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Electron Spin Resonance Studies of Anisotropic Ordering, Spin Relaxation, and Slow 
Tumbling in Liquid Crystalline Solvents. 3. Smecticd 
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In this work the nonaxial ordering and spin relaxation of PD-Tempone spin probe in several liquid crystalline 
solvents exhibiting smectic A and B phases were studied utilizing methods previously employed by Polnaszek 
and Freed for the study of nematic liquid crystals. The results rleported here for the isotropic and nematic 
phases are generally in accord with those obtained previously. An analysis of isotropic hyperfine shifts, changes 
in the ordering tensor, and anomalous relaxation behavior in the smectic phases suggest a model in which the 
PD-tempone probes are partially expelled from the dipolar region of the liquid crystalline molecules toward 
the more flexible hydrocarbon end chains as a result of the packing of the smetic layers, and concomitantly 
the probes increasingly experience a slowly relaxing local structure (SRLS) in a cavity-like location. Differences 
in observations from different types of smectic liquid crystals are interpreted in terms of their differing structures 
based on X-ray studies. It is shown that the angular dependent line widths in the smectic phases are significantly 
affected by the size and shape of the sample. These inhomogeneous broadening effects are discussed in detail 
in terms of static distortions of the smectic layering induced by wall effects and magnetic-field induced torques, 
and are in reasonable agreement with predictions of a simple model. The residual homogeneous widths are 
discussed in terms of combined models of anisotropic rotation and anisotropic viscosity as well as associated 
SRLS models. For the former case, the problem of defining the rotational diffusion tensor, which must be 
time dependent in any axis system, is discussed in some detail. 

I. Introduction 
In parts 1 and 2 we presented detailed studies of an- 

isotropic ordering, line shapes, and relaxation for the 
weakly ordered perdeuterated 2,2,6,6-tetramethyl-4- 
piperidone N-oxide (PD-Tempone)l and the highly ordered 
cholestane (ICSL) spin probe,2 respectively, dissolved in 
nematic liquid crystalline solvents. In the present work 
we extend such studies to liquid crystalline solvents ex- 
hibiting smectic A and B phases. 

There already exist a number of ESR studies of highly 
ordered spin probes in thermotropic liquid crystals ex- 
hibiting smectic pl-~ases.~-~ However, as was pointed out 
in 11, the use of such spin probes as CSL in these phases 
usually requires a “slow-tumbling” analysis if correct 
results on ordering and relaxation are to be obtained. With 
the exception of that work2 (on the nematic phase) such 
analyses have not been employed. Therefore the analysis 
and interpretation of much of the previous work, based 
upon motional narrowing theory, is open to question. 

We have chosen, in the present work, to concentrate on 
the PD-Tempone probe, which, because it is smaller and 
more weakly ordered, allows one to rigorously apply the 
simpler motional narrowing theory in most cases, We have 
already shown that the use of this radical offers the ad- 
vantages that (1) one can achieve a high degree of spectral 
resolution for accurate spin-relaxation studies, because 
inhomogeneous broadening due to unresolved intramo- 
lecular proton or deuteron interactions is minimized; and 
(2) we now have extensive results in isotropic8~* and ordered 
phases1y2J0J1 using this spin probe to serve as a basis for 
comparing and understanding new results in the smectic 
phases. We have indeed found that these two features 
enabled us t o  obtain new insights into the dynamical 
properties of these phases as monitored by the PD- 
Tempone probe. 

An important feature in spin-relaxation studies in 
smectic phases is the ability to align the director in these 
phases by the applied dc magnetic field and to have the 
samples retain this alignment even when they are then 
rotated relative to the direction of the dc magnetic field3-7 
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(i.e., “tilted”). (Our results are consistent with this now 
familiar observation. However, largely because of the 
increased resolution, we found that the line widths and 
shapes will, in general, show angular-dependent effects 
which depend upon the size and shape of the sample. This 
feature, which was not fully considered in previous studies, 
must be adequately dealt with if meaningful studies of spin 
relaxation as a lfunction of sample “tilt” angle are to be 
performed as discussed in this work. 

11. Experimental Section 
(A) Preparation of Samples. The liquid crystals N- 

(p-butoxybenzy1idene)-p-n-octylaniline (40,8) and 4’-n- 
octyl-4-cyanobiphenyl (8CB) were purchased from 
Shawnee Chemical Co. and BDH Chemicals Ltd. re- 
spectively, while N- (p-butoxybenzy1idene)-p-n-hexylaniline 
(40,6) was synthesized by condensing equimolar quantities 
of 4-n-butoxybenzaldehyde and 4-n-hexylaniline in ab- 
solute ethanol.” The molecular structures of these liquid 
crystals are shown in Figure 1. The 40,8 and 40,6 were 
purified by several recrystallizations from absolute ethanol 
till a constant melting point was achieved. The 8CB was 
used without further purification, since the transition 
temperatures wlere found to be in good agreement with 
published values, The nitroxide free radical, perdeuterated 
2,2,6,6-tetramethyl-4-piperidone N-oxide (PD-Tempone), 
shown in Figure 2, was synthesized by standard methods13 
as previously discussed by Hwang et aL8 Two sizes of 
cylindrical sample tubes were used for preparing the ESR 
samples: (1) 3 nnm o.d., 2 mm i.d. pyrex and (2) 0.9 mm 
o.d., 0.5 mm id. capillary tubes. The radical solutions (5  
X to lo4 M) were prepared by degassing on a vacuum 
line and were sealed off under a vacuum of 
(B) ESR Spectrometer. The ESR measurements were 

performed on a Varian E-12 spectrometer using 10-kHz 
field modulation. The temperature in the active region 
of the cavity was controlled by a Varian E-257 variable 
temperature control unit to a long term stability of f O . l  
“C.  The other aspects of the experimental methods are 
as described earlier.1p8J0 
(C) Aligning the Director in the Liquid Crystal Phases. 

The sample was first heated to the isotropic or nematic 

torr. 
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N A M E  STRUCTURE 

Figure 1. The structures of some liquid crystals discussed in this work. 
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Figure 2. Perdeuterated 2,2,6,6-tetramethyl-4-piperidone N-oxide 
(PD-Tempone) showing the principal axis system for the magnetic 
tensors. 

phase, while in the cavity of the E-12 spectrometer with 
a 3-kG magnetic field. In the nematic phase, the director 
is aligned parallel to the magnetic field of the spectrometer. 
The field was then increased to 13.5 kG and the sample 
temperature was slowly and carefully lowered until the 
smectic A phase was formed. This procedure was cycled 
a few times near the nematic-smectic A phase transition 
region. By this procedure the director was aligned in the 
SA phase. With the exception of 8CB in the 2-mm tube, 
the director remained fixed in the sample independent of 
whether the sample tube was rotated in the high field. 
Also, the sample retained a fixed alignment through the 
SB phase (under 3 kG) when the SB phase was prepared 
by carefully lowering the sample temperature from the SA 
phase which had previously been aligned as described. 
ESR spectra taken from samples from each phase prepared 
in this manner were reproducible with respect to even the 
finest details. (Note, however, that by gradually warming 
a sample from the S B  phase to the SA phase [at 3 kG field] 
the ESR spectra for SA were nearly, but not exactly, 
identical those prepared as given above, even though such 
a procedure lead to a set of reproducible spectra. Such 
matters are discussed further in section IIIF.) Also, it was 
found that this reproducibility was not affected as long as 
the magnetic field used for aligning the SA phase was 
greater than about 8 kG. 

(D) Line W i d t h  Measurements. All line width mea- 
surements were performed with the modulation amplitude 
set a t  a value of less than one-tenth of the line width and 
with the microwave power set well below that required to 

TABLE I: Values of (UD)  in Different Phases of (40,6) 
from Line Shape Analyses 

est ( a D ) , b  
phase e ,  deg ( u D ) , ~  mG mG 

isotropic -22.9 * 0.6 
nematic -17.6 i: 0.4 
S A  0 -14.5 i: 0.3 -14.5 

22.5 -16.8 * 0.4 -17.4 
45 -20.5 t 0.1 -22.9 
67.5 -25.8 t 0.3 -27.3 
90 -29.0 i: 0.2 -29.0 

SB 0 -22.4 i: 0.2 -22.4 
22.5 -21.7 t 0.1 -24.4 
45 -23.7 t 0.6 -28.7 
67.5 -29.3 i: 0.8 -32.5 
90 -33.9 t 0.1 -33.9 

a These results are virtually independent of temperature 
within each phase. They are for 0.5-mm i.d. samples. ’ These are estimated from the expression ( a )  = (Zli2 cosz e 
+ g~~ sinZ 0 ) I i z  where Zll and Zl are first determined from 
the results for (a) at 0 and go”, respectively. 

maximize the signal amplitude. The inhomogeneous 
deuteron broadening causes the line shapes to be non- 
Lorentizian and to appear to be broader than the true 
derivative peak-to-peak line width: The 
correct line width can be obtainedlB as follows: One 
accurately measures the line shape by noting the variation 
of the derivative half-amplitudes as a function of distance 
from the center. This line shape is then compared to a 
theoretical line shape calculated using an estimated in- 
trinsic derivative peak-to-peak line width and hyperfine 
splitting constant for the deuterons causing the inho- 
mogeneous broadening. The data collection and com- 
parison with predicted line shapes was performed on-line 
with a minicomputer to yield values for ( a D )  and intrinsic 
line widths for all three lines for each temperature. Some 
typical simulations for determining ( a D )  in the SA and SB 
phases were also determined, where possible, by such a 
computer-assisted comparison. Typical values of ( a D )  in 
different phases of 40,6 are given in Table I. Actually, 
once (aD) is determined in this manner, it is usually more 
accurate to determine one line width, and then use the 
relative derivative amplitudes of the three lines to accu- 
rately determine the relative intrinsic widths of these 
lines.l,s The three intrinsic line widths are fitted to the 
equation 

(1) 

where M I  is the 2 component of the 14N nuclear spin 
quantum number, to obtain the coefficients A,  B,  and C. 

It is not really necessary to determine ( a D )  at  every 
temperature studied, but rather it is sufficient to  inter- 
polate between a small set of such measurements for each 
phase, because (1) ( a D )  does not change very much with 
temperature, and (2) the corrections to the line shape from 
the deuteron inhomogeneous broadening are not very 
great. We normally did not encounter any difficulties in 
determining ( a D )  for the 0” tilt angle of the magnetic field. 
Measurements of the angular variation of (aD) did indeed 
pose difficulties and will be discussed in section IIID. The 
theoretical basis for the angular variations is given in 
Appendix A. 
111. Results and Discussion 

(A) Magnetic Parameters. The rigid limit spectra of 
PD-Tempone at  -152 O C  in the different solvents were 
recorded in order to obtain the magnetic parameters. The 
parameter A, was easily determined from the spectrum. 
Since the ratio of A J a N  (where aN is the isotropic hy- 

TZ-l(M1) = A + BMI + C M f  
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TABLE 11: Magnetic Parameters for PD-Tempone in Liquid Crystalsavb 
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40,6 and 40,8 8CB 
phase Vc isotropic nematic smectic A smectic B isotropic nematic smectic A 

A,, G 5.61 + 0.2 5.58 5.56 5.54 5.51 5.54 5.52 5.50 
A, ,  G 5.01 i 0.2 4.99 4.97 4.95 4.92 4.96 4.94 4.92 
A , , G  33.7 I 0.3 33.5 i. 0.3 33.4 33.3 33.1 33.3 t 0.3 33.1 33.0 
(A) ,d  G 14.77 t 0.3 14.69 14.64 14.60 14.51 14.60 14.52 14.47 
U N , G  14.78 2 0.02 14.70 f 0.02 14.64 14.59 i 0.02 14.50 i. 0.02 14.60 t 0.02 14.54 14.49 t 0.02 

a Error limits are given for the experimentally determined values of the hyperfine interaction. All other values have been 
obtained by scaling as described in the text. All measured g values were g, = 2.00602 i 0.00001, so the g tensor determin- 
ed for phase Y cf. ref 1) was used in all cases: g, = 2.0099 i. 0.00O2;gy = 2.0062 ?I 0.0002;g2 = 2.00215 I 0.0001. 

From ref 1 .  It ( A )  1I3(A, t A ,  t A,) .  

perfine constant) in the liquid crystals we studied (40,8, 
40,6, 8CB) was found to be the same as in phase V,l and 
their absolute values are very close (cf. Table 111, the other 
magnetic parameters A,, A, were simply scaled by the 
same factor of aN(L.C.)/uN(phase V) for the isotropic 
phase. In the SA and SB phases, the director was 
“locked-in” by the high field as stated previously, so the 
“isotropic” values of aN in these phases could be obtained 
from the measurement of the angular dependence of ( a )  I 
The angular dependence of the hyperfine coupling is given 
by (cf. Appendix A, eq A12): 

( a )  = [Ell2 cos2 8 + E L 2  sin2 811/2 
E a~ + f / 2 X ( 3  COS2 8 - 1) ( 2 4  

where 

x = (a, - aN)(@O)z  - (l/&)(a.z - a,)(% + De_20)z 
(2b) 

and the approximate equality is for small x (due to weak 
ordering) as is the case for PD-Tempone. We found from 
the results that the aN values in the SA and S B  phases are 
slightly smaller than those for the isotropic phase. This 
could be explained simply as follows: the PD-Tempone 
is gradually expelled by the liquid crystal molecules to the 
flexible end chain region, a matter to be discussed in detail 
shortly. Therefore the magnetic parameters in these 
phases were further scaled in the same manner as above. 
For the nematic phase, the director follows the 3-kG 
magnetic field, so we took a mean of the values for the 
isotropic and smectic A phases. 

The isotropic g, values of PD-Tempone in different 
phases was determined in the same way (cf. eq A12b). The 
isotropic g, value was found to be constant g, = 2.00602 
f 0.00001 in all phases, and this is the same value as that 
for phase V solvent. We therefore concluded that the g 
values and rnost likely the g tensor is insensitive to any 
variation in environment in the liquid crystalline solvents, 
and we used the g tensor values previously obtained for 
phase V.l Figure 4 shows the very good agreement be- 
tween theory and experiment for the angular dependences 
of ( a )  and ( g )  in the different phases and different sol- 
vents. The experimental results were identical for 40,6 and 
40,8 no matter whether 2- or 0.5-mm i.d. samples were 
used. However. since 2-mm i.d. samdes of 8CB followed 

A (40,61 T: 69.9’c 

- 
0.221 G 

8 (40,61 T = 50 7’C 

Smectic A phose 
M I =  0 , 22 5’lilt angle 

t--3 
0.221 0 

C 
(40 ,6)  T 3 50.7-C 

the field, they gave no angular variation of ( a )  or (g). 

