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Theory of Chemically Induced Dynamic Spin Polarization. 5. Orientation-Dependent 
Effects 

Gary P. Zientara and Jack H. Freed* 

Depaflment of Chemistry, Baker Laboratory, Cornel1 University, Ithaca, New York 14853 (Received July 11, 1979) 

The Pedersen-Freed theory for chemically induced dynamic spin polarization CIDN(E)P is generalized to include 
the effects of anisotropic reactivities and anisotropic exchange interactions on the radical-pair mechanism. 
Detailed results are given for the simple case in which only one radical exhibits anisotropy that is approximated 
by a cosine distribution, and the rotational and translational motions are described by Brownian diffusion models. 
The primary effect upon CIDNP is the reduction in A, the reaction probability for the full collision. This effect 
can be rather accurately approximated by the use of an “effective” spherically symmetric specific rate constant, 
which depends, to some extent, on the rotational diffusion coefficient due to the effect of rotational relaxation. 
Thus CIDNP effects are rather well approximated by a spherically symmetric theory with a renormalized A. 
In the absence of reactivity, CIDEP effects for our model are reasonably well approximated by a spherically 
symmetric theory with a renormalized exchange interaction, especially for the asymptotic polarizations for large 
exchange interactions. When, however, there are orientation-dependent reactivities present with substantially 
greater orientation dependence than the exchange interaction, then significant deviations from a spherically 
symmetric theory are predicted even for asymptotic polarizations. The relationship to recent experiments is 
briefly discussed in this light. Anisotropic initial conditions are typically found to be relaxed by the effective 
rotational diffusion before they can substantially affect the CIDN(E)P observables. 

I. Introduction 
The existing theories of chemically induced dynamic 

spin polarization were all developed for spherically sym- 
metric interactions between the radical pairs.’?’ Never- 
theless, most interacting radicals are expected to display 
anisotropic features both in their ability to react and in 
their exchange features. In particular, the rate of reaction 
between nonspherical or bulky radicals is expected to be 
reduced by steric hindrance and other structural charac- 
teristics, including those of the solvent. Such effects have 
been confirmed experimentally in a recent CIDNP s t ~ d y , ~  
and are otherwise well-known in many kinetic studies. 

The matter of orientation-dependent effects upon rad- 
ical (or molecule) reactivities has lead to several theoretical 
studies. The general problem was first discussed by Solc 
and Stockmayer4 in terms of a combined translational and 
orientation-dependent diffusion equation with reactive 
boundary conditions. They showed how the problem could 
be solved numerically in terms of Bessel function expan- 
sions (in radial space) and spherical Harmonic expansions 
(in orientation space). Freed and PedersenPa suggested an 
approach closely related to that of Solc and Stockmayer 
but differing mainly in that finite differences are used in 
radial space to more easily deal with the short-range in- 
teractions that are so important in the CIDN(E)P phe- 
nomenon. Some later models were developed by  other^^,^ 
*to treat simplified cages, but the more realistic the model 
the greater is the reliance on numerical  treatment^^^,^ or 
else considerable simplification of the model is r e q ~ i r e d ~ ” ~  
(e.g., simple two-state kinetic models for the orientation- 
dependent reactivity) and/or appeal to reencounter pro- 
babilistic arguments6 rather than direct solution of the 
diffusion equation. 

In this work, following the suggestions of Freed and 
Pedersen, we include the spin-dependent nature of the 
interacting radicals, i.e., their spin-dependent reactivity 
and exchange interactions, together with the diffusive 
aspects through the stochastic-Liouville formalism (SLE) 
in a combined approach by utilizing finite-differences (in 
radial space) and eigenfunction expansions (in orientation 
space). Thus, we are able to extend the theory of Pedersen 
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and Freed2 for CIDN(E)P to cover orientation-dependent 
effects. Such calculations, dependent on several degrees 
of freedom (viz. spin, translational, and orientational), were 
virtually intractable by the earlier computational proce- 
dures, but they have now been easily performed by the use 
of newer methods developed by Zientara and Freed.’ 

The approach we use is a quite general one. It allows 
for orientation-dependent (1) initial conditions of the 
radical pair, (2) reactivities, and (3) spin-exchange inter- 
actions, while the radicals undergo both rotational and 
translational diffusion. Furthermore, while we do not 
explicitly consider such effects in this work, our approach 
can readily be extended to include orientation-dependent 
pair-potential effects (e.g. Coulombic and exchange in- 
teractions)2 and hydrodynamic effects (e.g., Oseen’s ten- 
sor2), as well as to orientation-dependent spin-relaxation 
effects (e.g., electron-spin dipolar interactions between the 
two radicals7). Nor do we include any orientation depen- 
dence in the size and shape of the radicals, features that 
are probably better dealt with by the methods of finite 
elements.7b 

Our explicit calculations in the present work have been 
performed for rather simple forms for the angular depen- 
dence of reactive and exchange effects to maintain con- 
venience in computation and simplicity in analysis. In 
particular, we compare our orientation-dependent results 
with the past studies based upon spherically symmetric 
interactions. Our results are generally consistent with the 
qualitative predictions of Pedersen and Freed.* That is, 
we find that CIDNP is mainly affected through the re- 
duction in product yield due to the reduced range of 
orientations over which reaction can occur. The CIDEP 
results depend significantly upon the orientation depen- 
dence of the exchange interaction, but the range of mag- 
nitudes of the predicted polarizations is similar to what 
was found in the earlier studies with symmetric interac- 
tionse2 The interpretation of these results, however, must 
now include the concept of a rotational-reencounter 
mechanism. This mechanism will be most effective in the 
limit where rotational diffusion is the dominant process 
of modulating the exchange interaction as compared to the 
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and by rotation of the radical b, hence the R term. The 
fact that these two terms are simply additive is not im- 
mediately obvious, but a careful derivation of this result 
is given in Appendix A. (The more general case where both 
radicals exhibit anisotropic properties is also considered 
there.) We shall further simplify eq 2.2 by choosing U(r,O) 
= 0 for r > d and U(d,d) = 00 (where d = ra + rb is the 
distance of closest approach and is assumed to be orien- 
tation independent). This latter condition is well described 
by a reflecting wall inner boundary condition. Spin-lattice 
relaxation effects will be neglected, since they may usually 
be included at  a later stage in the analysis by using the 
two time scale approach of Pedersen and Freed2 that takes 
advantage of the relatively rapid time scale for the evo- 
lution of CIDN(E)P. 

Equation 2.2 also includes the isotropic translational and 
rotational diffusion coefficients, D and R. These may be 
defined from the Stokes-Einstein relations in terms of the 
hydrodynamic radii of the two radicals. Thus 

Figure 1. Schematic diagram of a two radical system with one radical 
exhibsing an angular dependence about a preferred axis in its properties. 

role of translational diffusion. Also, it is found that 
asymmetric initial conditions can influence both CIDNP 
and CIDEP. 

The details of solving the combined translational-rota- 
tional SLE are discussed in section 11, and the results for 
CIDNP and CIDEP with isotropic initial conditions appear 
in sections I11 and IV, respectively. Effects due to aniso- 
tropic initial conditions are discussed in section V, while 
the conclusions appear in section VI. 

11. Method 
We start with the following general form for the SLE? 

where p(r,Q,t) is the spin-density matrix, 7fx(r,0) is the 
Liouville operator associated with the spin Hamiltonian 
7fX(r,0) (Le., AxB 5 [A$]) ,  K ( r , 0 )  is a phenomenological 
spin-specific reaction operator, R is the spatially inde- 
pendent part of the relaxation matrix, D is the relative 
translational diffusion tensor, R is the rotational diffusion 
tensor, and U(r ,Q)  is the potential energy affecting the 
rotational and relative translational diffusion. For con- 
venience, we are considering in eq 2.1 a relatively simple 
radical pair with each radical containing an unpaired 
electron. This pair is represented in Figure 1 and is com- 
prised of a radical a, with spherically symmetric properties, 
whose center is chosen as the origin of the coordinate 
system within which the relative translational motion will 
be represented. The other radical b, with orientation 
specified by Euler angles, 0, and diffusion tensor, R ,  will 
now, for simplicity, be assumed to have a single preferred 
axis e‘, so that the single angle, 0, as seen in Figure 1 is then 
sufficient to account for the relevant orientation-dependent 
interactions of the radical pair. This angle d is the angle 
between e‘ and the internuclear vector 7, which is the axis 
that  connects the two radical centers. We shall also let 
U(?, 0) = U ( r )  where r = 171, D - D 1 ,  R - R 1 for sim- 
plicity. We therefore simplify eq 2.1 by rewriting it [with 
p(r,t) - p(r,B,t) by integrating over the other “irrelevant” 
independent variables] as 

