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15N-1H spin relaxation is a powerful method for deriving information on protein dynamics. The traditional
method of data analysis is model-free (MF), where the global and local N-H motions are independent and
the local geometry is simplified. The common MF analysis consists of fitting single-field data. The results
are typically field-dependent, and multifield data cannot be fit with standard fitting schemes. Cases where
known functional dynamics has not been detected by MF were identified by us and others. Recently we
applied to spin relaxation in proteins the slowly relaxing local structure (SRLS) approach, which accounts
rigorously for mode mixing and general features of local geometry. SRLS was shown to yield MF in appropriate
asymptotic limits. We found that the experimental spectral density corresponds quite well to the SRLS spectral
density. The MF formulas are often used outside of their validity ranges, allowing small data sets to be
force-fitted with good statistics but inaccurate best-fit parameters. This paper focuses on the mechanism of
force-fitting and its implications. It is shown that MF analysis force-fits the experimental data because mode
mixing, the rhombic symmetry of the local ordering and general features of local geometry are not accounted
for. Combined multifield multitemperature data analyzed with the MF approach may lead to the detection of
incorrect phenomena, and conformational entropy derived from MF order parameters may be highly inaccurate.
On the other hand, fitting to more appropriate models can yield consistent physically insightful information.
This requires that the complexity of the theoretical spectral densities matches the integrity of the experimental
data. As shown herein, the SRLS spectral densities comply with this requirement.

I. Introduction

NMR is currently the most powerful method for studying
protein dynamics at the residue level.1-3 The commonly used
dynamic probe is the15N-1H bond. The relaxation parameters
15N T1, T2 and15N-1{H} NOE are measured experimentally at
one or several magnetic fields. Their expressions are given by
the spectral densities,J(ω), and the relevant magnetic interac-
tions (15N-1H dipolar and the15N CSA).4,5 The functionsJ(ω)
are determined by the dynamic model used, and the local
geometry at the N-H site.

The traditional method of data analysis is the model-free (MF)
approach.6-8 MF assumes that the global motion of the protein
(RC ) 1/6τm) and local motion of the N-H bond (RL ) 1/6τL)
are “independent” or “decoupled”, by virtue of the former being
much slower than the latter (τm . τL). The local ordering is
measured by a squared generalized order parameter,S2, and the
rate of local motion is evaluated by an effective correlation time,
τe. Both parameters represent mathematical properties of the
spectral density. The local geometry is simplified, with the
ordering and magnetic tensor frames axial and collinear.

Three point (15N T1, T2 and15N-{1H} NOE) data acquired
at a single magnetic field, pertaining to structured regions of
the protein backbone, can be usually analyzed with optimization
(data fitting) methods using the original MF formula.6,7 Flexible
residues residing in loops and mobile domains required the
development of the extended MF formula.8 The latter features
a fast effective local motion,τf, associated with a generalized
squared order parameter,Sf

2, and a slow effective local motion,
τs, associated with a generalized squared order parameter,Ss

2.
All the modes are assumed to be independent, i.e.,τm . τf, τm

. τs, andτs . τf.

The MF order parameters, including the global motion
correlation time,τm, are typically found to be field-dependent.
This means that combined multifield data sets cannot be fit with
standard fitting schemes unless some data are excluded.9 Small
anisotropies in the global diffusion tensor were found to have
a very large effect on the analysis.10 Nonnormal t-distribution
of NOEs was detected.11 The temperature-dependence of MF
order parameters was found to be unduly small.12,13 The local
motion was found to be practically independent of temperature
and/or experimentally measured viscosity,14-16 contrary to
expectations based on typical activation energies for motions
in flexible molecules. In some cases experimental relaxation
parameters exceeded the extreme theoretical values.13,17 Com-
bined analysis of N-H bond dynamics and C′-CR bond
dynamics yielded inconsistent results.13,18We found that known
functional dynamics in adenylate kinase fromE. coli is not
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detected with MF analysis.19,20Similar observations were made
by other workers in the field.21

These shortcomings are usually rationalized by invoking data
imperfection. Alternatively, the simplicity of the MF analysis
may be the main underlying reason. This option can be tested
by analyzing the same data with an improved version of the
theory, where the simplifying MF assumptions related to liquid
dynamics and local geometry are no longer invoked. This was
accomplished by applying to spin relaxation in proteins22 the
slowly relaxing local structure (SRLS) approach of Freed et
al.,23-25 which can be considered a generalized version of the
MF approach. Rather than assuming mode independence, the
SRLS approach accounts rigorously for mode mixing through
a local potential. The latter represents the spatial restrictions
on N-H motion, which in the MF approach are expressed by
a squared generalized order parameter. Genuine axial and
rhombic order parameters are defined in SRLS in terms of the
local potential. Unlike the MF approach, the SRLS approach
allows for a full range of time scale separations between the
local and global motions (e.g., they can be comparable). The
magnitude, symmetry and orientation of the ordering, diffusion
and magnetic tensors are all allowed to vary. In general, SRLS
features pure and mixed local and global dynamic modes. In
appropriate asymptotic limits it yields the “mode-independent”
MF formulas.

Experimental15N relaxation data were subjected in parallel
to SRLS (exact solution) and MF (asymptotic solution) analy-
ses.19,20,22,26,27Significant improvement on many of the issues
mentioned above was obtained with SRLS analysis. The
goodness of fit was similar to, but the best-fit parameters
significantly different from, the MF counterparts. Given that
the more general SRLS approach contains the MF formulas as
special cases, this indicates that the experimental data correspond
to the general SRLS solution rather than the asymptotic MF
solution. It also indicates that it is the simplicity of the MF
approach, rather than experimental imperfections, that underlies
the inconsistencies mentioned above. That a similar quality of
fit can be obtained is related to the fitting process involving
specific values ofJ(ω), which enter the expressions forT1, T2

and the NOE.4,5 Different combinations of the requiredJ(ω)
values can yield the same relaxation rates. The process whereby
an oversimplified spectral density yields inaccurate best-fit
parameters (which depend on the specificJ(ω) values) with good
statistics is called “force-fitting”.

