 
The application of this model to our ESR results is dis- 
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cussed in the Appendix where it is shown (1) to have negli- 
gible predicted effect on our results and (2) to predict spec- 
tral anomalies that are qualitatively in the opposite direc- 
tion to the anomalies observed in the present work. 

A. Fluctuating Torques Inducing Reorientation. This is 
the model used in 11, but now applied to a liquid crystalline 
solvent for which 

(NB) f 0 (7.5) 

We assume an exponentially decaying K ( t )  IIzTV2e-t/TM 
so that the Fourier-Laplace transform of eq 7.2 becomes 
(for isotropic rotational diffusion): 

{S - R(s)[+JB2 + iJB(NB)/kT])P(S'2, S) = P(n,  t = 0) 
(7.6) 

(7.7a) 

R(0) = k T / I p n M  (7.7b) 

One must then diagonalize r J B ~  - i J w ( N B ) / k T  as 
previously discussed (cf. PBF) in order to obtain the nor- 
mal modes of relaxation for the particle. It is first advanta- 
geous to symmetrilze this operator to f (cf. eq 2.8a). The 
normal modes for r will, in general, be linear combinations 
of, the &(a) X [(2L + 1 ) / 8 ~ ~ ] ~ / ~  which we write as 
uk,M,(0). Since the ug(W(0) form a complete orthonormal 
set we may write 

where s = +wand 
kT R(w) = *(-io + TM") 

so 

P(t = 0) = 6(n - no) = C L ' , K ~ , M ' U ~ : M ' * ( ~ ~ ) ~ : M , ( S ' ~ )  

(7.8) 
with the result for the conditional probability of 

P(00, 10,s) = 

z L # K # M '  L' K' M' *( no)u k: M' (n) [ s + Ek;M# %( s)]-' (7 e 9 )  

where the EflM, are the eigenvalues of J B ~  + iJB( N B ) / ~ T  
corresponding to eigenfunctions U ~ ! M J (  0). These results 
may be used in the motional narrowing analysis of PBF to 
give modified spectral density functions, i.e., we now get 

[ s  + E$M,R, . (~ ) ]  (7.10) 

where &(S) is the Fourier Laplace transform of the corre- 
lation function of fa(t) and fb(t) [cf. section IV of PBF for a 
more detailed discussion]. 

One finds that the only change over the motional nar- 
rowing theory used in the previous sections is the inclusion 
of R(w)  given by eq 7.7. One can also introduce anisotropic 
diffusion and/or anisotropic viscosity and solve in an analo- 
gous manner. In particular, in the latter case, one recovers 
the old results (cf. eq 2.20) but with 

i.e., different parallel and perpendicular components of 
&(O) and, in general, different relaxation times for the as- 
sociated fluctuating torque correlation functions. 

The slow tumbling spectra may be analyzed by writing 
the time-dependent Smoluchowski eq 7.2 in its spin-depen- 
dent form,4J6 Le., as a time-dependent SLE. Since this 

poses some difficulties in its s ~ l u t i o n , ~  we transform to a 
time-independent augmented SLE in which a specific Mar- 
kovian model for the fluctuating torques is explicitly in- 
cluded so as to yield results equivalent to the time-depen- 
dent SLE, i.e., V and TM have the same meaning. The ap- 
propriate method is discussed in Appendix D of 11, except 
that here (1) the analysis is based upon the U ~ { M ' (  0) rather 
than the &~(0), (2) y~~ = L(L + l )kT / I  is then replaced 
by Eg,M,kT/I, and ( 3 )  Rli(O)+~,ji = kT/IVII, ~ ~ ( O ) + M , L  = 
k T / I V I .  This is the approach utilized in analyzing the 
slow-tumbling (and motional narrowing) spectra in sec- 
tions VI and V. In particular, for 811(0) = h,(O) = R and 
V I I  = V I  = V one has t'v = [l + E ~ . M ~ ~ T / I V ~ ] ~  indepen- 
dent of K' and M'. When Vi1 # V I  the precise definitions 
of C'L'K~M! become more complex. However, dSec = ~ ' 2 , 0 , 0  

and dpsec E t'2,0,1 are given as the actual corrections needed 
to adjust the spectral densities: i.e., J'LKw(w) = 
R1 ( O ) E ~ , ~ , / [ ( R ~  ( o ) E ~ , M , ) ~  + €'L'K'M'w2] (e.g., for zero or- 
dering but still anisotropic viscosity: €'gee = (1 + 
~ + M ~ R L ( O ) ) ~  and dpsec = (1 + S + ~ l h l ( O )  + + M I & ( O ) ) ~  
and these expressions are useful, though no longer exact, 
for low ordering). 

The values dpsec - 15-20 and tfsec - 1-2 that were found 
would then have to imply that V1l2 < V L 2  (with +M,II > 
+ M , L  for 811 - R1), i.e., the torques inducing reorientation 
about the axis parallel to the director are rather weak com- 
pared to the more normal torques inducing reorientation 
perpendicular to the director. This would seem to be a rea- 
sonable result for a small probe dissolved in a liquid crys- 
tal. However, if this were the case, it would be surprising to 
have Rii(0) - R1 (0) as appears to be the case from the ex- 
perimental analysis. One would require that V ~ I ~ T M ,  11 - 
V 1 2 ~ ~ , I .  Lastly, we note that efpsec  - 15-20 appears to be 
too large to justify the frequency-dependent diffusion coef- 
ficient analysis. 

An analogous analysis can, of course, be made in terms of 
anisotropic diffusion involving Ril(O), R l ( 0 ) ,  ~ ~ 1 1 ,  and T M ,  

(cf. ref 16), and this would have the feature of being inde- 
pendent of the macroscopic ordering with respect to the 
magnetic field, but it would depend on the molecular sym- 
metry. 