The coefficient ( D / r 2  + R )  of the term involving 0 deriv- 
atives arises because the variation in d can come about by 
the independent effects of the translational motion of the 
two particles, hence the D/r2  term (cf. eq 2.5-2.7 of ref 2a), 

with D = D, + Db, and 

(2.3) 

(2.4a) 

where K is a correction factor, which, if less than unity, 
allows for the “rotational slip” of molecule b. A dimen- 
sionless ratio of interest then is 

R d 2 / D  = 3r,d/4Krb2 (2.4b) 

We shall also use as the form of the spin specific reaction 
operator 

K(r,d)p(r,fl,t) = -k(r,0)IS)pss(r,d,t) (SI (2.5) 

where pss(r,O,t) is the singlet-singlet diagonal density 
matrix element, while IS) and (SI represent the singlet 
state ket and bra vectors. In our specific model we use 

h(r,0) = [ ko + k,( + cos 0 ) ] [ 6 ( r  - d ) ]  (2.6) 

which, together with eq 2.5, allows for an angular de- 
pendent reactivity of radicals which come in contact in the 
singlet state. The particular choice of k(r,d) is continuous 
in 8. Salikhov6 considered a discrete case [i.e., k(r,d) = 
constant for 0 5 ir/2 and k(r,0) = 0 for d > ~ 1 2 1 ,  and we 
shall point out the similarities in our findings for the 
spin-independent reactivities. 

The quantum mechanical superoperator, WX(r,d), is now 
separated into its constant and spatially dependent parts: 

?YX(r,0) = Sox + 7fJX(r ,d)  (2.7) 

where 

and, by analogy to eq 2.6, we let 

As usual2 we define 
re, 5 In 1 O / X  (2.9b) 

so that rex is a measure of the range of the exchange in- 
teraction in radial space. This “exchange distance” will 
also be chosen to be independent of 0 for simplicity. 
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For high-field  case^^'^ we only need to consider the 
density matrix elements, pa(r,B,t) where a = SS, ST,, ToS, 
and TOTo. S and To here refer to the singlet (S) or triplet 
(To, m, = 0) electronic spin states. We can now consider 
these quantities, p,(r,O,t), as elements of a vector, p(r,B,t), 
which obeys a matrix equation of motion derivable from 
eq 2.2 by taking the (011, 10) matrix elements of the spin- 
dependent operators. The elements of these matrices will 
then be denoted by, e.g., 7YJX(r,6’),,p and K(r,O),,p. 

Further simplification of eq 2.2 can be attained by first 
the change of variable p(r,B,t) = rp(r,O,t) and then multi- 
plication of both sides of the equation by the scaling factor 
d2/D.  This enables us to reduce all the quantities to their 
dimensionless forms: y r / d ,  q = Qd2/D,  ye,  rex /d ,  j o  
E J ld2 /D ,  K kod2/D, ~1 E hld2/D,  and T E tD/d2 .  Usually 
it is sufficient to solve for CIDN(E)P observables in the 
T - 00 limit (but see ref 8 relating to two-dimensional 
systems). It is easiest, for computational reasons, to La- 
place transform eq 2.2, employing the variable 

;(y,O,u) Jme-‘Tp(y,8,7) dT (2.10) 

and to obtain the 7 - m limit by solving for the results 
for u - 0. It has been found that a finite but small value 
for B <  suffice^.^^'^^ 

These modifications and the assumptions of our model 
allow us to rewrite eq 2.2 as 

U ~ ( Y , ~ , U )  - p(y,e,o) = -;[7Yx(y,e)d2/DI;(~,~,u) + 
a2p(y,0,u) + (1/y2 + R d 2 / D )  -(sin a 8 7 )  aP(y,4a) + 

aY2 sin B a0 
[K(y ,@dz /D1P(y ,4~)  (2.11) 

where 7Yx(y,B)d2/D in eq 2.11 is a function of q, j o ,  and j,. 
Using eq 2.7-2.9 we can write for sox 

SS ST, T,S TOT, 
0 - q  4 

0 4  - 4 0  

K , “ d 2 / D =  - 4  0 0 ( 2 . 1 2 )  
( q  0 0 “1 

We now define 

j’(y) = (2j0 + jl)e-Xdb-l) (2.13a) 

j”(y,O) u1 cos O)e-kd(y-l) (2.13b) 

and we find 

[ 7 - r ~ x ( ~ , ~ ) d 2 / D l s ~ o , s ~ ~  = - [ ~ J ” ~ , ~ ) ~ ~ / ~ I T ~ S , ~ ~ S  = 

with all other 

j’(y) + j”(y,O) (2.14a) 

The chemical reactivity of the radicals enters eq 2.11 
through eq 2.5 and 2.6, such that the only nonzero term 
is 

[K(y,@d2/D1ss,ss = K’(Y) + K ” ( Y , ~ )  (2.154 

where we have defined 

K’(Y) E ( K O  + 72Kl)s(Y - 1) (2.15b) 

K”(Y,O) ypY1(COS d ) S ( y  - 1) (2.15~) 

We now expand the ;,Cy$) in a series of zero rank spherical 
harmonics, YLo(O,p),  according to 

m 

?,(y,O,cr) = C?,(L)(y,a)YLo(B,p) for all a (2.16) 
L=O 
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This expansion can usually be truncatedg at  some value 
of L = L,,, such that convergence has been obtained. 
Thus we write 

L ,  
;,(y,O,a) N c~ , (L ) (y ,~ )YLo(O,cp )  for all a (2.17) 

and perform test calculations to show that the residual 
error created by this truncation is negligible. This sim- 
plifies the analysis of eq 2.11 because the spherical har- 
monics are the orthonormal eigenfunctions of the rota- 
tional diffusion operator, with eigenvalues equal to L(L 
+ 1) (cf. Appendix A). This feature can be exploited by 
substituting ,ij(y,O,a) formed by eq 2.17 into eq 2.11. 
Subsequent multiplication by YLo(.O(e) and integration over 
all allowed values of 8 , O  I 0 5 T ,  and cp, 0 5 cp 5 27r, yields 
the intermediate result 

L=O 

; ( d 2 / D ) S r Y L 0 ~ J ( y , B ) Y L ~ O  0 sin 8 do) (2.18) 

The integrals containing K(y,B) and 7YJx(y,0)  can be solved 
by notinglO (see also the Appendix): 

= -L/[(2L - 1)(2L + 1 ) ] 1 / 2  L+ for L’ = L - 1 
=-(L + 1)/[(2L + 1)(2L + 3)]’12 = L- for L’ = L + 1 

(2.19a) 

and the orthonormality relation 

~ 2 r ~ r Y ~ o ( ~ , p ) Y ~ , o ( S , ~ )  sin B dB dcp = b L , ~ !  

with 8L,L, the Kronecker delta. 
We observe that the &independent terms in eq 2.18 may 

couple coefficients (i.e., j3,(L)(y,a)) for different values of 
a but with identical L indices. The &dependent terms 
couple coefficients of the same a but the L indices will be 
different. This is because the &dependent terms of eq 2.14 
and 2.15 are diagonal in the spin basis we are using. 

The y dependence of eq 2.18 is treated by the method 
of finite differences (FD), where all quantities will be 
specified at  discrete nodes in space. These nodes (con- 
necting concentric shells of infinitesimal thickness) will 
be fixed at  distances yl where 1 5 1 5 N .  The y 1  are sep- 
arated according to the geometrically increasing nodal 
separation scheme of Zientara and Freed:’, 

y1 = 1 + C h(”) for 1 > 1 

(2.19b) 

1-1 

m = l  
(2.20a) 

Y1 = 1 (2.20b) 
where 

h(l) _= A I (2.21a) 

h‘”’ A1(Ao)m-’ (2.2 1 b) 
Thus, all the nodal separations are determined by speci- 
fying just AI and Ao. The transition matrix, W ,  and 
volume factors V resulting from the particular choice of 
eq 2.20 and 2.21 have been given previously (cf. eq 2.5-2.8 
of ref 7a). These represent the FD analogues of the a2/ay2 
and y dy differential forms. Also, the coefficients, Ija(L)(y,a), 
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then are only known at  the given set of nodes, ;a(L)(l,g) 
jj,‘L)(yl,a). We may then construct a supervector containing 
the N sets of eq 2.18 written at  all nodes 
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are no longer found to be exact in our study, because of 
the angular degree of freedom introduced into the problem. 
Specifically, A is the spin-independent probability that a 
pair of radicals initially in contact will eventually react. 
It depends upon the reactivity vs. the diffusion effects. 3* 
represents the probability that a pair of radicals initially 
in the triplet state and in contact will eventually react in 
the singlet state given infinite reactivity of singlets. 3* 
therefore is only a function of diffusion vs. spin-dependent 
quantum effects. It has been f ~ u n d ~ ~ ~ ~  in earlier numerical 
studies that 3* 1/2q1/2 for 0 < q C 1 in three dimensions 
and with a very small logarithmic dependence on j,. Thus, 
in a study of orientation-dependent effects on CIDNP, it 
is sufficient, since q has no angular dependence, to an- 
ticipate that it is mainly the reactive effects (which de- 
termine A) that will modify the value of 3 for R d 2 / D  > 
0. These matters are discussed in section 111. 

