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A detailed formulation is presented for the analysis of slow motional ESR in terms of the reorientation of the 
probe molecule within a dynamic solvent cage. This formulation is appropriate for isotropic and ordered 
fluids. The solvent cage is modeled in terms of a set of collective variables that represent the instantaneous 
solvent structure around the probe and that reorient on a slower time scale than the probe. This “slowly 
relaxing local structure” model is incorporated into an augmented stochastic Liouville equation that is solved 
by efficient computational means which enables nonlinear least squares fitting to experimental spectra. This 
formulation is applied to some recent slow motional ESR spectra obtained at 250 GHz. Such high-frequency 
ESR spectra have been shown to be particularly sensitive to the microscopic details of the molecular 
reorientational process. Significant improvements are found in fitting the ESR spectra for the cases studied, 
viz., perdeuterated 2,2,6,6-tetramethyl-4-piperidone (PDT) in toluene and 3-doxylcholestane (CSL) in 
o-terphenyl (OTP), a glass-forming liquid, when compared to a model of simple Brownian reorientation. In 
both cases the cage is found to relax at least 1 order of magnitude slower than the probe itself, and it provides 
a potential for probe reorientation on the order of 2-7 ~ B T .  The cage potential for the PDT case is characterized 
by minima at more than one orientational angle, allowing for jump-type reorientations between such minima 
superimposed on substantial local motions suggestive of earlier simulations based on a simple jump model. 
For CSL in OTP, weak negative ordering is found, consistent with an oblate-shaped local structure provided 
by the OTP solvent molecules. These examples illustrate the potential of utilizing high-frequency slow motional 
ESR to discem details of solvent interactions associated with molecular reorientations in fluids. 

1. Introduction 

With the advent of very high field ESR requiring resonant 
radiation at wavelengths on the order of A = 1-2 mm, 
corresponding to frequencies above 140 GHz, the rotational 
dynamics of spin-labeled molecules observed by ESR is more 
commonly found to be in the slow motional regime than is the 
case at conventional ESR frequencies (e.g. 9.5 GHz).’-~ This 
slow motional regime corresponds to the limit ZRAW 2 1, where 
ZR is the correlation time for the rotational dynamics and Aw is 
a measure of the magnitude of the orientation-dependent part 
of the spin Hamiltonian. For this regime, the spectral line shapes 
take on a complex form which is found to be sensitive to the 
microscopic details of the motional process. This is to be 
contrasted with the fast motional regime, for which ZRAW *: 1, 
where simple Lorentzian line shapes are obtained, and only 
estimates of ZR (or more precisely a rotational diffusion tensor) 
may be obtained independent of the microscopic details of the 
molecular dynamics. Note that it is the enhanced role of the g 
tensor that results in the significantly greater Aw for 250 GHz. 

Another important feature of the very high field ESR 
spectrum in the slow motional regime (as well as in the rigid 
limit) is the enhanced orientational selectivity, which is largely 
due to the greatly enhanced g tensor resolution. In this regime, 
regions of the spectrum corresponding to the magnetic x ,  y ,  and 
z molecular axes are clearly discemed, and this provides 
improved sensitivity to the details of the microscopic features 
for the rotational diffusion.’-4 

The interpretation of these slow motional spectra requires an 
analysis based upon sophisticated theory, and it is usually carried 
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out by means of the stochastic Liouville equation (SLE), which 
can be solved numerically to obtain the ESR spectrum that is 
predicted for various Markovian models of re~rientation.~f’ In 
the past, partly for the sake of computational convenience, 
simple Markovian models have been employed that merely 
distinguish between reorientations by large, moderate, or small 
(i.e. Brownian) jump While these models proved 
to be useful, they beg the issue of the details of the interaction 
of the probe molecule with the solvent molecules and in so doing 
may be regarded as oversimplified and idealized models. 
Solvent interaction and participation is generally regarded as 
important, as for example has been amply demonstrated in 
earlier ESR studies in a wide variety of fluids.’-’* These have 
included viscous liquids, glass-forming liquids, liquid crystals, 
and highly polar liquids. 

The main drawback of including solvent coordinates in even 
an approximate fashion is the increased number of degrees of 
freedom that must be considered explicitly, and this can lead 
to unwieldy computational challenges. We have recently been 
engaged in significant efforts to develop improved but tractable 
stochastic models to describe rotational motions in l i q ~ i d s . ’ ~ - ’ ~  
The many-body problem of dealing with the microscopic details 
of the (complex) fluid is replaced by a set of collective degrees 
of freedom that approximately represent the main effects of the 
complex medium in the immediate surroundings of the rotating 
solute. Following this approach, we have formalized the 
commonly held intuitive model of a loose solvent “cage” in 
terms of a set of collective variables that represent the 
instantaneous structure of the solvent molecules around the 
reorienting probe. This loose “cage” is thereby considered as 
a dynamical structure relaxing in the same or slower time range 
as does the solute and may thus be regarded as a “slowly 
relaxing local structure” (SRLS) model, of the type which has 
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previously been utilized in very simple form to discuss ESR 
~ p e c t r a . ~ - ~ , ' ~ ~ ' ~ - l *  What results is an effective two-body model 
for which, in the simplest case, a two-body Smoluchowski 
equation is obtained. It formally represents the rotational 
diffusion of two interacting rigid rotors and thereby increases 
the number of degrees of freedom by the three Euler angles for 
the orientation of the cage. The formulation and rigorous 
solution of this model and a host of related but more sophis- 
ticated models have now been detailed.I3-l5 This work 
supersedes the earlier simplified  treatment^^-^^^^^^^^'* which could 
not be utilized for slow motional ESR spectra. 

This recent work provides the basis whereby the rotational 
dynamics may be represented by multidimensional Markov 
processes (e.g. coupled Smoluchowski equations). In the present 
work we focus on the inclusion of such multidimensional 
Markov processes into the stochastic Liouville equation and the 
methods of their solution. We shall see that the "symmetry- 
breaking" features of the spin Hamiltonian (which has cylindri- 
cal symmetry in the lab frame), as opposed to the isotropic 
symmetry of the SRLS model (in a macroscopically isotropic 
fluid), lead to a significantly more complicated SLE. Neverthe- 
less, despite the increased degrees of freedom and complexity, 
previously developed  algorithm^^*'^-^' enable us to efficiently 
compute the predicted ESR spectra. 

The utility of the SRLS model for fitting slow motional ESR 
spectra in liquids is illustrated in this work with some recent 
examples from this laboratory of slow motional spectra obtained 
at 250 GHz (corresponding to A = 1.22 mm and BO = 8.9 T). 
These examples include the slow rotational diffusion of two 
probes: PDT (2,2,6,6-tetramethyl-4-piperidone), which is a 
relatively small and nearly spherical probe, in toluene and CSL 
(3-doxylcholestane), a larger, cigar-shaped molecule, in a glass- 
forming liquid, OTP (0-terphenyl). As a result of the compu- 
tational efficiency of our algorithms, it was possible to utilize 
nonlinear least squares fitting of the theory to the experimental 
spectra. In the context of the SRLS model we are able to obtain 
rather detailed pictures of the solvent cage structure and 
dynamics for these examples. 

