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The model of Mason, Polnaszek, and Freed for ESR-slow-tumbling spectra is extended to the case of NMR
line shapes for arbitrary tilt of the internal axis of relatively rapid rotation with respect to the principal axes
of the chemical shielding tensor for a decoupled I = 1/2 nucleus. The theory is applied to an analysis of 3P
NMR spectra from partially hydrated dipalmitoylphosphatidylcholine (DPPC) molecules over a range of
temperature. Generally, very good agreement with experiment is obtained enabling the determination of the
rate of the “average” or “effective” internal rotation and the orientation of this “average” axis in the molecule.
The basis on which the simple model reflects the spectral effects of the combined internal and overall motions
is discussed in detail in an appendix, and the extension to more complex models is outlined.

(I) Introduction

The model of very anisotropic rotational reorientation
in slow-motional spectra was treated several years ago by
Mason et al.! for the case where a nitroxide electron spin
probe is undergoing relatively rapid rotation about a single
bond, while the macromolecule to which it is attached is
reorienting slowly. In the present study we extend this
type of approach to cover nuclear spin probes (I = 1/2
nuclei) and we treat the more general case of a primary
axis for diffusion which is tilted at arbitrary angle from
the principal axes of rotational diffusion. The specific
manner in which this model effectively includes internal
modes of motion is also considered here in somewhat
greater detail. The method is suited for the analysis of
internal motions in macromolecules with the option of
choosing a probe nucleus, e.g., H, 3P, *F, 13C, 15N, etc.
(occurring either naturally or by means of specific isotope
labeling), depending on the nature of the molecule in-
vestigated and the time scale of the dynamical processes
taking place.

To illustrate the method we have chosen P NMR
spectra from the DPPC molecule which consists mainly
of a glycerol residue to which are attached two long fatty
acid chains and the phosphatidylcholine head group. This
phospholipid molecule is of particular interest, since
phospholipid bilayers are a major component of biological
membranes. The importance of the head-group structure
of the phospholipid molecule is today well established; that
is, one observes a variation of phospholipid head-group
composition in different systems? and also one finds
specific phospholipid requirements of various membranal
enzymes.? There seems to be a direct relationship between
the type of the head group present and the fluidity of the
phospholipid dispersions; the gel to liquid crystalline
thermal phase transition temperature is sensitive to the
nature of the head group as well as to the presence of
head-group perturbations such as Ca?* and pH; the co-
operativity of the various phase transitions in phospholipid
bilayers is related to the head-group structure* and the
biaxial nature of low water content phospholipid bilayers
is also related to the head-group conformation.57

Fully hydrated bilayers of DPPC have been thoroughly
studied by a variety of methods, in order to determine the
bilayer structure and the molecular conformations of the
DPPC molecule, with a particular emphasis on the ge-
ometry as well as the dynamic characteristics of the
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head-group region. However, in view of the great geometric
and dynamic complexity of these systems, the experi--
mental data could not be interpreted unambiguously, and
several models consistent with the various experimental
findings have been suggested.®12

Lower water content mixtures have recently been in-
vestigated by various methods.’®1% 3P NMR
experiments'® have shown that upon complete dehydra-
tion, the rigid-limit powder spectrum is obtained, and the
spectral changes upon increasing the water content have
been interpreted in terms of the onset of head-group
motion, which leads to motionally averaged spectra at 15
°C for ca. 15%, by weight, water. Below the gel to liquid
crystalline phase transition (occurring at 41 °C for fully
hydrated DPPC bilayers and at somewhat higher tem-
peratures for lower water content®) the long fatty acid
residues are found to be crystalline-like. When the water
content is lowered, the complexity of the dynamic pro-
cesses is substantially decreased, and the dominant process
is the reorientation of the head group.'®* We show, in this
work, how we are able to characterize this process in terms
of anisotropic diffusion coefficients at the various tem-
peratures as well as the orientation of the principal dif-
fusion axis in the molecular frame, by means of a complete
line-shape analysis of 3P NMR spectra from the rigid limit
up to the limit of rapid anisotropic rotational reorientation.

In section II we develop the theoretical method for the
basic model of slow tumbling and very anisotropic diffusion
and then give typical results to illustrate the slow-tumbling
range and to determine the limiting conditions under
which the simpler approaches used previously are valid.
In section III we analyze the experimental results for a
mixture of DPPC and 15%, by weight, water in terms of
the theoretical simulations and we discuss their impli-
cations. The limitations of the present analysis are pointed
out there as well as the potential for further studies.
Experimental details appear in section IV. The more
general theoretical discussion of the combined slow-
tumbling spectral effects of both overall reorientation and
internal rotations and the relationship of more general
models to our model of section II appears in Appendix A.

(II) Theory

(A) Spin Hamiltonian [*’P]. The spin Hamiltonian
appropriate for NMR, written in the spherical tensor
convention of Freed and Fraenkel 16 is

@) = T (DEDL (P EOAEM (1)
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where the F‘L K) and A LM) represent the irreducible tensor
components of rank L and components K and M, re-
spectively, with u dlstmgulshmg the different types of
magnetlc interactions and i, the different magnetic nuclei.
The F K) are functions of the magnetic parameters of the
system expressed 1n the molecule-fixed, diffusion axis
system, while the A M are functions only of the spin
operators quantlzed n the laboratory axis system. The

D(Q) are Wigner rotation matrix elements which
express the transformation from the molecule-fixed (x/, y’,
2’) to the laboratory (x, y, 2) axis system, where Q rep-
resents the Euler angles («, 8, ¥) relating one axis system
to the other. .

When the principal axis systems of the magnetic in-
teraction (x”’, y"”, 2””) and those of the molecule-fixed,
diffusion (x/, y’, z’) are noncoincident an addltlonal
transformation with Euler angles ¥ = (¢, 6, ¢) must be
made between these axis systems. This is given by

FALK) = % DERAT)F 7 LH @)

where, for the case of axially symmetric rotational dif-
fusion, ¥ reduces to (0, 8, ¢) where 8 and ¢ represent the
polar angles of this axis in the (x”, y’”, 2’") coordinates.