B. Fluctuations in the Local Structure Parameter. We 
now consider the case when eq 7.2 may be written as 

aP(S'2z, t, = i J ,  R(n ,  t )  [ i J ,  - (NB(t ,  S'2))/kT]J'(n2, t )  
(7.12) 

That is, we neglect any "memory" in R, and we assume 
that it is possible to diagonalize R in either a body-fixed or 
laboratory-fixed basis such that it is t i m e - i n d e ~ e n d e n t . ~ ~ , ~ ~  
However, we let 

a t  

(NB(t, a)) = T + T' ( t ,  S2) (7.13) 
where T is the true mean field component and T' is a slow- 
ly fluctuating time-dependent component with relaxation 
time TX such that T X  >> TR. 

This means that ( N B ( t , n ) )  remains essentially constant 
over time intervals in which the reorientation of the B par- 
ticle occurs. Thus we may regard T' as quasistatic, and cal- 
culate an ESR line shape due to the combined effects of T + T'. We shall for the present simple model assume no 
relation between T and T', so that T' could also just as well 
apply to a structured isotropic liquid. Thus (T') = 0 will 
imply an isotropic distribution of local structure (or order) 
parameter. This is not an unreasonable model for PD-Tem- 
pone which is only weakly ordered in liquid crystals.52 [The 
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other limit, where T‘ is due to cooperative fluctuations in 
the static director is discussed in the Appendix as already 
noted. A related discussion is given for the local director 
model when T’ is a small perturbation on T.] 

It  is then, in principle, necessary to solve the diffusion 
equation under the combined torque T + T’, but we shall 
assume both I l l , IT’I 5 kT and approximate their effects on 
the spin relaxation as being additive. Thus, we now consid- 
er the case ITl = 0, IT1 # 0. We may now speak of a “local 
director” oriented by Euler angles \k relative to the labora- 
tory z axis, and a local order or structure parameter 

si = (%m> (7.14) 
for the PD-Tempone relative to this local director (we shall 
assume axial symmetry of the molecular ordering tensor for 
simplicity). We first calculate the resonant frequencies and 
line widths in the motional narrowing region for arbitrary 
\k. Then this result is averaged over an isotropic “reorienta- 
tion” of 9 with the rather slow relaxation time T X .  

The first stage of the calculation is equivalent to that of 
calculating the resonance bequencies and line widths for a 
“smectic” liquid crystal in which the director is tilted by 9 
from the laboratory z axk8g9 Therefore we have 

x = 3c, + E,(*) (7.15) 

where El(*) is the average over Q of Xl(Q,\k) given by eq 
2.1, so 

Similarly, one may calculate the *-dependent line width 
T2-1(\k)819J2 analogous to eq 2.29-2.31, where, however, the 
effect of \k # 0 in eq 2.1 is taken into account. In particu- 
lar, for \k = (0, 0, q5), and axial symmetry about the direc- 
tor, one obtains the results that eq 2.30-2.31 are again ap- 
propriate but with K = K’ and the K(L,K,M,w) are re- 
placed by &L,K,M,w,B) given by: 

k ( 2 , ~ , 0 ,  W ,  e) = 1/50, + 

k ( 2 ,  K, 1, W ,  e) = 1/50, + 

k ( 2 ,  K, 2, W ,  e) = i/w, - 

2/7Pz(COS e)& f 6/35P4(~0S 6 ) F k  (7.17a) 

l /7P2(cos  B)E, - 4/35P4(cos O)F, (7.17b) 

2/7P,(COS e)& + 1/35P4(~0S 6 ) F k  ( 7 . 1 7 ~ )  

with 
D, = K(2,K,O, W )  + 2K(2,K, 1, W) + 2K(2,K,2,  w) 

(7.18a) 
E, = K(2,K,O,w) + K ( 2 , K , l , w )  - 2K(2,K,2,w) 

( 7.18b) 
Fk = 3K(2,K,O,w) - 4 K ( 2 , K , l , w )  + K ( 2 , K , 2 , w ) ,  

( 7 . 1 8 4  
Now these results are averaged over the slower motion that 
averages out 9. Thus X = XO predicts the isotropic liquid 
resonance frequencies, while 

k ( 2 ,  K, 0, W ,  e) = 

1 2 . ( 2 , ~ ,  1, W ,  e) = 132, K, 2, 0, e) = 1/50, (7.19) 

As long as S1 # 0, one finds that Y a k  is unequal to the iso- 
tropic result of eq 2.32. In particular, for w = 0, one has a 
simple power series expression for the K(Z,K,M,O) given by 

Polnaszek8 that is valid for SI < 0.8. One then finds that 

Do(@ = 0) 3 [l + 0.16S1 - 2.29SI2 + 0.934S12]7(0)”1 
(7.20a) 

and 
D 2 ( w  = 0) [l + 0.052S1 + 

0.264SI2 - 0.177S,3]~(2)-’  (7.20b) 
Thus the local structure factor S1 # 0 tends to  lead to dif- 
ferences between the “effective” T ( O ) - ~  and 7(2)-l. The ef- 
fect is small for small S1 - 0.1 but becomes significant for 
larger SI, where it Has the same observable effect as an R11 
> RJ. for positive SI. However, the averaging of the @-de- 
pendent parts of &(*) and Tz-l(*) is not very fast. One 
can then expect residual broadening and frequency shift ef- 
fects to ensue from this mechanism. In general, this prob- 
lem can be treated as a slow-tumbling problem by means of 
the SLE. That is, one may write (cf. eq 2.4 of PBF) 