40989 and 8C:B. In Order to a basis for under- 
standing the variations of UN (and also UD, cf. Table 1) with 
the phase as well as the solvent, we sought to develop good 
empirical relations between uN (and aD) and some measure 
of solvation effects. 

A number of methods have been developed for esti- 
mating the polarity of solvents, and they have been re- 
viewed and It is Pointed out that  the Po- 
larity of a solvent depends on a variety of intermolecular 

‘I gives the magnetic parameters we used for 409Ei, Figure 3. (A) The l:SR spectrum for PD-Tempone in (40,6) nematic 
phase. The experimental points are represented by circles, the solid 
llne Is the best computer fit to the experimental data by adjusting the 
intrinsic width and aD. The dashed line is a simple Lorentzian wlth the 
observed line width and a D  = 0. The broken line (----) is a simple 
Lorentzian with the intrinsic line width and aD = 0. (B) The ESR spectrum 
for PD-Tempone in (40,6) smectic A phase at 22.5’ tilt angle of director 
with respect to the applied magnetic field. Other aspects as in A. (C) 
The ESR spectra for PD-Tempone in (40,6) smectic A phase at 90’ 
tilt angle of director with respect to the applied magnetic field. Other 
aspects as in A. 
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Figure 4. (A) The angular dependence of ( a  ) and ( 9 )  in the smectic 
A phases of (40,6), (40,8), and 8CB for PD-Tempone. Solid circles 
are for (40,6) at T = 50.7 O C ;  open triangles are for (40,8) at T = 63.8 
O C ;  open squares are for 8CB at T = 28.6 ‘C. The curves are the 
theoretical prediction from eq 3. For (40,6) and (40,8) these results 
are independent of whether 2- or 0.5-mm sample tubes were used. 
(B) The angular dependence of ( a  ) and ( g  ) in the smectic B phases 
of (40,6) and (40,8) for PD-Tempone. The solid circles are for (40,6) 
at T = 34.5 O C  and open triangles are for (40,8) at T = 47.0 O C .  These 
resutts are independent of whether 2- or 0.5-mm sample tubes are used. 

forces as well as hydrogen bonding between the solvent and 
the solute. The idea of the empirical methods is to use 
a particular solvent-dependent standard process. The most 
comprehensive solvent scale given14 is the ET or molar 
transition energy scale based upon the use of pyridinium 
N-pbenolbetaine, which gives a very large displacement 
of the solvatochromic band in different solvents (ET 
(kcal/mol) E 2.86 X where 5 is the absorption 
maximum in cm-l). We have found the ET scale very 
useful for representing solvent variation of U N  (and a D ) .  
This is shown in Figure 5. The basis of the linear rela- 
tionships between aN (and an) and ET are the six or seven 
solvents for which both ET has been determined,14J8 and 
we have measurements of aN and aD. Only in the case of 
water solvent was there a large discrepancy with the linear 
relation from the other solvents. This is not surprising 
given the very unique properties of water as a solvent. 
Thus we chose to redefine the ET value appropriate for 
PD-Tempone in water. The ET values for the other 
solvents, in particular the liquid-crystalline solvents, were 
then determined using this graph. It is interesting to note 
that we generally find good agreement between the ET 
determined from the U N  and that determined (but with less 
sensitivity or accuracy) from an, The general (and 
well-known) trends are for U N  to increase with increasing 
solvent polarity while uD decreases (e.g., solvent complexing 
with >N&O is enhancing the unpaired electron density at 
the NLO site). 

Previous workers16 have related solvent polarity shifts 
of U N  in spin labels largely to dielectric effects, but these 
other methods do not adequately account for hydrogen 
bonding.17 However, this appears to be no problem for the 
empirical ET values (cf. Figure 5) with the exception of 
water. Results like ours in Figure 5 can easily be extended 

l 6 C  dl -n-buty lphtholo le  Wnler 

141 I I I I I 
30 40 50 60 70 80 

ET(kcal/mole) 

Figure 5. The experimentally determined variation of a and a D  for 

solvents. The straight lines are drawn through the experimental data 
represented by the solid circles, corresponding to those solvents for 
which ET has been independently determined. (Water is an exception.) 
For those solvents for which E ,  data are not available, we show the 
experimental aN values on this straight line by open circles, and this 
sets the ET value. The a, values were then plotted using these results 
for ET. The SA and SB phases in (40,6) or (40,8) are represented by 
a cross. 

to a variety of spin probes in many solvents to establish 
useful empirical relations for variation of aN (as well as 
proton and deuteron “a” values) with solvent. 

We note in all cases the decrease in U N  in going from the 
isotropic - nematic - smectic A - smectic B phases. 
One expects, from Figure 5,  that this decrease will correlate 
with a changing “effective” location of the PD-Tempone 
such that it is gradually expelled from the region where 
it is in proximity to the dipolar portions of the liquid 
crystal molecules to regions where it is in greater proximity 
to the hydrocarbon chains (e.g., the typical U N  for the 
isotropic phases of the liquid crystalline solvents is close 
to that for acetone or di-n-butylphthalate,9 while in smectic 
B it is approaching that of decane9). One expects an 
increased packing with the lower temperature phases. 
Thus, while the PD-Tempone, with a dipolar end, might 
prefer a location closer to the dipolar region of the solvent 
molecules, it can probably find more available space in 
regions of the flexible hydrocarbon chains as the packing 
of the liquid crystalline molecules becomes denser. 

(B) Order Parameters and Potential Expansion 
Coefficients. (1) Results. The ( a )  and (g) values in the 
different phases for different solvents are shown in Figure 
6. The results for 40,6 and 40,8 are quite similar (but not 
identical). This is to be expected considering their very 
similar structures. Following I the two-term order pa- 
rameters can be calculated from the equations’ (see also 
Appendix A): 

PD-Tempone with ET (the molar transition energy scale)’ r in different 

(a0 + Dz-zo)z = 

(3b) 
& ( ( a )  - a)(& - g) - ( ( g )  - &?)(a, - a) ]  

(9, - g y )  (a, - 4 - (9, - g) (a, - ay)  
(where we have dropped the subscript on U N ) .  The 
subscript z on the order parameters indicates that they are 
referred to the magnetic z axis of PD-Tempone as the 
primary reference axis. If the magnetic tensor y axis is 
taken as the primary reference axis, then one may calculate 
( and (Go + @20)s from eq 3 after first performing 
the permutations z - y - x - z .  [Note that 
Ci=x,y,z(Go)i = 0 and Ci=x,y ,z ( (Qo) i  + (G0)i) = 0-1 We 



ESR Studies of Liquid Crystalline Solvents 

0.15- 

A- 
8 

NI 

& 0.10- 

The Journal of Physical Chemistry, Vol. 83, No. 3, 1979 383 

C 

T (TI 

.+.-.-.-.-.- 
2.0061 

2.0059 I 
d 
BO I O 0  

I 
<a ) 

- 2 0062 

.-.-.-. 
- 2 0061 

5o 2.0059 

Figure 6. The variation of ( a )  and (9) with temperature for PD- 
Tempone in (A) (40,6), (B) (40,8), (C) 8CB. The solid circles are for 
( a  ) and the open circles are for (9). 

show the y ordering vs. temperature for the different liquid 
crystals in Figure 7. The results for 40,6 and 40,8 show 
similar temperature dependences, i.e., the ordering is 
almost constant in the SB phase, increasing gradually with 
increasing temperature in the SA phase, and decreasing in 
the nematic phase. The same type of temperature de- 
pendence of order parameter (( Go)) has been observed 
in EMBAC (cf. Figure 1) by NMR m e t h ~ d s . ~  Note that 
the ordering is nearly axially symmetric about the mo- 
lecular y axis in the smectic phases, but there is a non- 
negligible nonaxial (Go + @zo) in the SB, which changes 
sign in the SA phase and becomes almost negligible The 
angular-dependent results for ( a )  and (g) in the smectic 
B phase in 40,6 and 40,8 shown in Figure 4B, as well as 
the very good alignment of these phases is consistent with 
this phase being BA (and not B,).5 We are not aware of 
a previous determination of the symmetry of this phase 
for these smectics. 

-0.05 i - 1  .-.--.-.-*.-.- 
20 40 60 80 100 

T ("C) 
8 C B  

I 

Figure 7. The variation of the order parameters with temperature ( 
(open circles) and (go + d,,),, (closed circles) for PD-Tempone in 
the different phases of (A) (40,6), (B) (40,8) and (C) 8CB. 

In the SA phase of 8CB, (Go) decreases with increasing 
temperature, which is the reverse of the behavior of 40,6 
and 40,8. Note that in Figure 6 there are hints of pre- 
transitional effects in the isotropic phase just a t  the I - 
N phase transition (see below). 

In order to perform relaxation studies, one must know 
the coefficients in the potential which determines the 
distribution function for the orientation of PD-Tempone. 
As in I we used the two term ordering tensor defined by 

( % O ( W )  = J-dQ p,,m % O ( W  ( 4 4  

where i2 represents the Euler angles between the molecular 
coordinate system and the laboratory system, and P,(Q) 
the equilibrium distribution function given by 

Pe,(fl) = exp(-U(O)/hT)/ I d a  exp(-U(W/hT) (4b) 
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and/or to departures of the hydrocarbon chains from their 
fully extended conformations. However, certain cyano 
Schiff bases and cyanobiphenyls with alkyl or alkoxy end 
groups such as 8CB (cf. Figure 1) are found to exhibit a 
bilayer type of SA phase, where the lamellar spacing is 
about 1.5 times the molecular length. This is believed due 
to the fact that these molecules each have a polar and a 
long-chain nonpolar end and must adjust to the tendencies 
of these groups to interact with similar groups. When the 
temperature is lowered, the first type of liquid crystal (40,6; 
40,8) exhibits a decrease in its interlamellar spacing, while 
the second type (8CB) exhibits an increase. The type 1 
contraction is expected as the thermal motions of the 
hydrocarbon chains decrease, so the packing forces are 
more effective. The type 2 expansion must be due to a 
tendency of the like ends of the molecules to draw closer, 
a process that is prevented by the interdigitated bilayer 
arrangement of this SA phase. (In fact it has been observed 
that some type 2 liquid crystals not only experience an 
increase in the interlamellar spacing with increased 
pressure, but also yield a "re-entrant" nematic phase by 
super-cooling the SA phase, in order to achieve an ener- 
getically more favorable packing19). 

Thus the PD-Tempone molecule, which appears to be 
gradually expelled (with decreasing temperature) from the 
highly ordered polar region to the less ordered hydrocarbon 
regions might be expected to exhibit decreased average 
ordering as the flexible end chains interpenetrate more, 
and their dynamical motions interfere with their ordering. 
Further aspects of this model are discussed below in the 
context of the spin relaxation results. [Note that a highly 
ordered spin probe such as CSL appears to show increasing 
order with decreasing temperature in the SA phase4 (but 
this result has yet to be corrected for slow tumbling ef- 
fects), most likely because this large molecule is ordered 
so as not to be affected much by the effects of the end 
chain flexibility, and instead it experiences the increased 
ordering of the central polar portion of the liquid crystal 
molecules as the temperature is reduced.] Now, in the case 
of 8CB, the hydrocarbon chains should experience reduced 
packing with decreased temperature, so the site occupied 
by the PD-Tempone shows less interference, and its or- 
dering increases more naturally with decreased temper- 
ature. 

Furthermore, let us note that for all three liquid crystals 
the PD-Tempone exhibits very nearly axially-symmetric 
ordering about its molecular y axis (cf. Figure 2) in the SA 
phase, while this was not the case in the nematic. This 
observation is consistent with our model involving the 
expulsion of PD-Tempone toward the flexible hydrocarbon 
chains and its experiencing random ordering fluctuations 
along its x-z plane (that is paralled to the smectic layers), 
which have a near-zero net average. (This point is not 
really strictly sound because the smectic layering is parallel 
to the smectic x "-y " plane, and only because of the partial 
ordering of the PD-tempone is its molecular x-z plane 
partially aligned parallel to the smectic x "-y " plane.) 

The changes in PD-Tempone ordering in going from SA - SB appear to suggest (1) that the degree of ordering in 
the two phases is comparable; but (2) there is somewhat 
larger anisotropy of ordering in the x-z plane probably due 
to decreased flexible motion of the hydrocarbon chains 
which might otherwise tend to average out such ordering. 
This is discussed further below. 

One might wish to interpret the pretransitional effects 
that appear for ( a )  and (g) (cf. Figure 6), in terms of the 
quasi-critical fluctuations in ordering in the isotropic phase 
near the I - N phase transition. One finds from Lan- 
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Flgure 8. The asymmetric ordering parameters A, and py  vs. tem- 
perature for PD-Tempone in the different phases of (A) (40,6), (b) (40,8), 
and (C) 8CB. The open circles are for A,, the closed circles are for 
P Y .  

where U ( n )  is the mean restoring potential for PD- 
Tempone in the field of nematic solvent molecules, which 
we approximate with two terms: 

U(a,p,O)/hT N - ( 5 )  

The coefficients X and p are obtained, via this set of 
equations, from the results on (Go) and (q0 + D!zo), 
and they are shown in Figure 8 vs. temperature for the 
different solvents. 

(2) Discussion of Order Parameters. Before attempting 
to explain the opposite trends in PD-Tempone ordering 
vs. temperature for the SA phases of 40,8 and 40,6 on the 
one hand and 8CB on the other, it is useful to consider 
differences between them as found from X-ray studies on 
related liquid crystals.l* In most liquid crystals, the polar 
segments of the molecules are in the middle with hy- 
drocarbon chains extending outward (e.g., 40,6 and 40,8, 
cf. Figure 1). This type of molecule tends to form mon- 
olayer S A  phases, and the lamellar thickness is typically 
equal to or slightly less than the molecular length, pre- 
sumably due to a slight interpenetration of the layers, 

cos2 p - p sin2 p cos2 a 
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Figure 9. The variation of -Band C with temperature in (A) (40,6), 
(B) (40,8), and (I;) 8CB. The closed circles are for -B while the open 
circles are for C. 

dau-deGennes mean-field theoryz0 that there is a non-zero 
order parameter for the liquid crystalline solvent which 
obeys the following expansion as a function of magnetic 
field strength B: 

S(')(BB) = rBz + H.O.T. ( 6 4  

where 

is the "paranematie susceptibility", xa is the anisotropy 
in the diamagnetic anisotropy, T,* is the "apparent" 
critical T,  and a is the appropriate mean-field constant. 
With typical estimates of a -4  X lo5 erg/K cm3, T - T,* - 1 "C, xa cgs, and B - 3.3 kG, one gets S(s) - 
5 X or an effect much too weak to see. Now 7 may 
be directly related to the phenomenon of magnetic 
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Figure 10. The variation of A and A'with tempwture in (A) (40,6), 
(B) (40,8), and (C) 8CB. The residual A' was calculated using an 
anisotropic rotation model. 

birefringencez0 which has been carefully studied by light 
scattering, yielding experimental results in complete 
agreement with the mean-field theory. Thus, it is quite 
clear that our ESR observations cannot be interpreted in 
terms of such a small static SS) (and hence an even smaller 
ordering of the probe). However, the dynamic effects of 
the quasi-critical fluctuations are now known to cause large 
ESR line width anomalies,ll and usully associated with the 
line width contributions from the spin relaxation are the 
dynamic frequency shifts from the nonsecular and 
pseudosecular contributions.lS8J1 It seems quite reasonable, 
therefore, to ascribe pretransitional effects on ( a )  and (g) 
to the dynamic frequency shifts in the ESR resulting from 
the quasi-critical fluctuations. 