For an I = 1/2 system, such as phosphorus-31, where
the internuclear dipolar interaction may be neglected in
the presence of a strong, externally applied decoupling
field, the spin Hamiltonian reduces to just the effect of the
chemical shielding tensor, so that

H(Q) = —yy(l - B, +
2B, T

3 m=-2 to +2

(-1)™ DD (QF L™ (3)

Explicitly, the F®™ components for ¥ = (0, §, ¢) are
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(40)

and the FA2™ are glven in Table I. We have dropped
the nonsecular (I.) terms in eq 3, because in high magnetic
fields they make a negligible contrlbutlon to the (slow-
tumbling) spectrum.! [Furthermore, we may note that in
high magnetic fields, when nensecular terms are negligible,
we can treat nuclei with quadrupole moments, e.g., “H or
N, by nearly identical methods applied to each of the
allowed transitions, and similar comments apply to the
case of dipolar interactions between like spins of I = 1/2.]

(B) Rotational Model. Now, in general, the Euler angles

= {a, B, v} are fluctuating due to the overall reorien-
tational motion as well as due to the various internal
rotations which can affect the subgroup containing the

Py
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TABLE I
chemical shielding interaction
=0 1=2
ALY q=0 B, (2/3)'B,1,
q= +1 0 iBoIi'
g=x2 0 0
Frhm) gm0 ;T (q.—l)a (8/2)/%(ay 1, = 1/ Tt o)
m=z+10 0
m=+2 0 ooy 11 = a1y 1)

21/ Tr o= o,

magnetic nucleus. This is expected to be true for phos-
pholipid head-group motion which probably involves
multiple rotation axes. Mason et al.! pointed out that
rather than consider a very complex analysis of such
motions and their spectral effects, it is useful in most cases
to simplify the model to include two primary rotational
diffusion coefficients in a manner that is formally
equivalent to axially symmetric rotational diffusion
wherein R, (the parallel component of the rotational
diffusion tensor) represents the relatively rapid internal
rotational motion {or the net effect of several such motions)
while B, represents the net effect of the slow overall
motions. This was indeed found to be an adequate model
for initial analyses given the limited but useful
“information content” of the “slow-tumbling” spectra. (In
fact Mason et al.! only considered the case of ¢ = 0 in order
to reduce the more complex analysis réquired for nitroxide
spin probes to a reasonably tractable level.)

For our analysis, we employ this simplified model of
Mason et al., except that the “full-tilt” case of ¢ > 0 and
¢ # 0 is employed, since the spin Hamiltonian of eq 3 and
4 is simpler, so the overall slow-tumbling problem is more
tractable. We show in Appendix A how more complex and
realistic models involving relatively rapid internal rotation
and overall slower reorientation do indeed reduce to the
form of our simple approach under several physically
realistic 1imiting cases. For each of these cases one obtains
more precise interpretations of the phenomenological R,
and R, the interpretation of the tilt angles, and the
conditions under which the more general treatment
outlined in Appendix A might be required. Thus, for
example, it is possible to show that for a molecule un-
dergoing completely anisotropic rotational diffusion (with
principal components R, R, and R,) and with relatively
much more rapid internal rotation of the subgroup con-
taining the magnetic nucleus (with internal rotational
coefficient Ry) that R can indeed be interpreted as Rj,
while the complex overall motion may be represented by
a single “effective” R (or R ;) which is a weighted average
of R,, Ry, and R, that depends upon the orientation of
the ax1s of 1nternal rotation relative to the principal axes
(x’, ', 2" of the overall rotational diffusion tensor. (This
is case 5 in Appendix A.)) It is also pointed out how the
method may be extended to multiple internal rotations.

Thus we continue the analysis below as though we are
dealing with simple axially symmetric rotational diffusion,
but when we come to interpret the 3P NMR spectra, we
make use of the interpretation that appears appropriate
based upon the discussion in Appendix A.

(C) Stochastic Liouville Expressions. Here we follow
the usual approach of FBP% in evaluating the stochastic .
Liouville equation (SLE) for this case of a single ] = 1/2
nuclear spin. [This is formally analogous to the ESR
problem of a single spin of S = 1/2 with an asymmetric
g tensor, given by FBP, but we now allow for arbitrary
orientation of the main diffusion axis with respect to the
principal axes of the magnetic tensor.] One obtains the
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following compact set of coupled algebraic equations for
the coefficients Ck,, in the eigenfunction expansion of the
density matrix (cf. Appendix A and ref 17-20), which
determines the slow-tumbling spectrum:

[{w = wp) ~ 1Tyt + TL,K_I)]C%(,%: + )
(-1)EHFEOT N (L, L0 CEE + (—1)K§ Ny(L,L'-1)
Ll ?

[(£1) Im F2)CE o + (Re F2Y)Che o] +
(DXL N(L,L+1)[(1) X
(Im FeVCET, - (LRe FeD)Ch%o] + (-1)E+H % Ny(L,
L'~2)[(Re F2)Chit, + (£1)(Im F22)CE
+ (-1)FH }L: Ny(L,L'2)[(Re FN)CE4, - (£1) X
(Im FA22)CK30] = 4/26(L,0)6(K,0) (5)

where we have used the definitions

Cht = \%[% FDECh K0 (69)
L, — = l’ KL
ko= —=[Cko - 1)FCLk K>0 (6b)
) ﬂ 3 o
Ch = v/2Ck, (6¢)

while Cfy is nonexistent. Also
fo (L 2 L L 2L

"in terms of the 3 ~ j symbols, and N(L,L") = [(2L + 1)(2L’
+ 1)]¥2, Also, w is the frequency of the resonant rf field,
while wy = vx{1 — ¢)Bg; T, is an orientation-independent
residual line width; the ;™ are the eigenvalues of the
diffusion operator for axially symmetric diffusion in an
isotropic medium, and for Brownian rotational diffusion
they are given by

rxt = [RULL + 1) + (B - R K ®)

where R | and Ry are respectively the perpendicular and
parallel components of the diffusion tensor. The 7, ! for
other models of rotational reorientation are given else-
where.!820 Note that (Re F**P) and (Im F'®9) are the
real and imaginary parts of F'2P), respectively, which may
be obtained from eq 4a.