c [ 0 6 , , j  + X(Wll j - iT,-’(9E),lj]z(*, 4, = 
f 

( 1 /2) W i  [SIxPOI i ( 7.2 1) 
where Im Z(*,w), refers to the absorption at  orientation \k 
for the j t h  allowed or forbidden transition. Also &(\k)z re- 
fers to the matrix element between the i th and j t h  transi- 
tions for the commutator form of E(*). The diagonal 
T2-1(*)c,8 correspond to the line widths for the i th transi- 
tion and are given by eq 2.30-2.31 and 7.17 for the three al- 
lowed transitions. The other T2-1(*)c,c as well as the “off- 
diagonal” components Tz-l(*)‘,, (i # j) may be obtained 
by the methods already outlined here, in PBF, and by 
Freed and Fraenkel.53 One then expands the Z(*,o)j in the 
complete orthonormal set of spherical harmonics Y$(0,#) 
and solves for the coefficient of E(0,#).14J5 

We now assume for simplicity that (1) motional narrow- 
ing theory applies to averaging \k as well as to Q ,  (2) the 
local ordering is small, and (3) the relaxation of pm(O,#) is 
governed by relaxation time TX.  Then we may obtain an 
approximate result by retaining only the residualwidth 
component from the incomplete averaging of El(*) and 
neglect the higher order width components from \k-depen- 
dent parts of T2(9), , ,- l  (we are also neglecting for simplic- 
ity the mainly dynamic frequency shift terms that arise 
from cross terms between x1(9) and T2(*)L,,-1). The final 
result, which is really for isotropic liquids, but with a dy- 
namical structure, then takes on a simple result. I t  is, in 
fact, represented by the basic expression for isotropic liq- 
uids given by eq 5 of I except for the simple modifications 
that 

and 

(7.22b) 

where, when WTR << 1, &(w)  is well represented by Dk(0) 
given by eq 7.20 (or by eq 4.16 of PBF54 and eq 7.18 when 
the frequency dependence applies). These results are based 
on a simple exponential relaxation law of the local struc- 
ture. This is clearly an oversimplification for a liquid crys- 
tal where one would expect to have (localized) cooperative 
modes of rotation yielding more complex frequency depen- 
dences (cf. Appendix). The results eq 7.22 still exhibit a 
more complex w dependence than the conventional expres- 
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sions for isotropic liquids. In particular, recognizing that 
we have 7x >> 7R, then we may have d 7 R 2  << 1, while we 
may have u27x2 2 1, so that eq 7.22 becomes 

and 
j2(0) N T R ( l  + 0.052S1 -k O.264sl2) (7.23b) 

respectively. If we let s1 - -0.1 and 7X/TR - 10(2)i/3 then 
(for u27x2 << 1) j o  - 1.12TR, j 2  - LOITR; however (more 
generally) 

This may be compared with 

to yield an 

In the region of I TR I when pseudosecular 
and secular frequencies are important compared to 7xw1, 
then eq C2, C3 of 11 should be used for terms involving 
w 2 ~ x 2 .  We have performed an analysis analogous to that of 
Appendix C of I1 for this local structure mechanism. We 
have assumed, by analogy to the ordering of the spin 
probes relative to the main director, that the molecular 
magnetic z axis orients perpendicular relative to the local 
ordering. The contributions involving of eq 7.22 are 
then relatively unimportant and we neglect them in the fol- 
lowing. One finds that (1) for TX 5 3 X sec this mecha- 
nism contributes nearly equally to B and C ,  and the rela- 
tive contribution to A (i.e., A/B from this mechanism) is 
comparable to that from the main reorientational process. 
(2) for 5 X lob9 5 7x I 2.5 X sec, the contribution to 
B from this mechanism is decreasing (from 3.2Sl2 G to 
1.0Sl2 G) while that for C first increases before decreasing 
(i.e., from 4Sl2 G to 5Sl2 G at  sec to 2.781' G). This 
has the effect of increasing the overall C/B value in this re- 
gion. Meanwhile, the contribution to A remains large a t  

These results are clearly in the direction of explaining 
the observed C/B anomaly as well as the residual A'. 

Finally, if we assume that the relaxation of the local 
structure is somewhat related to the mean field (or direc- 
tor) orientation, we may introduce a T X ~ ,  and a T X ~  by 
analogy to anisotropic viscosity (eq 7.11). One might expect 
that ?)(1/721] 2 1 where 7x11 is the relaxation time of the 
component parallel to the macroscopic director. One then 
finds that (3) for 7 x L  5 3 X sec the effect of 721/T2[ l  

> 1 on the contribution to B is negligible, but the contribu- 
tion to C is enhanced by as much as 50%, while the contri- 
bution to A is greatly suppressed; for 5 X 5 7x N 2.5 
X sec, the contribution to A increases rapidly, and all 
other observations for (2) are found except that they are 
enhanced. (4) Lastly we note that one requires S12 - 0.1 to 
get effects of the order observed experimentally (assuming 
T 2 ( I / 7 R  - 10). [Note, however that one must introduce a 
more careful slow tumbling analysis for IS1X112Tx2 1 1, 
Le., for TX X 2.5 X 10-9/S1. Note 7~ - 2.5 X sec is the 
related value for slow tumbling in the overall reorientation 
when the modified analysis of Appendix C of I1 is used.] 

4Si2 - 5Si2 G. 

These results are thus quite encouraging in indicating 
that this dynamic local structure mechanism could explain, 
a t  least in part, the observed anomalies. The analysis given 
here, has, for convenience, been highly approximate, but it 
should indicate the general spectral features of this mecha- 
nism. 