CIDEP effects are most often calculated from Pa” ( K ~  = 
0, triplet initial) and related to cases where K~ > 0 via the 
formulas of Pedersen and Freed.% These formulas are also 
no longer expected to hold rigorously, especially when there 
are orientation dependences in both the reactivity and the 
exchange interaction. We do not attempt to present a 
complete numerical study of these situations, but instead 
present some typical results in section IV. 

111. CIDNP 
In this section we shall analyze the effects of orienta- 

tion-dependent interactions on CIDNP. We assume in this 
section that there is initially an isotropic angular distri- 
bution of radicals (cf. section V where this assumption is 
lifted). This initial distribution adequately describes the 
case of random radical encounters in a liquid (as F pairs, 
or encountering radicals formed from different reactant 
molecules). It also applies to geminate radical processes 
where rotational diffusion sufficiently randomizes the 
radical-radical 0 distribution before any significant 
translational separation occurs. A t  the outset, we can 
observe from previous CIDNP studieslJ1 that experimental 
data from systems of highly nonspherical species appear 
to be adequately described by a theory assuming spheri- 
cally symmetric interactions.’12 One might hypothesize 
that angular dependent effects largely lead to results that 
may be described in terms of the same fundamental pa- 
rameters as for spherically symmetric interactions, but the 
actual values of these parameters are modified by the 
angular dependences. We shall explore this matter further 
in the analysis of our results. 

We start by recalling that in the past theoretical dis- 
c u s s i o n ~ ~ ~ ’ ~ ~  several exact CIDNP relations were found 
which relate 3 to the fundamental quantities 3* and A 
(cf. eq 3.1-3.9 of ref 2a). Thus, once these two parameters 
are determined, one immediately obtains results for 3 
under a variety of initial spin conditions. The justification 
of such relations (cf. ref 2a) followed simply from (1) the 
fact that only two spin states (S and To) were involved, 
and (2) the simple r-dependent diffusional model leading 
to simple physical interpretation of multiple reencounters 
leading to the “collision”. Once there are more relevant 
diffusional degrees of freedom or more allowed quantum 
states, this analysis becomes less ~traightforward~~ or al- 
together impossible. In our present study, while we still 
retain the simplicity of only two quantum states (S and 
To), the addition of orientation-dependent effects leads to 
the expectation that no such exact relations will exist. 
Nevertheless, for the simple model we studied (Le., cos 6 
orientation dependence) we still found these relations a 
useful first approximation. We therefore discuss our re- 
sults, as before, first in terms of A and of 3*, and then we 

with each subvector #,a) containing 4(L,, + 1) elements 
written in special sequence as 

p”&1>0 
p”$lo (1,U \ 
p T, S (1,0 

(2 .23 )  

In a similar manner, operators on the right-hand side of 
eq 2.18 are replaced by a supermatrix ~tructure ,~J  such that 
a matrix equation results 

A;(.) = N) (2.24) 

where we have introduced F(0) as the initial condition. For 
example, if we wish an isotropic initial condition with the 
radicals in the triplet state and in contact then 

bp;qJ1,7=0) = [ V(1)(47r)1/2]-1 (2.25) 

where the numerical factor on the right-hand side consists 
of an angular normalization term and the FD volume 
factor, V(l), associated with the first node. The structure 
of the supermatrix A follows from past discussion. The 
translational diffusion part of A is created from the ele- 
ments of W, the L-independent quantum couplings result 
from eq 2.12,2.13a, and 2.15b; the L-dependent couplings 
result from eq 2.13b and 2.15~; and rotational diffusion 
enters via the term ( l /y2 + Rd2/D)L(L t 1). The con- 
struction of the partitioned A is discussed in detail in 
Appendix B. 

The calculation of ~ ( C T )  was performed by Gaudsian 
elimination with partial pivoting on a PDP 11/34 mini- 
computer. Once ;(.) is calculated, we may obtain the 
relevant CIDN(E)P quantities from 

where “P is the probability the radical pair have not reacted 
at  t = Also 
Pa” = 

(2.27a) 

(2.27b) 

CIDNP enhancements are usually related to 3 = 1 - P, 
the nuclear-spin-state-specific yields. In turn, 3 may be 
related to two more basic quantities, h and 3*, by ex- 
pressions given e l ~ e w h e r e . ~ , ~  These 3 relations, however, 

N 

0-0 1=1 
E -2 lim ~ ( 4 7 r ) ’ / ~ C  Re ;&!o(l,a)V(I) 
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t a 

O 5 I  

b 

t 

Figure 2. K ( Y , ~ )  for y 2 1, 0 5 8 5 T where K ( Y , ~ )  = K~ + K 1  ('12 + I/, cos 0) for 1 I y I 1 + '/,hand K ( Y , ~ )  = 0 elsewhere: (a) 
represents the case where K~ = 0, K1 > 0 and (b) represents ~ ( y , 8 )  
where K ~ ,  K' > 1. 

consider how effectively they may be used to approximate 
3. 

In our analysis, it is useful to define a dimensionless 
rotational correlation time (cf. eq 2.3 and 2.4) as 

which we may then compare with a dimensionless char- 
acteristic time associated with a translational displacement 
of ( A Y ) ~  in liquids given by12 

TT*(AY) f TTD[d2 9 1 / s ( A ~ ) ~  (3.lb) 

Then a value of ?R* = 1/3, for example, implies that the 
radicals would retain knowledge of the mutual orientation 
for the time required to separate a distance of about d Z d .  
More precisely, however, the radical orientation relative 
to ?will decay with effective dimensionless time constant 
(cf. eq 2.18): 

TR*eff(Y)-l = TR*-' + TT*(y)-l (3.2) 

where T ~ * ( Y )  = y2/6. 
We illustrate in Figure 2 typical forms for K ( Y , O )  which 

may be modeled by eq 2.6. Figure 2a corresponds to K~ = 
0, K~ > 0, while Figure 2b is for K ~ ,  K~ > 0. In both figures, 
following eq 2.6, the reaction is limited to the contact 
region extending h(')/2 beyond the distance of closest 
approach (i.e., ranging from 1 5 y I 1 + h(l)/2). More 
sharply peaked reactivities may be modeled by including 
higher order terms in a Legendre polynomial expansion 
of K(Y,O) (cf. Appendix A). This may readily be incorpo- 
rated into the present formalism, but it does lead to a 
larger value of L,, required for convergence, hence longer 
computations than were practical to perform in the present 
work. 

The results obtained for A by using the forms for K(Y,B) 
illustrated in Figure 2 showed no peculiar effects except 
for the expected overall reduction in product yield due to 
the decrease in the reactive region (in 8 space) accessible 
to the radicals. Results for A, where K~ = 0 and K~ > 0 (cf. 
Figure 2a), are shown in Figure 3. We have determined 
that the results of Figure 3 are accurate to within 1 % (by 
calculations which use L,,, > 4). One observes that the 
calculated results (given by the solid curve) do not deviate 
significantly from the results predicted by assuming 

Figure 3. A vs. ~~ll.6 with K~ = 0. The solid curve exhibits numerical 
res Ats calculated by using the additional input of T ~ *  = 1/3, q = io 

4, and an isotropic singlet initial condition. The dashed curve shows 
the theoretical values for A calculated from eq 3.3 and 3.4 and with 
T~ = 0.015625. 

spherical symmetry,z provided we introduce an effective 
reaction rate Keff, i.e. 

