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It is found that a very powerful method for computing slow-motional ESR (and NMR) spectra may be developed 
by the use of the Lanczos algorithm (LA) modified to tridiagonalize complex-symmetric matrices. It leads to 
at least order of magnitude reductions in computation time and in computer storage requirements than the 
commonly used Rutishauser algorithm. This permits the rapid analysis of spectral problems that were previously 
too difficult. The formal similarity of these problems to those from Fokker-Planck equations in molecular 
dynamics suggests that the LA should also be a very powerful method for the latter. 

In recent years ltlhere has been extensive work demon- 
strating that slowmotional studies of ESR (and NMR) 
can, when properly analyzed, provide detailed information 
on the microscopies of molecular motions in condensed 
phases.’ The extent of resolution and interpretation of 
such spectra has reached the degree that simple models 
(e.g., Brownian diffusion or jump models) no longer are 
necessarily a d e q ~ a t e . ~ - ~  This poses two problems in such 
research. The first is the increasing complexity of the 
expressions (derived from the stochastic Liouville equation 
[SLE]) that are needed to interpret the spectra. The 
second is the construction of reasonably realistic micro- 
scopic models for the molecular dynamics. We have re- 
cently addressed ourselves to the latter by developing 
augmented stochastic Liouville (or Fokker-Planck) ex- 
pressions consistent with the physics of the relevant mo- 
lecular motions, thle coupling to bath variables, and the 
constraints of detailed balance with respect to a (quasi-) 
equilibrium state.2J5 However, such stochastic modeling 
quickly leads to augmented SLE in several variables that 
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are increasingly difficult to solve. Thus we are again lead 
back to the first problem. In this letter we wish to com- 
municate what we have found to be a very powerful me- 
thod for dealing with the problem. We particularize our 
discussion to the line-shape analysis for convenience, but 
we note that the calculation of correlation functions from 
Fokker-Planck forms will be very similar. 

The stochastic-Liouville equation may be expressed in 
the form6 

(1) 
where %(a) is the spin Hamiltonian, and we use the su- 
peroperator notation AxB [A,B], while s2 represents the 
set of dynamical molecular variables of the spin-bearing 
molecule, rn is the Markovian Fokker-Planck operator in 
the set of variables 0, and p ( 0 )  is the spin-density matrix 
which is also a classical probability function in 0. We 
associate with Fa the unique “equilibrium” Po@) such that 
I’nPo(0) = 0. The spectrum is computed by taking the 
Fourier-Laplace transform of the trace of S,, the spin 

ap(ci) /at  = -iw(o)xp - rnP(n,t) 
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operator, with p(Q, t )  subject to an initial condition (or else 
an “instantaneous equilibrium distribution”) which is given 
by a vector Iu’) (the “right-hand vector”) defined in the 
“Liouville” space, which is a product of spin space and the 
Hilbert space of the variables Q (for which a convenient 
basis set is used). This leads to a form for the unsaturated 
spectrum that we may write as196v7 
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1 
I ( w )  = - Re ((ul[i(wl - + f’,]-lIu)] (2) 

7r 

where (u l  and Iv) are bra-and ket vectors in the space 
defined by A - i 7 f ( Q ) x  + r, with f, = Po(s2)-1/2rJ)o(s2)1/2 
which may generally be written as a (complex) symmetric 
matrix while is Hermitian and can generally be 
written as a real symmetric matrix. Also Iu)  = Po(Q)-1/21u’) 
while ( V I  is just the transpose of Iu). Thus, scalar products 
(e.g., ( u l u ) )  are defined without regard to the complex 
number properties of the vectors. [Alternatively, spectral 
densities (i.e., the Fourier-Laplace transforms of correla- 
tion functions) from Fokker-Planck equations can be 
calculated from the expression formally identical with eq 
2 but with %(Q)+ = 0 and with the real parts of r, rep- 
resenting irreversible drift and diffusive terms while the 
imaginary part of r, represents reversible drift terms.I6 

While I(@) may be obtained by inversion methods, di- 
agonalization is usually preferred since the former must 
be repeated for each value of w.8*9 Thus, we may write 

AX = AX (3) 
as the eigenvalue problem with the eigenvectors deter- 
mining a (complex) orthogonal transformation X, and 
(Nm,  = Am6,,. We let 

lu) = Xblu) (4) 
so that 

2 

(5) 
1 1 urn 
7r T m i w  + A, 

I ( w )  = - Re {(ul(iol + A)-lIu)] = - Re E----- 

Equation 5 has in the past been typically solved by means 
of an algorithm originally introduced by Rutishauser1I8*l0 
that reduces a symmetric (complex) matrix to tridiagonal 
form, while preserving the banded form at all stages. We 
hereafter refer to it as the Rutishauser algorithm (RA). 