VIII. Further Discussion 
Here we wish to consider some other aspects of the relax- 

ation studies for comparison with the results in I and 11. 
First we note from Table I11 that the activation energies for 
PD-Tempone in the various nematics are all quite similar 
with preexponential factors of about the same order. For 
several of our liquid crystals the temperature dependence 
of the twist viscosity coefficient, 71, which characterizes the 
viscous torque associated with an angular velocity of the di- 
rector and has no counterpart in isotropic liquids has been 
measured.54 The activation energies compare favorably to 
our results (cf. Table 111). This appears to demonstrate 
that the same thermal activation processes are the ones af- 
fecting the reorientation of the spin probe. This quantity 
y1 is reasonably associated with a I. If we make this associ- 
ation, and then employ the Stokes-Einstein relation 

4lrY3-J rR = - 
3 kT (8.1) 

with TJ = y1 and re the effective rotation radius, then it is 
possible to obtain re from Meiboom and Hewitt's measure- 
ments of y154a and our experimental TR'S for MBBA in the 
nematic phase. We find re = 1.13 a (from the range 5- 
23OC) compared to an estimated hydrodynamic radius ro of 
3.2 %, (from geometric considerations cf. 11), or a value of K 

= 0.044 where K = ( r J r ~ ) ~ .  This result for re is somewhat 
smaller than found in isotropic liquids (cf. 11), as one would 
expect for a small solute in a solvent of larger molecules, 
but it is not very much smaller than the value of 1.46 %, 
found for glycerol solvent.55 

One can also estimate the spin-rotational relaxation 
from the high temperature line width results where 7R 5 
10-l' sec (cf. I and 11). Our most useful data for this was 
from the isotropic phase of phase V. We obtain ( T2SR) = 
1.2 X 1 0 - 1 2 / ~ ~  in gauss (derivative width) compared to the 
theoretical value of 0.50 X 10-12/r~ from simple theoretical 
considerations (Le., 7 R 7 J  = Z/6kT, cf. 11). This experimen- 
tal result is similar to, but somewhat larger than, the re- 
sults obtained for isotropic solvents (cf. I1 where the maxi- 
mum there was 1 X ~ O - " / T R  in acetone solvent). In terms 
of a simple jump diffusion model, this result could be inter- 
peted in terms of reorientational jumps of substantial angle 
(cf. 11). However, such information is better obtained from 
slow tumbling studies as discussed in section VI and in 11. 

I t  was shown in 11, that a fraction of the low temperature 
residual width A' is due to intermolecular electron-nuclear 
spin dipolar interactions, which are modulated by the 
translational diffusion. There the expression 

was used where N is the density of spins, d is the distance 
of closest approach of the interacting spins, and D = lh(D0 
+ D,) the mean diffusion coefficient of the solute (DO) and 
solvent (D,). We estimate N * 4.5 X loy2 proton/cm" using 
a molecular weight of 274 for phase V and 18.6 protons per 
molecule (the average of the two compounds) and p = 1.1 
g/cm3 (the value for MBBA at room temperature). Thus 
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(TZ-l)dip = 3.05 X 10-16/dD in gauss. There are no avail- 
able data on diffusion coefficients in phase V, and recent 
results on diffusion coefficients in MBBA show widely di- 
vergent results.56 If, instead, we use the viscosity 7 - y1 for 
phase V at  23°C54b and then extrapolate this 7 value using 
the E ,  for rotational diffusion found for PD-Tempone in 
phase V (cf. Table 1111, we obtain 7 = 20 P a t  -25OC which 
is the temperature for which a maximum experimental 
value of A’ = 1.75 G is achieved. If now, the Stokes-Ein- 
stein relation 

D, = kT/6nq? (8.3) 
with ri the effective translational diffusion radius of the i th 
molecule is used one gets (TZ-l)dlp = 6.8 (rred./d) G where 
rred. = (rprs)/(rp -k r,) = rp for a small probe molecule. 
Thus, this very crude analysis could “explain” all of A’ 
with d = 4rp. However, one might reasonably expect that 
the use of 17 = y1 overestimates the microviscosity for diffu- 
sion of the small solute molecule. (A rough lower limit to 7 
might be K Y ~  = 1 P yielding a much smaller dipolar contri- 
bution to A’ of ca. 0.34 (rred,/d) G which is small, but not 
negligible; this latter value is more consistent with results 
for toluene solvent cf. 11.) The main point really is that the 
intermolecular dipolar mechanism is expected to make a 
nontrivial contribution to A’ for the lower temperature 
nemati~s.~’ 

IX. Summary and Conclusions 
In this work we have demonstrated how the PBF theory 

for ESR line shapes in both the slow tumbling and motion- 
al narrowing regions may be effectively employed in an 
analysis of experiments on nitroxides dissolved in liquid 
crystal solvents. The well-resolved spectra obtained from 
PD-Tempone were of particular aid for accurate results. 

In general, we have found that the ordering of the nitrox- 
ide spin probes in the liquid crystal solvents requires a two- 
term potential function. Appropriate symmetry-dependent 
potential functions were introduced that very conveniently 
allow for relabeling of molecular axes. It was then shown 
how the Brownian diffusion (Smoluchowski) equation may 
be solved for the more general restoring potentials, and this 
was incorporated into the PBF theory. 