In section 2 we outline the stochastic Liouville approach for 
including the SRLS model in the slow motional ESR analysis. 
In section 3 the basic features of the SRLS model are described 
and the resulting augmented SLE is presented. The details of 
obtaining a satisfactory matrix representation of this SLE and 
its efficient solution are given in section 4. In section 5 ,  we 
present the analysis of recent experiments utilizing the SRLS 
model. A summary appears in section 6.  

Polimeno and Freed 

2. The Stochastic Liouville Approach 

We start with the SLE for the CW-ESR spectrum of a spin 
probe in a condensed We characterize the orientation 
and position of the probe by the coordinates Q" = (ro,Qo), i.e. 
the position of the center of mass and the Euler angles specifying 
the orientation of the probe with respect to an inertial frame of 
reference, hereafter called the laboratory frame (LF). The probe 
spin Hamiltonian describing the magnetic interactions is taken 

where De is the Bohr magneton, FI is the Planck constant, ye is 
the electron gyromagnetic ratio, and the Hamiltonian is ex- 
pressed in angular frequency units. The f is t  term is the 
electronic Zeeman interaction with the magnetic field Bo; the 
second term describe; the hyperfine interaction betyeen the 
nuclear spin operator I and the electron spin operator S .  Other 
interaction terms (e.g. spin-rotational coupling and nuclear 

Zeeman) will be neglected for simplicity, although their 
introduction does not affect our treatment. The definition of 
each tensor and tensor operator in the proper frame of reference 
will be given in the following section. Both the g and A tensors 
will depend upon the probe coordinates Q". 

According to the stochastic Liouville approach, the density 
matrix operator a(Q",t) describing the joint evolution of the 
quantum spin degrees of freedom and the classical motion 
coordinates Q" is described by the semiclassical equation 

(i3/i3r)&Qo,t) = -(p + i&)&Q",t) 

where Yr? is the quantum Liouville operator, !.e. the c9m- 
mutator superoperator defined with respect to 567, while r is 
Markovian (e.g. a Smoluchowski or Fokker-Planck) operator 
describing the stochastic drift of the probe position and 
orientation in the condensed phase. The quantity + i& is 
referred to as the stochastic Liouville superoperator. The 
magnetic resonance spectrum for an unsaturated, frequency- 
swept CW-ESR experiment is then given in compact notation 
as56 

where w is the sweep frequency, wo = g,&Bdfi = yeBo, with 
go = (1/3)(gn + g,, + g,). The starting vector Iv), with respect 
to which the resolvent is evaluated, is in part a unit vector of 
the allowed ESR transitions in Liouville space, and thus it is 
actually an operator in Hilbert space acting on the spin degrees 
of freedom. It is also a function of the probe coordinates Q" 
(see below). The symbol %in eq 3 implies the real part of the 
expression to its right. 

Typically in the past, only the probe orientation andor its 
position in space has been included in the stochastic description, 
as pointed out above. This is equivalent to a Brownian-like 
assumption that the rest of the fluid in the condensed phase 
produces random forces and torques with a white noise 
spectrum. In real fluids this is certainly not true. In order to 
account for the collective modes arising from the local behavior 
of solvent molecules in the immediate neighborhood of the 
probe, it is sensible to adopt an !ugmented Fokker-Planck (FP) 
or Smoluchowski ( S )  operator r(Q",Q) which describes static 
and dynamic solvent effects in the form of additional degrees 
of freedom Q" coupled to the probe ones Q O . I 4 - l 7  The SLE of 
eq 2 or 3 is then mpdified accordingly by using an augmented 
FP or S operatyr r(Q",Q') instead of a simple jump-type or 
Brownian one, r(Q"). We also replace a(Q",t) - a(Q",Qc,t) 
in eqs 2 and 3. 

From the several cases of augmented FP or S equations 
analyzed by Polimeno and FreedI4 we shall employ the simplest 
model for describing the rotational behavior of the probe in the 
presence of a SRLS. The m ~ d e l ' ~ , ' ~  assumes Q" = Q" and Qc 
= RC; that is, the relevant stochastic degrees of freedom are 
given by the Euler angles specifying the orientation of the probe 
and of SRLS. This neglect of positional coordinates in the 
SRLS appears to be justified by recent molecular dynamics 
simulations of cage effects in a simple fluid,I5 but would not 
be adequate for a structured fluid such as a smectic liquid 
crystal.22-24 

3. Augmented Stochastic Liouville Equation 
We shall describe the coupled system of probe + SRLS in 

terms of a series of frames of reference, which are illustrated 
in Figure 1. First, the laboratory frame (LF), which is an inertial 
reference frame, is taken as a frame at rest whose z axis is 
parallel to the applied magnetic field Bo. Next we consider a 



Slow Motional ESR in Complex Fluids J. Phys. Chem., Vol. 99, No. 27, I995 10997 

Following a notation introduced by Freed and co-w~rkers ,~ .~  
we write the spin Liouvillian as the zero-rank tensor which 
results from the contraction of zero and second-rank irreducible 
spherical tensors or tensor operators: 

1 

0 / I n c  
-/- 

Figure 1. Reference frames which define the structural and dynamic 
properties of the combined system of spin-bearing probe molecule and 
solvent cage: LF = lab frame, DF = director frame, MF = molecular 
frame, CF = cage frame, GF = g tensor frame, AF = A tensor frame. 

second inertial frame, the director frame (DF), fixed with respect 
to the LF, which is relevant only for ordered phases in which 
there is a macroscopic direction of alignment or director (e.g. 
nematic or smectic liquid crystals). The probe is reorienting 
with respect to the LF (or alternatively the DF), and its 
orientation is specified by the instantaneous orientation of the 
molecular frame (MF). The MF will be taken as defined by 
the principal axes of the rotational diffusion tensor of the probe. 
As is usual?,6,9,11,24 it will be assumed for simplicity that the 
principal axes of alignment of the probe in an ordered phase 
will coincide with this MF. The local structure or cage is also 
reorienting with respect to the LF (or the DF), and its 
instantaneous orientation is specified by the cage frame (CF) 
taken as the principal axes of its rotational diffusion tensor as 
well as its principal axes of alignment in an oriented phase. 
Finally we consider the magnetic frames of reference for the 
molecular g and A tensors (GF and AF), which are fixed with 
respect to the MF. The Euler angles specifying the transforma- 
tion of vectors and tensors from one system to the other are 
summarized in the following scheme, where the notation FI - 
Fz(S212) means that if by E12 = E(Q12) we identify the Euler 
matrixz5 whose elements are calculated from the Euler angles 
Q12, then a vector whose components in the frame F2 are given 
by v2 will be given in the frame FI by VI = E I ~ v ~ :  

Qd 
LF-DF 1 
D F ~ C F  I 

(4) 

GF - Q A  AF I 
J Notice that in this scheme Qd, a,, and a, are constant angles, 

since they specify relative orientations between mutually fixed 
frames, whereas Qc and Q" are time-dependent stochastic 
quantities. 