(C) Line W i d t h  Analysis and Discussion. The ESR 
spectra of PD-Tempone in these three solvents are all in 
the motional narrowing region. The line width coefficients 
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A, B, and C (cf. eq 1) vs. temperature are shown in Figures 
9 and 10. We found that the line widths obtained for the 
isotropic, nematic, or SA and SB phases at 0' tilt angle are 
all independent of the sample size as one would normally 
expect. The significance of this observation will be ex- 
plored in the next section. 

We note in Figure 9 that in all cases in the isotropic 
phase the C and B parameters are nearly equal at a given 
T. This is the expected normal behavior for PD-Tempone 
in isotropic phases.ln8 Near the isotropic-nematic phase 
transition there are clear indications of an anomalous 
increase in B and C, an effect which is more prominent on 
the nematic side, and has been related by Rao et a1.l1 to 
quasi-critical fluctuations at  this weak first-order tran- 
sition. This effect obscures somewhat the nonanomalous 
portions of R and C in the nematic phase. These portions 
are perhaps clearest in the case of 40,6 showing a char- 
acteristic increase with decreasing temperature. The 
change from N to SA is characteristically abrupt with no 
hint of any pretransitional effect, which could be due to 
a very narrow temperature range that shows quasi-critical 
behavior; but this has yet to be investigated. Notice in the 
SA phases of 40,6 and 40,8 the C/B ratio is greater than 
one and appears to be increasing with decreasing tem- 
perature, but it is not much different from unity for 8CB. 
The transition from SA - SB again yields abrupt changes 
in B and C, and the SB phase is characterized by (1) values 
of C and B which are markedly reduced from the higher 
temperature SA phases, or the opposite of what is normally 
expected; and (2) ratios of CIB k 2 which again are ab- 
normal. The values of A are shown for all phases and 
solvents in Figure 10. The low temperature phases show 
characteristic increase in A with decrease in T ,  while the 
highest T regions show the reverse behavior, as is normally 
expected.lB8 

Again we focus mainly on the B and C coefficients, which 
may be interpreted in terms of the rotational dynamics of 
the PD-Tempone in the (ordered) fluids. Our analysis is 
in accordance with the methods we have previously 
used.lB8J0 (In particular, one used eq 2.28-2.31 of I.) We 
consider the phases separately, starting with the high 
temperature isotropic phases. 

(1) Isotropic Phase. One finds that for PD-Tempone 
in the isotropic phase, one is in the region where nonsecular 
contributions to A, B, and C are expected to be important 
(Le., o t rR2  - 1). That is, for 40,6 and 40,8 the accessible 
range of rotational correlation time, TR, is about 10-30 ps, 
while for 8CB it is somewhat longer: 30-100 ps. We find 
just as in I, that the results can be interpreted either by 
employing some anisotropy for rotation about the mo- 
lecular y axis (Le., Ny = 4.3 f 0.3 for 40,6; N = 3.8 f 0.2 
for 40,8; and Ny = 1.4 f 0.2 for 8CB), or else gy correcting 
the nonsecular spectral density function to become r R /  (1 
+  ET^%^), where the adjustable parameter t 2 1, is be- 
lieved to be indicative of deviation from simple Brownian 
rotational diffusion. The theory8 for E relates it to the finite 
lifetime of the fluctuating torques causing the rotational 
motion of the PD-Tempone. The results can all be 
"explained" with N N 1 (which is typical of PD-Tempone 
in simple liquids) and t = 10 f 2 for 40,6, E = 7 f 1 for 
40,8, and 6 = 3 f 1 for 8CB. The value for 8CB is in 
keeping with our previous results on isotropic phases, while 
those for 40,6 and 40,8 are somewhat greater. As we noted 
in I, it is not possible to distinguish between the contri- 
butions from the two sources from such data in the iso- 
tropic phase, because the I - N phase transition prevents 
studying lower temperature regions of the isotropic phase 
where the effects o f t  are suppressedS8 In I we adopted the 
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point of view of using E - 4.5 by comparison with other 
nonnematic* solvents. If we do that here we would then 
obtain (N, = 1.9 f 0.4 for 40,8, N, = 1.6 f 0.2 for 40,8, and 
Ny = 0.97 f 0.36 for 8CB). There was one case in I similar 
to our present observations on 40,6 and 40,8. It was for 
the solvent BEPC (cf. Figure 1) which yielded Ny = 2.3 
f 0.6 for = 4.6. The question of the "best" set of E and 
N y  is discussed further below. 

As before, the r~ values [ R  (RIIRI.)1/2 and TR 3 (6W1 
with RII and R, the respective parallel and perpendicular 
components of the rotational diffusion tensor] are virtually 
the same for any of the sets o f t  and N, which fit the data. 
They are plotted in Figures 11 vs. 1 /T and show the 
characteristic increase with decreasing T.  The activation 
energies from these TR values appear in Table 111, and are 
found to be of the order expected for liquid crystal solvents 
(cf. I). The rather large difference in E, between 40,8 and 
40,6, despite their very similar molecular structure is, 
however, surprising. 

A preliminary analysis of the A'results shown in Figure 
10 in terms of the spin-rotational mechanism was made 
in the manner of Hwang et a18. (Note A'is that portion 
of A in eq 1 which remains after dipolar and g tensor 
contributions are substracted.) In that work it was shown 
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TABLE 111: Activation Energies and Preexponentid 
Factors for Rotational Relaxation of PD-Tempone 
Dissolved in Liquid Crystal and Related Solvents 

E,? 
solvent phase kcal/mol In A,d (s) 
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(40,6 1“ I 8.1 i 0.2 -36.1 f 0.3 
N 8.4 i 0.4 -36.8 i 0.7 
SA (4 .2  i 0.6) (-29.1 i 1.4) 
SB 2.0 i 0.3 -27.9 * 0.5  
I 12.5 i 1.1 -42.3 ?: 1.6 
N (13.7 i: 2.0) (-44.5 i 3.6) 
SA 4.2 i 0.7 -30.0 i 1.2 
SB 4.0 i 0.3 -30.8 i 0.5 

8CBa I 14.9 i 0.1 -45.3 i 0.2 
N (4.1 i 1.6) (-29.3 i 2.6) 
SA 8.5 i 0.4 -36.7 ? 0.6 

phase V b  I 8.0 -37.6 
N 9.6 -38.9 

BOCPb N 9.4 -36.4 

(4O,8la 

M B B A ~  N 10.2 -39.5 
(n-decane I 3 to 5 

di-n-butylphthalateC I 8.55 
n-dodecane)c 

This work. Reference 1. Reference 9.  Results 
in parentheses are uncertain because of small temperature 
range of this phase. 

that  in the high temperature regions one expects A’ = 
A127R-l where AI2 is a constant equal to 5 X G s from 
simple spin-rotation theory for the PD-Tempone g values. 
In normal liquids8 it ranged from 6 to 10 X G s, and 
was estimated as 15.7 X G s for phase Vnl A t  lower 
temperatures, the A’ increases anomalously with TR, and 
this makes it, difficult to obtain A12 unless high enough 
temperature results are obtained. Unfortunately, we were 
limited in this respect, and estimated A12 by fitting our 
data of the form A’rR-’ = A12~R-2 + AZ2 (where A22 is the 
constant for the anomalous A’  dependence upon TR at  
lower temperatures).8 We obtained values for A12 of 19.4, 
17.8, and 29.1 X G s for 40,6, 40,8, and 8CB, re- 
spectively. These are high and would tend to suggest large 
deviations from simple rotational diffusion theory. 
However, because of the difficulty in extracting A12 from 
our results, they should be confirmed by Tl measurements8 
before they are analyzed further. 

(2) Nematic Phase. The nematic phase results require 
an analysis which includes reorientation in the potential 
field of the oriented solvent molecules. This was per- 
formed as in I utilizing the ordering terms X and p in Figure 
8. Actually, because of the narrow range of the nematic 
phases, especially in 40,8 and 8CB it was difficult to 
separate out quasi-critical effects associated with the N - I phase transition from the “background” contributions 
to B and C which determine 7~ (this is particularly true 
for the C values of 40,8). In the best case, viz. 40,6, the 
lower temperature nematic results could be fitted to an 
e = 4.5 and IVY - 2.5 near the N --e SA transition and 
increasing to an N5! N 4 at  higher T, but the residual 
contributions from the quasi-critical effects to this latter 
value remain uncertain until a more careful analysisll is 
made of them. For these slower motions (Q  = 50-60 ps), 
the use of an N 10 yields N y  values only very slightly 
smaller than those obtained for c - 4.5 (ie., about 0.2-0.3 
less). Similar, but less definitive results are obtained for 
40,8 and 8CB. We may note that in I the results for BEPC 
yielded an N?, = 1.6 f 0.2, while that for BOCP (which 
could not be studied in the isotropic phase) was N y  = 9.4 
f 1.5. All other cases yielded N y  = 1. One can see from 
Figure 1 that BOCP has the longest hydrocarbon end 
chains of all liquid crystals shown (and the longest overall 
molecular length), with 40,6,40,8, and 8CB somewhere in 

between BOCP and BEPC in this characteristic. ‘This 
suggests some correlation between chain length and the 
estimated N?, values. (This correlation would be consistent 
with the explanation of these results in terms of the SRLS 
model that is discussed below.) 

It was found in I for the case of the nematic solvents 
phase IV and phase V, that  (even though Ny = l), when 
T~ > s, them is an anomalous increase in TR(C)/TR(B) 
from unity; (here TR(C) and T R ( B )  are the TR values es- 
timated from the C and B line width parameters, re- 
spectively, with Ny = 1 unless stated otherwise). For the 
present solvents, the N - SA phase transition prevented 
the achievement of such slow T~ values in the nematic 
phase, For such slow motions, one had to consider the 
effects of the different models on the nonzero spectral 
densities (in particular the pseudosecular spectral den- 
sities), In that work the effects of (1) anisotropic rotation; 
(2) anisotropic viscosity; (3) fluctuating torques, and (4) 
slowly relaxing local structure (SRLS) were considered in 
detail and further elaborated in the pressure-dependent 
work of Hwang et (This reference gives summaries 
of all these mechanisms.) I t  turns out that T ~ ( B )  is a good 
index of the correlation time of PD-Tempone for these 
models especially when nonsecular terms are not impor- 
tant. For model (2) anisotropic viscosity, one has T R ( B )  
= q1; while for model (3) TR(B) is only affected by an ds 
which was required to be close to unity while TR(C) is 
affected by dps L 1 as well. For model (1) anisotropic 
rotational diffusion the predicted value of T R ( B )  is sig- 
nificantly less affected by varying N y  than is TR(C) (an 
example of this is, given below). While for model (4), SRLS 
(when we restrict ourselves to TR values < s) there 
is a simple relation between the estimate of N y  and the 
estimate of the SRLS parameters as shown below. Thus, 
for convenience, we plot Q(B) values for all the ordered 
phases in Figure 11 (except as noted). We have used these 
T ~ ( B )  values as our best estimates of activation energies 
in these phases independent of our attempts a t  detailed 
analysis of the models. (The results in I and in Hwang et 
aLIO were shown for models 2 and 3 corresponding to our 
present use of q l ( B ) ,  as well as for model 1). One notes 
from Table 111 that the E, values for the solvents 40,6 and 
40,8 are a little increased in the nematic phases over their 
isotropic values (such was the case for phase V solvent,, cf. 
1.) The E, value for 8CB appears to be markedly reduced, 
although its magnitude is highly uncertain because of the 
very limited temperature range of this phase. (A similar 
trend appears foir the case of BEPC, cf. I.) These results 
suggest that the microscopic molecular dynamics are not 
markedly changed by the I --e N transition (except perhaps 
for 8CB). 

(3) Smectic A Phase. The results for the smectic A 
phases are somewhat easier to handle than were those for 
the nematic pha13es, because of the absence of any qua- 
si-critical effects persisting into the phase, The results for 
40,6 and 40,8 are quite similar with some differences for 
8CB. There is an increase in TR values in passing through 
the N -+ SA phai3e transition for 40,6 and 40,8. This is, 
however, associated with a large decrease in E, for these 
solvents in the S,4 phase. This appears contrary to what 
would be expected for the more viscous SA phase. The 
ordering tensor for PD-Tempone was found to exhibit 
significant changes (cf. Figures 7 and 8 and section B) that 
reflect less the increased ordering expected for the SA phase 
than the changed nature of the ordering of PD-Tempone. 
All these observations seem to support our point of view 
that the PD-Tempone is expelled more into the hyclro- 
carbon regions of the smectic layers due to the smectic 
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packing (as compared to the nematic phase in which polar 
interactions of the > NAO group with the central portions 
of 40,6 and 40,8 are favored). One would anticipate a 
reduced E,  if the reorientation of PD-Tempone is induced 
by the flexible motions of the hydrocarbon chains. In fact, 
this explanation is supported by the observation that the 
E, for PD-Tempone in hydrocarbon solvents (e.g., hexane 
and decane) is about 3-5 kcal/mol, while for a nonme- 
sogenic solvent with a central dipolar region and hydro- 
carbon end chains (e.g., di-n-butylphthalate) one obtains 
an E,  = 8.5 kcal/mol. The case for 8CB appears to show 
an opposite trend in the N - SA phases, although, un- 
fortunately the range of the nematic phase is too scanty 
to obtain reliable results on E, in this phase. A preliminary 
interpretation of this phase would be that in the nematic 
phase the PD-Tempone is already expelled into the hy- 
drocarbon regions, but the expansion of the interlayer 
spacings with decreasing temperature somehow allows the 
PD-Tempone back into a region closer to -C=N groups. 
Further experiments with other liquid crystals related to 
8CB would be useful here. 