The motional narrowing line width analyses in the iso- 
tropic and nematic phases were typically best explained in 
terms of isotropic rotational diffusion of PD-Tempone for 
most solvents but under the anisotropic ordering potential. 
The isotropic diffusion is consistent with recent results for 
PD-Tempone in normal liquids. The activation energies 
(E,) for TH in several liquid crystal solvents were quite sim- 
ilar (8.9 to 10.2 kcal/mol) and for the cases it could be com- 
pared (MBBA and phase IV), it  is rather close to E ,  for the 
measured twist, viscosity. This appears to demonstrate a 
close relation between TR and the other viscous processes in 
the liquid crystals. The isotropic values for E ,  appear typi- 
cally to be a little smaller than the nematic values. 

It was also demonstrated in this work that slow-tumbling 
corrections to the spectra from liquid-crystalline solvents 
can become important even while they consist of three 
well-resolved lines. In the present case, these corrections 
are first manifest in the shifts of the line positions. Failure 
to include the slow tumbling corrections would then neces- 
sarily lead to incorrect results for the ordering parameters, 
which could incorrectly suggest a “phase transition”. I t  ap- 
pears to be a general feature of the analysis of ESR spectra 
involving qualitative spectral changes (such as those which 

result from slow tumbling) that inappropriate or inade- 
quate analysis can appear to imply discontinuous behavior 
characteristic of a “phase transition” even while the actual 
sample being studied does not have discontinuous behavior 
over the region studied. In the recent isotropic liquid stud- 
ies, this principle was invoked to provide information on 
reorientation by jumps of substantial angle. 

The slow motional analysis for PD-Tempone in phase V 
solvent was based on this principle, i.e., all relevant or- 
dering parameters and TR values were extrapolated from 
the results for the motional narrowing region. However, un- 
like the studies in isotropic liquids, the predicted spectra in 
the present case were found to be in poor agreement with 
experiment. No significant improvement could be achieved 
by introducing jump diffusion models. Partial success in 
the slow tumbling fits could be obtained by invoking the 
rather sudden onset of an anisotropic viscosity mechanism, 
such that while ~ 1 1 ~  is behaving normally, TR,, even begins 
to speed up as the temperature is lowered! Furthermore, 
this violates our principle of invoking a discontinuous 
change in the absence of phase transitions. 

In the recent studies on isotropic solvents it was found 
necessary to introduce the corrections t and t’ for non- 
Debye-like spectral densities. This was again found to be 
important for the liquid crystals. Typically c - 4.6 (for the 
nonsecular spectral densities) for the isotropic phases in 
agreement with the results on isotropic liquids. There ap- 
pears to be a lowering of this value in the nematic phases, 
but the analysis is not very certain. It was suggested in pre- 
vious work that this might be explained in terms of rela- 
tively slowly fluctuating torques affecting the rotational 
diffusion, and a theoretical analysis related this to E and t! 
in terms of frequency-dependent diffusion coefficients. In 
this work, we applied this analysis to the ordered solvents 
in an attempt to explain the slow-tumbling spectral anoma- 
ly in terms of t’ z 1. It was indeed possible to obtain rath- 
er good agreement in this way, but only by invoking an an- 
isotropic c‘ analogous to an anisotropic viscosity such that 
elsec - 1-2 and elpsec - 15-20. 

This latter large value of t’ appears on theoretical 
grounds to be too large; i.e., if there are important compo- 
nents of the fluctuating torque relaxing considerably slower 
than TR, they should more properly be included into a local 
structure or ordering term which is relaxing on a longer 
time scale than TR. A simple model for this slowly relaxing 
local structure was then developed to conveniently predict 
the effects one might expect on the ESR spectra. The sim- 
ple model, which neglects any correlated effects between 
the mean field potential (or director) and the slowly relax- 
ing local structure (and may thus be applied to structured 
isotropic liquids), is shown first of all to predict, in general, 
non-Debye-like spectral densities for the rotational reori- 
entation. It is further found that this effect can lead to 
spectral densities which would appear to imply anisotropic 
rotational diffusion coefficients, whereas, in effect, the an- 
isotropy is in the local structure. Our analysis of this model 
shows that it has the potential of explaining, at  least in 
part, the observed slow-tumbling spectral anomalies. The 
absence of such an anomaly in the higher temperature re- 
gion where nonsecular terms are important would have to 
imply important temperature dependence of‘ the local 
structure, or else a spectral density lacking in high frequen- 
cy components. 

The model of hydrodynamic fluctuations in the director 
due to deGennes and Pincus is found both qualitatively 
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and quantitatively to be inconsistent with the observed 
spectral anomalies. In general, we could find no evidence 
for this mechanism in our experimental results, but this is 
consistent with the weak ordering (i.e., (@m) = -0.1) of 
the PD-Tempone spin probe. 

However, our slowly relaxing local structure model would 
definitely be consistent with (nonhydrodynamic) coopera- 
tive reorientational modes of relaxation of the liquid crys- 
tal molecules on a time scale faster than director fluctua- 
tion, a mechanism which should be associated with a fre- 
quency dependence more typical of hydrodynamic modes 
than with a localized mode. 

It is pointed out that a more rigorous (albeit a more com- 
plicated) analysis of both the slowly relaxing local structure 
mechanism and the director fluctuations may be obtained 
from a solution based upon more general Smoluchowski 
equations explicitly including the slowly fluctuating 
torques (as well as the mean-field torques) and introduced 
into an augmented stochastic Liouville equation, which in- 
cludes the spin degrees of freedom. 

Further experimental and theoretical work on these in- 
teresting phenomena is clearly warranted.58 
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Appendix. Director Relaxation and ESR Line Widths 
In this case, the motion which causes modulation of the 

magnetic tensors can be thought of as arising from two pro- 
cesses: (1) motion of the molecule with respect to the direc- 
tor, and (2) motion of the director axis with respect to the 
preferred axis of director orientation (fluctuations of the 
direction of the ordering axis). 