(3.3) 

where T~ = h(')/2 is a dimensionless lifetime of the inter- 
acting radical pair. Equations 2.15b and B.7b suggest the 
use of 

= = 0, AI = 0.03125, A0 = 1.225, yN= 2894, N = 50, L,, = 

KeffTI 

1 + KeffTI 
A -  

Keff KO + Y$1 (3.4) 
in eq. 3.3. The dashed curve shown in Figure 3 is based 
on eq 3.3 and 3.4. For TR* = 1/3, as was used for the 
results shown in Figure 3, the simple form for A obtained 
by employing a Keff predicts the actual results with a 
maximum of less than 10% error. 

When this same model was studied with different values 
of TR*, the effects of orientational relaxation upon re- 
activity were observed. In general, the values of A for a 
given value of K~ will oscillate somewhat about some mean 
value as TR* is varied and all other parameters are kept 
constant. In the limit as TR* - m, only the translational 
motion of the radicals yields orientational relaxation (cf. 
eq 3.2). In this limit, a uniform orientational distribution 
will be achieved by those radical pairs which separate and 
reencounter after a sufficiently long translational excur- 
~ i o n . ~ J ~  The importance of such an effect is reduced (in 
three dimensions), because the reencounter probability 
from a separation r is tf = r/d. Thus, those radical pairs 
which are not oriented favorably for reaction in their initial 
encounter will, in this limit, experience a reduced likelihood 
of reactivity from future encounters. We have indeed 
found an overall decrease in yield in this limit relative to 
the predictions of eq 3.3 and 3.4. As TR* is decreased from 
this limit, rotational diffusion becomes effective in ran- 
domizing the radical orientation without requiring trans- 
lational excursions, so the effective reactivity is found to 
increase and reach an asymptotic maximum value as TR*~B 
(y = 1)-' - TR*-~. In this limit, the rotational diffusion 
causes many "rotational reencounters" leading to increased 
reactivity. Therefore we may expect that for T ~ *  < 1, we 
may employ a relation like eq. 3.3 but with 

(3.5) 
and this is exactly what is found from our numerical 
studies (where the actual Keff depends upon K~ and K J .  

Thus, in summary, it appears from our results that the 
simple form of eq 3.3 for A is an adequate approximation 
for orientation-dependent kinetics provided one utilizes 
a Keff as the effective first-order rate constant, where Keff 

KO + K 1  2 Keff > KO + 1/2K1 
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Flgure 4. Ratio of numerical to predicted values of ?(To) vs. q ,  for 
K~ = 1.6, 160, and 1.6 X lo4.  Additional input includes T ~ *  = 113, 
K~ = j ,  = j ,  = 0,  A, = 0.03125, A, = 1.225, N =  50, L,, = 5,  and 
anisotropic triplet initial condition. The predicted value for 3(T,), is 
calculated from 9" and 9 (exact numerical result) as shown by using 
Freed-Pedersen eq 3.9a (ref 2a). 

I K~~ with K~~~ = max[~(y,B)]. Further, Keff increases as 
T ~ * - ,  increases. 

Such ideas pertaining to the use of effective rate con- 
stants were discussed in previous ~ t u d i e s . ~ , ~  Solc and 
S t ~ c k m a y e r ~ ~  point out that it is difficult or impossible to 
obtain knowledge of the orientation dependence of particle 
reactivity from the results of kinetic experiments. Such 
experiments only lead to an effective rate constant Keffi 

Salikhov's approximate treatment6 of rotational effects 
on recombination also yields the above c o n ~ l u s i o n s . ~ ~  

We now examine the implications of this result for 
CIDN(E)P observables (Le., the spin-dependent effects), 
but first we must discuss orientation-dependent effects on 
3*. We have found from our results that 3* is, to a good 
approximation, a function only of q, except for large values 
of j o  or jl (Le., jo, j ,  Z lo3). (For j o  = j ,  = 0 this statement 
is exactly true.) This result, for smaller j o  or j ,  is not 
surprising, since 3* is calculated in the limit that I - a, 
or alternatively the limit that KeffTI - a. In this limit, the 
orientational-dependent aspect of the reactivity should 
have no effect. The effect of a finite j(y,B) upon 3*, with, 
for example, j o  = 0, j ,  >> 0, was similar to that found in 
previous studies on spherically symmetric interactions 
where j o  >> 0 was used (cf. Table I of ref 5a and replace 
j ,  by l / i l) .  Thus, except for such cases where a large j(y,B) 
may produce a spatial region of significant extent in which 
S-To transitions are suppressed, we expect that all the 
orientational effects will appear in the quantity A. 

We now turn to the consideration of the relation be- 
tween 3 and 3* and A. In particular we have examined 
the relation 

3(To) = A3*[l + 3*(1 - A)]-' (3.6) 
which was found to be exact for the spherically symmetric 
case. We show in Figure 4 our results for the ratio 3- 
(To),um/3(TO)pred where 3(T0)num is the exact numerical 
result and 3(T0)pred is the result predicted from eq 3.6 by 
using the exact numerical results for A and 3*, Our results 
for q > show that eq 3.6 is indeed a very good ap- 
proximation, although it is not exact. For very small q - 

= A3*, it is a little larger than 9- 
(TO)calcd and the J r i a t i o n  is independent of A. Thus, in 
this limit g(To) is nearly, but not exactly, equal to the 
probability that triplets are converted to singlets (3*)  
multiplied by the probability that singlets react. However, 
for q k the ratio for small h - 0.01 and large '1 - 
1 converge to exactly unity, but that for rl - 0.5 is 

In general, for the limit A = 1, the exact limiting form 
must still apply: 9(S) 3 h = 1, 3(To) = 3*, and 3(RI) = 
1/2(1 + 3"). We show in Figure 5 the results for 3- 
(To)num/~(To)pred where 9(To),red is calculated from the 
exact 3*, while h,ff was obtained by eq use of 3.3 and 3.4 

where 3(T0) 

1.02-1.05. 

'3CT,) numeric01 

, 05c 3(To)  predicted 

0 8 0  " ' , ' ' I  ' ,'d ' , " ' ' '  , ' "Ul ' ' ' " 1  ' ' ,  " 1 ' , ''A 
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Figure 5. Ratio of numerical to predicted values of $(To) vs. q ,  for 
K, = 1.6, 160, and 1.6 X lo4. Additional input includes T ~ *  = 1/3, 
K~ = j o  = jl  = 0, A, = 0.03125, A. = 1.225, N =  50, L,, = 5, and 
an anisotropic initial condition. The predicted value of 9(T,) is calcuhted 
from 3" and A ( K ~ , ~ )  by using eq 3.3 and Keff = K,  + 1 / 2 K l .  

I 

t b 

Figure 6. j ( y 8 )  for y L 1, 0 I 0 5 x where j (y,B) = [ io + j l  ('I2 + cos 19) ]e - '~ (~- ' ) :  (a) is the case where j ,  = 0, j l  > 0, (b) 
represents lo > 0, j ,  > 0, and (c) is the case where j(y,6') changes 
sign due to io > 0, j ,  < 0 but ljll > io. 

(and T ~ *  = 1/3). Here the discrepancy is somewhat 
greater, but still the comparison is rather good. Again the 
greatest discrepancy appears for 11 - 0.5. 

We thus conclude this section by noting that our model 
results indicate that the important CIDNP observable 3 
can be rather well estimated by the use of a theory for 
spherically symmetric interactions, and a heff which is a 
simple function of KeffTI via eq 3.3. I t  is generally difficult 
to relate a Aeff, which may be determined by a (CIDNP) 
experiment, to the microscopic details of the molecular 
mechanism embodied in the parameters Keff and 71.' 