We may now completely define the augmented stochastic 
Liouville operator in the following form: 

2 = ~'(Q~,Q'> + i& ( 5 )  
where f(Qo,Qc) is a two-body Smoluchowski operator to be 
specified, and & is the quantum Liouville operator briefly 
defined in the previous section. Let us now first consider the 
precise definition of the spin Liouville part. 

where X$!) stands for the mth component (m = -1, ..., l )  in the 
N frame of the lth (1 = 0, 2 )  rank irreducible spherical tensor 
or tensor operator, X, which relates to the interaction p (,u = g 
or A); d m k ( ~ )  is a generic Wigner rotation matrix in Q (we 
adopt the Rose convention6gz6). The molecular components of 
the F tensors are defined in terms of their components in the 
proper magnetic frame: 

1 1  

The components of the F and A tensor  operator^^,^^" are 
summarized in Appendix A. Note that the Liouville operator 
does not depend in any way upon the solvent or cage degrees 
of freedom. Indeed, the magnetic interactions terms, which do 
depend upon the absolute orientation of the molecule (cf. eq 6) 
are strictly an internal property of the probe molecule. 

The dynamical coupling between probe and collective sol- 
vent modes is contained in the two-body Smoluchowski 
operator: l49] 

f = jO*Ro*PeqjoPeq-' + ?*Rc*P e¶ ?P e¶ -' (9) 
Here & is equal to the vector operator that generates an 
infinitesimal rotation of the probeA (but for a factor -i), with 
components specified in the MF; J" is the equivalent operator 
for the cage, with components specified in the CF. The 
diffusional tensors R" and Rc are time-independent and diagonal 
in the MF and in the CF, respectively, as described above. The 
Boltzmann distribution Pes is defined with respect to a generic 
potential V(Qo,Qc): 

P,,(n",nc) = 

exp[ - V( S2",S2')/kB T]/(exp [ - V( !2",Qc)/kBfl) ( 10) 

(1 1) 

and 

V(QO,QC) = VyQ") + P'(Q0 - $2') + V(QC) 
Equation 11 includes mean field terms V(Q") and P(Qc) 
representing the respective alignment of the probe and of the 
cage in an ordered phase. The most important term for the 
SRLS model is the interaction potential Vnt(Qo - Qc) between 
the probe and the cage, which depends upon their relative 
orientation, Q = Qo - Qc. (Note that Qzl = Q2 + Q, stands 
for the Euler angles representing the rotation obtained by first 
applying rotation 1 ( Q l )  and then rotation 2 (Q2)). The angular 
brackets in eq 10 imply an ensemble average. 

It is customary and convenient to expand the potential in 
terms of the Wigner rotation matrices dmk(Q), which repre- 
sent a complete orthogonal set for expanding an arbitrary 
functionflQ). In the case of V(Qo) for an ordered phase this 
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sum may be restricted by the following s y m m e t r i e ~ . ~ , ~ . ~ ~  (1) 
In a uniaxial phase (e.g. nematic or smectic A) the potential 
must be cylindrically symmetric about the director. That is, 
letting R" = (ao,po,yo), the potential must be independent of 
the angle a", restricting m to m = 0. (2) Inversion symmetry 
of the potential restricts 1 to even values (note C.$ok(Qo)* = 
ylk(po,yo), the spherical harmonic of rank 1 and order k) .  (3) 
Since V'(Qo) is real, then the expansion coefficients (cf. eq 12 
below) must obey a: = ( - )k(utk)*.  Also, for V'(Ro) to have 
a relatively simple dependence upon R", one should restrict its 
expansion to the lowest even 1 values, since spherical harmonics 
of increasing 1 will have an increasing number of nodes. 
Typically one lets 1 = 2 or 4. Also, we note that the ui (k = 
-2, ..., 2) are the five components of a second-rank irreducible 
tensor, for which in their principal axis system (in which the 
associated Cartesian second-rank tensor components are diago- 
nal) only ui and (a: + a!,) are nonzero. We will also assume 
for simplicity, as is usually done, that only a:, (ai  + a!,), and 
(a: + at4) are nonzero in this axis system, which is equivalent 
to invoking D2 point group molecular symmetry for v"(Ro). 
Thus we shall write 

Polimeno and Freed 

1 
v"(Q") -V(Q") = - c {u;Qm(Q") + 

kBT /=2,4 

a $ d O 2 ( ~ ~ )  + d0-2(~0)~~ (12) 
ignoring the terms with k = 4 for simplicity. We shall assume, 
partidly for convenience, a very similar form for vC(Rc): 

1 
VC(QC) E -V(Q') = - c {bbdm(QC) + 

kBT /=2,4 

b;[Q02(Qc) + !4-2(QC)11 (13) 
In dealing with the interaction potential Vnt(R) it is tempting 
to utilize an analogous functional form: 

C:[do,(Q) + 4-2(Q)lI  (14) 
However, it is probably oversimplified to regard the instanta- 
neous local orienting potential of the probe with respect to the 
cage as necessarily obeying the macroscopic symmetry con- 
straints of typical ordered phases. Thus, it is not unreasonable 
to expect that the local cage can have a biaxial chara~ter, '~ such 
that terms in dmk(R) with m t 0 can appear in eq 14. 
Similarly, we might expect that the summation in eq 14 need 
not be restricted to even 1 terms. For this latter matter, it is 
useful to first note that the anisotropic interaction terms in the 
spin Hamiltonian of eq 6 have 1 = 2. Then we note that second- 
rank correlation functions are qualitatively very similar whether 
a first- or a second-rank SRLS potential is used.I4 One may 
expect such a feature to persist in the slow motional regime. 
Thus, for economy in fitting parameters, and for convenience, 
we will restrict 1 to just even values. In the same spirit we 
shall ignore in the present work any biaxial terms with m * 0 
in eq 14. [Note, however, a variation on eq 14 whereby 
biaxiality can be introduced without a large additional number 
of parameters to fit. That is, we assume eq 14 applies but for 
an Q' E no - Rc' where c' denotes a cage frame that is tilted 
relative to the CF defined above as the principal axes of rotation 
and of alignment of the cage. Then we may replace the 
dOk(Q) in eq 14 by 

@,(Q'> = pjo,c-Qr)isp,,(Q) (15) 
n 

where nr specifies the Euler angles for the rotation of the CF 

into the tilted cage frame specified by c', i.e. Rr -Qc' i- Rc. 
If it is possible to let Qr = (O,p,O), i.e. by a single tilt angle, 
then this would not very substantially increase the fitting 
parameters .] 

An additional feature that we are neglecting for simplicity is 
a distribution in the magnitude of vlnt(R) and its possible 
fluctuations. Such features do appear in the molecular dynamics 
simulations for a simple fluid.I5 

We have now completely defined the model. The orienta- 
tional and dynamical behavior of the probe is defined by the 
dimensionless coefficients of expansion of the mean field 
potential a: ( 1  = 2, 4; k = 0, 2)  and by its rotational diffusion 
tensor R"; the cage is described by the expansion coefficients 
of the mean field potential b: ( 1  = 2, 4; k = 0, 2 )  and by its 
rotational diffusion tensor, RC. The mutual interaction is 
measured by the coefficients in the expansion of the interaction 
potential c: ( 1  = 2, 4; k = 0, 2) .  