Let us point out the asymptotic nature of the MF approach.
The original MF formula represents the SRLS solution in the
Born-Oppenheimer (BO) limit defined byRL . RC, where the
local motion, characterized by the rateRL, can be treated for
frozen global motion, measured by the rateRC.27,28In this limit
the total time correlation function,C(t), may be expressed within
a good approximation as the product of the time correlation
function for global motion,CC(t), and the time correlation
function for local motion, CL(t). When CC(t) )
exp(-t/τm) and the local ordering is high, then theS2 from the
MF analysis is a good approximation to the squared axial SRLS
order parameter (S0

2)2, and the effective local motion correlation
time,τe, is given by the “renormalized” local motion correlation
time, τren.27 The concept of renormalization was used in early
work29 to characterize significant reduction inτL ) 1/6RL by
strong local potentials. It was shown29 that τren = 2 τL/c0

2,
where c0

2 evaluates the strength of the local axial potentials
(within the context of a general established potential formssee
below). Clearlyτren , τL whenc0

2 is large. Typical values are
c0

2 ) 10-40 (which is to be multiplied bykBT) corresponding

to squared order parameters of 0.8-0.95. Equation A4 of ref
6, based on the wobble-in-a-cone model, is also appropriate for
relatingτe to τL andS2 provided the ordering is high.27

We determined quantitatively over what range the conditions
RL . RC and (S02)2 ∼ 1 apply by comparing SRLS and MF
results.27 The original MF formula often yields best-fit param-
eters that do not fulfill these requirements. These are cases where
the experimental spectral density comprises mixed modes, which
are incompatible with the simplified MF formula.S2 andτe can
no longer be associated with the relevant physical quantities.
Instead they just become fitting parameters, which have absorbed
the discrepancies between the experimental and oversimplified
theoretical spectral densities. Moreover, we found that often the
symmetry of the local ordering at the N-H site is rhombic.26

In these cases the original MF formula is not a good approxima-
tion to the experimental spectral density even whenS2 is high
andRC/RL is small, because a single order parameter no longer
suffices.

The extended MF formula was obtained in early work as a
perturbational expansion of the SRLS solution in rhombic local
ordering in theRL . RC limit,30 for a 90° tilt between an (axial)
magnetic frame and the main local ordering/local diffusion frame
(M).27 This means that the N-H bond experiences fast diffusive
local motion in the presence of very small rhombic ordering
exerted by the immediate protein environment around, e.g., the
Ci-1

R -Ci
R axis, or the Ni-Ci

R bond. The components of the
diffusion tensor areR|

L ) 1/6τL
| and R⊥

L ) 1/6τ⊥
L, and of the

ordering tensor,S0
2 andS2

2. The protein surroundings reorient
at a rateRC ) 1/6τm, much slower thanR|

L and R⊥
L. The

extended MF formula8 was offered to represent the scenario
where the N-H bond experiences both fast and slow isotropic
local motions with eigenvalues and squared order parameters
1/τf + 1/τm andSf

2, and 1/τs + 1/τm andSs
2, respectively. These

motions are assumed to be decoupled from one another, and
from the global motion, implying the conditionsτf , τs , τm.
In practice, the extended MF formula is used whenτs ∼ τm.
The coefficients of the local and global motion terms in the
extended MF formula are formally expressible in terms of (S0

2)2

and (S22)2. However, the MF parameters are totally different in
implication from the SRLS parameters.

Typical best-fit values obtained with MF fitting of flexible
protein residues areSs

2 ∼ 0.55,Sf
2 ∼ 0.8,τs ∼ τm andτf , τm,

which are just fitting parameters. This is implied by the presence
of mixed modes which dominate the spectral density whenτs

is on the order ofτm (which is typically the case for flexible
residues in proteins). It should be pointed out that even if the
perturbational conditions would prevail at the N-H site, the
MF physical picture would be puzzling, requiring two inde-
pendent isotropic but restricted local motions associated with
different ordering scenarios (Ss

2 andSf
2) imposed by the very

same protein environment reorienting with correlation timeτm

∼ τs while being at the same time decoupled fromτs. On the
other hand, an N-H bond may reorient almost independently
around Ci-1

R -Ci
R (i.e., mixed modes may be ignored) in the

limit whereRL . RC when the restricting local potential is very
small. In this case the physical properties of axial local diffusion
and rhombic local ordering are properly described by the
simplified spectral density given by eq 19 below.

The validity ranges of the MF formulas are illustrated in
Figure 1a,b. The ordinates represent the logarithm of the time
scale separation between the global and local motions and the
abscissas represent squared order parameters. The original MF
formula is applicable to a good approximation within the solid
box on the right-hand side of Figure 1a. This range is often
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exceeded in MF studies. We found that typical usage of the
original MF formula involves discrepancies on the order of
7-8% between the squared SRLS order parameter, (S0

2)2, and
squared generalized MF order parameter,S2, implied by limited
mode mixing effects, and by the simplified MF assumption that
the 15N-1H dipolar and15N CSA magnetic frames are col-
linear.27 If the effective correlation time for local motion,τe, is
taken to represent the bare correlation time for local motion,
τL, the latter will be underestimated five-, to 20-fold.27 The 2H
spin relaxation of side chain methyl groups is analyzed mainly
with the original MF formula (e.g., refs 31 and 32). The
parameter range covered by typical best-fit parameters is shown
in Figure 1a by the rectangle labeled “2H methyl side chain”,
which clearly digresses from the solid box in this figure. Thus,
in this application the original MF formula is mostly used
outside of its validity range. The solid box in Figure 1b shows
the parameter range in which the extended MF formula is valid.
In this case the abscissa represents both the axial, (S0

2)2, and
the rhombic, (S22)2, squared order parameters, which are very
small. The rectangle labeled “15N-1H backbone” shows the
parameter range in which the extended MF formula is applied
in N-H bond dynamics studies. Here the abscissa represents
both Ss

2 andSf
2. Clearly, in this application, the extended MF

formula is used outside of its validity range. We found that the
MF parametersτs andSs

2 exceed their formal SRLS analogues,
τ⊥

L and (S02)2, up to 4-fold and 12-fold, respectively.19,20,22

Significantly larger disagreements between the SRLS and MF
approaches are expected when the SRLS analyses are carried
out allowing for rhombic potentials. Illustrative calculations
based on a recently developed fitting scheme featuring rhombic
potentials are provided below.