IV. CIDEP 
In discussing our results on CIDEP polarizations we first 

consider the cases where K~ = K~ = 0 (i.e., no reactivity) but 
j = j ( y , B ) .  We consider only isotropic initial conditions in 
0 in this section and defer to section V the discussion of 
effects of anisotropic initial conditions. Several cases of 
the variation of j ( y , 0 )  with y and 0, which we consider, are 
represented pictorially in Figure 6. The example of Figure 
6a (where j o  = 0 and j ,  > 1) would correspond to a max- 
imum exchange when B = 0 with a minimum value at  0 = 
R of zero. This would crudely model an unpaired electron 
in a directed orbital on radical b. In Figure 4b this effect 
is less pronounced, since j ,  # 0, while in Figure 6c j(y,0) 
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TABLE 1: Variation of Pa" x l o 3  with R d 2 / D a  
Id IIe IIId IVd 

j , =  0 j o =  1 6  j o =  0 j o =  16 
j, = 14.4 j ,  = 14.4 j ,  = 1600 j ,  = 1600 R d Z / D  rR* 

0.050b 3.33 98.4 54.5 33.4 34.5 
0.055 3.03 90.7 55.1 27.4 27.4 
0.50 0.33 87.4 55.4 27.0 26.8 
0.55 0.303 65.8 55.4 25.3 25.6 
1.0 0.167 105.5 55.2 28.3 27.9 
1.1 0.152 93.3 55.0 29.1 29.1 
5.0 0.033 118.3 56.1 27.1 27.1 
5.5 0.030 106.3 55.2 27.7 27.7 

5 0' 0.0033 103.7 54.8 27.7 27.6 
55 0.0030 102.3 54.7 27.6 27.5 

found by using input as shown and q = 0.064, yex = 1, K , 
N = 50, and an isotropic triplet initial condition. The 
value of yex = 1 corresponds t o  a translational exchange 
lifetime of T h  = 0.094. Results obtained by using L,,, = 
5 show that the polarizations in this table represent 
numerically convergent values within about 1% of the 
actual value. R d Z / D  = 0.050 and K = 1 implies rb - 
16ra, from eq 2.4b. 
II6ra. Cf. Figure 4a. e Cf. Figure 4b. 

a Finite difference numerical results for Pam X l o 3  

= K ,  = 0, L,, 7 6, A I . =  0.03125, A ,  = 1.225, Y N  = 2894, 

R d 2 / D  = 50 and K = 1 implies rb = 

changes sign as a function of 6' since j o  > 0 but jl < 0 (but 
ljll > jo). This latter case is interesting theoretically and 
might conceivably be realized in practice. 

Our results given below can be extended by the use of 
the relations 

Pam(Kg=K1=O,q,-jO,-jl) = -Pa"(KO=K1=O,Q,jO,jl) (4.1) 

for any initial condition, while 

Pam(Kg=K1=O,q,jOjl,SI) = -Pa"(Ko'Kl'O,q,jo,jl,TI) (4.2) 

where SI and T I  refer to singlet or triplet initial conditions, 
respectively. Equations 4.1 and 4.2 follow from the sym- 
metries of the SLE as previously noted.2 However, the sign 
of Pa" no longer follows from the simple rules used earlier2 
based upon the signs of q and jo, unless (1) pll < pol if sign 
Po] = -sign Gl], or else (2) if sign Go] = -sign PI]. The 
breakdown of any simple sign rules is especially true for 
the case of Figure 6c, as will be Been below. 

We now consider the case of Figure 4a in somewhat more 
detail. When the radical pair are close enough that y < 
yex and ljll Z 1, it follows that for 6' < a/2 the exchange 
interaction j(y,6') is appreciable; but for 6' > n/2 it is very 
small. Thus, this is a situation where the "rotational 
encounter" mechanism can play an important role; i.e., the 
exchange interactions may be "turned on" or "turned off' 
merely by the rotational diffusion (and the orientation- 
dependent part of the translational diffusion, cf. eq 3.1). 
This will be in addition to (and in competition with) the 
effects of the "translational encounter" mechanism2J3 
which is the only process modulating jb) for spherically 
symmetric (Le., y = 0) exchange interactions. The case 
of Figure 4b is more nearly like the spherically symmetric 
case, so it is much less affected by the "rotational 
encounter'' mechanism. 

Typical results shown in Table I clearly exhibit the 
sensitivity of the polarizations to rotational reencounters. 
Case I of this table (jo = 0, j ,  = 14.4) corresponds to the 
situation of maximum, or near maximum, polarization for 
each value of TR*. The greatest sensitivity to rotational 
reencounters occurs for rR* - 1/6, in which region Pa" 
exhibits an oscillatory variation with rR*. In this sensitive 
region, it must be that small increases or decreases in the 
number of rotational reencounters can significantly modify 
Pa". This is reasonable if we recall that a maximum in Pa" 
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Flgure 7. Pa" X lo3 vs. j1 / l .6  with the additional input of lo = 0, q 
= 0.064, yex =, ,l, A, = 0.03125, A. = 1.225, yN = 2894, N = 50, 
and an anisotroptc triplet initial condition. The solid curve exhibits the 
numerical results including rotational diffusion effects with T ~ *  = 1/3 
and L,, = 4. The dashed curve shows numerical results excludlng 
orientational effects, i.e., TR*-I = 0, L,, = 0. 

vs. j(y,6') results from a competition between the polarizing 
mechanism (linear in j )  and the depolarizing (Heisenberg 
spin-exchange) mechanism (quadratic in j ) ,  so shifts in the 
effective encounters can modulate the competing effects 
of these two processes. However, for large TR* the rota- 
tional diffusion is no longer very important (with the 
dominant reorientation of 6' due to the diffusion of 9, while 
for very small T ~ *  many rotational encounters take place 
before any translational diffusion occurs, and one has a 
single effective - orientationally averaged exchange inter- 
action, j(y,6'). 

If we recall that the (dimensionless) lifetime, T ~ * ,  of the 
exchanging radical pair is 

] , I 1  6 - 

(4.3) 

with X defined in eq 2.9, then our results suggest that 
rotational reencounters will be important when TR* S T~ 

(e.g., in Table I, T~ = 0.1). 
The results in columns I and I1 of Table I may now be 

compared. Those of column I1 correspond to the case of 
Figure 4b (Le., j o  = 16; jl = 14.4). Here we find there is 
no range of 6' where j(y = l,O) is suppressed [i.e., there is 
no 0 for which j (y = l , O )  < q ] .  In this case the predicted 
Pa" are constant to within 2% even though TR* is varied 
over three orders of magnitude. Clearly, anly the trans- 
lational reencounter mechanism plays a significant role. 

The results in columns I11 and IV of Table I, where jl 
= 1600 and j o  = 0 and 16 respectively, are typical of results 
where asymptotic polarizations for large j(y,6') have been 
achieved. The existence of finite asymptotic Pa" for large 
j o  > lo3 is well known from previous work,2 but these 
results in Table I as well as in Figure 7 demonstrate that, 
even for the case of Figure 6a, the same is true in the 
orientation-dependent case. Whether the asymptotic limit 
is achieved with a large j o  or j ,  (or both), Pa" is virtually 
the same. Furthermore, we find that varying T ~ *  over 
three orders of magnitude has very little effect upon Pa" 
(except for TR* > 3). This is presumably because for such 
large values of jl(l,6'), we have pl(l,6')l >> q for most values 
of 0, thus suppressing the importance of rotational reen- 
counters, with reencounters via diffusion in i required to 
generate the asymptotic values. 

The results in Figure 7 illustrate how the asymptotic 
limit is achieved as j increases. We show an orientation- 
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TABLE 11: CIDEP in the Presence of Asymmetric Chemical Reactivitya*b 
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exchange interaction input 
10'[Pa"(RI)/ 

1 0 3Pa" (s ) 10 3pa- ( T, 5(RI)1 
1.610.012 -84.9(-85.1) 86.2(86.2) 108.0(86.1) 
160/0.509 - 3 5,8(-- 44.7 ) 91.2 ( 9 1.0) 10 3.2( 86.1 ) 

( % *  = 0.120, Parnk=,,(To) X lo3 = 86.1) 1.6 X 102"/1.0 O . O ( O . 0 )  95.0(96.4) 84.8(86.1) 

1.6/0.012 - 26.5(- 26.6) 26.9(26.9) 31.3(26.9) 
160/0.509 - 12.2(- 14.0) 28.4(28.4) 31.1(26.9) 

O . O ( O . 0 )  29.6(29.7) 26.8(26.9) 

j ,  = 0 
j ,  = 16 

(5*  = 0.105, Pa"h,,(T,) X l o 3  = 26.9) 1.6 X l O z o / 1 . O  

1.6/0.012 - 25.7(- 26.4) 26.8(26.8) 88.4(26.7) 
160/0.509 -4.2(-13.7) 27.9(28.0) 48.1(26.7) 