[It is of interest to compare the present augmented SLE with 
one that was utilized by Liang et to deal with additional 
degrees of freedom (ADF) in the case of micellar structures. 
Unlike our model in which the motions of probe and cage are 
coupled through the v'"'(R) of eq 14, their ADF were assumed 
to be statistically independent of the probe dynamics. Their 
ADF included the overall tumbling of the micelle and the 
translational diffusion of the labeled molecule (probe) around 
the surface of the micelle. Such effects were introduced by an 
additional transformation in eq 6 to include, for example, the 
orientation of the micelle itself. In such a model, the probe 
moves in the moving frame of the micelle's orientation, and 
the statistical independence of both motions implies there is no 
slip of the probe; that is, it exactly follows the slow orientations 
of the micelle. In our model, developed for local solvent 
structure, the ADF can be easily decoupled from the probe 
motion merely by letting vLnt(R) - 0, whereas the limit of no 
slip is achieved by letting P ( R )  - -.I 
4. Computational Treatment 

We shall proceed to evaluate numerically eq 3 by expanding 
the augmented stochastic Liouville operator of eq 5 in matrix 
form in the direct product space spanned by a complete 
orthonormal set of functions in R" and in Qc and a set of 
electron and nuclear spin "projection operators". The resulting 
matridvector formulation will then be solved numerically by 
employing the Lanczos algorithm, which has been shown to be 
a powerful tool for the efficient diagonalization of large sparse 
complex symmetric mat rice^.'^-^^ The procedure which is 
followed is best described by Schneider and Freed,6 and its 
application to many-body stochastic operators is described by 
Polimeno and Freed.I4 

4.1. Basis Sets. The main challenge in planning an efficient 
strategy for the numerical solution of eq 3, which involves 
complicated algebra in calculating the matrix elements, is a 
sensible choice for the set of basis functions used in the 
expansion. Also, in order to minimize the number of functions 
required to achieve a reasonable convergence in the evaluation 
of the spectrum, the inherent symmetries have to be fully 
utilized, One alternative could be to define a nonorthogonal 
basis set20 which relates to the equilibrium distribution of the 
system probe + cage. In practice, this kind of choice leads to 
major complications in computing the spin Liouville part of 
the operator. Also, one could employ angular momentum 
coupling techniques, as was done for isotropic fluids by 
Polimeno and Freed. I4 Unfortunately, their usefulness is much 
reduced by the presence of the spin Liouville operator (which 
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is a function of no, and not of S2) and by the mean field terms 
in the potential, V"(Qo) and vC(QC). All things considered, we 
found that the best strategy was to generate a direct product 
basis set, IZ)) in which probe and cage are described by 10 
distinguishable quantum numbers. That is 

S S I I  1%) = IL0WK"LCMK'P 4 P 4 >> 
S S I I  = ( L o M o K o ) ~ ~ L c n / l c K ' ) ~ J p 4 p 4 ) )  (16) 

with 
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= 1/2. L im and Lkm represent the maximum values of these 
quantum numbers in the finite basis set expansion (cf. section 
4.3). 

Given the structure of the terms in eq 5, it will be useful to 
symmetrize the basis set with respect to K " . 5 3 6  Thus, following 
Meirovitch et al.," 

and the standard Liouville spin basis sets, 

S S I I  - 14) = I P  4 P 4 >> - (IS,ms)(Sm'sI> @ (lI,ml)(I,m'll) (19) 

are used. The double angular brackets in these expressions 
imply ket vectors in Liouville space. Note in eqs 17 and 18 
[L] = 2L + 1 .  Thus, the basis set is built as a direct product 
of normalized Wigner functions for the probe and for the cage. 
Note that the normalized Wigner functions (eqs 17 and 18) are 
eigenfunctions of the quantum Hamiltonian of a symmetric 
top.25326 The spin basis functions are a direct product of 
projectors for the electron spin (quantum numbers S and ms) 
and the nuclear spin (quantum numbers I and ml). It is 
convenient6," to define the spin quantum numbers ps  mS - 
m$, 4s e ms f m's, p' mi - m'l, and 4/ E mi -k m'l. 

In order to simplify somewhat the treatment below, we shall 
assume that the cage mean field potential of eq 13 is cylindri- 
cally symmetric so that only the coefficients bb, 1 = 2 and 4,  
are nonzero, i.e. b: = 0, k # 0. We shall also use the 
interaction potential of eq 14, which, when expanded in terms 
of Qo and Qc as shown below, is also cylindrically symmetric 
with respect to the cage variables. Thus, whereas the cage 
quantum number for Lc f 0 couples into the ESR spectrum via 
P(S2) in eq 5, the quantum number Kc = 0. Thus even for an 
axially symmetric cage rotational diffusional tensor, for which 

j . - ~ ~ - j .  I LWF) = 

[ R : L ~ ( L ~  + 1) + (R; - R:)(K')~I I L'MK') (20)  

only the R: will enter into the needed expressions. For 
convenience we shall let R: = Rc). Since these conditions 
yield Kc = 0, we will ignore Kc below. The basis set defined 
by eq 16 thus contains nine relevant quantum numbers in the 
following range: 

LO : 
w: 
K": 
L': 
M: 
ps: 
45 
pl: 
4l: 

0 I L;,, 
-Lo I Mo I Lo 
-LO I K" I Lo 
0 5 Lc,,, 

-LC I M I LC 
- 1 I p  I 1  

- 1  + IPSL 1 - lPSl 
-21 I p1  I 21 
-21 + lpq, -21 + lpll -k 2, ..., 21 - lpll 

S 

1 
where we have set the spin quantum number of the electron S 

Ip S S I I  4 p 4 ;L"WK"jKLCM)), = 

M[ IL"WK"LCMK'pSqSplql)) + 
jKsKILoMo - K"LciWKfp S S I I  4 p 4 ) ) ]  (22) 

where 

(23) SK = (_)L"+K" 

-/tx = [2(1 + 6p,0)l-"2 (24) 
and now KO is a non-negative number. Also, when P = 0, j K  
= ( - ) L o ,  and for 0 < K" I Lo, j K  = f l .  The P-symmetrized 
basis set in eq 22 consists of eigenfunctions of the C26) operator 
which perform a n rotation about the y axis of the MF.27 

An M symmetrization is useful in the high-field approxima- 
tion, and for motions that are not extremely fast, so we can 
ignore the nonsecular terms in the spin Hamiltonian. However, 
in the presence of coupling to the cage a generalization of the 
standard M symmetrization is called for.5363"927 We may call it 
MT symmetrization where MT = W + Mc.  In this case we 
have 

Ip 4 p 4 ; LoMoK"jKLcMj))M = S S I I  

S S I I  . 
jslps - 4' - ~ ' 4 ' ;  Lo - M°KojKLc - M))] (25) 

~p 4 p 4 ; LowK"jKLcM))  + 

where 

(26) L ~ + L C + W + M C + ~  s = (-) 