We recently developed a form of this algorithm that is 
optimized for use on limited-core minicomputers with disk 
access. Our version (1) maximizes the number of matrix 
elements (of the extradiagonal) that are reduced to zero 
(by Jacobi rotations) in each passage through the matrix 
and (2) maximizes the efficiency of communication of 
matrix elements between disk and core.” The efficiency 
of operation of this version allowed us to develop programs 
to solve problems with even more degrees of freedom than 
had hitherto been programmed for the large core IBM 
370/168; e.g., (a) in the problem of a nitroxide radical 
where the molecular axes of the magnetic tensor and the 
diffusion tensor do not coincide,12 we could readily include 
a nonzero azimuthal as well as polar angle, while (b) for 
liquid crystalline programs, we could allow for arbitrary 
tilt of the director relative to the magnetic field. Case (2) 
had been a formidable13 (but very important1*) task, be- 
cause cylindrical symmetry in the lab frame is destroyed. 
However, there are limits of time and core that prevent 
us from combining both (a) and (b) into a single program 
that runs on a minicomputer or on a large computer in 
affordable times. 

We have now found that, by means of the Lanczos al- 
gorithm (LA)15 (very closely related to the method of 
moments16J’), we are able to achieve, at the least, an order 

of magnitude reduction in computational time as well as 
in computer storage requirements over previous programs 
based on the RA! The LA is an iterative procedure that 
generates a new basis set in which A is tridiagonal. In the 
truncated Hilbert space of dimension N of the initial basis 
set, we consider that the first n elements of the new basis 
set 112) for k = 1, ..., n have been computed. Then In + 
1) is generated from lg) 5 Aln) by projecting out all but 
the part of lg) orthogonal to the n-dimensional subspace 
defined by the l l z )  for k = 1, ..., n. One obtains as the basic 
relation16 

P n b )  = (A - ~~n-dln - 1) - Pn-lln - 2)  (6) 
where 0, is the normalizing coefficient, so that (nln) = 1 
and is seen to be given by P, = (nlAln - l), while a, E 
(nlAln). Equation 6 is a recursion relation such that In) 
is determined solely from In - 1) and In - 2), the a,-’, fin-’, 
and the effect of operating on In - 1) by A. It clearly leads 
to tridiagonal form in the new basis with CY, as diagyal  
elements and 0, as the superdiagonal elements. The most 
convenient starting vector 11) is just Iu) as may be seen 
from eq 2 or eq 4 and 5. 

With this algorithm, eq 2 may be shown to become 

(7) I ( w )  = - Re (ll[iwl + T,]-’ll) 

where T, is the matrix representation of A after n iterative 
steps in the new basis set. This tridiagonal matrix may 
now be diagonalized by the usual (QR transform) algor- 
ithmaJob or else it may be computed by continued frac- 
tions,18 which we find to be much faster. [The running 
time of the QR transform goes as n2 while the final sum- 
mation over eigenvalues (eq 5) for each value of w goes as 
n; the continued fraction solution is about as fast as just 
this latter step.] Our application of the LA to complex- 
symmetric (hence nonmetric) space is the first we are 
aware of, and for which the existing theorems are not 
rigorous but useful n e v e r t h e l e s ~ . ~ ~ J ~ J ~ ~  

The positive consequences of this algorithm are the 
following: 

(1) Only the storage of the two vectors In - 1) and In - 
2) is strictly required at  any given time, since one may 
compute the matrix elements of A as needed. 

(2) The LA allows one to take into account (in both 
computation and storage) the sparseness of A, since the 
LA neuer modifies A, whereas the RA operates directly 
on and modifies A, so its sparseness is lost. 

(3) The iterative steps can be stopped before the end, 
i.e., for n < N, when the spectrum (calculated by continued 
fractions) has been found to have converged (with the ai, 
pi for i > n either truncated or else asymptotically ap- 
proximatedl’JDa). 

It is these three consequences that make the LA much 
more efficient than the RA. 

However, the LA is not stable, whereas the RA is. Thus 
the negative consequences of this algorithm are the fol- 
lowing: 

(4) The vectors In) lose orthogonality as a result of 
round-off error; this effect becomes important when the 
number of iterative steps n is close to N.’” So, if it is not 
stopped, it could iterate ad infinitum. 