In the cases of 40,6 and 40,8 one finds TR(C)/TR(B) range 
from 1.24 to 1.42 and from 1.11 to 1.33, respectively, as T 
is decreased. These results may be fitted to a model of 
anisotropic diffusion where N y  increases gradually from 
2.0 (near the N -+ S A  transition) to 2.8 (near the SA - SB 
transition) for 40,6 and ranging from 1.6 to 2.6 for 40,8. 
(The anisotropic viscosity model requires more drastic 
variations in N of 6 to 15 for 40,6 and 3 to 11 for 40,8 and 
is thus less preferred as an explanation.) The case of 8CB, 
in which TR(C)/TR(B) ranges from 0.97 to 0.90 as T is 
decreased, is fit with a model in which Ny decreases from 
1.0 to 0.4, or alternatively one can use x: axis ordering to 
yield an N, increasing from 1.0 to 1.6. (In this case an- 
isotropic viscosity fails miserably even requiring negatiue 
values of N at  the lower temperatures.) Our own pref- 
erence is a SRLS model,lJO which allows us to translate 
an N y  - 2 (or an N ,  - 2) into an STT, - 2 / 3 ~ R  (where SI 
is the order parameter for the SRLS and T ,  its relaxation 
time, cf. section 5). The increase in N y  as T decreases 
would thus be consistent with an increase in St, even while 
the mean ordering (Go), experienced by the PD-Tem- 
pone is decreasing in this phase for 40,6 and 40,8. This 
is not a t  all unreasonable in the context of our model in 
which the flexible end chains are interpenetrating more, 
and their dynamical motions interfere with their average, 
but not necessarily their instantaneous, ordering. 

(4) Smectic B Phase. The ordering tensor for the SA-+ 
SB transition was characterized by only a small change in 
(Go) , but a significant change in (I& + @20)y which 
goes &om near zero (but positive) values in SA to sub- 
stantial negative values in SB. This amounts to a sub- 
stantial increase in I( Go),l and decrease in I( Go),( (both 
of which are negative), cf. Table IV. Thus, the freezing-in 
of the smectic layered structure, which characterizes the 
SB phase, appears to  require the PD-Tempone to relocate 
itself in a new region, or more likely (see below) there is 
some partial constraining of the hydrocarbon end chains, 
so the fluctuations in ordering in the molecular x-z plane 
(or more rigorously the smectic x"-y" plane), which we 
have suggested tend to average out in the S A  phase, no 
longer do so in the S B  phase. [In the case of the N -+ SA 
transition, the ordering tensor increases, but the relative 
changes of the components are, at least to a rough ap- 
proximation, of the same order (cf. Table IV).] 

The changes in spin relaxation in crossing the SA - SB 
transition are even more dramatic. First, there is a slg- 
nificant decrease in both rR(B) and TR(C) in passing into 
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TABLE IV: 
in Liquid Crystal Solvents 

Typical Order Parameters for PD-Tempone 

T = 7 4 . 3 " C  T = 5 2 . 4 " C  T = 3 5 " C  
N S A  SB 

40,6 
( D i 0 ) X  -0.006 -0.037 -0.087 
M 0 ) y  t 0.047 t 0.107 t 0.107 
(DB), -0.041 -0.070 -0.020 

T = 74.5 "C T = 57.7 "C T = 42.0"C 
N SA SB 

40,8 

(Di& t 0.050 0.116 0.114 
m 0 ) X  -0.008 -0.047 -0.081 

(DL), -0.042 -0.069 -0.033 
T = 37.6 "C T = 29.8 "C 

N SA 

8CB 
( D i 0 ) X  -0.006 -0.082 

( G O ) ,  -0.063 -0.060 
M 0 ) y  0.069 0.142 

the SB phase, although the E, values do not appear to be 
altered significantly for 40,8 (the result for 40,6 in the SA 
phase is rather uncertain), and secondly the TR(C)/TR(B) 
ratio increases from 1.3 to 1.8 in 40,6 and from 1.33 to 2.15 
in 40,8. This is further evidence of the changed character 
of the local environment of PD-Tempone that occurs a t  
this phase transition. 

As the temperature decreases in the SB phase, TR(B) and 
TR(C)  both increase as expected, while the ratio T R ( C ) /  
T R ( B )  remains nearly constant till the SB - solid transition 
is reached. 

These observations are somewhat reminiscent of ob- 
servations made for PD-Tempone in phase V about the 
nematic to solid transition (as a function of pressure, cf. 
ref 10, Figure 6a). In this earlier study, the C / B  ratio (or 
alternatively TR(C)/TR(B)) was found to gradually increase 
in the nematic phase as the N - C transition was ap- 
proached, while in the (unordered) crystalline phase the 
C / B  ratio is unusually large at  the phase transition, but 
C / B  approaches unity as one moves away from the 
transition and deeper into the crystalline phase. Fur- 
thermore, T R ( B )  and TR(C) actually decrease as one moves 
deeper into the crystalline phase. (However, TR(B) values 
on either side of the N -+ solid transition were found to 
be comparable.) These results were interpreted in terms 
of the probe being located in a cavity in the solid phase 
with a structure like that in the nematic phase, except that 
increasing the pressure freezes out movement of the solvent 
molecules, so the motion of the spin probe becomes less 
hindered. The large C / B  ratio would then be due to a 
SRLS effect which is then frozen out and disappears with 
increased pressure. 

While there are some important differences in our 
present observations of the SA - SB transition (and also, 
very importantly, the TR values are nearly two orders of 
magnitude shorter in the present case thus requiring some 
differences in detailed analysis of the ESR results), the 
similarities strongly suggest (1) a cavity-like arrangement 
for PD-Tempone in the SB phase; and (2) the importance 
of the SRLS mechanism in modulating the geometry of 
the cavity. Thus, our present model involves a partial 
freezing (or slowing down) of the hydrocarbon end chains 
a t  the SA -+ SB transition such that the PD-Tempone is 
in a fairly well-defined cavity with reduced "frictional" 
restriction to its motion, so its TR decreases. However, the 
residual end-chain motions effectively modulate the 
structure of the cavity, and this modulation is slow enough 
that the SRLS mechanism makes a very appreciable 
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contribution to the observed line widths. This model 
remains essentially unchanged throughout the SB phase. 
From the point of view of activation theory, the similarity 
in E, for the SA and SB phases (e.g., 40,8) would imply a 
similarity in structure of the cavity in the two phases, but 
the difference in preexponential factors imply that the 
thermally induced rate of “effective collisions” causing the 
PD-Tempone to surmount the barrier is significantly 
increased in the S B  phase (and this latter somewhat 
surprising statement may again be likened to the enhanced 
rotational mobility previously observed for PD-Tempone 
in the solid phase of phase V as we have already discussed). 

From the point of view of the fluctuating torque 
model1J0J4 we may write T~ = I V T M / ~ ~ T ,  where I is the 
moment of inertia of the PD-Tempone, V the mean- 
square value of the fluctuating torques, while T M  is the 
relaxation time associated with the fluctuating torques. 
One may suppose that T M  shows the temperature behavior 
characterized by E,, and the decrease in T~ in passing from 
SA -+ S B  phases is largely due to a reduction in v. This 
point of view more naturally summarizes our above dis- 
cussion. To complete this point of view we must recognize 
that V and T M  are characteristic of the fairly rapid 
fluctuating torques which induce the reorientation such 
that T M  < 7 R ,  while the SRLS mechanism is due to 
fluctuating torque components for which T X  > T R  (where 
T X  is the relaxation time for the SRLS process). Thus the 
S A  - S B  transition would be further characterized by an 
increase in slowly fluctuating torque modes at  the expense 
of the more rapidly relaxing torque modes. 

( 5 )  SRLS Mechanism from Line Widths. We may 
summarize the effect of SRLS on the ESR line widths by 
writing modified expressions for the spectral densities 
J O ~ ( w )  and J z ~ ( d ) .  Thus we havelJO 
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The SRLS term has been generalized to the case of 
ordered and one obtains for an axially symmetric 
local order parameter, S1 

(10) 
where $iL(oj is the spectral density for overall rotational 
reorientation (e.p., ( 1 / 5 ) ( ~ ~ / 1 +  W ~ T R ~ )  for isotropic fluids 
with ~(0) = ~ ( 2 )  = T ~ ) ,  which, in principle, includes the 
corrections analogous to those of eq 8 and 9 for the iso- 
tropic phase, while 
J#h(o) + J%(L)j = 

J K M b P  = J M w )  + J#&) + J&(w) 

c 

and 

where the first equality is the usual definition of the 
spectral density for anisotropic diffusion in an isotropic 
liquid,1,8 and the arrow points to the form appropriate for 
SRLS. [Note that T ( O ) - ~  6RI + 4Rll and ~ ( 2 ) - l  E 2RI + 4Rll.] The best current form we have for Do(Oj and Dz(0) 
is based upon Table VII, and is 

Do(0) = [ l  + 0.18843, - 2.57642 + 1.2694S?]~(O) @a) 

Dz(0) = [l + O.0126S1 + 0.3790s; + O.O846S?]~(2) (8bj 

for 0 I SI I 0.8, and 

Do(0) = [l - 0.0940S1 - 2.4988S1’ - 5.2634St]~(O) (9a) 

Dz(0j = [l - 0.O334Sl + 0.0908S12 - 1.492S13]~(2) (9b) 

for -0.4 < S1 5 0. While these numerical coefficients are 
not quite the same as those previously given,1° they 
nevertheless yield very similar results. (One criterion for 
the accuracy of these numerical fits to polynomials is the 
fact that one can show that quite generallyz5 the coeffi- 
cients of the terms linear in Sl must vanish. We see in the 
above expressions that they are indeed small.) However, 
one finds that for reasonable values of S? ,< 0.1, Do(0) x 
~(0) and D2(0) = ~ ( 2 1 ,  so we will ignore these small cor- 
rections. 

where T ~ ’ - ~  5 7R-l + 7;’ 7f1 and K(O,W are given in 
Table VI. The generalization for nonaxially symmetric 
long-range as well as local ordering is given in Appendix 
B. One may now look at  the effect of the SRLS correction. 
This is first done for the simpler expressions (eq 7 )  ap- 
propriate for isotropic liquids, when we assume w , 2 ~ , 2  << 
1 (where w, are the 14N spin-flip frequencies) which ap- 
pears reasonable in light of the very rapid T R  values ob- 
tained in this work (cf. Figure lo), for which w,27R2 << 1 
is certainly true. For isotropic liquids and anisotropic 
rotation one hanlJo T ( O ) / T ( ~ )  = 1/3(2N + 1) with N = 
Rii/RL. Now suppose there is isotropic rotation (Le., ~ ( 0 )  
= ~ ( 2 ) )  but a S R I S  mechanism given by eq 7 [but ignoring 
any effects of SI on Do(0) and Dz(Oj] is present. Then there 
will be an “apparent” ~’(0) = ~(0) + SPrx, and therefore 
an “apparent” N’x (3/2)[[~’(0)/~(2)] - 1/31, Thus we see 
how a satisfactory fit of the ESR relaxation data to a model 
of anisotropic rotational diffusion could be equally well fit 
by a SRLS model. One then would need independent 
considerations, such as those discussed above, to distin- 
guish between them. [However, in the work of I and ref 
10, where w , 2 ~ , ~  2 1, the line width effects of the two 
models become distinguishable.] One finds that for weak 
ordering, such as that experienced by PD-Tempone, the 
K(K,M) correction factors in eq 11 or their generalization 
in Appendix B are not large; they do not differ very 
significantly from unity. Thus the main point we have 
made here (viz. that the effects of SRLS lead to an 
“apparent” N’ 76 1) is essentially unchanged. Further 
K-dependent relaxation from SRLS can result from the 
effects of a nonaxial local ordering of the probe (cf. Ap- 
pendix B). 

I t  is suggested in Appendix B that T~ = T J M ) ,  and this 
can further modify the “apparent” effects of SRLS, e.g., 
the M dependence would lead to the same type of line 
width effects as an anisotropic viscosity model (i.e., N # 
1). Another M-dependent model discussed in Appendix 
B is for a local tilted director, where the projection of the 
tilt in the lab x-,y plane fluctuates in time, 

These, then, aire the considerations which allow us to 
discuss our line width results either in terms of anisotropic 
rotation or viscosity or else in terms of the SRLS mech- 
anism. Combinat ion models are discussed in Appendicies 
B and C. 

Last of all, we note that we have not introduced any 
consideration of jump types of models. We show in 
Appendix D that this is not important for the weakly 
ordered PD-Tempone probe. 

(Dj Angulur Dependence of the Line Widths. In this 
work, as is typical in magnetic resonance studies, the 
magnetic field was employed to align the director in the 
sample. In the nematic phases, because the director follows 
the de magnetic field (-3 kG), it is impossible to study 
the angular dependence of the line width unless other 
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Flgure 12. Angular dependence of Band Cin (40,6) when the director 
is tilted by angle 8 with respect to the magnetic field. The open circles 
are the experimental data taken with 2-mm id.  cylindrical tube; closed 
circles are taken with 0.5-mm i.d. tube: (A) smectic A phase, (B) smectic 
B phase. 

external constraints are introduced (e.g., electrical fields 
and/or very thin glass platesz6). We have studied the 
angular dependences for the smectic A and smectic B 
phases. The results already discussed showed that, with 
the exception of 8CB in the larger 2 mm i.d. tubes, the SA 
and SB phases had their alignments "locked-in" so the 
director could be tilted relative to the magnetic field 
without reorienting. The orientational dependence of the 
g shifts and hyperfine shifts are in complete agreement 
with what is predicted for the "locked-in" director (cf. 
Figure 4). The angular dependences of the line widths in 
the smectic A and smectic B phases were first analyzed 
in the same manner as in the different phases for Oo tilt. 
We first simulated the ESR spectra at various orientations 
to obtain the appropriate (angular dependent) (aD) for 
correcting the line widths due to deuteron inhomogeneous 
broadening (cf. Figure 3). This lead to the surprising result 
that  the angular dependences of the (Q) appear to be 
different for the two different tube diameters. Just as 
surprising was the observation that the angular depen- 
dences of C and B (as well as C I B )  were very much de- 
pendent upon the tube diameter even though the results 
for Oo tilt (as well as 90" tilt) were found to be virtually 
independent of tube size. Typical angular variations of 
B and C are shown in Figures 12-14. We discuss aspects 
of these results below. 