-p = P ( 1  + 6,,,6,,,6~,,06,,,)1-1'2 (27) 
Equation 25 also requires that one constrains the quantum 
numbers p', Mc, W ,  and 4s to the following five sets with 
corresponding values of j :  

(i) p1 = 0, M' = 0, w = 0,4' = 0, j = (-) Lo+Lc 1 
(ii) o < p' I 21, M = 0, w = 0,4'= 0, j = * I  
(iii) -21 I p1  I 21, o < M I L', M" = 0, 

(iv) -21 I p1  I 21, -L' I M I L', o MO I LO, 

(v) 

qS = 0, j = f i  

qs = 0, j = 
-21 I p1  I 21, -LC I M' 1. LC, 

-L o < ~ < ~ o , 4 S = l , j = ~ ~  - - 
1 Note that if = 0, then Mo must be non-negative; also Mc is 

non-negative only if both W = 0 and 4s = 0. 
We have combined both the K" and Mr symmetrizations to 

produce the fully symmetrized IX))KM set. We shall find it 
useful to utilize a shorthand notation that will be extensively 
used in the calculation of matrix elements. It is implicitly 
defined by the following expression: 

~ ~ ) ) ~ ~ = . / ) / f l + + ) )  + jKsKI+-)) + jsl-+)) + jKsKjsI- -)> 

(29) 
In eq 29 I++)) refers to the uncoupled basis vector (eq 16) 
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which is specified by the same quantum numbers as that of 
IC))KM, i.e. 

(30) 
Then I+-)) is the uncoupled basis vector (UBV), in which KO 
has been replaced by -KO. Similarly I-+)) is the UBV where 
the set M", Mc, $, and qs is replaced by -W, -Mc, -$ and 
-qs; and I- -)) is the UBV which has the set KO, MO,  Mc, $, 
and qs replaced by -KO, -W, -Mc, -$, and -qs. 

4.2. Matrix and Vector Elements. Let us first proceed to 
evaluate the matrix elements of the stochastic Liouville operator 
in the unsymmetrized basis set. We shall then discuss the 
symmetry properties and the implementation of the symmetrized 
basis set. We shall consider matrix elements of the symmetrized 
stochastic Liouville operator which is related to the unsymme- 
trized form of eq 5 by 

S S I I  I++>> = lL0wKOLcMCP 4 P 4 >> 

f + i &  (31) $= p -112&eq112 = 
eq 

where f' = Peq-112pPeq112. 

unsymmetrized basis set is readily evaluated using eq 6:  
The general matrix element of the spin Liouvillian in the 

0 0 112 @+GX 
( ( W m 2 ) )  = dL;,L;~y,M.,[L,L21 (-1 

Polimeno and Freed 

where the effect of the spin operators is concentrated in the 
last factor, which just contains the reduced matrix elements for 
the spin part of the basis set. For completeness, we list in 
Appendix A these reduced matrix elements. 

The calculation of the matrix elements of the two-body 
diffusional operator is somewhat more complicated. For clarity, 
we shall write the diffusional operator after separating it into 
four distinct contributions: 

(33) f = f s Y "  + f a s Y "  + F"Y" + p Y "  

The first two terms represent the diffusion of both bodies in an 
isotropic medium; thus, they do not depend upon the potential. 
The axially symmetric term is 

(34) pym = RIjo2 + (Ri - RI)? + RCY2 

(recall the discussion above for the cage diffusion). The 
asymmetric term represents the deviation from axially symmetric 
diffusion of the probe and is given by 

fasym = R : ( T  + j f )  

R: = (R," -I- R9l2 

(35) 
where 

(36) 

R;= R,O (37) 

R: = (R," - R9l4 (38) 

The functions FYm and P s y m  depend upon the potential. They 
may be expressed in terms of the potential v (Po ,Pc)  

I 1 F"'" = Rz[ ($2v + 3%) - - [ ( $ v ) ~  + ( k ~ ) ~ ]  (40) 
2 

Note that E,') = y:3c) f i?yoSc) are the raising and lowering 
operators for the probe and the cage: 

2 J L O M O K O )  = c;oKo(L"M"KO F 1) (41) 

Y*ILCMCKC) = C~,ILCMCKc 7 1) (42) 

where c& = JL(L + 1) - K(K f 1). Note the inverted action 
of the raising and lowering operators on the Wigner functions, 
due to the fact that the vector operators jo and & are defined 
in moving frames. Let us now separate out the spin degrees of 
freedom, with respect to which the diffusional operator is 
obviously ineffective. Thus we shall write 

( ( W I ~ 2 ) )  = du,&lIf l~2)  (43) 

where 

In) = JLowKOLcMC) (44) 
The matrix elements of f s y m  and f a s y m  are readily evaluated as 

(n11f sym"12)  = 

d1,J2[RILo(Lo + 1)  + (Ri - Ri)K02 4- RCLC(LC + 1 ) l  (45) 

The matrix element of eqs 39 and 40 are more complicated. 
Let us first write the potential and the functions FYm and P s y m  

in the form of an expansion in "probe-cage" normalized Wigner 
functions, 12): 

v(no,nc) = &la) (47) 
1 

F=Y"(Q",Q'> = " I n )  (49) 
1 

We now let v~ = vi + vi + v.;'. The mean field potential 
acting on the probe gives the coefficients 

where Lo = 2 or 4, W = 0, KO = 0 or f 2 ,  Lc = 0, and Mc = 
0; the potential acting on the cage gives similarly 

8 2  LC { v i }  = -- [LOL'] 112b0 

where Lo = 0, MO = 0, K" = 0, Lc = 2 or 4, and Mc = 0. In 
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order to obtain a useful expansion of vint(Q), we first expand 
the & M d ~ )  as25926 
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magnetic tilt, one may use eqs 54, 55, 57, and 58 and the 
definitions of the symmetrized basis sets, eqs 22 and 25, to show 
easily that the stochastic Liouville operator of eq 31 is block 
diagonal with respect to j K  and j .  That is, 

(@I E H F I x 2 ) ) K M  = 

.4$$(1 +jfjF)(l +jj2>[((++EHFI++)) + 
j;s;(( ++ BHF I + -)) + j2s2( (++ BHF I - +)) + 

j;~32s2((++@HFl- ->>I (59) 

The factors (1 + jy j t)  and (1 + j 1 j 2 )  guarantee that only 
elements of the MT-symmetrized basis set diagonal with respect 
to j K  and j are nonzero in eq 59. 

The CW-EPR spectrum relates to the n component in the LF 
of the electron spin magnetizatip, so that the appropriate 
starting vector is proportional to S,t,6 

Iv*)) = [ I p 2 1 S *  8 1 , 8  Pe,"2)) (60) 

where 11 is the unit operator in nuclear spin space. The elements 
of the starting vector in the symmetrized basis set are then given 
by 

( @ : I v + ) ) K M  = -Mp,,081psl,l(l + j K ) ( l  +j)(AlPeq1/2) (61) 

The reduced vector element p~ = (AIPeq'") can be evaluated by 
factoring the equilibrium distribution and then using the 
completeness of the space spanned by the A. We choose the 
following factorization: 

with the result (noting that M = 0 in eq 14) 

(53) 

Lo = 2 or 4, M" = -Lo to Lo, KO = 0 or f 2 ,  Lc = Lo, and M 
= -W. Once the relations for the expansion coefficients of 
F Y m  and P s y m  in terms of those in v are found, the matrix 
elements for the diffusional operator can be easily calculated 
in terms of sums of integrals of three Wigner functions. The 
explicit expressions are included in Appendix B. 