(5) The LA cannot distinguish degeneTate or even 
near-degenerate eigenvalues, but, instead, tends to generate 
a single eigenvector with a mean eigenvalue for such a 
“cluster” of the eigenvectors. [The origin of such a cluster 
is usually ambiguous because of effects of interaction 
among clusters.] 

(6) The LA iterates so as to generate basis vectors In) 
associated with the highest eigenvalues in the problem, and 

1 
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since typical forms of Fa are unbounded (Le., their eigen- 
value spectirum extends to infinity) the results could di- 
verge. 

Although we have found adequate manifestations of the 
weaknesses (4), (5), and (6), nevertheless, we do find that 
the LA yields excellent results for I ( w )  (when compared 
to the “rigorous“ results of the RA) if only a few simple 
precautions are taken. Weakness (4) is more than com- 
pensated for by strength (3). In general, we find that one 
may stop ai, an n .<.: N to obtain the excellent results for 
I ( w ) ,  because the additional steps d o  not contribute ap- 
preciably to the spectrum. That is, convergence to the 
correct I (w)  is reached before round-off error can affect the 
results. Thus, we introduce the concept of the minimum 
optimal basis set (MOBS) of In). Our experience has 
shown that the LA4 is very effective at  approximately 
generating the smallest set of vectors, the MOBS, in which 
to represent I ( w )  in the tridiagonal form given by T,. We 
find that ( 5 ) ,  instead of being a weakness, is in practice 
a virtue in calculating I ( w ) ,  since we are not so much in- 
terested in the accurate eigenvalue spectrum as in the 
MOBS to represent I (w) .  That is, the LA should be re- 
garded as producing the basis set Ik), k = 1 to n, that 
minimizes the error in I ( w ) ,  while it reduces the dimension 
of the space by having “clusters” represented by an ei- 
genvector with a single mean eigenvalue and with a pro- 
jection on Iv) that is the sum of that of the components 
as the “clus I,er”. Finally, weakness (6) can be considerably 
reduced by truncating the initial basis set of dimension 
N such that it is as small as is consistent with accurate 
convergence, although the choice of N need not be very 
precise. 

The efficiency o f  the LA with respect to computation 
time is directly related to (i) the ratio n/N where n is the 
number of steps required t6 accurately reproduce I (w) ,  and 
(ii) the sparseness of the matrix. The ratio of n / N  varies 
from problem to problem, but typically decreases with 
increasing dimension of the matrix. A useful measure of 
the sparseness is the average number of matrix elements 
nE different from zero for each row. This quantity depends 
on the nature of the ESR problem (e.g., the value of nu- 
clear spin, symmetry of the magnetic and diffusion ten- 
sors), but it is almost independent of the dimension of the 
matrix. The parameter nE determines the required storage 
space and the execution time for the LA in the same way 
that the bandwidth M affects the RA. Since nE is always 
much less than M (in particular for nonaxial problems, M 
grows with the dimension of the matrix, while nE remains 
constant), we find a large savings in computation time. 
Additionally, for large matrices, the computation time is 
further reduced in using the LA vs. the RA, because it is 
often possible to !store the (nonzero) matrix elements in 
core memory for the LA, while the RA would require disk 
storage of .the banded portion of the matrix (requiring 
much longer execution times for accessing disk-stored 
data). 

As an indication of the power of the LA vs. the RA we 
note that a large nitroxide ESR spectral simulation (of type 
(a) or (b) above) requiring the N = 330, and with a running 
time of 6 h on a PDP 11/34 using the stable RA will, with 
the LA, accurately reproduce these results in 15 min! As 
the matrices increase in dimension even greater savings 
are to be anticipated. Furthermore, we note that, when 
utilizing the LA, the general features of the spectrum are 
obtained after only a few iterative steps; the later steps 
tend to fill in the c3etails.lgb 

All these observations suggest that exceedingly difficult 
problems of large dimensions may be conveniently solved 
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by using the LA. Thus, for example, a computer program 
for ESR nitroxide simulation that combines both (a) and 
(b) (see above) yielding matrices of dimension N up to 
several thousand now appears feasible. It is a common 
problem in ESR studies on ordered phases of liquid 
crystals and of membrane  system^.^^^^^ In particular, from 
(1) we estimate that a matrix of N - 6000 can be handled 
on a PDP 11 (e.g. 11/34 or 11/45) mincomputer (using a 
140-Kbyte high-speed data memory and complex number 
double precision accuracy), while for a VAX computer 
configured with a 2-Mbyte core, the LA could be used for 
an A with N N 60000.z1 While a t  first, it would appear 
that such cases would be limited by time constraints, the 
possibilities (i) and (ii) (noted above) should significantly 
aid in reducing excution time. 