Note that the absorption spectrum I(w — wg) is given by

I(w = wo) Im €4 (9)

The infinite set of equations given by eq 5 may be written
in matrix notation as

AC=U (10)

where C is a column vector of all the coefficients, Cki,
while A is seen from eq 5 to be a complex-symmetric
matrix, which can be rewritten as A = A’ + Kl with K =
@ = wy — 1Ty so that A’ does not contain the sweep
variable. Equations 5 (or 10) and 9 were solved in the
standard manner'®?° by first diagonalizing A’. The
computer program, written for an IBM 370/168 computer,
allows for K truncation.!®? Typical values for L and K
which are required for B; >> R | with the latter being very
slow were L = 20 and Kl = 2, with computing times of 10
CPU s. [This program also allows for a cylindrically-
symmetric orienting potential U(Q)/kT = -\ cos? 3, such
that the primary axis of the molecular diffusion tensor
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Figure 1. Theoretical spectra illustrating the changes in the line shape
occurring as a function of R, the rate of isotropic Brownian diffusion,
as denoted in the figure (in units of s, for an axially symmetric tensor
with oy = -65 ppm, 0| = 130 ppm, and a residual line width T, 1=
1 ppm. The calculations were performed using L values as large as
90 for the near-rigid-limit region (R = 5-1 s™"), L = 8 for the slow-
motional region’ (R =~ 10*s"), and L = 4 for the limit of rapid motion
(R = 105-10° s~ a

tends to be ordered with respect to the applied dc magnetic
field. The methods for including orienting potentials have
been given elsewhere.'®%] Copies of this program are
available from the authors.

(D) Spectral Simulations. (1) Range of Slow-Motional
Spectra. The sensitivity of a typical NMR spectrum for
a spin I = 1/2 with an anisotropic chemical shift to rates
of molecular motion from 1 to 10° s is illustrated in Figure
1. For simplicity, we have chosen an axially symmetric
o tensor with o) = —-65 pprd and ¢, = 130 ppm and an
isotropic Brownian rotational diffusion process with a rate
R =1/(67p), with 75 denoting the correlation time for
rotational diffusion. The overall width of the rigid-limit
spectrum is 300 ppm and the residual line width is 1 ppm.
This would correspond to nuclei such as 3P, 18C, and °F
which have chemical shift anisotropies of several hundred
ppm and to spectrometers equipped with high decoupling
power units (to decouple abundant surrounding nuclei
from the observed nucleus) so as to obtain a small residual
line width. It was shown recently?® that for a macro-
scopically isotropic hydrated DPPC sample the residual
line width is less than 1 ppm both for 1P and for *C, using
a spectrometer suited for solid-state NMR. The slow-
motional region includes the range 10 < R < 10° and is
sensitive to the details of molecular dynamics.

To illustrate the sensitivity of the line shape to the
orientation of the axis about which axially symmetric
rotational diffusion occurs, we have chosen typical values
of Ry =158X10*s and R, =158 X 1057 (v = 1.05
X 107*s), where 75 = 1/(6(RyR )'/?) and T, = 10 ppm
representing anisotropic slow tumbling, but we varied the
polar angles 6 and ¢ which define the orientation of the
diffusion axis relative to the coordinate system determined
by the principal axes of the 3P chemical shift tensor, as
shown in Figure 2.

For simplicity, we have ignored the possibility of a
microscopic ordering potential at the position of the 3P
nucleus; the excellent fit between the experimental and
simulated spectra (Figure 5) is certainly consistent with
this assumption although there is a more fundamental
justification given below. However, there is experimental
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Figure 2. Theoretical spectra illustrating the changes in the line shape

occurring upon varying the polar angles 8 and ¢ as denoted in the figure.

The simulations were performed with R)}“ 1.58 X 10*s™, R, = 1.58
= 14,

X 10% 5", T,' = 10 ppm, and L =

L | | ! 1 i 1
-200 =100 0 100 200
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Flgure 3. Theoretical spectra illustrating the effect on the line shape
of including in the calculation an ordering potentlal The S|mulat|ons
were performed for 74 =13.33 X 10°%s, T,”" = 5 ppm, Ry/R, =
6 =90° ¢ =0° L=10,and K= 10. Intfrace (a) no ordering potentlal
was used and in frace (b) an axially symmetric orienting potential U(3)/kT
= -\ cos? 3 with A 3.0 was used.

evidence® that microscopic ordering indeed occurs in the
case of fully hydrated (40% H,0) DPPC bilayers. To
illustrate the effect of a macroscopic ordering potential,
we present in Figure 3(a) the line shape for R /R, = 10,
R = 3.33 X 1075, Tyl = 5 ppm, 6 = 90°, an(i<p=0°,to
be compared with the line shape in Flgure 3(b), where a
simple axially symmetric potential with A = -3.0 has been
included. As seen, the dominant effect is to transform the
line-shape features to a near rapid motional spectrum. We
emphasize this point to show that the theory may be used
to treat cases of nonzero ordering potentials which are
certainly relevant for oriented phospholipid bilayers. In
the special limiting case of microscopic order but ma-
croscopic disorder (e.g., polycrystalline samples) where
motion relative to the microscopic ordering forces has
reached the rigid limit (but any other motions such as
internal rotation could still be evident in the spectrum),
one immediately concludes that the spectrum is correctly
predicted without having to include the microscopic or-
dering in the analysis. This will be seen to be the correct
limit for the analysis of the 3'P spectra in Figure 5.