Force-fitting will also occur with SRLS versions that are
oversimplified as compared to the experimental spectral densi-
ties. Therefore, investigating the mechanism of force-fitting with
the goal of elucidating the SRLS version, which satisfactorily
matches the experimental data as implied by their integrity, is
important. This is the subject of the present study. It is shown
that the model-free approach force-fits the experimental data
because mode mixing, rhombic potentials and general features
of local geometry are not accounted for. When possible, the

various effects mentioned above are estimated quantitatively.
Our general conclusions imply that the dynamic picture yielded
by MF analysis is often distorted. We show cases where
qualitatively erroneous conclusions were drawn, fictitious
phenomena were detected, and known functional dynamics was
missed. Conformational entropy and other thermodynamic
quantities derived from MF order parameters33-36 may be
inaccurate. Reliable fitting occurs with the SRLS approach when
the rhombicity of the local potential is accounted for and the
local diffusion is allowed to be axial without limitations on the
ratio N ) R|

L/R⊥
L. At this level of complexity the SRLS spectral

density matches the integrity of currently available experimental
data.

II. Theoretical Background.

1. Slowly Relaxing Local Structure (SRLS) Model.The
fundamentals of the stochastic coupled rotator slowly relaxing
local structure (SRLS) theory as applied to biomolecular
dynamics including protein NMR were outlined recently.22,25,37

We summarize below key aspects. The various reference frames
that define the SRLS model, and their relation to N-H sites in
proteins, are shown in Figure 2. A segment of the protein
backbone comprising the atoms Ci

R, Ni, HNi, C′i-1, Oi-1 and
Ci-1

R , the equilibrium positions of which are traditionally taken
to lie within the peptide plane defined by Ni, HNi, C′i-1 and
Oi-1, is illustrated in Figure 2b. The orientation of the N-H
bond with respect to the magnetic field is modulated by its local
motions and by the global motion of the protein. Thus, in the
SRLS model we are dealing with at least two dynamic modes
that we can represent by two bodies (N-H bond and protein)
whose motions are coupled or mixed.23,24For each motion two
frames need to be introduced. The first is the local ordering/
local diffusion frame, M, which is fixed in body 1 (in this case
the N-H bond) and is usually determined by its geometric shape
in the context of its motionally restricting environment. The
second is the local director frame, C′, whose axes represent the
preferred orientation of the N-H bond (Figure 2b) and which
is fixed within the protein framework. The motion of body 1 is
coupled to, or mixed with, the motion of body 2 (in this case

Figure 1. Schematic illustration of the range of validity of the original (a) and the extended (b) model-free formulas.RC (RL) represents the
diffusion rate for isotropic global (local) motion. The solid rectangles delineate the valid ranges. The empty rectangles delineate the parameter
ranges where these formulas are typically applied in protein dynamics research. The conditions under which the MF formulas are valid are specified
on the right-hand side of (a) and (b).RL(app)) 1/3(2R⊥

L + R|
L).
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the protein) by a local coupling or orienting potential that seeks
to bring the N-H bond into alignment with the local director
frame. There are no limitations on the relative rates of motion
of the two bodies, or the symmetry and strength of the coupling
potential.

The reorientation of the Ni-Hi bond is restricted due to
limited bond oscillations, conformational reorientations about
the adjacent dihedral angles (Φi, Ψi-1), the crankshaft motion
(anticorrelated rotations aboutΦi and Ψi-1),38 nitrogen pyra-
midalization,39 peptide-plane motion around Ci-1

R -Ci
R, etc.,

and any interactions with the local environment. In general, these
processes imply effective Euler anglesΩMD ) (RMD, âMD, γMD)
that define the relative orientation of the local ordering/local
diffusion frame, M, and the magnetic15N-1H dipolar frame,
D (which lies along the N-H bond). In particular, taking
Ci-1

R -Ci
R as the local director, C′, and as the main local

ordering/local diffusion axis, one hasYM along the instantaneous
orientation of the Ci-1

R -Ci
R axis (i.e., “YM ordering”), and C′

(i.e., ZC′) along the equilibrium orientation of the Ci-1
R -Ci

R

axis. In this caseΩMD ) (0°, 101.3°, 90°). This geometry is
implicit in the 3D Gaussian axial fluctuations (GAF) model40

(the difference in theγMD values (180°in 3D GAF and 90°in
SRLS) is implied by the different definitions of theXM andYM

axes). Similar values ofΩMD are obtained by replacing the
Ci-1

R -Ci
R axis with the Ni-Ci

R bond. The N-H bond experi-
ences an increasing orienting potential whenYM deviates from
C′. The global motion of the protein (body 2) is frequently
approximated as that of a cylinder, with its long axis taken to
be thez-axis of the global diffusion (C) frame. For spherical
(or globular) proteins the C and C′ frames are the same.