The implications are that it should now be possible to 
rapidly and efficiently calculate ESR spectra in the slow- 
motional region for nearly all cases of practical interestzz 
and utilizing sufficiently detailed descriptions of the mo- 
lecular dynamics. Furthermore, the connection of the LA 
to the method of moments, for which extensive mathe- 
matical theory exists,16 could be of considerable future 
value. 

The details of our analysis of the LA algorithm applied 
to these problems will be given elsewhere.23 
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The absolute proton affinity (PA) of ammonia has been calculated by using ab initio molecular orbital theory. 
Calculations at the SCF level were carried out with both Gaussian-type orbitals (GTO) and Slater-type orbitals 
(STO). The STO basis was used in CI calculations with all single and double excitations included. A correction 
for quadruple excitations was made. The zero-point energy difference between NH3 and NH4+ was calculated 
at the SCF level with the GTO basis and appropriately scaled to experiment. The value calculated for PA(NH3) 
is 205.6 f 1 kcal/mol. 

Introduction TABLE I :  Experimental Proton Affinities (PA) of NH, 

Molecular proton affinities (PA) are important ther- 
modynamic quantities related to the gas-phase basicity. 
A wide range of gas-phase proton affinities has been de- 
termined experimentally, especially through the use of ion 
cyclotron resonance (ICR) spectroscopy.’ It is extremely 
difficult to measure absolute gas-phase proton affinities, 
since accurate heats of formation of ions must be known. 
Absolute proton affinities are, however, important quan- 
tities as they can be employed in various thermodynamic 
cycles to yield ion solvation energies. Most proton affinities 
have been measured as relative values with respect to 
certain standard molecules, The molecule whose proton 
affinity is typically used as a standard value is ammonia. 
The value for PA(NH3) has been measured by a range of 
experimental techniques, from ICR to photoionization of 
van der Waals dimers generated in supersonic 
These experimental data are summarized in Table I. 

As part of our combined experimental/theoretical 
studies of gas-phase ions,6 we have been determining 
gas-phase proton affinities using ab initio molecular orbital 
theory. Since NH3 is a relatively simple molecule, we have 
focussed on an accurate calculation of its proton affinity. 

Before describing the calculations and results in detail, 
we present a discussion of the quantities that must be 
determined in order to calculate a proton affinity for 
comparison with experiment. The proton affinity of a base 
B is generally defined experimentally as PA(B) = -AH298 
for reaction 1. From the ab initio calculations, we de- 

B + H + - B H +  (1) 

‘Alfred P. Sloan Foundation Fellow (1977-81). Camille and 
Henry Dreyfus Teacher-Scholar (1978-83). DuPont Young Faculty 
Grantee (1978). 
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PA, kcal/mol method ref 

202.3 ICRa 3 
203.6 photoionization of (NH, )2 5 
205.0 ICRa 1 
207 f 3 high-pressure mass spectroscopy 4 
207.1 i 1.7 ICRa9b 2 
208.5 f 1.6 ICRapC 2 

Based on a Ion cyclotron resonance spectroscopy. 
PA(1’-C,H,) and AH;(C(CH,),+). 
3. 

Revision of data in ref 

termine a AE quantity which is converted to a AH as 
follows: 

A H z g 8  = @2gs + A W )  (2a) 

A H 2 9 8  = + AnRT (2b) 

For reaction 1, An = -1 in eq 2b. The quantity Ah! can 
be described as a sum of AE values which are dependent 
on the temperature: 

(3) 

The MIot term is zero if we assume that NH3 and NH4+ 
are classical rotors at 298 K while is negligible at 298 
K. The term AEtrms is simply -3/2RT. The ilEeleC term 
can be written as 

U = U e l e c  + U v i b  + U r o t  + mram 

AEelec = AEOeleC + AE298e1eC + AZPE (4) 

where the middle term is negligible a t  298 K. The first 
term is determined from the ab initio calculations while 
the last term is the difference in zero-point energies of NH3 
and NH4+. This last term cannot be neglected, as an 
estimate from experimental values for the frequencies of 
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