(5* = 0.101, Par*h=,(To) X l o 3  = 26.7) I 1.6 X 10za/l.O O . O ( O . 0 )  27.9(29.4) 25.4(26.7) 

j , =  0 
j ,  = 1600 

j ,  = 1600 
j ,  = 16000 

I 
I 

I I 
I 

a The first results are the accurately calculated ones; the results in parentheses are predicted by using eq 4.5 (and its 
analogues, cf. ref 2a, eq 3.20-3.23) and the calculated values of 5 * and Pa"k,,(T,). Other values used are K , = 0, yex = 
~ , ~ , , , ~ 5 , ~ ~ * ~ 1 / 3 , ~ ~ 0 . 0 6 4 , A ~ ~ 0 . 0 3 1 2 5 , A , ~ 1 . 2 2 5 , N ~ 5 0 , ~ ~ ~ 2 8 9 4 .  

dependent case where j(y,O) = l / i l ( l  + cos O)e-xdb-l) and 
an orientation-independent case where j ( y )  = l/ile-x(d-l). 
Both exhibit almost the same asymptotic limit, and nearly 
the same value of j,(max) (corresponding to the maximum 
in Pa"), while the P,",,, are within about 15% of each 
other. By varying T ~ * ,  one finds that Pam,, varies about 
*50% (for the solid curve) while j,(max) hardly changes. 
The peak widths are generally broader for the orienta- 
tion-dependent models. Also Pamrn, shifts to higher values 
of j as yex decreases just as is the case for spherically 
symmetric interactions.2a The results typified by Figure 
7 are indeed consistent with the qualitative predictions of 
Pedersen and Freed15 for nonsphericaly symmetric cases. 

Our results thus suggest that, for an exchange interaction 
of the form of eq 2.13a, the observed Pa" may be ade- 
quately approximated by the predictions of the theory 
based upon spherically symmetric exchange interactions2 
if one uses an effective exchange interaction: 

(4.4) 
except in the region of Pam,,, (cf. column I of Table I) 
where deviations of the order of a factor of 2 may occur. 

We now turn to consideration of CIDEP in the presence 
of chemical reactions. The primary equation for this sit- 
uation for spherically symmetric interactions (Le., jl = K ,  

= 0) is2 

jeff(y) i= Go + '/2i l e  ) -xd(y-l) 

(4.5) 
However, we find that for anisotropic interactions eq 4.5 
is no longer generally true. When, however, the reactivity 
is orientation dependent and G(l,O)( Z lo3 and A N 1, then 
eq 4.5 is very nearly obeyed. This can readily be under- 
stood, because the condition h N 1 implies that there is 
virtually complete depletion of all radicals within the re- 
active sphere, since the radical rotation-reaction process 
overcomes the effect of the reduction in the size of the 
reactive region. Then the polarization can develop as 
though the radicals present are initially all in the To state. 
Equation 4.5 is also very nearly obeyed if there is a 
spherically symmetric reactivity and l j( 1,O)l 2 lo3. 

However, deviations from eq 4.5 (as well as the other 
equations of Pedersen and Freed2 relating Pa" in the 
presence of reactivity to values in the absence of reactivity) 
will occur when there is an orientation-dependent re- 
activity and A < 1. Typical results are shown in Table 11. 
In all cases we considered, the angular-dependent parts 
of j(y,O) and K ( ~ , O )  were both centered about the same value 
of 8 as seems physically reasonable. Thus, from eq 2.6 and 
2.9, it follows that the only way in which the "shapes" of 
j(y,O) and K ( Y , O )  vs. 0 may be different is in the relative 
weightings of j o  vs. j ,  on the one hand and K~ vs. K~ on the 
other. We see from Table I1 that, when j o  = K~ = 0, there 

are indeed deviations from eq 4.4 but they are not very 
large. However, in the case that K~ = 0 but j o  and j ,  are 
both substantial, then deviations from eq 4.4 by more than 
a factor of 2 are found. We may explain these results as 
implying that when j and K have the same orientational 
dependence, then they are both similarly affected by ro- 
tational reencounters as well as by translational reen- 
counters, so the overall mechanism generating the polar- 
ization is similar to that from the reactive-independent 
process alone. Thus, large deviations are not to be ex- 
pected in this case. On the other hand, when K is more 
highly orientation dependent than j (and A C l), then there 
is a highly nonuniform (spin-dependent) depletion of the 
interacting radical pairs, so that there is considerable 
variation of the nature of the radical pairs (viz. their spin 
states) over the broader range of values of O which can 
effectively engage in exchange. Such effects might well 
be enhanced by the use of more sharply peaked orienta- 
tion-dependent K ( Y , O )  than we have used in our model 
calculations. 

Paul, in his recent CIDEP study,lG has found that his 
results are consistently about four times greater than 
predicted by a spherically symmetric theorya2 In his 
analysis he considers Pamasympt. He suggests that this might 
be due to anisotropic exchange effects. Our results in this 
section do not, however, support this point of view. As we 
have just shown, it is only when K is more highly orientation 
dependent than j that there are significant deviations 
noted from spherically symmetric theory. However, Paul 
has found from a study of both geminate recombination 
and from random encounter recombination that eq 4.5 is 
obeyed even though P,"(RI)/S(RI) and Pamk=,(T0) are both 
about a factor of 4 large. Our results in Table I1 show that 
when P,"(RI)/S(RI) is found to be significantly larger due 
to anisotropy, then P,mk,o(To) is still in very good agree- 
ment with a spherically symmetric theory, so that eq 4.5 
is seriously violated. One must, therefore, look to other 
model-dependent features noted by P a u P  and by Ped- 
ersen-Freed' which can influence Pa" and not violate eq 
4.5. On the other hand, it is possible that the importance 
of orientation-dependent effects may show up in future 
experiments precisely in that eq 4.5 is violated. 

Situations that cannot be approximated by the use of 
a spherically symmetric theory are depicted in Figure 6c. 
In this case j(u,O) will change sign with 9. Several examples 
are illustrated in Figure 8 with the resulting polarizations. 
Although the exchange interaction has in each case a large 
enough value that would normally imply a result close to 
the asymptotic polarization (Le., P," = 27.0 with Go1 = 1600, 
ljll = 1600, and other values as for Figure 8), it is evident 
from Figure 8 that these results correspond more closely 
to what one would expect from a simple spherically sym- 
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Flgure 8. j(y,8)/1.6 vs. 8 with the numerical result for Pa" associated 
with each example. 8 varies from 0 to K with values of j (y  = 1, 8 = 
0) = j o  -I- j ,  and j(y = 1, 0 = K) = ja noted on each diagram. Additional 
input Includes T ~ *  = 1/3, q = 0.064, yex = 1, j o  = 1600, A, = 0.03125, 
A. = 1.225, N = 50, yN = 2894, L,,, = 6, and an isotropic triplet 
initial condition. Values of j ,  used are: (a) -3200; (b) -3040; (c) -3360; 
and (d) -4800. 

metric model with an angular average of the exchange 
interaction. This is most dramatically revealed by Figure 
8a, where the exchange interaction is antisymmetric about 
0 = a/2 and yields no polarization even though Ij(y,S # 
a/2)1 >> q. It is not obvious whether real examples of this 
case may actually be found. 

V. Anisotropic Initial Conditions 
One might expect that recently formed geminate radical 

pairs will retain some memory of their initial relative 
orientation, and, if the interactions leading to CIDN(E)P 
are anisotropic, then this initial orientation should affect 
the polarizations. On the other hand, radical pairs formed 
from random encounters (i.e., F pairs) will be accurately 
described by an isotropic initial distribution, since this 
follows from spatial isotropy.17 

We now consider effects of anisotropic initial conditions 
on CIDN(E)P observables. We choose as a particular 
anisotropic initial condition to replace eq 2.25 by 

where a corresponds to the particular nonzero spin matrix 
element(s). We may write for the expansion coefficients 
(cf. eq 2.16) 

1 
(4a)'i2V(1) 

pi:(1,6,7=0) = (5.2a) 

(5.2b) 

~ ~ ~ ( ~ ) ( 1 , 6 , 7 = 0 )  = 0 for L > 1 ( 5 . 2 ~ )  
This corresponds to having as the most likely initial ori- 
entation: 0 = 0. More sharply peaked initial distributions 
may be achieved by including higher order spherical 
harmonics in eq 5.1, but they will require a larger value 
of L,,, to achieve convergence. 