First of all, we wish to examine the importance of having 
accurate ( a D )  values in order to obtain the correct values 
of line width parameters A, B, and C for the PD-Tempone 
probe. Based upon our initial uncertainty of the correct 
angular dependence of (aD),  we considered the implica- 
tions of using different values of ( aD). In this way, one 
rapidly becomes convinced that significant changes in the 
( a D )  used will (1) have virtually no effect on the CIB ratio; 
(2) have only a marginal effect on the values of C and B;  
(3) have an appreciable effect on the values of A. Thus, 
for example, a dramatic 40% increase in postulated ( a ~ )  
(from -0.0222 to -0.0309) is found to decrease A by 2570, 
while B and C are only decreased by 4.5% and the C I B  
ratio only varies by 0.5%, for lines with intrinsic width ca. 
0.2 G. A less dramatic increase of (aD) of 14% yielded 
respective decreases in A ,  B ,  C, and C I B  of 6.5, 1.4, 1.1, 
and -0.2%. We thus concluded that our results for C I B  
as well as B and C could be regarded as reliable even when 
there was some uncertainty in the correct values of ( a D )  
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Flgure 13. Angular dependence of Band Cin (40,8). The open circles 
are taken with 2-mm i.d. cylindrical tube and the closed circles are taken 
with 0.5-mm id. tube: (A) smectic A phase; (B) smectic B phase. 
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e 
Figure 14. Angular dependence of Band Cin 8CB smectic A phase. 
The experimental data are taken in 0.5-mm id. tube. 

required. The angular-dependent results for ( aD) given 
in Table I for 40,6 are the most reliable ones we obtained. 
The reasons for this are discussed below. The angular 
dependence of the ( aD) is expected to follow the relation 
( a n )  = [aD + ' J 2 ( 3  cos2 8 - l ) x D ]  (see Appendix A). One 
finds from Table I that for ( aD) this is approximately, but 
not exactly, obeyed unlike the results for (aN),  which were 
in exact agreement. 

It is our belief that these anomalous observations may 
be explained in terms of inhomogeneous broadening due 
to a static distribution of the directors in the smectic 
phases which results from the effects of (i) the strength, 
geometry, and smoothness of the anchoring of the smectic 
layering by the tube walls, (ii) the elastic constants de- 
termining the strength of the smectic ordering in the bulk 
of the phase, and (iii) the effects of the magnetic-field 
induced torques (due to the diamagnetic anisotropy of the 
samples), which try to reorient a tilted director into an 
alignment parallel to the magnetic field. Thus, in the 
extreme case of 8CB, the anchoring forces as transmitted 
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TABLE V: Line Shape Asymmetries for 40,6, 40,8, 
and 8CB in Different Phasesa 

low field center high field 
phase ( M =  tl) ( M  = 0) ( M  = -1) 
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(40,61 SA T:50.4T 

isotropic 
nematic 
S A  0" 

22.5 
45 
67.5 
90" 

22.5" 
4 5  
67.5" 
90" 

SB 0" 

A. 40, 6 
1.00( 0.971) 0.980(0.979) 
I. 01 ( 0.9 7 9)  0.9 80( 0.9 5 7 ) 
1..023(0.939) 0.985(0.864) 
3. .O 20 (0.9 62) 0,98 8 ( 0.88 1 ) 
I.. 01 8( 0 - 8  59 ) 0.99 1 ( 0.90 6)  
0.99 O( 0.8 54) 0.9 8 1 ( 0.9 2 7 ) 
0.980(0.926) 0.992(0.943) 
0.9 9 6( 0.9 34) 0.9 94( 0.92 1 ) 
0.999(0.918) 0.998(0.914) 
l.OOl(0.895) 0.994(0.911) 
1.006(0.925) 1.003(0.938) 
0.99 7 ( 0.9 40) 1.00 2( 0.94 9 ) 

0.960(0.961) 
0.970(0.960) 
0.964(0.888) 
0.985(0.904) 
0.968(1.045) 
0.996(1.056) 
1.024(0.979) 
l.OOO(0.943) 
l.OOl(0.933) 
0.988(0.928) 
0.993( 0.949) 
0.999(0.961) 

B. 40,8 
isotropic 0.989(1.031) 0.985(0.990) 0.983(0.963) 
nematic l.OlO(0.981) 0.958(0.997) 0.943(0.963) 
SA 0" 1.18(0.99) 0.97(0.96) 0.80(0.92) 

22.5" 1.02(1.14) 0.97(0.99) 0.85(0.87 
45" l.OO(1.14) O.gT(1.03) 0.95(0.94] 
67.5" 0.89(1.01) O.gg(0.96) l.lO(1.03) 
90" 0.87(0.99) 0.98(0.92) l . l l (1 .00)  

22.5" 0.936(1.07) 1.064(0.965) 0.891(0.940) 
4 5" 1 .O 26( 1.06) 0.9 34( 0.983) 0.994( 0.9 3 5) 
67.5" 0.886(1.01) 0.909(0.994) 1.052(0.980) 
90" 0.884(0.953) 0.907(1.003) 1.057(1.001) 

C. 8CB 
isotropic 0.994(0.985) 0.989(0.986) 0.986(0.985) 
nematic 1.034(1.001) 0.966(0.974) 0.945(0.966) 

22.5" 1.12(1.007) 0.892(0.983) 0.876(0.963) 
4 5" 0.9 6 3( 0.9 8 3 ) 0.900 ( 0 I 9 6 3 ) 
67.5" 0.908(1.007) 1.050(0.983) 1.109(0.963) 
90" 0.912(1.007) 1.048(0.983) 1.059(0.963) 

a Table entries are for R = (low field max amplitude)/ 
(high field max amplitude) in a derivative ESR spectrum. 
Numbers first given are for 0.5-mm i.d. tubes; those in 
parentheses are for 2.0-mm i.d. tube, Precision ranges 
from tO.001 to tO.01. 

SB 0" l . lO(l .002) 1.061(0.948) 0.868(0.973) 

SA 0" 1.12(1.007) 0.911(0.983) 0.861(0.963) 

1.0 2 ( 1.0 07 ) 

by the aligning forces (elastic constants) of the smectic 
phase are too weak to maintain a fixed alignment for 2-mm 
diameter tubes, but not for 0.5-mm tubes, as the sample 
is tilted relative to the magnetic field. Nevertheless, even 
when the samples appear to be well aligned by virtue of 
the correct variation of U N  with tilt (and by simple optical 
methods), there is a small static distribution of directors. 

The presence of this source of small inhomogeneity 
superimposed upon the small inhomogeneity due to ( aD) 
is undoubtedly the reason for an apparent variation of ( a D )  
with sample size. Since it appeared difficult to deconvolute 
these two sources of small inhomogeneity from each other, 
we chose a rather simple criterion for distinguishing the 
effects of static director distributions. The composite lines 
observed in the absence of such effects are very nearly 
anti-symmetric about their centers (cf. Figure 3). However, 
we found that the composite lines, where such effects were 
believed to be present, were asymmetric. We therefore 
used such an asymmetry as a measure of these effects, i.e., 
one lets R be the ratio of the low-field to high-field ex- 
tremum amplitude of a hyperfine line. Then an R # 1 is 
a definite indication of inhomogeneous broadening. Our 
results for R are summarized in Table V. We find that 
only in the case of 40,6 in the 0.5-mm tubes, are the values 
of R in the S A  and SB phases in the range of 0.98-1.02, 
which we regard as antisymmetric within experimental 
error. [Also, in 8CB in 2-mm tubes, where the magnetic 
field completely re-aligns the director, very good line shape 

Figure 15. (A) Angiilar dependence of B and C in (408) smectic A 
phase. Closed circles are experimental data take? with 0.5-mm i.d. 
tube. Open circles are the theoretical fits with N = N = 2.314 and rR 1. 
= 1.28 X lo-" s. A is the theoretical fit with N y  2.81, N =  1 ,  and 
rRl. = 1.51 X 1 0 - l ~ .  A is the fit with N =  1, N =  11.5, and rRi 
= 6.57 X IO-'' s. (B) Angular dependence of Band C in (40,6) S, 
phase. Closed circles are experimental data taken with 0.5-mm tube. 
For T = 30.8 OC, the theoretical fit with N = N = 8.2 and T~~ = 6.09 
X lO-"s Is re resented by 0; and the fit with N =  51.8, N =  1, rRl 
= 8.15 X 10; s is represented by A. For T =  22.8 OC, the theoretical 
fit with N = N = 7.0, rR1. = 7.62 X lo-'' s is represented by 0, and 
the fit with N = 39.3, N =  1, T R i  = 1.01 x 10-los is represented 
by A. 

P 

symmetry is observed independent of the sample angle.] 
We thus regard our angular-dependent results for ( uD),  
A ,  B,  C, and C/13 for 40,6 in 0.5-mm tubes as our most 
reliable, which if not entirely devoid of effects of static 
director fluctuations, then they are at least small. On the 
other hand, our results for 40,8 show worse asymmetries 
for 0.5-mm tubes than for 2-mm tubes. We suspect that 
some intermediate size tube would be optimum for this 
solvent. Significant asymmetries are observed for 8CB in 
0.5-mm tubes. 

Our further objectives will be to (1) analyze the most 
reliable results (viz. 40,6 solvent and 0.5-mm diameter 
tube) in terms of spin relaxation (section E) and (2) to 
examine further aspects of the problem of static distri- 
butions of directors in the smectic phases (section F). 

(E) Angular Dependence of the S p i n  Relaxation. We 
have seen in the previous section that the angular-de- 
pendent line widths in the smectic phases typically include 
both inhomogeneous broadening associated with these 
phases as well as the homogeneous widths due to spin 
relaxation. However, in the case of 40,6 in 0.5-mm tubes, 
we were able to sufficiently remove the former, that we 
could attempt an analysis of the latter in terms of spin 
relaxation. Our analysis of angular-dependent relaxation 
is again based upon equations given in I.27928 We first 
attempted to employ in our analysis of the angular-de- 
pendent results, the fits at 0 = Oo found using the models 
of anisotropic rotation and of anisotropic viscosity. These 
are shown in Figure 15, In the case of SA, neither the 
model with N = 2.81, N = 1 nor the model with N = 1, 
N = 11.5 showed satisfactory agreement with the angular 
dependent results (although they agree with the 0 = 0' 
results). 
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Now, in principle, there is no reason not to consider 
models with combined anisotropic rotation and v i~cos i ty .~~ 
However, there is a fundamental theoretical problem in 
developing such a model. This results from the fact that 
the principal axis systems for the two types of anisotropy 
(the molecular and lab frames respectively) are rapidly 
fluctuating with respect to one another. Therefore, the 
diffusion tensor R(t) defined in any coordinate frame will, 
in general, still be time dependent. This problem is 
discussed a t  some length in Appendix C, where general 
forms of the diffusion operator are considered which yield 
time-independent relaxation eigenvalues even when R(t) 
is still time dependent in any one frame. 

We show in Figure 15 predictions using a particular 
form, which minimizes adjustable parameters, and may be 
written simply when we momentarily neglect the effects 
of ordering as 

f,%M(W = 
R,[L(L + 1) + (N - 1 ) P  + (fi - l)n/f]q&(Q) (12) 

This is subject to the restriction that_N 1 1 and fi I 1 (cf. 
Appendix C). We first fixed N = N a n d  then found the 
optimum set of values for R ,  and N which fit the 0 = 0" 
results. These values were then used to predict the ex- 
perimental results for 0 # 0" as shown in Figure 15. We 
see in Figure 15A that this exhibits considerably improved 
agreement with experiment, even yielding exact agreement 
a t  0 = 90" within experimental error. (Recall that the 0 
= 0" and 0 = 90" experimental results for B and C are quite 
insensitive to effects of inhomogeneous broadening as- 
sociated with %ample tube size and shape.) We have varied 
the ratio N/N between the two limiting cases &e., N = 
1 or N = l), but we find the best agreement for N = fl. 
Also, we have tested a simple case based on a model in 
Appendix C such that L(LI+ 1) in eq 12 is changed to 2L(L 
+ 1) (cf. eq C7) and N N. This case could not even yield 
agreement with the 0 = 0" results for any values of the 
adjustable parameters. 

Similar analyses were made for the SB phase as shown 
in part in FigureI15B. In this case the model based upon 
eq 12 and N = N = 7 to 8 showed an improved shape of 
angular dependence for B vs. S compared to the original 
results for N x 40 to 50 and N = 1, but the predictions 
for 0 = 90" are displaced from the experimental results. 
Variations of the models, as discussed for the SA case, did 
not improve the fits. 

As we discussed for the results a t  0 = O", we believe the 
angular-dependent effects are most likely due to a SRLS 
mechanism rather than actual anisotropic rotation or 
diffusion. We note from the general discussion of Ap- 
pendix B, that one can generate dependences of the 
J",s"llt;s(w) on both K and M ,  so that, following the lines 
given in section C5, one could go about fitting the angular 
dependence to these models with considerable leeway in 
the adjustable parameters (T,(M) and SK). 

Clearly, we have not exhaustively studied all possible 
combination models. Nor do our present experimental 
results necessarily warrant them. However, we are en- 
couraged by the improved agreement to believe that 
angular-dependent relaxation studies can provide a basis 
for studying such phenomena. Clearly, one requires (1) 
accurate forms of the orienting potential; (2) adequate 
knowledge of the orientation dependence of any unresolved 
proton or deuteron splittings, and (3) adequate knowledge 
of any effects of static distribution of directors due to 
distortions in the smectic phases. 

F. Static Distribution of Directors. We now consider 
in further detail static distributions of directors and their 
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Flgure 16. Coordinate system representing a sample rotated by angle 
0 in the laboratory frame so that f i , lies in the lab X-z plane. There 
is a static distribution of local directors with polar and azimuthal angles 
0'7 and cp'? relative to fi,. The local director makes an angle of $i with 
the lab z axis. 

effect on the line width and line shape as a function of tilt 
angle 0 of the mean director with respect to the magnetic 
field. We may for this case write as the derivative line 
shape function (cf. I) 

I(B0,8,7) = s' sin 0f de/ X 
0 

Jrsin 04 d8f12rde'I(B0,q(7)) 0 P,,(Q(7)) (13) 

where q(r3 = (O,#?,*') are the Euler angles for a particular 
director ri(r3 relative to the lab frame as shown in Figure 
16. The lab frame is defined by the magnetic field along 
the z axis and the mean director A, in the x-z plane. The 
particular ri(7) is tilted from A, by polar and aximuthal 
angles 0; and e', respectively, and 

cos #? = cos 0 cos 0; - sin 0 sin 0; cos e' 
B ( q ( 3 )  is the resonant field for spin probes at 7. I t  is given 
by eq A12 and A13 where D?,,(0,8,0) is replaced by 

Also Peq(q(7)) is the distribution function for the angles 
&',e'. A simple form used by ~ t h e r ~ ~ , ~ , ~ ~ i ~ ~ ~ ~  is Peq(q) a 
e-cusin2w independent of 7, but the (d dependence has usually 
been ignored, although this is not strictly correct for 0 f 
0. We wish to consider more appropriate forms for this 
distribution function, in particular, the effects of the 
magnetic interaction between the magnetic field and the 
diamagnetic susceptibility of the mesophase. 