The perturbation hamiltonian required to describe the 
relaxation effects in this case can be written as follows 

Xl’(a9 *) = X1(a, *) - (X1(a, q)) (AI) 
with Xi (a, \k) given by eq 2 .l. 

required for relaxation and is given by 
The orientation-dependent part of the spectral density is 

where the C ( t )  is the correlation function, If one assumes 
that the motion of R and of \k are independent processes 
(but see below), then C ( t )  can be written as 
- 
C K M K # W ( ~ )  = 

{( Ok%( *)@$La( *O) * )[ @!i& (a )D!k)O N e( no) *) - 
N , N ’  

@!%‘I )) @!$)’ ) *>I + @!$?N (a )) @!k)e~#(n,) *) x 
[ (~k%*Dk‘>~e(*,J * - co”2$r(*))(D~?)M~(\ko) * )]} (A3) 

The quantity in square brackets in the first term on the 
right-hand side of eq A3 is CKNK”’(~), the correlation func- 
tion when there is no motion of the director; the evaluation 
of this quantity is given in section 11. The quantity in 

brackets in the second term is an analogous expression for 
the correlation function for motion of the director only. 
Note that this quantity is multiplied by a product of order 
parameters for the molecular orientation. In the limit of no 
director motion \k = \ko = (O,O,O) and &*L(\k) = SNM and 
the ensemble average over \k in the first term becomes 
SNMBN,M( and the bracketed quantity in the second term is 
zero. Thus CKMK’M’(t) = CKMKtM*(t) in this limit. In the 
limit of ( D & ( R ) )  = 0, i.e., no ordering of the molecule by 
the director, the second term of eq A3 again disappears, 
but the first term can still be modified by the motion of the 
director. This latter is a physically unreal result in this 
limit of no ordering. I t  arises because the form of eq 2.1 re- 
fers the molecular motion relative to a moving (or fluctuat- 
ing) reference frame, Le., that of the director. A more rigor- 
ous, but more difficult to analyze model, would involve 
solving for the molecular diffusive motion by means of an 
equation such as eq 7.2, but with the restoring potential in- 
cluding the director  fluctuation^.^^ In such a treatment, the 
motion of R is, in general, dependent upon \k. We hereafter 
neglect any unrealistic effects of director fluctuation on the 
first term of eq A3 and consider only the effects in the sec- 
ond term of eq A3 which are physically more realistic. This 
is, in effect, the approach used by several al- 
though they have not discussed these matters. 

In order to simplify the evaluation of eq A3, the fol- 
lowing assumptions are made. (1) The distribution of direc- 
tor and molecular orientations are axially symmetric with 
respect to the preferred axis of director orientations. This 
results in N = N’, K = K’, and M = M’ and the (@k,(O))  
are zero unless K = N = 0.14 (2) The magnetic tensors have 
axial symmetry. Thus K = 0 in all terms. (3) The fluctua- 
tions in the director are small in amplitude so that the 
&&(\k) can be approximated by their forms for small 0 
given in Appendix B of PBF. Thus the correlation function 
of eq A3 becomes 

Equation A4 will be evaluated by using two different ap- 
proaches: (1) considering the thermal fluctuations of the 
director as done by several authors for NMR relaxa- 
ti~n,~’-*O and (2) considering the motion of the director to 
be a diffusion process in the presence of a very strong ot- 
ienting potential. The latter is more appropriate for a local- 
ized mode (e.g., the local structure model of section VIIB). 

For the thermal fluctuations, one must first expand the 
D& for small 8. Thus eq A4 becomes 

is the fluctuating component of the director orientation 
with the unit vector i to ,  the preferred director orienta- 

The Journal of Physical Chemistry, Vol. 79, No. 21, 1975 



2304 Carl F. Polnaszek and Jack H. Freed 

tion.21 The quantity (6A(r )  SA( ro )* )  can be evaluated by 
considering the fluctuation 6il(r) to be a superposition of 
plane-wave disturbances given by Fourier components: 

= v-'/' &aeia'r (A8) 
where V is the volume. The correlation function for fluctu- 
ations of the director becomesz0 

where kT/Kq2V is the thermal amplitude of the modes, 
Kq2/q is the damping constant of the slow mode, rqP1, and 
[ V / ( 2 ~ ) ~ ] 4 ~ q ~  is the number of states in a volume element 
47q2 dq, with K the average elastic constant of the liquid 
crystal. Also, q is the viscosity, and qc is the wave vector 
which corresponds to a cutoff in the modes near the molec- 
ular length.z0 In the true hydrodynamic limit, qc - m and 
the integration in eq A9 is readily performed. For qc  finite, 
one has 

(6i(r) Mro)*> = qr3/2~3/Zt 2 @[ ( act) 2]  (A1 0 )  

where w, = Kqcz/q is the cutoff frequency and @(x) is the 
error or probability function.59 Note for wc - a, @[(w,t)1/2] - 1. Thus the contribution to the correlation function 
needed for relaxation due to fluctuations of the director is 

Trl ' ' 2'1 

The spectral density then has the formz0 

which is valid for w > 0. [The discontinuity a t  w = 0 would 
undoubtedly be removed by an analysis recognizing the 
coupled dependence of 0 upon $ as discussed above.] 