We compare in Table I11 results for A obtained by using 
eq 5.2 with those obtained by using eq 2.25 for several 
values of KO, K ~ ,  and Q*, but with 71 = 0.0156. We find that, 
in general, the two sets of results exhibit differences, which 
are small. We can explain this result simply as reflecting 
the fact that the anisotropic initial condition "relaxes" to 
an isotropic distribution in a time 7R*eff(l) given by eq 3.2. 
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TABLE 111: Variations in A Due to an Anisotropic 
Initial Condition' 

0116 0.1 2( 0 .1  1) 0.08( 0.11) 0.1 1(  0.11) 
01160 0.65(0.59) 0.43(0.51) 0.53(0.55) 
16/16 0.28(0.27) 0.25(0.27) 0.27(0.27) 
Finite difference numerical results for A from an ani- 

sotropic singlet initial condition, favoring a concentration 
of radical pairs with e 5 7112, are listed first followed by 
the results where an isotropic initial condition is utilized. 
Additional input includes g = j , , = j ,  = 0, A ,  = 0.03125, 
A ,  = 1.225, N =  50, Y N  = 2894; and L,,, 
0.015625. 

6. Note T I  = 

TABLE IV: Variations in Pa" Due to an Anisotropic 
Initial Condition 

Part A. No Chemical Reaction Allowed,' 
Results for Pa" ( I ( "  = K ,  = 0, To)  X l o 3  

TR* 0.033 0.33 
j , / j ,  R d 2 / D  5.0 0.5 

0116 100.4( 118.2) 64.1(86.1) 
0/1600 26.6(27.1) 23.1( 27.0) 
16/16 51.3(54.9) 81.9(54.2) 
16/1600 26.6(27.1) 21.3( 26.8) 

Part B. Reaction Included,b 
Results for Pa" ( t i , ,  K ]  # 0, To) x l o 3  

TR* 0.033 0.33 
t i , / K O  R d 2 / D  5.0 0.5 
0116 26.9(27.4) 23.9(27.2) 
01160 28.2(28.7) 26.0(28.4) 
16/16 27.3( 27.8) 24.5(27.7) 

Part C. Reaction Included,b 
Results for Pa" (K o, t i l  # 0 ,  S) X l o 3  

7 R *  0.033 0.33 

- 

K O / u ,  R d ' I D  5.0 0.5 

0116 -23.5(- 24.3) -21.3(-23.9) 
01160 - 9.2(- 11.5) - 12.3(- 12.5) 
16/16 - 19.4(- 20.2) - 1 7 3 -  19.9) 

' Finite difference numerical results for Pa" from an 
anisotropic triplet initial condition, favoring radical pairs 
oriented with e < 7112, are listed first followed by the 
results obtained by using an isotropic triplet initial con- 
dition. 
0.03125, A ,  = 1.225, N = 50, Y N  = 2894, and L,,, = 6.  
Numerical convergence of these results was checked by 
noting that the change in the results obtained by using 
L,,, = 6 was <5% from the L,,, = 5 results. Same 
method of presentation of numerical Pam results except 
that j ,  = O,], = 1600, and other input parameters as in 
part A were used with only K,, K ,, and R d ' / D  varying to 
exhibit reactive effects. 

This is typically short enough (even in the limit TR*&(l) - 7~*(1)) that there are sufficient translational encounters, 
after the orientations have been randomized, to  yield 
comparable results for the two cases. There are enhanced 
reactivities when 7R* is very short, presumably due to the 
enhanced effects of the initial condition on the first en- 
counter followed by randomization of orientations on 
subsequent encounters; while as ~ R * ~ f f  - 7~*(1) the results 
for the two cases become virtually identical. 

We show typical results for CIDEP in Table IV. Again 
we compared results obtained with eq 5.2 vs. those ob- 
tained with eq 2.25. There is, for no reactivity, in most 
cases a decrease in Pa" due to the anisotropic initial con- 
dition, but again the effects are not very large, undoubtedly 
for similar reasons to those discussed for A. The observed 
decrease we may interpret as due to having a large fraction 
of radical pairs oriented such that initially V(u,O)( > q ,  so 

Additional input includes q = 0.064, ye, = 1, A I  = 
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the radicals must reorient, or else separate, before the usual 
polarization process may begin by q mixing. However, for 
an isotropic initial distribution, a greater fraction of the 
radical pairs are oriented such that Ij(y,O)l < q ,  so the 
polarization process can begin immediately. We also show 
in Table IV results when k # 0. We again find that the 
results are not very sensitive to the anisotropic initial 
conditions, although we did not carry out an exhaustive 
study over the full range of the many variables. Thus, for 
example, as TR* - (or alternatively as TR*& --+ T ~ * ) ,  one 
might expect somewhat enhanced effects.ls 

When the experimentally determined ratios of polari- 
zation due to geminate and random initial processes were 
compared to the theoretical values of Paul16 excellent 
agreement was found. From our discussion and the results 
in Table IV we would predict about a 10% deviation in 
observed polarizations if highly anisotropic initial condi- 
tions existed for geminate radical pairs. The polarizations 
from F pairs, as noted, should be well predicted by earlier 
theoriesa2 However, since good agreement was found be- 
tween observed and calculated ratios there appears to be 
no discrepancy in the prediction of geminate pair polari- 
zations by the simpler theory. This is evidence that the 
geminate pairs in this system must randomly orient before 
polarization processes commence. 
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VI. Conclusions 
We have, in this work, succeeded in extending the 

Pedersen-Freed theory for CIDN(E)P to cover the case 
of orientation-dependent interactions, and we have largely 
confirmed their qualitative predictions. The simple case, 
where one of the two radicals exhibits isotropic behavior 
and the anisotropic behavior of the other obeys a simple 
functional form, was analyzed in detail, although the ap- 
proach may be generalized to more complex situations. 

We have found that the primary effect on CIDNP of an 
anisotropic reactivity is the reduction in A, the reaction 
probability for the full collision, that can be rather accu- 
rately approximated by the use of an "effective" spherically 
symmetric specific rate constant, which, however, is a 
function of Rd2/D,  because of the role played by rotational 
reencounters. This immediately implies that one can use 
a spherically symmetric theory for CIDNP (but with a 
"renormalized" A) to interpret experiments. 

In the case of CIDEP in the absence of reactivities, we 
generally find that the orientation dependence of &-,e) 
has virtually no effect on the values of the polarizations 
that are asymptotic with large J(r,O) provided the correct 
"effective" spherically symmetric exchange interaction is 
used. However, there are some changes in the magnitude 
of P,",, (varying by about &50%) and a greater breadth 
of P," vs. J(r,O) about this. maximum (Pammm). [Somewhat 
larger effects might be anticipated from more sharply 
orientational varying functional forms, but they were not 
studied.] In the presence of orientation-dependent re- 
activities, K(r,B), such that K(r,O) shows substantially 
greater orientation dependence than J(r,O) (and A < l), 
then deviations by as much as factors of 2 or 3 from the 
asymptotic Pa" are found, and even greater effects might 
be expected for more sharply varying functional forms for 
K(r,O). It is this situation which might have some relevance 
for the recent CIDEP observations by Paul. 

In general, we find that anisotropic initial conditions 
have only a small effect on the polarizations, largely be- 
cause rotational relaxation is an effective mechanism for 
quickly relaxing these initial conditions for typical values 
of Rd2/D.  For more realistic models that include aniso- 
tropic interaction potentials affecting the reorientation, 

we would again expect that the initial conditions would 
relax rapidly to the anisotropic equilibrium relative ori- 
entational distribution, so that initial conditions should 
not be too important, but there should otherwise be im- 
portant effects on A (hence 9) as well as Pa" (for k # 0) 
from the anisotropic interaction potentials. 

In general, then, we expect that  the general trends we 
have observed in our simple cases will carry over to more 
complex models, although it would be interesting to study 
models with more asymmetric reactivity and with asym- 
metric shapes. 

Finally we note that our approach can be effectively 
employed in a variety of problems in chemical physics and 
b i o p h y s i c ~ . ~ ~  

Acknowledgment. The authors express their thanks to 
Henning Paul for sending the preprint of his study. This 
work was supported by NSF Grant 77-26996. 