The interaction energies which are most important in 
the smectic phase i n c l ~ d e ~ ~ , ~ ~  (1) the smectic layering free 
energy, represented by 1/2B(au/az?2 where B is the elastic 
constant for compression of the layers and u(7) measures 
the displacement of the smectic layer from equilibrium at  
point r'; (2) the free energy of splay distortion: llZK1. 
[(a2u/ax'2) + (azu/ay'2)]z, where K1 is the associated elastic 
constant; the magnetic free energy: -1/zx,(A(7).B)2 = 
- l / z ~ a B o  cos2 #p, where xa is the anisotropy in the dia- 
magnetic susceptibility. Thus we have 
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for the smectic free energy per unit volume in the bulk of 
the phase. If we now identify rim with the normal to the 
smectic layers a t  equilibrium, then fi(r') representing a 
particular director a t  i, would be characterized by the 
distortions n,, = - au/ax' << 1 and nyt = -au/ay' << 1. 

Another important consideration is that of the boundary 
effects or wall alignment.35 It is known that glass walls 
typically tend to align the smectic layers parallel to the 
wall. (When this alignment is strong one speaks of "strong 
anchoring".) This alignment cannot be satisfactorily 
achieved in cylindrical capillary tubes. (In fact one may 
anticipate in such cases an alignment where the smectic 
layers form in concentric cylinders about the tube axis. 
This is known as a myelinic texture.) Thus, the alignment 
procedure that is typically used, which involves cycling 
from the nernatic to smectic A phases in the presence of 
very large magnetic fields, relies on the magnetic free 
energy to favor the alignment of the smectic layers to be 
perpendicular (for positive diamagnetic anisotropy) to the 
field. Samples prepared in this way may still experience 
distortions at  the wall surfaces which are not perpendicular 
to the magnetic field (as well as distortions due to wall 
imperfections). Unfortunately, little is known about the 
strength of these boundary effects, so one usually only 
considers the effects of strong a n ~ h o r i n g . ~ ~ > ~ ~  We shall 
outline an approximate discussion of distortions leading 
to a static distribution of directors on this basis, and use 
i t  to discuss our experimental situation. 

One starts by integrating eq 15 over all i and then 
Fourier analyzing by letting34i35%38 

4. 

u(7) = Cu(q')eL+' (16) 
B 

(where qc is the cutoff wave vector, where qc - a / b  with 
b a moleculair dimension) so that 

n x 0 )  = i 4 , 4 q ' )  (17a) 
n,@) = -iqy,u(q') (17b) 

Note that the fact that ~ ( 7 )  is real requires that u(-q') = 
u*(q') in eq 116. Thus we obtain 
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where n+(q') = n,(q') + in (G). Here we have introduced 
the parameters h (K1/B?/2 N a the layer thickness and 
tB E (K1/XaB#J2 the coherence length due to the presence 
of the magnetic field. For typical values34 of K ,  - lo4 
dyn, xa - cm (cor- 
responding to B = 2.5 X lo7 dyn/cm2), one has X2tB-' - 
4 x io-? We can now estimate (ln+(7)12) N v / (%~)~ .  
JOQc dq'( ln+(q')I2). We have performed this integration 
numerically using eq 20, and the values given above (as 
well as qc - a )< lo7 cm-l) to obtain in the absence of a 
magnetic field: 

Bo - lo4  G and X - 2 X 

a, TI 

Fvol = 2 
B 

[BqZf2 f K1qL4 + XaBo2(qxf2 COS 20 + 
q y j 2  cos2 O)llu(G)IZ (18) 

Here q,.2 = q,? + q,?. In order to obtain this simple result 
for the contribution of the magnetic free energy, we have 
dropped terms linear and cubic in the u(q'). The linear 
term does disappear upon integrating over r' [Le., one uses 
l/VJei+' dr' 0: s(G)], while the cubic terms are dropped on 
the assumption that the u(q')'s are small enough that terms 
higher order than quadratic are not needed. Strong-an- 
choring boundary effects will limit the values of q' allowed 
in the expansion of eq 18. It follows from eq 18 and 
equipartition that the mean square values of u(G) are given 
by 
(lU(q')l2) = 

hBT/ V 
(19) Bq,? + k1qL4 f xaBo2[q,(2 cos 20 + q,? cos2 01 

and then we have 

(ln+(G)l2) = q.,-2(1u(fj)12) = &BT)/ 

/ 

(with a slightly greater than linear dependence upon qc). 
We may comparie this result with the equivalent result for 
a nematic in the tone constant approximation (for 
( ln+(G)I2) = 2kBT/ [K1V(q2 + 5B-2)]) to obtain 

(Because these results depend strongly upon a somewhat 
arbitrary choice of cutoff qc, they should only be considered 
in terms of rough order of magnitude estimates.) Thus we 
see that while ri(15) experiences substantial fluctuations for 
the nematic phase, these fluctuations are greatly sup- 
pressed by the forces in the smectic phase which maintain 
the layer structure [from the term 1/2B(aU/az?]. It is thus 
unlikely that in a magnetic resonance experiment, wherein 
one obtains the signal integrated over the whole sample, 
that one can anticipate any measurable effects from such 
weak fluctuations. Furthermore, these fluctuations are 
dynamic viscous  mode^,^^,^^ and their relaxation must 
further reduce their contribution to line widths in a 
magnetic resonance e ~ p e r i m e n t . ~ ~  In fact, neither in this 
work nor in previous work (cf. I) have we observed any 
effects from the much more substantial fluctuations in the 
nematic phase om PD-tempone line widths. 

In the case of light scattering experiments, one normally 
does not observe wen those fluctuations which require very 
little energy in a smectic (i.e., the pure undulation modes 
for which qzl - 0 so that the smectic energy term Bq,? - 
0). Instead, one observes the effects of static distortions 
which are transmitted deep into the bulk (from wall 
distortions and/ior localized defects) by the very same 
smectic aligning f o r ~ e s . ~ ~ ~ ~ ~  Thus, for a wall undulation of 
wavelength 27r/q1,, the thickness L of the distorted region 
[i.e., the decay constant for u(?)] is given by L = l/q,?X 
which is much larger than the result L = 2n/q,, far a 
nematic. We could therefore expect to see ESR line shape 
distortions from {such effects in the smectic phase, when 
they are unobservable in the nematic. Now u(?) resulting 
from such effects (could also be Fourier analyzed (cf. eq 16) 
[away from the slources: either the wall or localized de- 
fects], and one could then expect some statistical distri- 
bution for the (lu(q')1') as well as the (ln+(G)l2). 

We now wish to consider possible effects of the magnetic 
field, as the angle 0 is varied. For the simpler case of 
parallel-plate smectic alignment with strong anchoring, 'any 
distortion u(7) that is induced vanishes for both z' = 0 and 
d (where d is the sample thickness), so we may restrict any 
modes u(G) induced to qzl = na/d  with n = 1 , 2 , 3  and with 
n = 1 corresponding to the easiest mode to distort, since 
the B(au/az)2 term is smallest. Now normally such dis- 
tortions (1) are expected to require very high fields (ca. 
60 kG) and (2) are expected to be of such low amplitude 
as to be unobservable even by light s ~ a t t e r i n g . ~ ~ ? ~ ~  These 
are again due to the effects of the smectic aligning forces 
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(e.g., xaB,2 = 27r(BKl/d)lj2 with B, being the critical field). 
However, for our samples the anchoring is not very strong. 
Thus, we may expect to have modes qzl = 7r/d’, where d’ 
> d is an “effective” sample thickness, and also the re- 
straining forces for such distortion modes are weaker 
because of the weaker anchoring. In those cases in which 
the anchoring is sufficiently weak (e.g., 8CB in 2-mm tubes) 
there is total realignment of the smectic phases by the 
magnetic field, but for somewhat stronger anchoring (e.g., 
40,6 and 40,8) distortions about the mean director may well 
be expected. These effects should enhance the ( ln+(F)I2) 
that will be observed. 

We now return to a consideration of the above effects 
on eq 13. First the ESR signal involves integrating I(Bo,8,F) 
over the whole sample. We then let 

W.-J. Lin and J. H. Freed 

If the distortion modes are small enough, then I@,*(?)) 
(cf. eq 13) may be expanded in a Taylor’s series about the 
equilibrium orientation rim. That is 

and I(Bo,8) obtained by integration over Bi/, *’ with 
Pa(*(?)). Now the nature of wall anchoring and other wall 
effects, etc. guarantees that Peq(*(7)) will be a function 
of F, which is best handled by Fourier analysis. Thus, if 
we know from statistical and other34-36 considerations the 
distribution function for the &th mode, Pfq(8cL’!pcL’) we may 
make use of the complete P,,(q(q‘)) [defined in a manner 
similar to Appendix A of ref 25 for all values of 4‘ as a 
product of the individual Peq(*($J] in order to obtain the 
absorption signal given by eq 2 1  which is averaged over 
the sample 

f(Bo,e) = v[I(B,,*(F‘))In,(n=o + ’/? (n+(@Jn+(-td) x 
4 c  

- qA 
a”(B,* (7)) + H.O.T. (23) 

where the angular brackets again imply averaging over 8’ 
and (p” 

The question arises as to the importance of the higher 
order terms (H.O.T.) in the expansion even for small 
fluctuations. In particular [with I(Bo,$(7)) given by eq 13 
the derivative of a Lorentzian] the term amI(BO,*(7)/)lrz+(7)?” 
may be shown to involve the (rn + 1)th derivative of the 
Lorentzian line shape. For a very sharp line these higher 
derivatives would tend to cause the Taylor’s series ex- 
pansion to diverge (i.e., in the limit T2 - a the Lorentzian 
approaches a Dirac delta function whose derivatives are 
increasingly more singular). Thus, it is not sufficient to 
require that n+(7) be small in order to achieve rapid 
convergence of the series. Another criterion for conver- 
gence should therefore be that the quantity T,2[B(\k(7)) 
- E ] * ,  where B is the resonant field in the absence of 
ordering (e.g., in the isotropic phase), be small. Unfor- 
tunately, we have found that for PD-Tempone in the liquid 
crystals studied here, the ESR widths are so sharp that 
the Taylor’s series shows no sign of convergence even after 
terms through fourth order are included when values are 
used which can lead to observable effects on the ESR 
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e 

Smect ic  A phase 

\ / 
P 

oA 15 30 45 60 75 90 

a 
Figure 17. The angular dependence of 5 and C for PD-Tempone 
calculated from a static distribution of directors and a magnetic-field 
pulling effect for order parameters appropriate for the SA phases: (A) 
a. = 500 and (-) cy, = 0, ( - - - - )  cy, = 2.5, (--) cy, = 10, (B) cy, = 
2.5 and (-) cyo = 650, ( - - - - )  cyo = 800, (.-a) cyo = 1000. The input 
homogeneous values of 5 and C (assumed angular independent) are 
shown as arrows on the ordinate. 

spectra (e.g., increased ESR line widths as a function of 
tilt angle 15). (Such expansions were compared to the full 
integrations for the simple examples given below showing 
no agreement.) This perhaps emphasizes the considerable 
sensitivity of the narrow line shapes obtained in this work 
to such static fluctuations. 

As a result of this problem, we found it necessary to 
perform the full integrations over 8; and G’. The simplest 
approach is to assume that we can replace the sum over 
4‘ modes such as those which appear in eq 23 and instead 
we approximate eq 21 by 

I(Bo,8) = JTsin 0 8’ d8’ iZrdp’  I(Bo,*) P,,(\k) (24) 

where P,,(*) is a simple distribution function in \k that 
implicitly includes any 7 dependence. For our calculations 
we assumed Pa(*) in the absence of magnetic-field effects 
would show a “one-sided” Gaussian distribution about 8’, 
while the effect of the magnetic field would, as suggested 
by eq 15, be represented by a term in cos2 $. That is we 
let 

p eq (q) Ne(-aosinZfl’+nw&) ( 2 5 )  
and considered various values of a. and al. 

We show some of our results in Figure 17 for the SA 
phase and Figure 18 for the SB phase. In general, the 
dependence upon a. and cy1 is complex, but a comparison 
of Figure 17 with Figure 12A for (40,6) shows that the 
predictions are in reasonable agreement with experiment. 
We would estimate for the 2-mm id .  tube in this case an 
a. - 600 and an cy1 - 5-10, while in the 0.5-mm capillary 
tube a. - 900 and a1 -2.5. In general, the asymmetries 
of the lines for the range of parameters shown are de- 
termined by the ratio cyl/ao: the asymmetries are greater 
for larger values of this ratio, while almost no asymmetry 
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these experimental values (or more precisely the curve 
drawn through them) in Figures 4, or alternatively the 
(Go) and (ao .t Go) which are directly related to them 
by either eq A14 or 3. Also, we have found that the in- 
homogeneous broadening that is predicted increases ap- 
proximately linearly with the magnitude of the order 
parameters. 

In summary we note the fact that for (40,6) it appears 
possible to suppress distortions by going to a smaller 
diameter sample (i.e., by decreasing d )  is consistent with 
the suppression of any distortions due to (1) defects which 
may exist in the bulk and (2) defects from a tilted magnetic 
field. However the fact that for (40,8) the smaller diameter 
samples lead to changes in the inhomogeneous line shape 
charactetistics (cf. Table V) is more consistent with wall 
distortions being transmitted to the bulk. The case of 8CB 
showing that, for the large tubes, the bulk solution follows 
the magnetic-field alignment, and the line shapes do not 
appear to have inhomogeneous contributions, strongly 
suggests the importance of magnetic-field enhanced dis- 
tortions in those samples in which the smectic alignment 
remains otherwise fixed as the sample is reoriented in the 
magnetic field. ‘These phenomena are complex and are 
perhaps better studied in samples with simpler anchoring 
geometries (e.g., parallel-plate alignment)?’ although we 
do note the reproducibility and the excellent “mean 
alignment” (manifested by (aN) and (g)) that can be 
obtained by cycling with strong magnetic fields. 

IV. Summary and Conclusions 
We have shown in this work how the methods previously 

employed by Polnaszek and Freed in I to study spin re- 
laxation in nematic liquid crystals using the weakly ordered 
PD-Tempone spin probe may be employed in a study of 
smectic phases. The observations of ordering and spin 
relaxation in the isotropic and nematic phases of the liquid 
crystals studied here (40,6,40,8, and 8CB) were very similar 
to the previous results and were analyzed similarly. This 
includes (1) the use of a two-term orienting potential for 
the PD-Tempone; (2) the observation of comparable ac- 
tivation energies for reorientation (E,) (except for 8CB) 
which are characteristic of those associated with the solvent 
viscosity; (3) the similarity of the relaxation behavior in 
these two phases. 