We may now discuss the symmetry properties which lead to 
significant reduction of the dimension of the stochastic Liouville 
matrix. We first note that the diffusional operator exhibits KO 
symmetry; that is, a change of sign of the K" indices leaves the 
matrix elements unchanged except for a phase factor: 

$@11f1z2)) = (-)4+m4+K"<(x l l m 2 ) )  (54) 
It also exhibits MT symmetrization; that is, it is unaffected by 
a change of sign of the M", M ,  p', and 8 indices simultaneously: 

% p l l m 2 ) )  = (-1 4'tWL.F+MF+k+WL?+M(@ I f  p2)) 

(55 )  
where we use G, GT to represent the operators for the two 
transformations. 

The symmetry properties of the Liouville operator are less 
general. They are detailed by Meirovitch et al." Here we only 
consider the properties of interest for the present case. If the g 
and A tensors have the same principal axis and the molecular 
tilt (Le. the relative orientation of these tensors with respect to 
the MF) is defined by only a polar j3 angle, 

(56) Q, = Q, = <O,B,O) 
then the K" symmet$zation holds: 

%(@lImx2)) = <->4'tmk+@(@11@lx2)) (57) 

The MT symmetrization does not hold, in general, for the 
Liouville operator. However, let us define the high-field limit 
by the following three conditions: (i) the applied microwave 
frequency of the experimental observation is close to the Lamor 
frequency, such that I W  - 001 << WO; (ii) the magnetic field is 
much larger than the diagonal elements of the A tensor, lAiil << 
Bo; (iii) the difference between each of the principal values of 
the g tensor and go is small, Igi, - go1 *c go. In the high-field 
limit, for motions which are not too fast, the nonsecular terms 
in the spin Hamiltonian can be neglected. As a result, the three 
subspaces identified by p" = fl, 8 = 0 (off-diagonal 
subspaces) and ps  = 0, 8 = f l  (diagonal subspace) are 
decoupled. In the following we shall consider only CW (one- 
dimensional) ESR experimental observations, which involve 
only the analysis of the off-diagonal subspace, since it is the 
only subspace coupled to the starting vector (see below). In 
this limit the MT approximation holds: 

% $ ( ~ 1 1 ~ H F l ~ 2 ) )  = 
4"tW+WMC+4"+W&+m(/ P H F I ~  )) (58 )  

(-> I I  2 

Thus, in the high-field limit plus the constraint of only polar 

where P(Qc,Qo) is the Boltzmann distribution with respect to 
vC(Qc) + W ( Q 0  - Qc) (cage effect), and Po(Qo) is the 
Boltzmann distribution with respect to V(Qo) (probe mean 
field); Z, z", and F are the overall, probe mean field, and cage 
effect partition functions, respectively. Each factored distribu- 
tion can be projected onto the Id) space: 

so that 

The coefficients p i  can be obtained after some algebraic 
manipulations in terms of simple integrals and sums of simple 
integrals: 

where 43(nl,n2, ...) is 0 if any one of the arguments is odd and 
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is unity otherwise. The integrals qi and q::.:, depend respec- 
tively upon v‘(Qc) and v(Qo - Qc): 

Polimeno and Freed 

where  COS p) is the associate Legendre function of rank 1 
and order m, and In is the modified Bessel function of rank n.6 
Similarly, the coefficients p i  may be reduced to a simple form. 
Indeed, they are just the coefficients of the expansion of the 
Boltzmann distribution of the system in the absence of the cage: 

(74) 

Note that the starting vector involves only basis functions 
with Lc even, and j K  = j = 1. Thus, since the stochastic 
Liouville operator is block diagonal with respect to j K  and j 
(cf. eq 59), only symmetrized basis vectors with j K  = j = 1 
need to be retained. If the DF coincides with the LF (zero 
director tilt), an additional constraint can be imposed, such that 
both the stochastic Liouville matrix and the starting vector 
contain only symmetrized basis vectors for which d = Mo + 
Mc. This latter constraint also applies to isotropic fluids. 

4.3. Computational Algorithms. The stochastic Liouville 
matrix constructed by the above procedure is a complex 
symmetric, but not Hermitian, matrix that is diagonalized by a 
complex orthogonal transformation.6,” Given the large number 
(eight) of degrees of freedom in the present case, one can 
generate matrices of dimension 104-105 even with the sym- 
metry-based constraints that we have discussed above. Even 
though these matrices are very sparse, their computation is quite 
time consuming even by the Lanczos and related algorithms, 
which are known to be very efficient for such cases. Thus, we 
must first be careful to select the minimum basis I ? ~ ) ) K M  that 
represents the spectrum without distortion. Thus, we f i s t  
determined this minimum basis set by a general and objective 
method due to Vasavada et al. and referred to as the field-swept 
conjugate gradient method.21-6 This method of “pruning” the 
basis set typically leads to order-of-magnitude reductions in its 
size from a nominally selected basis set. In applying this 
method we found a 3% pruning tolerance to be satisfactory for 

I I 
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Figure 2. 250 GHz ESR spectrum of PDT in toluene obtained at - 128 
“C (solid line) compared to simulated best fit spectra (dashed lines) 
for models of (a, top) free Brownian reorientation and (b, bottom) the 
SRLS cage model. 

the present applications (that is, only basis vectors which have 
a projection greater than 0.03 onto the normalized starting vector 
for at least one magnetic field position within the spectrum 
are retained). For this minimum basis set one has a particular 
L,C& and Lka, which have been referred to above, but in 
addition, there are many combinations of the quantum numbers 
for which the respective basis vectors may be pruned out. 

Once the minimum basis set is obtained, then one may 
perform nonlinear least squares fitting of the simulated spectra 
to the experimental ones. Using the Marquardt-Levenberg 
pr~cedure,~~-~O this usually involved 100-200 simulations to 
iterate to the best fitting parameters. For each simulation a 
variant of the Lanczos algorithm based upon conjugate gradients 
was used to tridiagonalize the stochastic Liouville matrix, 
followed by computing the spectrum by a continued fraction 
expansion,6, 19-21.27 

5. Comparison with Experiments 

(a) PDT in Toluene. In the recent slow motional 250 GHz 
ESR study of PDT in toluene, it was found that the line shapes 
could not be satisfactorily fit by a simple Brownian model for 
the reorientation! Instead, some jump types of motion were 
utilized to improve the fit. These jump types of motion in- 
volve introducing a “model-dependent” parameter B t )  = [ 1 + 
L(L + 1) I -N  into the eigenvalues for simple rotational diffusion, 
e.g. Bf’kL(L + 1) (cf. eq 45). A value of the exponent p % 

1/2 led to reasonable but still imperfect fits. (Largely for 
historical reasons the case p = 1/2 is referred to as “free 
diffusion”.) However, the best fits to this “free diffusion” model 
did not show the expected dependence on solvent viscosity and 
temperature (cf. below). 