Appendix A 

2.1) 
p(F;,t) = - i 7 f o X p ( F L , t )  - i 7 f j x ( r ' , ) p ( r ' , , t )  + DI'Fp(F;,t) + 

1=1,2 

The general SLE appropriate to our problem is (cf. eq 

C R1rr,p(U) + k(F;)p(r'i,t) (AI)  

where r' is short-hand notation for r', the internuclear 
vector, as well as the orientations of molecules 1 and 2 
relative to the lab frame specified by Euler angles Q, and 
Q 2 ,  respectively, while Dr,- and R,r ,  are the translational 
and rotational diffusion operators, respectively. We now 
assume axial symmetry of each molecule with respect to 
its reactivity (for simplicity) so that Ql --+ P1,yl and Qz -+ 

P2,y2, i.e., the polar and azimuthal angles, respectively. 
Thus we can regard the spherical harmonics YL ml(/&yl) 
and YL,,,(P2,y2) as bases of representation of p(7,t). [More 
generally we would need the generalized spherical har- 
monics a)klm,(Ol) and a)k;mg(Qz).] It is more convenient to 
use a coupied representation such aslo 
IL,,L,J,M) = 

C YLlml(P1,~l) Y ~ ~ r n ~ ( P 2 , ~ 2 )  (LlmlL2m21L1L2J9M) (-42) 
ml!m2 

where (L1rnlL2m21L1L2J,M) are the vector coupling coef- 
ficients. Actually eq A2 is not precisely of the form needed, 
since, in general, J(Ti) and k(7J will have angular depen- 
dences such that they may be expanded in terms of the 
Legendre polynomials PL(cos 6':). We consider as an ex- 
ample the case where J(F;) and h(7J depend only on the 
orientations of each molecule with respect to the inter- 
nuclear axis, Then we may expand either function (written 
as f(r',,Q1,Q2)) in terms of the Legendre polynomials, PL(cos 
4): 

f(F,Q1,R2) = C CL1,L2(r)PL1(cos 6'1)P&os 0 2 )  (-43) 
LlCP 

where B1 and B2 represent the angles between the symmetry 
axis of molecule 1 and 2, respectively, and r' (which may 
be represented by r = 171, p, and y). It follows from the 
spherical Harmonic addition theorem that 
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uncoupled representation 
R11’nlYLlml(6’iP) = RIL(L + 1) YL,m,(Bl,p1) (Al l )  

[This result can easily be generalized to a molecule ex- 
hibiting axially symmetric rotational diffusion relative to 
its principal symmetry axis. Since it is only rotation of 
this axis which is of interest in the present problem, we 
may let R1 - R,, the perpendicular component of the 
diffusion tensor.] Because of the independence of the 
eigenvalues on ml in eq A l l ,  it immediately follows that 
in the coupled representation 
( L ’J 1’9 J ’,MIR 1 r n, IL ,L 1, J,W = 

Similarly we may consider 

RiLi(L1 + ~ ) G L , L , G L , L ~ ~ G J , J ~ ~ M , M ’  (A12) 

ri = rr + (l/r2)rn (A13a) 

where Q - P,y and 

where 

( L , m , L , m , ’ L , L , J  - m )  ( A S )  

It follows from the general properties of 3 j  symbols (Ed- 
mondsl0 eq 6.2.1) or alternatively from the scalar properties 
of J and K that Q(Ll,L2,L? is a scalar quantity. Thus, the 
effects of J(FJ and K(7J will be independent of the azi- 
muthal quantum numbers (ml, m2, m’, M). It  follows from 
eq A4 that the proper coupled representation involves the 
coupling of the three bases YLlml(P1yl), YL,m,(/3zyz), and 
YLlm@,y) which can be achieved by standard means.lo The 
advantage of the coupled representation is that it enables 
one to take maximum advantage of the spherical symmetry 
of the problem (e.g., the invariance to ml, m2, m’, M). Since 
the coupling of three angular momenta somewhat com- 
plicates the analysis, we instead treat in detail the simpler 
problem, which is sufficient for the present work, viz. the 
case where molecule 2 exhibits spherically symmetric be- 
havior, so that eq A3 becomes 
f(FiQlQ2) = CCL,(r)PL,(cos 0,) = 

L1 

We thus use as our coupled representation 
IL,Li,J,M) = C YL,m(P,~)YLlml(Pi~i)(LmLimiJLLiJIM) 

m o l  

(A7) 

d F J )  = C p(L,Ll,J,M,r,t)lL,Ll,J,M) (A8) 

where p(L,L,,J,M,r,t) is still a spin operator and is r de- 
pendent. Now, because of spatial isotropy, orientations 
P and y as well as PI and y1 are equally probable. (We are 
neglecting any anisotropic coupling between the rotation 
of molecule 1 and the relative translational motion.) Thus 
the observables will depend only upon 

in order to expand p ( 7 ~ )  as 

L,L,,J,M 

(O,O,O,Olp(~~,~)IO,O,O,O) = p(O,O,O,O,r,t) E d r , t )  (-49) 
We now consider the various matrix elements of eq A1 

in this coupled representation starting with eq A6. In 
particular, we have (cf. ref 10, p 114) 
C L ‘ , L , ’ , J , M ‘ I P ~ ( C O S  e l )  I L , L , , J , M )  = 

where we have introduced the 6j  symbol by the curly 
brackets. Thus J and M are invariant quantum numbers 
for terms in the expansion eq A6. We now consider RII’?, 
(and ignore any potential terms for simplicity) whose ei- 
genfunctions are the spherical harmonics. That is, in the 

’L(L  + l)GLC’GL1,L1’GJ,J’GM~, (A13b) 
r2 

It follows from eq A10-Al3 that the terms in eq A1 will 
only couple in coefficients of the IL,L1,O,O) kets into the 
equilibrium ket (O,O,O,O) , where the precise nature of these 
kets is determined by eq A10. Thus, if we set J = 0 in the 
6j  symbol of eq A10 it immediately follows from its 
“triangle rules” that L = L1 and L1’ = L’for this symbol 
to be nonzero, and then 

( 0  L’ L ’ )  

where from 3j symbols in eq A10 L’ = L + 1, L + 1 - 2, ..., 
IL - 1 + 21, ( L  - I I .  Thus, from the further symmetry 
contained in the 6 j  symbols we see that only kets IL,L,O,O) 
couple into the problem, Le., only one quantum number: 
L is relevant (out of the initial four). In particular for 1 
= 1, we have L’ = L f 1 and 
( L ’,L1’, J’,M IP1( COS 61) IL,L1, J , M )  = - 

L 
G L , L ~ + I  + [ [(2L - 1)(2L + 1)]1’2 -GJ,JJM,MJL,L,~L~,L~~ 

lIzGLL’-l (A151 1 L + l  
[(2L + 1)(2L + 3)] 

while the combination of eq A12 and A13b becomes 

(A16) 
thus proving the additivity of these terms, which was as- 
sumed in the simplified analysis of section 11. (Compare 
also eq A15 with eq 2.19a obtained by the simplified 
analysis.) 

This approach, when generalized to the case of eq A3, 
should yield a dependence on two quantum numbers 
(essentially representing the angles 0, and 02), while a more 
general expansion than eq A.3, allowing for the relative 
phase of B1 vs. B2 about 7, would introduce a third quantum 
number. Also our above treatment could be generalized 
to the inclusion of orientation-dependent potential terms 
U(F,Bl,B2) in the operators Dr,- and RJ’,,, (cf. eq 2.1). [A 
discussion somewhat related to that of this Appendix ap- 
pears in ref 4a.I 
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Appendix B. Strategy of Matrix Solution 
In developing the supermatrix, A ,  we take advantage 

of methods used in past s t ~ d i e s . ~ ~ ~ , *  We first partition A 
into a block tridiagonal form as shown in (Bl),  where the 

0 1  

subscripts on each submatrix Am,mhl refer to the radial 
space nodal values (of spin density matrix elements) at ym 
and ymhl. These off-diagonal blocks have the simple 
construction 

Am,m*l = - W m , m * ~  X 1 (B2) 
where 1 is the unit matrix of dimension 4(L,,, + l), and 
W, is the ijth element of the tridiagonal transition matrix. 

+he diagonal terms of eq B1 include diffusive terms, the 
quantum mechanical spin terms, and the spin-dependent 
reactive terms for each rotational L state at each node with 
0 I L I L,,,. Therefore, we can further partition each 
Am,m revealing another block tridiagonal form as shown 
in (B3) 

* 

1 0 

where the subscripts on the submatrices B''72, refer to the 
different L values. Each B''T2, is a 4 X 4 matrix, since we 
have included 4 spin density matrix elements in this high 
field approximation. From eq 2.14 and 2.15 we then can 
write (cf. eq 2.19) eq B4 

B L , L ~ ~  = ( m )  

0 

with the diagonal submatrices given by eq B5. We have 
defined 

j'(m) j ' (ym)  = (2 j0  + j l )e-Xd(Ym-l)  (B6a) 
(B6b) 

037) 
Utilizing the scheme outlined above, we found that the 

formulation of A in our computer programs consists of only 
about 50 statements. 
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