In this case, the ESR line width contribution in gauss 
due to fluctuations in the director orientation is 

T2-I = ${(ull - al)'[I(Z + 1) - T J ~ ~ ~ ] ~ ~ ( W * )  t 

['/,csll - g1 )zg,z - 2(a1 - U1l)kll - g,)BonzI i- 

2(0t, - a L ) 2 m ~ 2 1 K ~ i ( ~ ~ )  (AIS) 

For typical molecular lengths, Le., 40 8, for MBBA, one 
finds w c  3~ 1.9 X lo8. Thus, the nonsecular terms in eq A13 
can be neglected as the quantity in brackets ( 1 in eq A12 
approaches zero for wo >> w,. For the pseudosecular terms 
a* 5 wC, and the quantity in brackets is somewhat less than 
unity (ca. 0.32). Using the values q = 71, K1lZ1 and the 
order parameter for PD-Tempone in MBBA at 23OC, one 
predicts that the contributions to the A and C line width 
coefficients to be 0.01 and -0.005 G, respectively, which 
are too small to be of importance. Also, relaxation due to 
thermal fluctuations of the director predicts that the CIB 
ratio should be decreased by this process. Furthermore, 
these contributions are expected to have little temperature 
dependence.18 It is observed in our experiments that the 
C/B  ratio increases substantially with decreasing tempera- 

ture. Thus this process cannot account either qualitatively 
or quantitatively for this behavior. 

Note that the average over the director fluctuations in 
the first term of eq A5 reduces to ~ N M  as the leading term, 
and the line width contribution calculated from this term is 
just that predicted from the rotation of the molecule. 

Alternatively one can evaluate the quantity in brackets 
in the second term of eq A4 by using a formalism which 
corresponds to the diffusion of a "localized" R in the pres- 
ence of a very strong restoring potential of the form 

v ( Q ) / ~ T  = Q! cos2 e (A14) 

where the distribution parameter a >> 1. As the potential is 
a function of 0 only, the diffusion equation can be sepa- 
rated into its components by lettingi4 

*(*I) = y;(e) exp(iM@)(2~)- ' /2  (A15) 

-D-*F~  = a2/ao2 + o-l(a/ae) - ( M / o ) ~  - a 2 ~ 2  + 2a 
(A161 

The eigenfunctions for this differential equation are 

and to lowest order in 0 and a-l, one has 

where D is the diffusion constant for director motion.'* 

given by 

y/qMM'(O) = [2aN! / (N  + 
/ M I  ) ! ] * / 2 , - ~ e z ' 2 ( ~ i / 2 ' e ) ~ ~ ~ L ~ ~  (a021 ( ~ 1 7 )  

where the Lpl(z) are the generalized Laguerre polynomi- 
alse60 The eigenvalues of this equation are 

WA'' = 2crD(2N + I MI ) (A18) 

These eigenfunctions and eigenvalues can be used for the 
evaluation of the correlation functions for director motion 
in eq A3 or A4. The quantity in brackets in eq A4 can be re- 
written as 

c o M ( t )  = ([4u(Q) - @!YC*)>J[D~9(*J* - D~Y(Q~)*)I) 
(A191 

The evaluation of this integral over all angles rk and rko re- 
quires the conditional probability 

P(Q, Q,, t) = C exp(-WkMM'(*)t) 1 Y ; ( Q D W ~ ( * O ) I  x 
N . M  

Thus we can proceed as in PBF for molecular rotation and 
finally obtain 

6 O M ( t )  = 

C'(Y;(W D::(Q)~ YiX*)>e-'"P't (Ypa(Qo)l D,'i)(Qo)* I YO0(*0)> 

(A21 1 P, a 

where 2' means that the term p = q = 0 has been omitted. 
Keeping the leading terms in the D&j(rk),14 one has 

6oAt) =to-i(t)  = 

1 ( yOo(q( e * i @ d O i 2 ( e ) l  yPq(*)) 1 2e-wpaf (A22 1 

Substituting for the Ypq from eq A15 and A17 and for 
cl0l2(O) from eq A5, the integral over P in eq A22 becomes 

a, P 

The Journalof Physical Chemistry, Vol. 79, No. 21, 1975 



ESR Studies of Liquid Crystalline Solvents 2305 

(15) J. H. Freed, G. V. Bruno, and C. F. Polnaszek, J. Phys. Chem., 75, 3385 

(16) L. P. Hwang and J. H. Freed, J Chem. Phys., 63, 118 (1975). 
(17) P. Pincus, Solidsfate Commun., 7, 415 (1969). 
(18) J. W. Doane and D. L. Johnson, Chem. Phys. Left., 6,291 (1970). 
(19) T. C. Lubensky, Phys. Rev. A., 6, 2497 (1970). 
(20) J. W. Doane, C. E. Tarr, and M. A. Nickerson, Phys. Rev. Left., 33, 620 

(1974). 
(21) (a) M. J. Stephen and J. S. Straley, Rev. Mod. Phys., 46, 617 (1974). (b) 

P. G. deGennes, The Physics of Liquid Crystals", Oxford University 
Press, New York, N.Y., 1974. 

(22) G. Heppke and F. Schneider. Ber. Bunsenges. Phys. Chem., 75, 61 
(1971). 

(23) P. Ferruti, D. Gill, M. A. Harpold. and M. P. Klein, J. Chem. Phys., 50, 
4545 (1969); G. Havach, P. Ferruti, D. Gill, and M. P. Klein, J. Am. 
Chem. Soc., 91, 7526 (1969). 

(24) L. D. Favro in "Fluctuation Phenomena in Solids", R. E. Burgess. Ed.. 
Adacemic Press, New York, N.Y.. 1965, p 79. 

(25) J. H. Freed in "Electron-Spin Relaxation in Liquids", L. T. Muus and P. 
W. Atkins, Ed., Plenum Press, New York, N.Y., 1972, Chapters Vlll and 
XIV. 

(26) E. C. Kembie "The Fundamental Principles of Quantum Mechanics", 
Dover Publications, New York, N.Y., 1958, pp 230-234. 