In the smectic phases significant differences are ob- 
served. The isotropic hyperfine interactions are found to 
have decreased from their value in the isotropic phase. 
This was attributed to a (partial) expulsion of the PD- 
Tempone from the dipolar region of the liquid-crystalline 
molecules (which is preferred by the polar PD-Tempone 
molecule) toward the more flexible hydrocarbon end chains 
as a result of the packing of the smectic layers. The 
analysis of the hyperfine interactions was based on em- 
pirical fits of UN and UD to solvent polarity. This model 
is further supported by the fact that the E, for the re- 
brientation process are found to decrease substantially in 
the smectic phases to values characteristic of hydrocarbon 
solvents. Furthermore, there is a significant change in the 
nature of the rotational reorientation, that could be in- 
terpreted in terms of increased rotational anisotropy 
(which is exceedingly large for the smectic B phase). 
However we believe it is physically more reasonable to 
interpret our observations in terms of a slowly-relaxing 
local structure (SRLS) model due to the slow fluctuations 
of the hydrocarbon chains. In passing from SA - SB 
phases one finds significant changes in (1) the hyperfine 
interaction which decreases further, (2) the ordering tensor, 
which becomes significantly more nonaxial, (3) the rate of 
reorientation, which increases significantly, and (4) the spin 
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Flgure 18. The’ angular dependence of 6 and C for PD-Tempone 
calculated from a static distribution of directors and a magnetic-field 
pulling effect for order parameters appropriate for the SB phases: (A) 
a. = 500 and (-) a,  = 0, (----) a ,  = 5.0, (.-) a ,  = 10; (6) a ,  = 
2.5 and (-) a. == 400, (----) cyo = 600, (-e) L Y ~  = 800. The input 
homogeneous values of Band C (assumed angular independent) are 
shown as arrows on the ordinate. 

is predicted as al /ao  -* 0; (e.g., for a. = 500, a1 = 0, and 
0 = 45O one has for the +1, 0, and -1 lines: R = 0.98, 1.00, 
and 0.98, respectively; while for a1 changed to 2.5, it 
becomes 0.90, 1.00, and 1.08; and for a1 changed to 10 it 
becomes 0.73,1.00, and 1.26). These asymmetries bear a 
reasonable, but not a precise, relation to the results in 
Table VI, (the largest discrepancy being that little or no 
asymmetry is predicted for 0 = O”, although this is not 
necessarily the case for the experimental results). We 
would estimate for (40,8) (cf. Figure 13a) in the 2-mm. i.d. 
tube, values similar to those for (40,6), while for the 0.5-mm 
tube a small decrease in these values. It appears that for 
8CB in the 0.5-mm tube (cf. Figure 14), a. - 400-500 while 
a1 - 1 or 2, which is a little surprising. 

One might attempt to improve the model calculations 
by superposing the results for different sets of al and a. 
(to crudely simulate different modes). This will un- 
doubtedly have a further effect on both the predicted 
widths and the asymmetries, since there are small shifts 
of the resonance centers, primarily for the outer two lines 
(and are typically a little smaller than the difference in 
inhomogeneous broadening predicted for the two modes). 
However, we felt this additional effort was not at present 
justified. 

Similar comments apply for the comparisons of Figures 
12B and 13B with typical predictions for the SB phases 
shown in Figure 18. Note, in particular, the rather good 
agreement of the results for (40,8) in 2-mm i.d. tubes with 
the predictions in Figure 18A. 

We do wish bo note that the values predicted for B and 
C at  0’ tilt are quite insensitive to the model parameters 
a1 and aO, and they do lie close to the input values. This 
is also true to a lesser extent for 90° tilt. This prediction 
is in agreement with our observations. 

One may wonder about the effect on these calculations 
of any uncertainty in the determination of the ordering 
tensor. Actually, such uncertainties will have virtually no 
effect. This may be seen from eq A12, A13, and A14. 
Equations A12 and AI 3 show that ( a )  and (g) are just the 
observed hyperfine and g shifts (except for a very small 
high-field correction in eq A13. It is only necessary to use 
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relaxation anomaly we attribute to SRLS which also in- 
creases significantly. All these observations are consistent 
with a model in which the smectic B phase is more solidlike 
with the more rigid layer-packing causing the PD-Tempone 
to be expelled further out to the hydrocarbon end chains, 
and into more well-defined “cavities” experiencing more 
slowly-relaxing fluctuations of the end chains. 

Differences in results observed for 40,6 and 40,8 on the 
one hand and 8CB on the other [viz. (1) decreasing or- 
dering with decreasing temperature for the former, but the 
opposite for the latter and (2) an apparently small E, in 
the nematic and a larger E,  in the smectic for 8CB] is 
rationalized in terms of differences in the nature of the 
smectic A phase for these two types of liquid crystals. 
Thus, the 40,6 and 40,8 have interlamellar spacings that 
are a little smaller than the molecular length and this 
spacing decreases with decreasing temperature, while 8CB 
has a bilayer lamellar structure with an interlamellar 
spacing that expands with decreasing temperature. Thus, 
in the latter case the PD-Tempone probes may be able to 
move closer to the polar C=N end groups as the tem- 
perature is reduced. 

An observation we have made that is of some signifi- 
cance for studies of spin relaxation in smectics (in par- 
ticular studies of the variation of line widths with ori- 
entation of the magnetic field), is the fact that the ori- 
entation-dependent line widths show a significant de- 
pendence on the size and shape of the sample even when 
the hyperfine and g shifts show that the sample remains 
well-aligned even as it is rotated (or tilted) relative to the 
magnetic field. This dependence on sample size was not 
of any significance for 0’ tilt angle, and this appears to be 
reasonably the case for a tilt of 90”. However, it becomes 
very significant for intermediate values of the tilt angle. 
This phenomenon is discussed in terms of inhomogeneous 
broadening due to static distortions of the smectic layering 
and to  distortions of the director, which tries to remain 
perpendicular to the smectic layering. Such distortions 
may result from wall anchoring effects and/or dislocations 
in the bulk, as well as from torques on the smectic 
alignment due to a tilted magnetic field. In the smectic 
phase the large free-energy associated with the layering 
results in persistence of such distortions over much greater 
lengths in the sample than for nematic phases. While the 
effects of magnetic torques are expected to be small for 
well-anchored smectics, the typical magnetic resonance 
technique of alignment in a tube by recycling into the 
phase in the presence of a strong magnetic field un- 
doubtedly leads to not very strong anchoring, as evidenced 
by the failure of 8CB to maintain its alignment in larger 
(2-mm i.d.) tubes. Only in the case of 40,6 was it possible 
to  suppress such effects by using smaller (0.5-mm i.d.) 
tubes. Our simple model calculations of these effects are 
in semiquantitative agreement with most of the obser- 
vations. In our theoretical discussion of these matters we 
also considered the effects of fluctuations of the director 
in the smectic phase, but concluded that they were much 
too weak to be of importance, since they are much weaker 
than for nematics, and no observable effects from fluc- 
tuations within the nematic phase are seen with PD- 
Tempone probe. 

We have discussed the angular-dependent line widths 
for 40,6 in 0.5-mm i.d. tubes in terms of combined models 
of anisotropic rotation and anisotropic viscosity. The 
theoretical problem of how to analyze such a model, when 
the two relevant axis systems are rapidly fluctuating with 
respect to each other, so the rotational-diffusion tensor is 
time dependent in any reference frame, is discussed in an 
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TABLE VI: Mean Square Values of the Rotation-Matrix 
Elements D&(n ) Including Cross Terms for Nonaxially 
Symmetric Orderinrta 

K ( K ,  K’, M ) ~ , c  

K K’ M function of ordering tensor 
0 0 0 - 1 2  + --(Dio)a t -(D:o)a 18 - (Dio )a2  

5 7  35 

TABLE VII: Zero-Frequency Spectral Densities 
Jtih/r(O) for the Isotropic Brownian Reorientation of a 
Molecule Experiencing a Reorienting Potential 
U(p )/hT = -A cosz p0-C 

K M a ,  a1 a2 a3 
S > 0 to 0.8 

0 0 1.000 3.008 -9.704 5.654 
0 1 1.000 1.084 -2.769 0.397 

1 2 1.000 -1.058 -0.307 0.288 

1 1 1.000 0.567 9.425 4.854 

0 2 1.000 -2.117 1.181 -0.097 

2 2 1.000 2.148 0.664 -0.028 

S < 0 to -0.4 
0 0 1.000 2.010 -5.972 -12.243 
0 1 1,000 0.983 -3.741 -2.254 
0 2 1.000 -2.223 0.480 -4.783 
1 2 1.000 -1.088 -0.410 -0.004 
2 2 1.000 2.116 0.397 -1.338 
1 1 1.000 0.357 8.004 -7.472 

a The table lists 5 5 p  ( O ) / T R  = (a ,  + a,S t a&’2 + 
a,S3) with S = (~&(O,fl$))a. 
lated by Dr. C. F. Polnaszek. 
for further details. 

These results were calcu- 
See Table I1 of ref 25 
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Flgure 19. The angular dependence of 6 and C calculated for the model 
of t he  SA phase in which the director is tilted with respect to h,,, by 
20°, but the projection in the x’-y’ plane is randomly oriented. 
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Figure 20. Predictions of the comparison of the angular-dependence 
of (A) B and (El) C for Brownian motion and strong jump models of 
reorientation. The solid lines indicate results for weak ordering (e.g., 
PD-Ternpone) with (go) = 0.144, while the dashed lines are for strong 
ordering with (go) = 0.557 (e.g., CSL). The solid circles are for 
Brownian motion, while the open circles are for strong jump. 

Appendix. Improved agreement with experiment is ob- 
tained for the SA phase from such a model. Analogues of 
such combined models for the case of SRLS are also 
developed in an Appendix. Again we favor the SRLS 
mechanisms for the present physical situations. It is our 
belief that studies of angular-dependent spin relaxation 
will, in the future, prove useful in enabling one to elucidate 
the details of‘ complex dynamical processes. However, it 
is clear that it will be important to deal unambiguously 
with effects of inhomogeneous broadening in samples, 
anchored well enough, that they appear to have their 
smectic layeiring “locked-in” when they are tilted with 
respect to the magnetic field. 
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Appendix A. Dependence of t he  ESR Spect rum 
on Angle of Tilt 0 

Following I we write the perturbing Hamiltonian as 

(-l)KLrI.,,(Q)DC,,(,k)F:,~(LiK)A P ,z ( A l )  
s1(Q7\k) = 

L,K,M,M’ 
P? 

where the FL,L(LiK) and AIL,z(L,IM) are the irreducible tensor 
components of rank L,  with F’ in molecule-fixed coordi- 
nates, while A is a spin operator quantized in the labo- 
ratory axes (whose 2 axis coincides with the applied dc 
field). Equation A.1 is based upon two sets of rotations 
of the coordinate systems. This may be seen by writing 
the A ’ in molecule-fixed coordinates as 

Thus the first rotation is from the laboratory axis system 
(x,y,z) into the director axis system (x”,y”,z’? with Euler 
angles \k which may be specified by polar angles 0,cp such 
that \k = (O,O,p), and then into the molecular axis system 
(x’,y’,z? with Euler angles Q = (a,P,r). Since, in general, 
the principal axis system of the magnetic interactions 
(x”’,y”’,z’”) is not identical with that for the ordering (or 
diffusion) of the molecule in the mesophase (x’,y’,z?, one 
may transform from the former to the latter according to 

F’,,~(LK) = C . D C K K ( e ) p : , L ( L 2 K ’ )  (-42) 

where 8 = (a’,fi:’,r’). [Note we often drop the triple su- 
perscripts and refer to the (x”’,y”,z’”) as (x,y,z) when it 
is not easily confused with the lab frame.] In the motional 
narrowing region in the mesophase one has a non-zero 
average value of 7f1(Q) specified by (7fl(Q)),  where the 
averaging implied by the angular brackets is according to 
the prescription of eq 4a. Thus we have 

K’ 

In the case of a uniaxial director one has 

(A*KM(Q)) = (&O(Q) )6M!,O (A4) 

The positions of the resonance lines are then determined 

silo’ 5 so + ( % i t , ( Q ) )  (A5) 

where %, is the usual zero-order Hamiltonian for isotropic 
liquids. Thus in the case of a single nucleus (e.g., N14) one 
has 

by 

7 f 0  = ge@eBOSz + a N S z I z  (A64 

and 

(A6b) 

The solution of this Hamiltonian is formally identical with 
that for a single crystal Hamiltonian with axially sym- 
metric magnetic  parameter^,^ i.e. 

~,piy.(L’O) E x(-l)K( @KO(Q))F\cL’m (A7) 
K 

Thus 

dl1 = aN + (2/3)1/2C(-1)K294.~D~(K)( D ? K o ( ~ ) )  

6, = a N  - (1/6)L~zC(-1)K2~4.~D~(K)(  D?~o(n)) 

(A8a) 
K 

(A8b) 
K 

where 4.NDN‘K) are the irreducible components of the 
hyperfine tensor (in MHz), and 

& = g, -t (2/3)1/2C(-1)Kg(K)(~~0(n2)) (A9a) 
K 

E L  = g, - (l/6)1/2C(-l)Kg(K)(~K0(Q2)) (A9b) 
K 

with g(m the irreducible components of the g tensor. One 
then defines 

g ( 0 )  i: (Zii2 cos2 0 + Z L 2  sin2 O)’iZ (AlOa) 

a(@ = (~112ti1i2 cos2 0 + gL2dL2 sin2 O)1/2/g(0) (AlOb) 

and the resonant field is given by 
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For g values which deviate only slightly from g, one can 
write 

(AlOc) 

For PD-Tempone in which the ordering is weak eq A l l  
may be simplified to 

a(0) = ( ~ 7 , ~  cos2 6 + til2 sin2 

a(d) E aN + 
~o(o ,~ ,0 ) (2 /3 )1 ’2C( -1 )K2~~~~~‘~(DZ_K0(Q) )  ZE ( a )  

K 
(A12a) 

g(0) e g, @0(0,6,0)(2/3)’~~C(-1)Kg”,( &&a)) E 
K 

(g) (A12b) 
where @,(0,0,0) = (1/2)(3 cos2 0 - I), and 

B(0) N Bo( 2 - %) - M N ( u )  - 

where we have only kept terms to lowest power in 
(DKo(Q)). Equation A13 is the form used in eq 13. 