(2) Validity of Simple Limiting Cases. Many
workers®2 have used a simple limiting model of very rapid
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Figure 4. Theoretical spectra to determine the lower limit of R for
which the assumption of rapid very anisotropic motion is rigorously valid.
The values R, = 55,0 = 87.8° ¢ =69° T, = 1.6 ppm, L =
32, and K= 2 were used The spectra also illustrate the sma!l effect
of decreasing R" from its limiting value of ca. 2 X 107 s™! on the

“apparent” Ag = &y - & which is directly measured from the spectrum.

anisotropic reorientation. In this section we consider its
range of validity. Rapid very anisotropic motion implies
that the rotational dynamics of the spin about some
molecular diffusion axis v is very fast, while motion
perpendicular to that axis is very slow. Such an ap-
proximation is only rigorously correct where (1) the motion
about v, which is described by an effective rotational
diffusion tensor component R, is so fast that residual
time-dependent effects of the averaging process, which lead
to line broadening, etc. are negligible and (2) the motion
perpendicular to v, described by an effective R | is so slow
that its effects on the spectrum are negligible. We show
in Figure 4 simulated 3'P spectra which allow one to
determine the values of R and K for which the above
criteria are achieved.

We found that these limiting values are B > 2 X 107 s
and R, <557 for the particular values of the sh1eld1ng
tensor, 8, ¢, and Ty corresponding to our experimental
spectra presented in the following section.

Further, we found that the anisotropy of the axially
symmetric line shape, defined by? A% = 5 - & L where
and &, denote the positions of the extremes in the line
shape, is not significantly affected when the above criterion
for Ry is not fully achieved. For example, one finds from
Figure 4 that even though Ry is as much as 2 orders of
magmtude smaller than that requlred to meet the above
rlgorous criterion, the main effect is that of line broad-
ening, whereas the positions of the extremes 3, and & are
not significantly different from their value for rapid very
anisotropic motion. However, an accurate determination
of Ag, without a complete hne shape analysis, is certalnly
made difficult by the line broadening.

We point out that previous approaches for analyzing 3P
line shapes®!! were based upon determining Ac from the
extremes in the absorption pattern assuming rapid very
amsotroplc reorientation (i.e., very fast R and very slow

R ) as well as ignoring the possibility of microscopic
ordermg Imphcatlons regarding the orientation of the
diffusion axis as well as a lower limit for R® were derived,
using the expression
A = 1/2(3 CO52 6 - 1)[Uzz - 1/2(Uxx + o'yy)] +
Y(0sx — 04y) sin? 8 cos 2¢ (11)
which is rigorously valid only if all the assumptions listed
above are fulfilled. We have shown in our above discussion
that even though approximate values for 8,¢ sets which
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Figure 5. Experimental ®'P NMR spectra recorded using a WH 270
Brucker spectrometer equipped with a superconducting magnet: dwell
time 10 us, repetition time 2 s, puise length 8 us. Quadrature detection
was used and about 200 free induction decays were accumulated for
the higher temperature spectra and about 2000 for the lower tem-
perature spectra. The broad-band M decoupling power was 15 W.
The smooth lines are theoretical simulations with o, = -100, o, = -30,
and 0, =-130 ppm, R =5 s, and § = 87.8°; the value of ¢ was
55° for the ~30 to -5° C simulations, 58° for the 25 °C simulation
and 69° for the 35 °C simulation; the residual line width T, in ppm
and the values for Rin s™' are denoted in the figure. The simulations
were performed using L = 32 and K = 2 for the theoretical spectra
corresponding to 35 and 25 °C, L = 20 and K = 2 for the 5 °C
simulation, L = 20 and K = 4 for the ~10 and -30 °C simulations, and
L = 40 for the -50 °C simulation. The rigid-imit spectrum was simulated
with a computer program generating a powder pattern corresponding
to a chemical shift tensor with ¢, = -100, ¢, = -30, and o, = 130
ppm, T,~' = 10 ppm and a Lorentzian line shape; the fit of this spectrum
with the ~-50 °C experimental trace was found to be very good,”

fulfill eq 11 can be obtained, it is still possible that Ry, is
as much as 2 orders of magnitude smaller than the lower
limit upon which the simple model is based. Thus one
should be very careful in using that approach.

We now comment on the likely possibility that a
slow-motional spectrum might be analyzed as if it were a
rigid-limit pattern. One should note in Figure 1 that the
very slow motional spectra exhibit shapes similar to that
of the rigid limit but A% is smaller. Thus, in one analysis
of DPPC monohydrate spectrum as a rigid-limit pattern,®
values for the components of the chemical shift tensor were
obtained, which are smaller than the dehydrated powder.!
It might well be that slow-motional effects are responsible
for this discrepancy, so one should always consider this
possibility and record rigid-limit spectra at lower tem-
peratures until no further spectral changes are observed.

(IIT) Experimental Results for *'P and Their
Analysis

The experimental 3'P spectra are presented in Figure
b5 together with the theoretical spectra obtained as de-
scribed in section II. In the following, we (a) discuss the
physical model to be associated with the theoretical
simulations, (b) explain the approach taken in simulating
the experimental spectra, and (c) conclude with general
results of the analysis as well as implications of the data
regarding head-group conformation and dynamics at the
upper temperature regions studied.

The physical model is based on that of simple axially
symmetric rotational diffusion of the 3P moiety about an
internal rotation axis defined in the head group which
could be arbitrarily tilted with respect to the principal axes

The Journal of Physical Chemistry, Vol. 83, No. 4, 1979 529

of the chemical shielding tensor. Further, we assumed the
following:

(1) The orientation of the principal axes of the 3!P
chemical shift tensor in the DPPC molecule is identical
with that determined for the PO, group by Griffin et al.1®

{(2) The principal values of the chemical shift tensor
remain unchanged throughout the temperature range
examined.

(3) An upper limit to the value of R, which can be
determined from the rapid anisotropically averaged DPPC
spectrum at 35 °C, may be used for all other temperatures
studies (i.e., only the values of R, 6, and ¢ are affected by
changes in temperature).