1a. Geometry.The various frames of the SRLS model, as
applied to amide15N spin relaxation in proteins, are shown in
Figure 2a. A formal definition (as compared to the physically
descriptive presentation given above) of the various frames

follows. The laboratory L frame is space-fixed, both C and C′
are protein-fixed, and the M, D (15N-1H dipolar) and CSA (15N
CSA) frames are fixed with respect to the N-H bond. The L
frame is considered an inertial frame with respect to which all
moving frames are defined. The M frame represents both the
local ordering and the local diffusion frame, which for conven-
ience are taken to be the same. The Euler anglesΩLM are
modulated by the local motion and the global motion, whereas
the Euler anglesΩLC are only affected by the latter. These angles
are referred to the fixed lab frame to properly describe the
diffusion. The local ordering frame M tends to align with respect
to a local director C′. The relative orientations of M with respect
to C′ and C are defined byΩCM and ΩC′M, respectively. The
local director C′is tilted at Euler anglesΩCC′ with respect to
the cage (i.e., protein) frame C (tilted with respect to the
laboratory frame at Euler anglesΩLC). The Euler anglesΩCC′
are time-independent. It is reasonable to assume that only the
polar angleâC′C is important. Note thatΩLM involves the sum
of rotationsΩLC + ΩCC′ + ΩC′M [here and in the following we
shall employ a shorthand notation for indicating sequences of
rotations; namely, for a generic rotationΩ12 ) Ω2 + Ω1,
resulting from first applyingΩ1 and thenΩ2 we can write the
explicit relation among Wigner rotation matrices asDmk

j (Ω12)
) Σm′Dmm′

j (Ω1) Dm′k
j (Ω2)]. The time dependence of the Euler

anglesΩC′M is governed by the local orienting potential, which
couples the two modes of motion.Through the time dependence
of ΩC′M the locally reorienting N-H bond follows the slower
motion of the protein.

The magnetic15N-1H dipolar tensor frame, D, and the
magnetic15N CSA tensor frame, CSA, are also shown in Figure
2a. The Euler angles specifying the rotation from M to D are
ΩMD, and the rotation from D to CSA is given byΩ. The Euler
anglesΩMD andΩ are time independent. The D frame is axially

Figure 2. (a) Various reference frames which define the slowly relaxing local structure (SRLS) model: L, laboratory frame; C, global diffusion
frame associated with protein shape; C′, local director frame associated with the stereochemistry of the local protein structure at the N-H site; M,
local ordering/local diffusion frame fixed at the N-H bond; D, magnetic15N-1H dipolar frame; CSA, magnetic15N chemical shift anisotropy
frame. (b)ZD, XD, ZM andYM reside within the peptide plane.ZD lies along the N-H bond andYD is perpendicular to the peptide plane.44 The
uniaxial local director (C, assuming isotropic global diffusion) is taken to lie along theequilibriumCi-1

R -Ci
R axis. The main ordering axis is taken

along Ci-1
R -Ci

R. This implies perpendicularYM ordering with âMD ) 101.3°. “Nearly planarYM-XM ordering determined previously26 ”, i.e.,
positive ordering alongXM and almost no ordering alongZM (for brevity we will denote this ordering symmetry below as “nearly planarYM-XM

ordering/symmetry”), impliesâMD ) 101.3°andγMD ) 90°. For high ordering theYM axis is aligned preferentially alongC. The axesXCSA, YCSA

and ZCSA (not shown) are defined to be aligned with the most shielded (σ11), intermediate (σ22) and least shielded (σ33) components of the15N
shielding tensor, respectively44 (information on chemical shielding and local geometry for the C′-CR bond appears in ref 45). The polar angle
betweenZD andZCSA was set equal to 17°in our study.3 YCSA is perpendicular to the peptide plane (i.e., parallel toYD).44
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symmetric. If the M frame is also axially symmetric, thenΩMD

) (0, âMD, 0), whereâMD is known as “diffusion tilt”.
The diffusion tensorRL describing the rotational diffusion

properties of the probe (N-H bond in this case) is diagonal in
M, whereas the diffusion tensorRC describing the rotational
diffusion properties of the cage (protein in this case) is diagonal
in C. We start by assuming Smoluchowski dynamics for the
coupled set of orientational coordinatesΩLM andΩLC, according
to the slowly relaxing local structure approach. Namely, the
system consists of two Brownian rotators (or “bodies”)sthe
amide group and the rest of proteinslinked by an interaction
potential that depends on their relative orientation. Their motions
are characterized by slow diffusive changes, controlled by
suitable rotational diffusion parameters. Formally, the diffusion
equation for the coupled system is given by

whereX is a set of coordinates completely describing the system

whereĴ(ΩLM) andĴ(ΩLC) are the angular momentum operators
for the probe and the cage, respectively.

Changing to different coordinates is straighforward.28 We
select the set defined byΩC′M andΩLC′. The Euler anglesΩC′M
describe the orientation of the M frame fixed at the N-H bond
relatiVe to the protein-fixed C′ frame and the Euler anglesΩLC′
describe the C′ frame orientation with respect to the lab frame.
In the new coordinate frame one has

The Boltzmann distributionPeq ) exp[-U(ΩLM)/kBT]/〈exp[-
U(ΩLM)/kBT]〉 is defined with respect to the probe-cage interac-
tion potential given by

This represents the expansion in the full basis set of Wigner
rotation matrix elements,DL

KM(ΩC′M), with only lowest order,
i.e., L ) 2, terms being preserved. The coefficientc0

2 is a
measure of the orientational ordering of the N-H bond with
respect to the local director whereasc2

2 measures the asym-
metry of the ordering around the director. Here we follow
historical convention by usingL ) 2 terms as the leading terms,
rather thanL ) 1. This is sufficient for many purposes, as we
have previously shown, because NMR involves second-rank
(i.e.,L ) 2) magnetic tensors.23 However, the SRLS theory can
readily be modified to includeL ) 1 terms. The current
approach is in the spirit of keeping the number of parameters
to a minimum.