We chose a slow motional spectrum obtained at -128 “C 
for this system. We show in Figure 2a the best fit to this slow 
motional spectrum for a Brownian motion model. Note the 
significant deviations between this fit and the experimental 
result. In Figure 2b we show the best fit obtained using the 
SFUS model. Note the overall significant improvement in fit. 
Of particular relevance is a feature of the Brownian motion 
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Figure 3. Effect of fourth-rank terms in the SRLS potential upon the 
predicted 250 GHz ESR spectrum of PDT in toluene: (a) free Brownian 
motion, i.e. no potential; (b) ci = c; = 2k& (c) c: = c; = 4k~T. 

Figure 4. SRLS potential vint@,y) obtained from the best fit to the 
PDT in toluene spectrum, cf. Figure 2b. This figure corresponds to 
the following order parameters for PDT in the solvent cage: ( @m) = 
-0.437, (G2) = -0.482, (Qm) = 0.271, ( G ~ J ~ )  = 0.253. 

simulations wherein there are sharp angular turns at the wings 
of the main spectral peaks. Such features do not exist in the 
experimental spectra, and they are indeed smoothed out in the 
SRLS simulation, thereby helping to provide an improved fit. 
We find that inclusion in eq 14 of terms in Q&,$S2) are more 
effective than terms in @,&a) in providing this smoothing- 
out feature. We illustrate in Figure 3 the effect of the terms in 
@dQ) in providing this smoothing out, although it should be 
noted that inclusion of terms in @@) is also needed to 
provide the fit in Figure 2b. The effect of inclusion of terms 
of higher rank L will lead to more nodes in the potential (which 
go as L + K for the spherical harmonics; recall @#)* = 
?#,y)). The actual potential vint(Q) given by eq 14 that was 
used in Figure 2b is illustrated in Figure 4. Note that there are 
two potential minima, both corresponding to the polar angle /I 
= n/2 and with azimuthal angle y = n/2 and 3n/2. The 
potential barriers associated with these minima are close to 
7k~T. Thus, the presence of this cage may be seen as modifying 
the Brownian reorientation to favor motion within regions near 
the potential minima and to have occasional jumps over the 
moderate potential barriers. In this sense we may regard the 

earlier simple jump models as limiting cases of jumping over 
potential barriers that are presumably more restrictive. [In this 
context we may speculate on the meaning of the exponent p of 
the model parameter Bf) above. Values of p = 0 or 1 follow 
rigorously from simple Brownian vs jump diffusion (where the 
latter case is specialized for Rz = 1, with z the mean time 
between jumps). A value of 0 < p < 1 might be interpreted to 
imply a potential of the sort of Figure 4, which, we have noted, 
implies motion intermediate between Brownian diffusion and 
simple jump diffusion.] Clearly, by introducing terms of higher 
rank L and order K into the expansion of eq 14, it would be 
possible to produce more closely spaced potential minima, but 
in the present work we preferred to restrict this expansion to a 
set that could justifiably be fit to the experiment. Also, it is to 
be noted that by eq 14 we have imposed the uniaxial symmetry 
of the cage and the D2 point group for the PDT. 

For PDT the magnetic x axis is along the N-0 bond and the 
magnetic z axis is along the nitrogen p-n orbital, with the 
magnetic y axis perpendicular to both. Figure 4 is associated 
with x ordering; that is, the magnetic x axis is taken as the 
principal axis of alignment and diffusion of the PDT with respect 
to the assumed uniaxial interaction potential due to the cage. 
Thus, the polar angle /I refers to the alignment of this magnetic 
x axis in the cage, and the azimuthal angle y refers to the relative 
alignment of the magnetic z and y axes. The minima in y at 
n/2 and 3d2 ,  with /I n/2, imply that alignment of the 
magnetic z axis with respect to the cage is favored, relative to 
alignment of the magnetic y axis when /I is tilted toward n/2. 
Alignment of the magnetic z axis in order to get overlap of the 
N-0 n orbital with the n orbitals of the toluene rings is, of 
course, to be expected. 

The best fit parameters that we obtain for the SRLS model 
shown in Figure 2b are 2 = $-= 8.91 x lo6 s-’ and N 
= RY- = 1.5, with R,O = Ry” following Earle et a1.: since 
the motional spectra are insensitive to the ratio RlR,9 [This is 
nearly the same as the value of 1.6 used in ref 4. The result 
for N in that paper was given in the diffusion frame x, y,  z, in 
which x~ - z and ZM - x, but this was not clearly stated. We 
specify the magnetic frame x ~ ,  y ~ ,  ZM in the text but drop the 
subscript for convenience.] Also, Rc = 7.94 x lo5 s-l. The 
potential parameters giving rise to Figure 4 are ci = -1.97, 
ci = -2.19, ci = 2.22, and ci = 1.10. The best fit parameters 
for - the free Brownian diffusion model shown in Figure 2a are 
R” = 1.26 x lo7 s-l and N = 1.3, values that are rather close 
to those obtained from the SRLS model for these parameters. 
Note that Rc is just about 1 order of magnitude slower than 2, 
consistent with a persistent cage or local structure provided by 
the toluene solvent molecules around the PDT. 

When one compares the present SRLS fit with that from the 
“free diffusion” model in ref 4, one can note some improvements 
in the fit. Of considerable potential interest is whether the 
present SRLS model will enable one to overcome some 
discrepancies found in previous ESR studies of PDT dynamics. 
Thus, in the work of ref 4 the graph of zi = 1 / 6 2  vs q/T (q  = 
solvent viscosity) shows the expected linear dependence for a 
Brownian model but not for the jump type of ,motion. It is 
possible that the SRLS model will not only produce good 
spectral simulations but will exhibit the expected q/T behavior 
for zi. This will require further study. A similar discrepancy 
was observed somewhat earlier between two-dimensional 
electron spin-echo results which favored Brownian motion vs 
CW-ESR results (both at 9.5 GHz)~‘ which favored jump-type 
motions for PDT in 85% glyceroV15% water. Again, the SRLS 
model, which contains features of both Brownian motion and 
jump motion, might be useful to resolve such a discrepancy. 
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Figure 5. 250 GHz ESR spectrum of CSL in OTP obtained at 52 OC 
(solid line) compared to simulated best fit spectra (dashed lines) for 
models of (a, top) free Brownian reorientation and (b, bottom) the SRLS 
cage model. 