When one only has non-zero ( I#o(Q))zf  and (G0(Q) + 
@zo(Q)),, and parallel molecular (x,y,z) and (x’,y’,z? axes, 
then we have 

r 

and 
r 

1 

+ %o),,] @0(0,0,0) (A14b) 

In the case of y ordering which is used in this paper one 
makes the appropriate substitutions of the axes (Le., y = 
z’, z = x’, x = y?. Equations A14 lead to eq 3 used to 
determine the order parameters from the hyperfine line 
shifts. 

One may also use an analogous set of formulae to deal 
with the unresolved deuteron (or proton) super-hyperfine 
structure. However, the magnetic principal axis system 
for each deuteron is not generally coincident with the 
(x’,y’,z system (even after averaging over rapid methyl 
group motions). Also, the deuterons (or protons) have 
anisotropic hyperfine tensors that are much larger than 
the isotropic hyperfine splittings, so even though the 
ordering in (the analogue) of eq A8a is small, these an- 
isotropic terms make a large contribution. Thus one 
should use the analogue of eq AlOc in place of eq A12a, 
with analogues of eq A8 for & I , , @  and Si,,,. One finds that 
for the two-term ordering, eq A8 become 

iFII,D = a D  X D  (A15a) 

(A1 5 b) G L , D  = a D  - X X D  

with 

XD = (az’z’,D - aD)(@O)z’  - 

1 
-(%v,D - ay!y~,~)  (@,o + &,o)~/ (A161 

That is, the other non-zero components of the hyperfine 
tensor in the (x’,y’,z? axes are averaged out. I t  would 
appear therefore that by measurements of XD in different 
phases exhibiting different values of (@,), and ( @,o + 
@2,0)zt, (e.g. the SA and S B  phases) the values of u,~,(,D - 
UD) and ax’x’,D - ayfy , :D) could be found. (However con- 
tributions from small, but nonvanishing ordering com- 
ponents such 8s (g,o - @2,0)z( would affect XD, while such 
components are not detected from studying ( aN), because 
of the (near) coincidence of the (x”’,y”’,z”’) magnetic axes 
and the (x’,y’,z? ordering axes.) 

Appendix B. Generalizations of the SRLS 
Mechanism 

We consider the SRLS mechanism from the theoretical 
point of view recently presented by Freed.26 The results 
given there were for axially-symmetric ordering, but they 
may be readily generaiized to nonaxial molecular ordering 
to give the following result: 

fi 

aRks~(0) = 5[CK“K’~)][CK(K’,K’’,M)] x 
K” K“ 

where TR’-’ 7R-I + rL1 c! rR-I since we require 7R-l >> 
T,-’. Also 

K(K,K”M) = S d Q  P,,(O)(@“(Q) X 

with Pe,(Q) given by eq 4b and T, is the SRLS relaxation 
time. Equation B1 is based upon the assumption that the 
SRLS is characterized by uniaxial primary ordering and 
a local structure whose fluctuations may be averaged 
uniformly over orientational space; Le., one first writes as 
the irreducible tensor components of the local ordering 

SI,K,M = SIK@,M(W (B3) 

where  SI,^ is the Kth irreducible tensor component of the 
local order parameter (assumed small in the theory), and 
then we let 

oRwf(Q) - (aM(Q))n(wt /M(Q))n)  032) 

( S * l , K / ~ ( ~ ~ ) s l , K , ~ ( ~ )  = (s*1K&d e+r6M,Mf (B4) 

where ( S*KSK) are averaged over the fluctuations in SK. 
In general, the T, = T,.(M), and this functional dependence 
may be inserted into eq B1. (Also, T ~ - I ,  may in general, 
include a translational component due to the diffusion of 
the probe from one local structure environment to another. 
In the latter case one might also properly include some 
variation of R in the different local regions.) One can show 
that for the potential of eq 5 the K(K,K’,M) obey the 
symmetry relations29 
K(K,K’,M) = K(-K,-K’,M) = K(K,K’,--M) = 

K(-K,-K’,-M) = K(K’,K,M) (R5) 

Also K and K’must both be either even or odd for non-zero 
values of K(K,K’,M). We present in Table VI a listing of 
the values of K ( K , K ’ ~  that are needed when the two-term 
ordering tensor based upon eq 5 applies. Note that in this 
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case it should be sufficient to specify the local ordering by 
non-zero values of just and Sl,2 = which are real 
quantities, so the K and K’ values in eq B1 need only 
include these values. In the case where the primary 
molecular ordering is axially symmetric, although the local 
ordering is not, then eq B1 simplifies to 
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periments. There is no strong reason at  present to exclude 
the dynamic model discussed above. 

Appendix C. The Rotational Diffusion Equation 
in the Presence of Both Anisotropic Rotation and 
Anisotropic Viscosity 

In dealing with the theory of rotational reorientation in 
ordered liquids we have made use of the Brownian dif- 
fusion operator, which we write in symmetrized form as 
(cf. I) 
f‘, = M*R(t)-M + [M.R(t)*(MU)]/2kT + T.R(t). 

T / ( 2 h q 2  (Cl)  

where Mis the operator for infinitesimal rotations and R(t) 
is the diffusion tensor of the molecule, and both are written 
in the (x’,y’,z’) molecular coordinate system. The external 
torque T experienced by the molecule is related to the 
potential of mean torque U(Q)  by 

T = iMU(Q) (C2) 

In general, even in the Brownian motion limit, R(t) may 
be time d e ~ e n d e n t . ~ ~ ~ ~ ~  We have previously used two 
models in which R becomes time independentel Case (1) 
is anisotropic rotation (e.g., molecular asymmetry) where 
the components of R in the molecular frame, which we will 
write as R,, are time independent. One quickly sees that 
it is R, which alppears in eq C1, so it becomes time in- 
dependent. Case (2) is anisotropic viscosity, where the 
components of I3 in the lab frame, R,, are time inde- 
pendent. In this case, when we write M.R(t ) -M,  the 
components of R(t) in the lab frame are rapidly fluctuating 
in time. It is therefore necessary to transform this dyadic 
scalar product (which can be written as the scalar product 
of two second rank irreducible tensors plus a scalar in- 
teraction, see bellow) into the lab frame as 
f a  = N-R,.N+ [N-Rn.(NU)]/2kT + T,*R,.T,/(2kT)2 

(C3) 

T, = iNU(Q) (C4) 
The operator properties of M and N are given else- 
 here.^^^"^^ Of course, for completely isotropic motion, 
we have M.R. M .= R M2 = R W  = N.R. N ,  where R is the 
simple rotational diffusion coefficient. 

The problem of combined anisotropic diffusion and 
anisotropic viscosity is more complex, because, in general, 
it is not possible t o  find a single axis system which renders 
R(t) time independent. However, in the spirit of the 
Brownian motion theory and models (1) and (2), one may 
obtain a simple solution for this case (3), by assuming R(t) 
can be decomposed into two parts: R(t) = R, + Rm, such 
that R, is [as in case (l)] time independent in the mo- 
lecular frame while R, is [as in case (211 time independent 
in the lab frame. Thus we obtain a time-independent 
diffusion operator (cf. eq C1 and C2) as 

(C5) 
where f,,, is given by eq C1 and fa,,, is given by eq C2. 
We will now assume axial symmetry of both R, and R, 
in their respective frames for the purpose of simplicity of 
discussion, although this is not necessary (see below). Then 
the normalized eigenfunctions of these operators in the 
absence of a restoring potential are the 

where 

f ,  = fa,, + f,,m 

where K(K,M’) K(K,K,M). 
A model has been proposed for the SA phase which can 

explain the facts that  (1) typically the interlayer spacing 
is less than the molecular length and (2) SA - Sc tran- 
sitions often occur. I t  is based on the idea that the 
molecules in the SA phase are actually tilted by angles 8’ 
and p‘ relative to the normal to the smectic layering, but, 
unlike the Sc: phase, there is no long-range order in pr.le 
If we assume that the angle p’ is randomly fluctuating at  
each local site, then we have a SRLS model, which we can 
represent following Freed.25 One lets the (dimensionless) 
orienting potential (in which we assume axial symmetry 
for simplicity) be given by the sum of two terms 

where = (O,O’,p’). 
Now since 

Go(Q - e) = C ( - )NG~(Q)@~~(*)  038) 
N#O 

we can rewrite y(Q) as 

Y(Q) = X o f l o ( Q )  + ( - ) N f l ~ ( Q ) @ ~ ~ ( * )  (B9) 

where K O  + Xlb,o(’k) is now the effective time-in- 
dependent orienting potential coefficient. Now we can let 

N#O 

D?,,+(O,0’,p’) = di,-N(8’)e-iNd (BIOI 

where only p’ = p’(t) is time dependent. Then, by the 
methods given by Freed,25 we obtain 

zkg(u) = (1 / 5) [K((),m 1 [d&(e’) 1 ‘ ~ K . o  x 

where K ( O , M )  is determined with respect to io. This result 
can be generalized, as before, to cases of nonaxial sym- 
metry. Note that [di,0(8’)]2 = (1/4)(3 cos2 8’ - 112; 
[di,al(8’)]2 = (3/2) sin2 8’ cos2 8’; and [d~,*2(8’)12 = (3/8). 
sin4 B’, and, in general, 7, = ?,(MI. Note that this 
mechanism would give line broadening that is formally 
similar to ar$sjot;opic viscosity [i.e., to eigenvalues R ,&(L 
+ 1) + M ( R I  -- R,) in the isotropic phase] when Rii > RI. 

in the static limit, i.e., i, - m. The additional broadening 
for a tilt angle 0’ = 20” (which is of the order to “explain” 
the x-ray results on interlayer thickness) calculated from 
a static model (i.e., eq 13 with Peq(*(7)) a delta function 
in 8’ = 20’ and a random distribution in p’) is shown in 
Figure 19. This result shows extremely large contributions 
to -B, in sharp contradiction to the experimental results. 
Thus such a static model is inconsistent with our ex- 

One can a i so calculate the predictions for such a model 

and we obtain for U ( S )  = 0 
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fpcpk,(Q) = (M&,*M+ iVR,*N)&M(Q) = [(R,, + 
Rn,)L(L + 1) + (RnII - Rnl)w + - 

R m ~ ) ~ l & d Q )  (C7) 
In the presence of restoring potentials one has 
f, = NR,*N+ MR,*M- R,J(X,pO) - 

f(Rm,,Rrnll,h,P,Q) (Cg) 
where 7 and f are given in I. [Note that we have-previously 
used-the notation RmI = R I ,  R,II = RI , R,, 3 R I ,  and RnII 
= R ~ ~ ,  _also ope sees from I that R , ~ ( x , ~ , Q )  = 
f (R l + R  ~ , R I I - + R  I ,X,p,Q).I 

The general situation for case (3) is best handled from 
the viewpoint of irreducible tensor notation. We illustrate 
by writing 

M.Rm.M = (-l)pRm(L~p)(M2)(L~-p) (C9) 
L = 0,2 

P 

where the irreducible tensor components RE'P) and 
( M2)(L,-P) are given by 

W.-J. Lin and J. H. Freed 

f ,  all be real and positive. This guarantees that any 
nonequilibrium distributio? of orientations decays to 
equilibrium. (Note, that rn is defined so positive ei- 
genvalues lead to negative exponential decay in time.) In 
that case, if we assume axial symmetry (Le., only R(2i0) and 
RLzlo) are the only nonzero values of RgVp) and RAG) then 
one finds that we require 

(M2)(2,*2)  = (M*1)2 
where Mfl = i (1/d5)(Mz f iM). An identical set of 
equations apply to Rn(L@) and ( N  2 )(L,-p). Then 

NR,*N + M*R,*M = RM2 + 
2 (-1)P[Rk%P)( M)(z,-P) + RE,P)( M 2 ) ( 2 * - P ) )  (C12) 
P 

where 
RM2 = RN2 ((33) 

and 
R = (1/3) T r  R(t) = 1/3(Tr R, +TrR,) 

The last two terms in eq C1 and in eq C2 can similarly be 
handled by irreducible tensor formalism. 

Now eq C12 derives from the assumption of eq C5. 
However, the irreducible tensor form of eq C12 suggest! 
that it may be possible to generalize this result so that R 
in eq C12 is simply the spherically symmetric part of R, 
and it need not, in general, obey eq C13. [This geperal- 
ization can also be carried out on the terms in Pa de, 
pendent upon U(Q).  One first expands R in terms of R 
and the components R,(,',p) and REJ') in these terms.] The 
main requirements we place on the matrix R is that it be 
a real symmetric matrix with positive principal values in 
the coordinate system in which it is diagonal. Since the 
molecular and lab coordinates are fluctuating relative to 
each other, it is difficult in general to analyze for this latter 
condition. (It is immediately seen to be true for the form 
of eq C5.) Instead we can require that the eigenvalues of 

+ RL2>O)) > 0 (C14iv) 1 
This set of requirements is less restrictive than eq C5. In 
the case where Rfzo) = 0, the choice of R = l /3(Rmll + 
2R,J and (2/d/6)REto) = (RmII - RmJ leads to the ex- 
pected requirements that Rrnl > 0 [from (i)] and that 
Rml ,  > 0 [from (ii)]. 

Appendix D. Brownian vs. Strong-Jump 
Reorientation and Angular-Dependent Line 
Widths 

In this work we have used Brownian motion models as 
a starting point for our analysis and the introduced 
non-Brownian corrections. Strong jump models are often 
used because of the simplicity of the results, although there 
is not very good theoretical justification for their use. Here 
we compare predictions of angular-dependent line widths 
for isotropic Brownian vs. strong jump models. The 
zero-frequency spectral densities for Brownian motion are 
conveniently fit to a polynomial in (L#,(Q)) for axial 
symmetry. Such a table was given in ref 25, based on 
calculations of Polnaszek. These calculations have been 
refined somewhat, and the new fits appear in Table VII. 
With the exception of Jll(0), they yield slightly better fits, 
but the new J I l ( O )  do involve a significant numerical 
correction. The results in Table VI1 and Table I of ref 25 
or the more general form of Table VI [along with the 
strong-collision form of J&(o) = K(K,M)TR]~~ were used 
to compare the two models in Figure 20. One finds that 
for weak ordering, appropriate for PD-Tempone (e.g., the 
SA phase of 8CB), the predictions from the two models are 
nearly the same. However, for strong ordering, appropriate 
for CSL, there are significant differences in the angular 
dependence predicted by the two models. (The results for 
strong ordering are only approximate for both models 
because we did not correct for the effect of the changing 
nuclear spin quantization axis as 0 is varied.)28 

We thus conclude that it is not necessary to distinguish 
between different jump models in properly analyzing the 
motional-narrowing results for weakly ordered PD- 
Tempone. 
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