The SRLS equation can be solved in terms of the time-
dependent distributionP(ΩC′M,ΩLC′,t), which describes the
evolution in time and orientational space of the system.
Alternatively, it is convenient to directly calculate time cor-
relation functions CM,KK

J
′(t) ) 〈DM,K

J /(ΩLM)|exp(-Γ̂t)| ×

DM,K
J

′(ΩLM)Peq〉, which for proper values of the quantum
numbersJ,M,K,K′determine the experimental NMR relaxation
rates. Actually, the Fourier-Laplace transforms ofCM,KK

J
′(t)

are needed, and they are obtained as the spectral densities at a
given frequencyω:

As stated here, the model has eleven parameters:c0
2, c2

2

(potential parameters),Ri
L (probe diffusioni ) 1, 2, 3 principal

values),Ri
C (global diffusioni ) 1, 2, 3 principal values) and

ΩCC′ ) (RCC′,âCC′,γCC′) (global diffusion tilt angles). For the
sake of simplicity we shall limit our analysis to axial probeR1

L

) R2
L ) R⊥

L * R3
L ) R|

L, axial cageR1
C ) R2

C ) R⊥
C * R3

C ) R|
C,

andRCC′ ) γCC′ ) 0. The orientation of the magnetic tensors is
specified byΩMD and Ω (defined in Figure 2a). In the past
work19,20,22,26,27we made use of eq 2 involvingΩLM andΩLC.
In the present study we have used eq 3 involvingΩLC′ andΩC′M.
The primary reason is that the use of the relative orientation of
the N-H bond in the protein specified by theΩC′M is the more
natural one in terms of conventional intuition. One can simply
think of the Euler anglesΩC′M as just being modulated by the
local motion, whereasΩLC′ is just modulated by the overall
tumbling of the protein. Also, as we have already noted, the
ΩC′M are the natural coordinates for expressing the potential
energy given by eq 4. (This does, however, render theΓ̂ operator
somewhat more complicated.) Of course, the two forms are
mathematically equivalent. In theC′ frame, the global diffusion
tensor assumes the form

The probe diffusion tensor is diagonal in the M frame. Note
that for âCC′ ) 0 or R⊥

C ) R|
C the global diffusion tensor is

diagonal and invariant in both the C and C′ frames.
1b. Numerically Exact Treatment.We address here the

problem of devising an efficient procedure for evaluating
numerically accurate spectral densities. We adopt a variational
scheme, based on a matrix vector representation of eq 5,
followed by an application of the Lanczos algorithm in its
standard form developed for Hermitian matrices. It is convenient
to express the generic correlation function as the linear
combination of normalized autocorrelation functions. Defining
2AM,KK

J
′ ) DM,K

J + DM,K
J

′, the spectral densities of the normal-
ized autocorrelation functions of interest are

and the generic spectral densities are

whereJ ) 2 andM ) 0 in our case. We use the shorthand
notation [J] ) 2J + 1. A numerical calculation is then performed
by choosing a basis set of functions, representing in matrix form

∂

∂t
P(X,t)) -Γ̂P(X,t) (1)

X ) (ΩLM,ΩLC)

Γ̂ ) Ĵ(ΩLM)RLPeqĴ(ΩLM)Peq
-1 + Ĵ(ΩLC)RCPeqĴ(ΩLC)Peq

-1

(2)

X ) (ΩC′M,ΩLC′)

Γ̂ ) Ĵ(ΩC′M)RLPeqĴ(ΩC′M)Peq
-1 +

[Ĵ(ΩC′M) -Ĵ(ΩLC′)]R
CPeq[Ĵ(ΩC′M) - Ĵ(ΩLC′)]Peq

-1 (3)

u(ΩC′M) )
U(ΩC′M)

kBT
) -c0

2D0,0
2 (ΩC′M) - c2

2[D0,2
2 (ΩC′M) +

D0,-2
2 (ΩC′M)] (4)

jKK
M

′(ω) ) 〈DM,K
J /(ΩLM)|(iω + Γ̂)-1|DM,K

2
′(ΩLM)Peq〉 (5)

RC )

(R⊥
C cos2 âCC′ + R|

C sin2 âCC′ 0
1
2
(R⊥

C - R|
C) sin(2âCC′)

0 R⊥
C 0

1
2
(R⊥

C - R|
C) sin(2âCC′) 0 R⊥

C sin2 âCC′ + R|
C cos2 âCC′

)
(6)

jM,KK
S

′(ω) ) 〈AM,KK
J

′
/(ΩLM)Peq

1/2|(iω + Γ̃)-1| ×
AM,KK

J
′(ΩLM)Peq

1/2〉/〈|AM,KK
J

′(ΩLM)|2Peq〉 (7)

jM,KK′(ω) ) [2(1 + δK,K′)jM,KK
S

′(ω) - jM,KK
S (ω) -

jM,K′K′
S (ω)]/2[J] (7a)
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the transformed operatorΓ̃ ) Peq
-1/2Γ̂Peq

1/2, and evaluating eq
7 directly by employing a standard Lanczos approach. The latter
is reviewed here for completeness in accordance with the
standard technique of Moro and Freed.41,42Let us suppose that
we are interested in calculating the Fourier-Laplace transform
of the normalized autocorrelation function of an observablef(q)
for a diffusive symmetrized (i.e., Hermitian) operatorΓ̃ acting
on coordinateq, in the formj(ω) ) 〈δf /Peq

1/2|(iω + Γ̃)-1|δfPeq
1/2〉/

〈|f|2Peq〉, whereδf ) f - 〈fPeq〉 is the observable redefined to
yield an average value of zero. In the present case we consider
only rotational motion in an isotropic fluid, so the relevant〈fPeq〉
) 0. The Lanczos algorithm is a recursive procedure for
generating orthonormal functions that allow a tridiagonal matrix
representation ofΓ̃ in terms of the coefficientsRn, ân, which
form the main and secondary diagonal of the tridiagonal
symmetric matrixT, and the spectral density can be written in
the form of a continued fraction.41,42 The calculation of the
tridiagonal matrix elements can be carried out in finite precision
by working in the vector space obtained by projecting all the
functions and operators on a suitable set of orthonormal
functions|λ〉. One only needs to define the matrix operator,Γ,
and starting vector elements,v1, given byΓλ,λ′ ) 〈λ|Γ̃|λ′〉, Vλ )
〈λ|1〉, respectively.