(4) For the set of experimental spectra from —50 to +25
°C, the orientation of the principal axes for rotational
diffusion with respect to those of the chemical shielding
tensor remains essentially fixed.

On the basis of these assumptions, we could interpret
in an internally consistent manner the changes in the line
shape occurring upon varying the temperature between
-100 and +55 °C, in terms of rotational diffusion rates and
orientation of an “averaged” or “effective” diffusion axis.
In the analysis, the input parameters are Ty, R, R, 0,
and ¢, as well as the o tensor. The value of R | used was
R, <5 s and was found to be determined by simulation
of the rapid motionally averaged +35 °C spectrum. For
the low-temperature spectra T, is of the order of 10 ppm,
based on the simulation of the rigid-limit pattern obtained
at -50 °C.

For the high-temperature spectra Ty was found to be
of the order of 1 ppm (Griffin et al.”! showed that for fully
hydrated DPPC at room temperature, the residual line
width is about 1 ppm).

We first simulated the spectrum obtained at -50 °C,
which remained unchanged upon lowering the temperature
to ~100 °C. Taking this to be the rigid-limit pattern, we
obtained, via a best fit simulation, ¢, = ~100 ppm, o, =
-30 ppm, ¢, = 130 ppm, and Ty = 10 ppm. We then
proceeded by simulating the experimental spectrum at 35
°C (which does not change upon increasing the temper-
ature to 55 °C), by varying Ry, R, Ty, 0, and ¢. After
determining A¥ and using eq 11 and the best fit values of
6 and ¢, we then calculated sets of 6 and ¢ satisfying this
equation: we obtained 6 within the range 60° < # <90°
and ¢ within the range 0 < ¢ < 65°, defining a solid angle
for the diffusion axis. The line shape could be simulated
using any of these sets 6 and ¢ with R 2 2 X 107 s and
R, £5.0s7 (At 35 °C the values of R and R could be
determined, since they were found to represent the re-
spective limiting values for rapid anisotropic reorientation.)
Thus although the order of magnitude of the dynamic rates
Ry and R, can be determined, the orientation of the
diffusion axis cannot be determined unambiguously from
the 35 °C spectrum.

According to assumption (3) we let B < 5.0 s7! for the
25 °C spectrum as well as for all other temperatures below
35 °C. We obtained R = 5 X 10°s™., Even though R =
5 X 10% 571 is below ti‘le limiting value of R for rapid
anisotropic motion, as shown in section IID2, the pa-
rameter A% is essentially unchanged. Thus, taking the
same approach as with the 35 °C spectrum, we again found
several sets of § and ¢, all of which gave the same simulated
line shape.

The experimental series of spectra show that between
25 and 35 °C the line shape changes abruptly, whereas
from -50 to 25 °C the changes in the line shape are gradual.
We therefore assume that for the set of spectra from -50
to +25 °C that the orientation of the rotational diffusion
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Figure 8. Theoretical specira illustrating the sensitivity of slow-motional
spectra (corresponding to the experimental spectrum recorded at -30
°C) to the values of § and ¢, for R = 1.0 X 10*s™, R = 535",
and T,”' = 10 ppm. The calculations were performed using L = 20
and K = 4.

frame remains essentially fixed. Thus, we proceeded by
choosing one of the sets 6,4 obtained as described above
for 25 °C and simulated the spectra recorded at 5, -10, and
=30 °C by only decreasing the values of R and allowing
for a increase in the intrinsic line width with decreasing
temperature, (The intrinsic line width is due to the re-
sidual dipolar couplings between the 3P nucleus and the
surrounding 'H nuclei; similar to the dynamic averaging
out of the 3P chemical shift anisotropy, these dipolar
interactions are also gradually averaged out as the rate of
the head-group motion increases.) In contrast to the
results for the higher temperature spectra, Figure 6 shows
that simulations of the —30 °C spectrum (reflecting slow
reorientation) are sensitive to the set of 8 and ¢ chosen.
This result is not surprising, since it was shown in previous
ESR studies that the slow-motional region is quite sensitive
to the details of the motional dynamics. Using the result,
we were then able to uniquely determine the set of # and
¢ appropriate not only for the —30 °C spectrum but for the
entire spectral series from +25 to —50 °C as well. The best
overall fit between the experimental and the simulated
spectra was obtained for # = 88° and ¢ = 55°, as shown
in Figure 5 and it is seen to be very good in all cases. The
diffusion axis does not coincide with any of the chemical
bonds in the vicinity of the 3P atom (based on the identity
of the various bond angles in DPPC and in the phos-
phodiester barium diethylphosphate model compound'®)
and this is probably indicative of an “average” or
“effective” diffusion axis over the entire head group,
represented schematically in Figure 7. We obtain an
activation energy for the process (cf. Figure 5) of 10.3 £
0.5 kcal/mol.

The sudden change in the line shape at 35 °C indicates
both a considerable change in the value of R and a
variation in the orientation of the diffusion axis from 6 =
88° and ¢ = 58° at 25 °C to any of the sets § and ¢ which
fulfill eq 11 for which 8 = 88° and ¢ = 69° is representative
(see upper trace in Figure 5). Although the exact nature
of this transition is not known, our experiments imply a
change of head-group conformation. Since 34 °C is the
temperature at which the pretransition has been cbserved
in fully hydrated (>40% H,0) DPPC, it is reasonable to
relate this phenomenon to our ohservation.

Further NMR studies using, for example, *C-labeled
DPPC may be of great value in trying to clarify the sit-
uation at 35 °C. Given the additional information re-
garding 9 and ¢ provided by the 3C spectra, one will most
probably be able to obtain a unique determination of the
orientation of the diffusion axis at 35 °C.