(27) In PBF, t& = -Vn2. Note that eq 2.5 of PBF should have been written 
as 

(1 97 1). 

The integration over q5 requires that q = F 1. Substituting 
u = ( Y O 2 ,  the integral over O now has the form59 

The correlation function for localized director motion then 
is61 

(A25) 

Thus we can define a single correlation time for localized 
director motion as 

7;' = 2~uD (A26) 

and the spectral density for this case is 

and the line width contribution becomes 

Again the prediction is that the C line width coefficient re- 
sulting from director motion is negative. I t  has been esti- 
mated that RID - 100062 where R is the rotational rate of 
the molecule. The values of ( @jo(Q) ) z  observed experimen- 
tally were -0.01. Thus for (Y > 10-100 the line width contri- 
bution from this model for director motion is calculated to 
be negligible compared to that resulting from molecular 
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This requires that the spin-rotational relaxation component about the 
symmetry axis begins to slow down when q / T  becomes large enough 
(instead of typical decrease with q/T). (They do not see the effects of 
reorientational relaxation about the symmetry axis, because of the sym- 
metry of the magnetic parameters.) We have implicitly argued against 
such mechanisms in our recent work on nitroxides (ref 3 and II), where 
Rl and RI were both observed and varying magnitudes of A' were 
found. In particular, we summarize for Isotropic liquids: (1) N = RI~/RI. 
was typically found to be constant with temperature, and for PD-Tem- 
pone N 14 1, and in all cases 1711 0: RL a T/q. (2) It is possible for small 
rotational asymmetry relative to the molecular z axis to signiflcantly af- 
fect A', and there is usually a small contribution from intermolecular 
electron-nuclear dipolar Interactions. (3) The observed A' are typically 
simply linear in q /  T for large enough viscosity. (4) In II they were found 
to be significantly dependent upon magnetic field, whlch should not be 
true for a spin-rotation mechanism, although this observation is depen- 
dent upon the rotational model such as implied in (2). Also most impor- 
tant (5) the measurements of We in ref 3 and II from saturation studies 
show that precisely when A' becomes anomalous (increasing with q / T ) ,  
the We are decreasing(cf. Figure 12 of 11). Since, at the higher tempera- 
tures, We = T/q is found to be virtually equal to A'/2 as predicted for a 

spin-rotational mechanism [i.e., T1(SR) = T*(SR)], then, if A' at the 
lower temperatures (where A' 0: q/T) were due to a spin-rotational 
mechanism, one would still expect We = A'/2, which it decidedly is not. 
It appears that A' is due essentially to a purely secular mechanism. Fur- 
thermore (6) we have consistently argued against any physical explana- 
tions of spectral anomalies which appear to be "turned on", although 
the sample exhibits no phase transitions. We believe a likely posslbility 
for explaining an anomalous A' could be in terms of modulation of the 
dipolar and g-tensor terms by rotational reorientation, but where the re- 
orientation is complicated by a slowly relaxing local structure and/or re- 
lated considerations. (Cf. section Vll.) In II it was suggested that (2) 
above might help to explain the anomalous A', but more careful consid- 
erations show that A/C is not very significantly affected by such small 
rotational asymmetry, so it would not be a very satisfactory explanation. 
(We wish to thank Dr. B. Kowert for a helpful discusslon on this point.) 

(58) Recent pressuredependent studies on the PD-Tempone system will be 
reported on elsewhere: J. S. Hwang, K. V. S. Rao, and J. H. Freed, to 
be submitted for publication. 

(59) I. S. Gradshteyn and I. M. Rhyzik, "Table of Integrals, Series, and Prod- 
ucts", Academic Press, New York, N.Y., 1965. 

(60) M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Func- 
tions", Dover Publications, New York, N.Y.. 1965. 

(61) We can establish a formal equivalence between eq A25 and eq A9 with 
eq A5 by regardin the result eq A25 as the result for the 4th mode and 
letting 2aD - K$/q while letting 'ha - 3kT/2K$ V or D - kTI3qV 
and a - 3K$V/2kT. 

(62) G. R. Luckhurst, Phys. Bull., 23, 279 (1972). 
(63) It should be noted that we have avoided the question as to whether a 

motional-narrowing theory actually applied for the slow director fluctua- 
tlons. First we should note that the criterion for validity is given by 
(X1T~02 << 1 where Ix12/"* measures the root mean square value 
of modulation of Xl(\k) by the small amplitude director motion. Thus for 
example, for the diffusion model we require 

These condltions should be obeyed In the present case. When they are 
not obeyed, a slow tumbling theory analogous to PBF for the dlffusion 
model or analogous to that of J. B. Pedersen and J. H. Freed [ J .  Chem. 
Phys., 58, 2746 (1973); 59, 2869 (1973)], for the hydrodynamic model, 
should be employed. 

(64) Similar results have been observed in 'H NMR studies on deuterated 
stearic acids in the liquid crystalline phase of egg lecithin [G. W. Stock- 
ton, C. F. Polnaszek, A. P. Tulloch, F. Hasan, and I. C. P. Smith, Bio- 
chemistry, submitted for publication]. The ordering parameters for the 
totally deuterated acids are also reduced compared to those of partially 
deuterated (at one position) acids. 

(65) NOTE ADDED IN PROOF: Actually by using eq 7.12 and the method out- 
lined in section VIIB, but applied to director fluctuations, it Is easy to 
demonstrate that (1) the analysis involving the second term of eq A3 as 
given below is indeed appropriate: and (2) the first term of eq A3 is to 
be replaced by CKMK,M~( t), so the physically unreal feature is indeed re- 
moved. 
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