In the case under study the SRLS diffusion operator is given
by eq 3 and the starting vector is given by

A natural choice for a set of orthonormal functions is the direct
product of normalized Wigner matrices. What is left is the
calculation of the matrix elementsΓλ,λ′ and the vector elements
〈λ|1〉. The algebraic intermediate steps are relatively straight-
forward and based on properties of the Wigner rotation matrices,
angular momentum operators and spherical tensors; we skip the
technical details and list the resulting expressions.23,24,28

1c. ObserVables.To interpret15N-1H dipolar and15N CSA
autocorrelated relaxation rates, we only need spectral densities
with J ) 2 andM ) 0. Dependence uponK,K′ is slightly more
complex and is discussed in detail in the following section.

According to standard analysis for the motional narrowing
regime,43 we can define the observable spectral density for two
magnetic interactionsµ andν as the real part of the Fourier-
Laplace transform of the correlation function of the second-
rank Wigner functions for the orientation of the magnetic tensors
in the laboratory frame (hereµ,ν ) D or CSA, ΩD ) ΩMD,
andΩCSA ) ΩMD + Ω, cf. Figure 2a):

and relying on standard properties of the Wigner functions, in
the form

On the basis of the symmetry relationjM,KK
J

′ ) jM,K′K
J

(cf. eq 7a), we obtain

whereR stands for the real part. Note that for axial potentials
(c2

2 ) 0) the second term goes to zero and we are left with
standard expressions. The coefficientsDK,0

2 (ΩD) are readily
evaluated, whereasDK,0

2 (ΩCSA) can be calculated in terms of
ΩMD andΩ, as in the expression

The spectral densities for15N-1H dipolar and 15N CSA
autocorrelation are then obtained asJDD(ω) ) R[J0

D,D(ω)] and
JCC(ω) ) R[J0

CSA,CSA(ω)], respectively. The measurable15N
relaxation quantities15N T1, T2 and 15N-{1H} NOE are
calculated as functions ofJDD(ωi) and JCC(ωi), with ωi ) 0,
ωH, ωN, ωH - ωN and ωH + ωN, using standard expressions
for NMR spin relaxation.4,5 Note that due to the additional
symmetry relationjM,K,K′ ) jM,-K,-K′, only the nine distinct
couples (K,K′) ) (-2,2), (-1,1), (-1,2), (0,0), (0,1), (0,2), (1,1),
(1,2), (2,2) need to be considered. For dipolar autocorrelation
one has the explicit expression (denotingjKK′ ) R[j0,KK

2
′(ω)]

for brevity)

with only six couples (K,K′)) (0,0), (1,1), (2,2), (0,2), (-1,1)
and (-2,2) involved.

A convenient measure of the orientational ordering of the
N-H bond is provided by the order parameters,S0

2 )
〈D00

2 (ΩC′M)〉 and S2
2 ) 〈D02

2 (ΩC′M) + D0-2
2 (ΩC′M)〉, which are

related to the orienting potential (eq 4), hencec0
2 andc2

2, via the
ensemble averages:

One may convert to Cartesian ordering tensor components
according to

Note thatSxx + Syy + Szz ) 0.
In case of zero potential,c0

2 ) c2
2 ) 0, and axial diffusion,

the solution of the diffusion equation associated with the time
evolution operator features three distinct eigenvalues:

whereR|
L ) 1/(6τ|) andR⊥

L ) 1/(6τ⊥) ) 1/(6τ0). Only diagonal
jK(ω) ≡ jKK(ω) terms are nonzero and they can be calculated
analytically as Lorentzian spectral densities, each defined by
width 1/τK. When the ordering potential is axially symmetric,
c0

2 * 0, c2
2 ) 0, again only diagonal terms survive, but they are

given by infinite sums of Lorenzian spectral densities, which
are defined in terms of eigenvalues 1/τi of the diffusion operator,
and weighing factorscK,i, such that

|1〉 ) AM,KK
J

′(ΩLM)Peq
1/2/〈|AM,KK

J
′|2Peq〉 )

x 2[J]
1 + δK,K′

AM,KK
J

′(ΩLM)Peq
1/2

JM
µν(ω) ) ∫0

∞
e-iωt〈DM,0

2 /[Ωµ+ΩLM(t)] DM,0
2 /[Ων+ΩLM(0)]〉

(8)

JM
µµ(ω) ) ∫0

∞
e-iωt∑

KK′
DK,0

2 /(Ωµ) DK
2

′,0(Ω
µ) ×

〈DM,K
2 /[ΩLM(t)] DM,K

2
′
/[ΩLM(0)]〉 (8a)

R[JM
µµ(ω)] ) ∑

K

|DK,0
2 (Ωµ)|2R[jM,KK(ω)] +

2∑
K<K′

R[DK,0
2 /(Ωµ) DK

2
′,0(Ω

µ)] R[jM,KK′(ω)] (9)

DK,0
2 (ΩCSA) ) ∑

L

DK,L
2 (ΩMD) DL,0

2 (Ω)

JDD(ω) ) d00
2 (âMD)2j00 + 2d10

2 (âMD)2j11 +

2d20
2 (âMD)2j22 + 4d00

2 (âMD) d20
2 (âMD)j02 +

2d-10
2 (âMD) d10

2 (âMD)j-11 + 2d-20
2 (âMD) d20

2 (âMD)j-22 (10)