We conclude with the following:

R. F. Campbell, E. Meirovitch, and J. H. Freed

Figure 7. Schematic representation of the PO, group in the DPPC
molecule; x™, v/, and z"”denote the principal axes of the chemical
shift tensor of the 2'P nucleus based on ref 9, and 6 and ¢ define the
orientation of the diffusion axis v for the process occurring between
-50 and +25 °C, relative to this coordinate system; axis y’”’ lies within
the O-P-0 plane and approximately bisects the O-P-0 angle, where
the O's are the nonesterified oxygens.

(1) The 3'P line shape is sensitive to the rate of an-
isotropic rotation over 5-6 orders of magnitude.

(2) The changes in the line shape with temperature are
generally interpretable in terms of a simple model of
anisotropic rotation about a unique “effective” diffusion
axis, allowing the determination of both the rate of ro-
tational dynamics and the direction of the diffusion axis
between -50 and +25 °C.

(3) There is an apparent change in head-group con-
formation between 35 and 25 °C as evidenced by both a
considerable change in the value of R as well as a change
in the orientation of the diffusion axis.

(4) The method used is potentially suited to deal with

- geveral coupled motions (cf. Appendix A). As expected,

the slow-motional spectra are sensitive to the motional
details. The full power of the method in elucidating details
of complex dynamic processes can be exercised using
several probes in the same molecule, e.g., 3'P, 1®*N, 13C, H,
%F, etc. nuclei with different principal axes of the chemical
shift tensors (or else with different ratios of the compo-
nents with the same principal axes). The present study
will be further pursued along this line.

Such an approach will hopefully enable one to under-
stand more complex systems, such as fully hydrated DPPC
bilayers, leading to an unambiguous description of mi-
croscopic structure and dynamics.

(IV) Experimental Section

Homogeneous mixtures of DPPC powder (purchased
from Sigma) and distilled deionized water were obtained
by adding the appropriate amount of water, 15% by
weight, to the phospholipid and mixing thoroughly. The
purity of DPPC was checked by standard methods:
thin-layer chromatography and gel to liquid crystalline
phase transition temperature of a dispersion of DPPC in
excess water,

The FT NMR ®'P spectra were recorded on a WH 270
Brucker spectrometer equipped with a superconducting
magnet. The following settings were used for all spectra:
pulse width 8 us, dwell time 10 us, repetition time 2 s,
broad-band 'H decoupling power 156 W. The number of
free induction decays accumulated were about 200 for the
high-temperature spectra and 2000 for the low-temperature
spectra, and quadrature detection was used.
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Temperature control was achieved using a stream of
heated or cooled nitrogen at the sample. The probe
temperature was measured in a separate experiment using
a phospholipid sample with an imbedded thermocouple,
and the spectrometer was adjusted to the same experiment
settings as those used during the main experiment. The
estimated stability in the temperature is £1 °C above room
temperature and £2 °C below room temperature. Since
it was shown!® that the 3'P spectra are sensitive to the
water content, the reversibility of the spectra on cooling
or heating was used as a check on the constancy of the
water content and, in general, as a check that no irre-
versible changes occurred during the experiment.
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Appendix A. General Considerations for Models
Involving Relatively Rapid Internal Rotation

We show in this appendix how the simple model of

section II based on axially symmetric rotational diffusion
may be applied and extended to situations involving in-
ternal rotations. We start with eq 1, but we now generalize
eq 2 to

Fi0 = & Dkid®) Dk ANF O (A1)

where ¥ represents the Euler angles for the transformation
between the principal axes of magnetic interaction (x"”,
¥"", 2””) located in an internal rotor of the molecule (e.g.,
the PO, group) and a principal axis system (x, yv, 2V)
fixed in the main frame of the molecule, such that the
Euler angles ¥ include the angle of internal rotational
motion. Then the Euler angles © represent the trans-
formation between the molecular axes (x, yV, z%¥) and the
principal axes of rotational diffusion (x’, ¥/, 2.

More precisely, we consider the axis of internal rotation
as the 2" axis, and its orientation is specified by the polar
angles 6 and ¢ in the magnetic tensor (x”, y”, /") co-
ordinate system. Then, if we let ¥ represent the angle of
rotation about the axis of internal rotation, we have ¥ =
(¢, 6, ¢). Furthermore, if we assume axially symmetric
rotational diffusion of the backbone or main portion of the
molecule, then we can let © = (0, #, '), where 8 and +/
are the polar angles of this principal axis of diffusion
referred to the (x%%, yv, 2V) system. Note that we may then
write?s Dk, AV) = &Y Dk, (0, 0, ¢) where only e is
fluctuating in time (as a result of the internal motion).

Now, in the solution of the SLE we expand the orien-
tation-dependent spin-density matrix () in eigenfunc-
tions of the diffusion operator,'>? which is in the present
case just I'g + Ty if we neglect for simplicity any coupling
between the internal rotational motion (with diffusion
operator I'y) and the overall rotational motion (with
diffusion operator I'g) and treat them as independent
processes. We can use the ¢%,,(Q) = N;1/2D%,(Q) with N,
= (2L + 1)/(87% as the normalized eigenfunctions of I'q
with eigenvalues B | L* + (R~ R | )K® (since we will assume
axially symmetric rotational diffusion for simplicity in
presentation). The eigenfunctions for the internal rotation
may be taken as the functions (1/(27)'/2)e’ ¥ with ei-
genvalues of I'y (assuming simple Brownian motion) given
by R;K?, where Ry is the diffusion coefficient for this
motion.? These results may readily be generalized to the
case of jump diffusion, but the eigenfunctions will remain
the same, while the eigenvalues will change somewhat.2"28
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Thus we shall use the expansion

1 .
(@ = T Chkrucku(Q)——=e*¥ =
LEKK'M \/ 2z
> CkxmLKK'M) (A2)
LKK'M

for the off-diagonal matrix element of () between states
M;=1/2 and -1/2 (represented by subscript A\). We now
note that the matrix elements needed for the SLE are