(b) CSL in o-Terphenyl (OTP). The CSL spin-probe is 
larger than PDT and is cigar-shaped. It has recently been 
studied in toluene4 and appeared to be fit by a mixed model of 
simple Brownian motion for its long axis with free diffusional 
motion about this axis. (The latter feature was introduced to 
make the rotational anisotropy Ny (cf. below) correspond to its 
value obtained from fast motional spectra.) For CSL, the 
magnetic z axis is parallel to the rotational y axis, and the 
magnetic y axis is tilted 15" with respect to the diffusional z 
axis, leading to a corresponding tilt between the magnetic x 
axis and the diffusional x axis. (Note that the magnetic axes 
for the nitroxide moiety of CSL are defined in an equivalent 
manner to PDT.) We have now carried out an extensive study 
of CSL in the glass-forming liquid OTP.32 We show in Figure 
5 one such spectrum taken at 52 "C. It is compared in Figure 
5a with the best fit in the case of simple Brownian motion and 
in Figure 5b with the best fit SRLS model. Again we see how 
the SFUS model significantly improves the fit. The best fit 
parameters obtained for Figure 5b are R" = 1.20 x lo8 s-l, Ny 
= R:/m = 5.6, and Rc = 3.07 x lo6 s-l with ci = -1.49 
and ci = 0.74. This is to be compared with the best fit values 
for simple Brownian motion of R" = 0.89 x lo8 s-l and Ny = 
6.3. Also, we note that for CSL in toluene a value of Ny = 4.3 
was found from the fast motional spectrum. The cage diffusion 
is found to be somewhat more than 1 order of magnitude slower 
than that of the probe. 

We show in Figure 6 the cage potential obtained in this case. 
Note that it is somewhat weaker than for PDT in toluene. More 
interesting is the fact that we obtain negative ordering for CSL 
in OTP. This may be rationalized simply. In OTP the planes 
of the phenyl groups are tilted with respect to each other. This 
enables a clathrate structure (or cage) in the OTP that has an 
oblate shape, which implies local discotic structure. The local 
director would then be perpendicular to the oblate structure. 
The cigar-like CSL would most naturally fit with its long axis 
perpendicular to the local director, corresponding to negative 
ordering. 

Figure 6. SRLS potential vint(J6,y) obtained from the best fit to the 
CSL in OTP spectrum, cf. Figure 5b. This figure corresponds to the 
following order parameters for CSL in the solvent cage: (@$) = 
-0.244, ( G2) = -0.187. 

We would also like to comment about the basis set size that 
is needed in these calculations (cf section 4.3). For the case of 
PDT in toluene at -128 "C convergence is achieved with 
L i ,  = 14, M i a x  = rmax = 10, and Lk, = Mmax = 10. With 
these maximum quantum numbers one has a basis set of 
dimension 13 956. However, after "pruning" (cf. section 4.3) 
the minimum basis set has dimension 2718 or a reduction by 
just over a factor of 5. Such a substantial reduction of dimension 
greatly speeds up the process of fitting, by nonlinear least 
squares, of the model to experiment. Another significant point 
is that Lk, < Li,, although, as noted, R" is more than 1 order 
of magnitude faster than Rc, and slower motions do require larger 
values of Lmax.5*6 This is explained by the fact that the cage 
orientation is a hidden variable; that is, it is not explicitly 
contained in the spin Hamiltonian of eq 1, although the probe 
orientation is explicitly contained when expanded out according 
to eq 6. The cage variables have an implicit or indirect effect 
on the ESR spectrum via the interaction potential of eq 11 that 
results in the coupled diffusion of probe + cage (of eq 9). Thus, 
less basis vectors are needed to represent the role of the cage 
variables on the ESR spectrum. In fact, given that an M i a x  = 
10 was required, then the constraint of p1  = M" + Mc would 
imply an Mm, % Mi, as found, in order to adequately 
represent the effect of the interaction potential. Then, of course, 
the smallest possible value of Lk, is equal to Mm,. Thus, 
additional or "hidden" degrees of freedom need not increase 
the dimension of the matrix representation of the augmented 
SLE as substantially as one might otherwise expect. 

6. Summary 
In this work we have developed an augmented SLE, which 

is designed to account for solvent cage effects on molecular 
reorientation in a variety of isotropic and ordered fluids by 
introducing a collective description of the cage in terms of a 
slowly relaxing local structure. The formal model is consistent 
with a recent molecular dynamics study of a simple fluid.I5 By 
careful consideration of the detailed structure of the matrix 
representation and its symmetries, it was possible to develop a 
relatively efficient computational formulation which allowed the 
simultaneous fitting by least squares methods of probe and cage 
variables to illustrative experiments. These cases yield a cage 
that relaxes slowly (at least 1 order of magnitude slower) than 
the probe reorientation, consistent with a fairly persistent cage, 
and that provides a potential only somewhat larger than ~ B T  
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(on the order of 2-7 k~7'). In the context of a limited number 
of spherical harmonic terms in the interaction potential and of 
simplifying assumptions on the symmetry of this potential, some 
details of the form of this collective cage potential could be 
obtained. Thus, for PDT in toluene, potential minima at several 
reorientational angles in the cage were required for satisfactory 
fits, whereas for CSL in OTP a negative ordering of the CSL 
characteristic of an oblate-shaped cage structure was required. 
We regard this study as a demonstration of the considerable 
potential utility of analyzing slow motional ESR spectra to learn 
more about the dynamic structure of complex fluids. The model 
we employed is designed to replace the traditional but over- 
simplified reliance on jump-type models. Clearly the demon- 
stration and confirmation of adequate models will require studies 
with a variety of probes and a range of solvents. We plan to 
report in the future on more extensive studies of several spin 
probes in OTP solvent over a range of temperatures by 250 
GHz ESR32 and studies of several spin-probes in liquid-crystal 
solvents by two-dimensional Fourier transform ESR,33 a tech- 
nique which has also been shown to be particularly sensitive to 
the molecular  dynamic^.^^^^^ 
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Appendix A: Spin Liouville Matrix Elements 

We summarize here the components of the F and A tensors, 
in the notation of Meirovitch, Igner, Igner, Moro, and 
The e;:' are given by 

(8, + Syy  + Szz) 

(77) 

The components of the tensor product of BO and S are given in 
the LF by 

The hyperfine part of the Liouville operator is constructed in 

J. Phys. Chem., Vol. 99, No. 27, 1995 11005 

the same way. The F components are 

(85 )  

and the A components are 

The matrix elements in the spin subspace have also been 
reported by Meirovitch et a1.I' The A part is given by 

where Ap(qY = p(q$ - p(q)f  ( i  = Z, S) and Ap = Aps + A$; 
SA is 

Aps = 0, A p l =  0,  SA = (pfq; + p:qf)/2 
Aps = 0, Ap' f 0, SA = -@SAP' + qfAq')Kf8 
Aps f 0, Ap' = 0, SA = -@: Aps + q: Aqs)/8 
Aps f 0, Ap' * 0, SA = ApsAq'Kj2 

where KI = [Z(Z + 1) - (q:Aq' + p:Ap')(q:Aq' + P:AP' - 
2)/4]1/2. The g part is given by 

where S, is 

S Aps = 0, Sg = p ,  
Aps f 0, Sg = - AqS/z/Z 

(95) 

Appendix B: F Expansion of the Diffusional Operator 

The expressions for F S Y m  and P s y m  in terms of lA) are obtained 
by expanding eqs 39 and 40, using eqs 47-49. The Ath 
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