〈D0n
2 (ΩC′M)〉 ) ∫dΩC′M D0n

2 (ΩC′M) ×
exp[-u(ΩC′M)]/∫dΩC′M exp[-u(ΩC′M)] (11)

Szz) S0
2 Sxx ) (x3/2S2

2 - S0
2)/2 Syy ) -(x3/2S2

2 + S0
2)/2

1/τK ) 6R⊥
L + K2(R|

L - R⊥
L) for K ) 0, 1, 2 (12)

Physical vs Force-Fitted Protein Dynamics by NMR J. Phys. Chem. A, Vol. 110, No. 27, 20068371



The eigenvalues 1/τi represent modes of motion of the system,
in accordance with the parameter range considered. Note that
although in principle the number of terms in eq 13 is infinite,
in practice a finite number of terms is sufficient for numerical
convergence of the solution. Finally, when the local ordering
potential is rhombic,c0

2 * 0, c2
2 * 0, both diagonaljK(ω) and

nondiagonaljKK′(ω) terms are different from zero and need to
be evaluated explicitly according to expressions analogous to
eq 13.

Details of the implementation of the SRLS model in a data
fitting scheme featuring axial potentials and isotropic global
diffusion were outlined previously.22 For practical reasons this
fitting scheme is based on precalculated 2D grids of spectral
densities,jK(ω). The coordinates of these grids arec0

2 andRC.
The structural parametersâMD and γMD are used to assemble
JDD(ω) out of jK(ω). The set of free variables includesc0

2, RC

and âMD. The angleγMD was fixed at 90° on the basis of
stereochemical considerations, andR|

L . R⊥
L (in analogy with

the MF requirement thatτs . τf) was imposed. This scheme is
computationally as fast as the commonly used MF fitting
schemes.46,47

We developed recently a fitting scheme where the functions
jKK′(ω) are calculated on the fly. In this case the set of free
variables includesc0

2, c2
2, R|

L/R⊥
L, RC andâMD. Clearly the local

potential is allowed to be rhombic and the local diffusion, axial.
For high rhombic potentials and smallRC/RL values this scheme
is currently rather demanding computationally and efforts to
improve its efficiency are underway. A number of conditions
can be employed, however, to simplify the analysis. If the local
geometry is assumed to be known, as in the 3D GAF model,40

âMD can be fixed (e.g., at 101.3°). If the symmetry of the local
ordering is known,c2

2/c0
2 can be fixed. Note that in the SRLS

approach the global diffusion rate,RC, is determined in the same
fitting process as the site-specific parameters, as is appropriate
when the modesRC andRL are “mixed”. The next stage will be
to allow the global diffusion tensor to be axially symmetric.
This requires a complex fitting scheme where theRC tensor is
global whereas all the other parameters are local. Instead of a
single variable for global motion,RC, three variables,RC(app)
) 1/3(2R⊥

C + R|
C), R|

C/R⊥
C andâCC′ will be featured. Note that

RC and RC(app) define the time scale separation between the
global and local motions as rates are given in the SRLS model
in units of R⊥

L.
When the local potential is taken to be axially symmetric in

the SRLS model, then formal (but not necessarily physical)
analogies with the MF formulas can be established. In this case
the number of formally analogous free parameters, hence the
minimum number of data points required, is the same in the
SRLS and MF analyses.22 Model-free data fitting was carried
out in this study with the computer programs Modelfree 4.046

and Dynamics.47

Thus, the spectral densitiesjK(ω) (jKK′(ω) for rhombic
potentials) are the building blocks for a given dynamic model
relative to the local diffusion frame, and the spectral densities
Jx(ω) are the building blocks for a specific geometric imple-
mentation of this dynamic model relative to the frames of the
magnetic tensors. The measurable quantities areJx(0), Jx(ωN),
Jx(ωH), Jx(ωH+ωN) andJx(ωH-ωN). Together with the magnetic
interactions they determine the experimentally measured relax-
ation rates according to standard expressions for NMR spin

relaxation.4,5 If the equilibrium orientations of15Ni-1Hi

and 13Ci-1
R -13C′i-1 are assumed to reside within the peptide

plane, then the functionsjKK′(ω) for N-H bond dynamics can
also be used to treat CR-C′ bond dynamics. A different local
geometry, specific to the CR-C′ bond, determines theJx(ω)
functions, and different magnetic interactions enter the calcula-
tion of the13C-related relaxation rates measured experimentally.

2. Model-Free Approach.A brief summary of the model-
free approach, as formulated by its developers, is outlined below.

2a. Original MF Spectral Density.6,7 The basic premise is
that the global motion of the protein is much slower than the
local motions of the N-H bond. Consequently, the global and
local motions are “independent”, and the total time correlation
function,C(t), can be expressed as

The global motion is assumed to be isotropic, withCC(t) )
exp(-t/τm). CL(t) is given by

whereτe is the effective correlation time for local motion defined
as the area ofCL(t) divided by (1- S2), and τe , τm. The
parameterS2, which represents the plateau value ofCL(t) at long
times (t . τe), is taken as the square of a generalized order
parameter. This definition ofS2 (eqs 14-16 of ref 6) involves
the spherical harmonic functions of rank 2, whereasCL(t) at
shorter times is given in terms of the Legendre polynomial of
rank 2 (eq 12 of ref 6). All of the equations cited involve the
equilibrium probability distribution function,Peq(ΩCM) where
C denotes the local director fixed in the protein (called
“molecular axis” in ref 6), and M the local diffusion frame (taken
in the MF analysis to lie along the N-H bond). Equation 12 of
ref 6 featuresPeq(0,âCM,0) (peq(θ) in the notation of ref 6),
whereas eqs 14-16 of ref 6 featurePeq(0,âCM,γCM) (peq(θ,φ)
in the notation of ref 6). Thus, there is inconsistency in the
symmetry of CL(t) at short and long times, implied by M
considered axial in eq 12 and rhombic in eqs 14-16.