(LK K, Mi|Tg + TY|L KoKy, My) = [R Ly(Ly + 1) +
K12(R|| -R))+ K1,2RI] 6L1,L25K1,K25K1’VK2’5M1,M2 (A3)

and
(L KK M4, (9Q,%,0) LK Ky \M,) =

K%:K / (=1%o iy (LK M| D2epg (D) Lo Ko My) X
k//,;t,il . ‘
‘ ﬂlKK’(Ovﬁ/,FY/)ﬂlk’K”(Oye,(p)F/’/ELI,?K”)A;(A.%M (A4)

where we have used eq 1 and Al to express #,(Q,,7,0).%
Thus our model, and the associated NMR spectrum in
the (slow) motional region are completely determined by
the diffusion coefficients Ry, R |, and R; and by the two
pairs of polar angles 8,6’ and 6, ¢, for a total of seven
parameters. [It is assumed that the F”ffji‘K " have previ-
ously been determined from rigid-limit spectra.] These
represent too many variables to be confidently fit by fairly
simple NMR spectra. For this reason, and also in order
to reduce the complexity of the computer program, we
consider some simpler limiting cases of the general model.
Case I Let Ry~ R, ~ R,i.e., Spherically Symmetric
Overall Diffusion. In this case we can let 8/ =" = 0, since
there is no preferred axis of overall rotational diffusion.
Then, we can write
F4(Q,¥) = K%:K (DM D%y (~0,~B8,~y)dgreEV X

”

Mot
1)%{/,K/(O,(),¢)F”’£13»K/7A,§Ij;m = K%(” (_1)M$EMK X
M

(—7,_6,—a+¢)‘@%{K/'(O’ea‘P)F”ﬁ%K”)Agfm (AS)

[where we have used the fact that DIg(e,8,y) =
(~)EMDEL, (~a,~B,~v) in the first equality of eq A5]. It
follows from the form of eq A5 that it is now sufficient to
expand ¢,(Q) in the ¢k (a—y,8,y) = N.V2D%(a—,8,7)
basis set [since only the L, K, and M “quantum numbers”
appear in terms in #,(Q,¥) that are affected by the
motions]. Then, in this basis set we get the matrix ele-
ments

(LiEKGMY|Tg + TolLoKoMy) = [RLy(L, + 1) +
RiK®6, 1,0k, x,0m,m, (AB) .
and for the matrix elements of #,(Q;,¥) we need
(LK M| Dipa—,8,7) LK M,y) =
o (e T (KM D8, LoK M) =
Ok k1K OM y-ny (L K M| A g (B)| Lo Ko M) (AT)

where the reduced Wigner rotation elements d)(8) are
defined in the usual manner.”> We note that this last result
is independent of whether we consider the matrix element
involving .

This case is then seen to be formally equivalent to the
result for simple axially symmetric rotational diffusion
wherein R | is replaced by R and (R~ R )K? is replaced
by R;K? and where the original Euler angle « is replaced
by a ~, while the angles 8’ and v are replaced by ¢ and
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¢, respectively. Thus, the computer program based on the
analysis of section II may be used for this model.

Case 2: The Axis of Internal Rotation is Coincident
with the 2’ Symmetry Axis for the Quverall Rotational
Diffusion. Then we again have 8’ = 4/ = 0, so D%(0,8',v")
= dgx Again, we need only expand in the ernrla—y,8,7).
We again obtain eq A7 but eq A6 becomes

(LiKMyTg + Dy|LoKoM,) = [R Ly(Ly + 1) +
K*R; + Ry - R )81, 1.0k, kM, (A8)

[Note that eq A8 becomes equivalent to eq A8 in the limit
that By >> R,R if we let K, — R.] Thus for this case
we may also use the computer program based on the
analysis of section II; we need only let B in that program
be redefined as Ry + R, while « > a ~ ¢, 8 — 6, and v/
Case 3: Very Fast Internal Rotations. Here we assume
the spectral effects of the internal motion are completely
averaged out. Then, in our eigenfunction expansions we
rieed only consider the K’ = 0 or |L,K,0M, ) basis set, since
[ = RiK %KY for K’ 5 0 yields eigenvalues B K*
which are so much larger than any other frequencies in the
problem. We then obtain the result from eq A4 of
(LK M0\, (0,71,0) |1y, K M 0) =
L (1Xog o LiK M| D2gp(0,8,7) LK M) X

KK'"M
I

$k0(0,6,v7’) 1)6'}{ ,,(O,g"P)FW&?K”)A%;M (A9)

It follows from eq A9 that we can reformulate this model
in terms of a redefined

@08 = T (DEDa sy FLRALY
y¥
(Al0a)
where

P = Dko(08'7) T Dl l06AF "¢ (AL0D)

and simple axially symmetric rotational diffusion for which

ToDka(®) = [R Ly(Ly + 1) + K¥Ry - R )| k()
(A11)

The F{4X) play the role of “apparent” tensor components
of F,, expressed in the principal axes for the overall
diffusion (x’, v, 2) when averaged over the very rapid
internal rotational motion, but we are still allowing for (a)
tilting of the axis of internal rotation relative to the
principal axes of the magnetic tensor given by polar angles
f and ¢ and (b) an angle of tilt 8 between the principal axis
of diffusion and the axis of internal rotation, [Note that
in eq A10b or A9 we can let Dk,(0,8',v") = djo(8"),% so the
angle v/ is not important in this case.]

This approach for case 8 can easily be extended to
handle very fast internal rotations about several bonds.
It is only necessary to obtain the redefined F’fﬁ»'m when
averaged over these several motions (cf. ref 29). Then the
computer program based on the analysis in section IT may
be used.

Case 4: Axis of Internal Rotation Coincident with
Principal Axis of Magnetic Tensor, z’”. In this case § =
¢ = 0 and DkxA0,8,¢) = Sx g in eq A4, This simplifies
the analysis, but as long as 8’ and v’ are nonzero and/or
R, # R, or the internal rotation is not extremely fast,
then it is still necessary to expand in the
k() (1/(2m)%) KV basis set (but see case 5). Thus this
is a case that is still too complicated to be handled by the
computer program based upon the analysis of section 1I,
and it would require a more general program.
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Case 5: General Case of Internal Rotation Being Much
More Rapid Than the Overall (Anisotropic) Reorienta-
tion. We now consider the case which allows for com-
pletely anisotropic overall rotational diffusion with tensor
components R,, R,, and R, (in the x/, y', 2’ coordinates)
but for the limit By >> R, R,, R,. This requires a more
complex analysis than the previous cases. (Note that cases
2 and 3 are simple limits of case 5). We take as the primary
set of axes of diffusion for the combined overall and in-
ternal diffusion the molecular axes (x¥, ¥, zI¥) with 2%
being the axis of internal rotation since the internal ro-
tation is the fastest, The rotational diffusion tensor will
not, in general, be diagonal in this coordinate frame. Thus
we may write

Ty = MRM = LZM (~1)PREPH MEYL-P) (A12)
and'P,

where the first equality gives the rotational diffusion
operator as the dyadic scalar product involving the op-
erator for infinitesimal rotations, M as well as the rota-
tional diffusion tensor R.\#%2262630 In the second equality
it is written as a scalar product in irreducible tensor
notation; the R“? and (M?)%-F) gre formed in the usual
mann2§r"’5 and are given elsewhere.’® Similarly we may
write

Iy = Ri*/a)? = RIMY

which is to be compared with M,+* = 8?/sa® which appears
in the (M?%)L-P),

Note that here we may use the D% () (or the inverse
transformation, see below) to transform the diffusion
operator instead of its use in eq Al to transform the F44%),
but, since the diffusion is not necessarily axially symmetric,
we must let © = (¢, &, v, i.e.,, & # 0. Thus #,(Q) is now

given by eq 1 but with eq Al replaced by
FLK = %:Z)ng(\IJ)F”ﬁ%m (A13)

and the Euler angles Q now involve the transformation
between molecular (x, ¥, 2¥) coordinates (still defined
in the molecular “backbone” system) and the lab coor-
dinates (x, v, 2). But this is seen to be analogous to the
7,(Q) for case 2, so that we see we can write #,(Q,¥) as
eq A5 with the definition of the Euler angles Q = (o, 8, %)
slightly altered as we just pointed out. Thus we may again
expand 0,(Q) in the basis set of ¢k (a-¥,8,y). We will
again obtain eq A7 but eq A8 will no longer generally be
true, since T, expressed in the (x, ¥, 2) coordinates will
no longer be diagonal in this ¢k, basis set. (It is, of course,
not even diagonal when expressed in the (x/, ¥/, 2') co-
ordinates if R, # R,.) However, the properties of the M
and (M2 are such that it can change only the K
“quantum number” in operating on ¢k, #4309 and these
will correspond to different eigenvalues of Ty (a—y,8,v)
= K2Ryt (a=,8,7). Since we are assuming B; >> K., R,,
R,, it then follows that these off-diagonal matrix elements
will appear in second-order perturbation theory and may
be neglected when the inequality is strong enough that
first-order perturbation theory applies. Thus, to first order
in R,, R,, R, vs. Ry, one needs only the diagonal matrix
elements, which may be obtained from the properties of
T, in eq A12 which are given elsewhere,?2633 Thay are

(L KMy Tg + T9|L, K My) = RLy(L, + 1) +
(1/2)(R ~ Rwyw) (Ly[Ly + 1) - 3K,%) + RiK?* (Al4)

where

ReY TrR=Y%R,+R,+R,) (Alba)-
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while

e

(Rovss — B) = = =—R20 (A15b)
which may be expressed in terms of the R*>P principal
components as

RVEY) = ¥ :D%y_P(e—l) RP = T (<)PDLp(0)R 12D
P P
(Al6)

where D%,(0) = D}o(a,8,y) = Dpyla’,8,0). [Thus we
required the inverse transformation to that in eq AL] Note
that for axially symmetric rotational diffusion the angle
o’ in eq A16 is redundant, so it may be set equal to zero.
Also note that by letting (3/,R - 1/3R,w,x) = R ¥ and
3/2(R v — R) — R, then the right-hand side of eq A14
becomes

R_Lefle(Ll + 1) + K12(RI + R”eff - Rlefg ~
R L (L, + 1) + RiK,®* (A17)

o by the previous discussions of cases 1 and 2 we see that
the general case of anisotropic overall diffusion but with
R;>> R,,R,,R, can be treated with the computer program
based on the analysis of section II. One should also note
that when the inequality R; >> R,,R,,R, no longer holds,
the method outlined above (prior to the use of perturbation
theory) allows one to obtain solutions of the general
problem in terms of the basis set ¢k (a—,8,7) instead of
the more extended basis set (1/(2m)Y/2)e KV ek, (a,8,7)
used to obtain eq A3 and A4, However, one must treat
the more complex diffusion operator of eq A12 in a co-
ordinate frame in which it is not diagonal. Furthermore,
this method does not appear to have any particular ad-
vantages for dealing with the problem of several internal
modes of motion,
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Paramagnetic Oxides of Nitrogen Observed in a Sulfur Hexafluoride Matrix'
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v irradiation of a solid solution of nitrogen dioxide in sulfur hexafluoride generates a number of paramagnetic
nitrogen oxides which exhibit isotropic EPR spectra at 110 K. The radicals NO,, NO,, and FoNO have been
positively identified, and a fourth species, hitherto unknown, is believed to be a radical ion of nitrosyl nitrate,

ONONO,*.

Introduction

Historically, the oxides of nitrogen have provided an
invaluable testing ground for the theories of chemical
physics. Their presence in our atmosphere and the div-
ersity of reactions which they undergo have ensured the

lasting attention of kineticists; the interpretation of their
spectra, particularly those of the paramagnetic oxides, has
been a constant challenge to spectroscopists. All of the
neutral odd-electron species, NO, NO,, and NOs, have been
observed by EPR spectroscopy, but the detection and
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