Fourier transformation of eq 14 with eq 15 inserted forCL(t)
yields

where 1/τe′ ) 1/τe + 1/τm.
2b.Original MF Formula as SRLS Asymptote. It was shown

in early work30 that in the limit whereRL . RC the following
equation is valid in the perturbation limit, i.e.,for Very small
local ordering:

with τK given by eq 12.SK
2 denotes the principal values of the

ordering tensor in irreducible tensor notation (whereS1
2 ) 0).

When the symmetry of the local potential/local ordering is axial,
thenS2

2 is zero. In this casej0(ω) is the same as eq 16 withS2

) (S0
2)2 andτe ) τ0, whereas thejK*0(ω) functions are given

by τK/(1 + ω2τK
2).48

The functionC0(t) corresponding toj0(ω) is shown by the
dashed curve in Figure 3a, with the plateau value given by (S0

2)2

and the decay to it byτ0 ) 1/6RL. The final decay ofC0(t) to
zero is given byτm ) 1/6RC. However, the local ordering at an
N-H bond is never as low as required by the perturbation limit
in the local ordering, but rather quite high. Using the full SRLS

C(t) ) CC(t) CL(t) (14)

CL(t) ) S2 + (1 - S2) exp(-t/τe) (15)

J(ω) ) S2τm/(1 + ω2τm
2) + (1 - S2)τe′/(1 + ω2 τe′

2) (16)

jK(ω) )

(SK
2)2[τm/(1 + ω2τm

2) + (1 - (SK
2)2)τK/(1 + ω2τK

2)] (17)

jK(ω) ) ∑
i

cK,iτi

1 + ω2τi
2

(13)
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solution we showed in previous work26 that for high enough
(S0

2)2 and low enoughRC/RL (see ref 26 for quantitative
evaluation of validity ranges) eq 16 is valid withS2 ∼ (S0

2)2

and the initial decay ofC0(t) given by

whereτren is the renormalized correlation time for local motion.29

The parameter 1/6τren is the rate at which the distribution of
orientations is restored to equilibrium when a spin-bearing
particle reorients rapidly in the presence of astrongorienting
potential.29,49 τren is reduced significantly relative toτ0, in
accordance with the strength,c0

2, and symmetry, of the local
potential. The expression given by eq 18 is valid in the SRLS
approach in the limit whereRL . RC when the local potential
is axial and high.27 In this case eq 16 is a good approximation
of the SRLS solution withS2 representing (S02)2 and τe

representingτren. The time correlation function corresponding
to eq 16 is shown by the solid curve in Figure 3a.

The range of validity of eq 16 depends onτm and the
experimental uncertainties. It can be determined by comparing
MF results with SRLS results. For example, we showed
previously that forτm ) 15 ns and typical experimental errors,
eq 16 may be considered valid whenS2 g 0.8 andτ/τm e 0.01
(ref 27). When these conditions are fulfilled (see below),S2

and τe are physically meaningful. Otherwise they become
parametrizing entities.

WhenS2 is high, the angleâCM is restricted to small values;
hence the cosine squared potential of the cone model is a good
approximation toU/kBT ) -c0

2P(cosâCM), whereP2 denotes
the Legendre polynomial of rank 2. This represents the first
term of eq 4. In this caseτe determined with the wobble-in-a-
cone model agrees withτren, the wobbling rate,Dw, of the cone
model representsR⊥

L andD| ) R|
L f ∞. Other models, such as

the Woessner model, or jumps between symmetry-related sites,6

yield τe values, which can disagree withτren (eq 18). The

quantityS2, taken as the square of a generalized order parameter,
is in actual fact an approximation to (S0

2)2 when the time scale
separation between the global and local motions is large enough,
and the ordering high enough for the solution for the local
motion to be given solely in terms of theDMK

L . When (S02)2 is
not very high, additional local motion eigenmodes emerge. Their
presence requires a more complex description of how the
correlation functions of theDMK

L relate to the eigenmodes of a
rotor in a fairly restricted (even static) potential. Quantitative
evaluations of validity ranges appear in ref 26.

The order parameterS0
2 is obtained in terms ofU/kBT )

-c0
2P2(cosâCM) on the basis ofPeq(âCM) ∝ exp(-U/kBT) (eq 4

with c2
2 ) 0, and eq 11). Likewise, conformational entropy (or

any other thermodynamic quantity based onPeq) is obtained
automatically in SRLS analysis. In the MF analysis the form
of the axial local potential has to be guessed and its strength
derived fromS2 to calculate thermodynamic properties, notably
residual configurational entropy. This is appropriate only when
S2 is a good approximation to (S0

2)2; i.e., when the conditions
specified in the previous paragraph are fulfilled. Because this
is often not the case the MF-derived residual configurational
entropy is likely to be inaccurate. The form of the potential is
clearly ambiguous. As pointed out in the previous paragraph,
other forms may not be compatible with the (physical) meaning
of τe as given by eq 18, which can complicate their interpreta-
tion. In the SRLS approach the potential given by eq 4 represents
the leading terms in a complete expansion, and the parameters
varied are the potential coefficients. The latter procedure is a
general one.

For high rhombic ordering there is no analytical expression
for C(t), so the ensuing spectral density, even in theRL . RC

(BO) limit, requires the full SRLS solution. We found that the
actual local potential at N-H sites in proteins is rhombic. Note
that in SRLS analysis the conformational entropy can still be
calculated on the basis ofPeq using the rhombic form of the
potential (eq 4) withc0

2 andc2
2 determined with data fitting.

For rigid residues, where the fast local fluctuations at the
N-H site can be considered harmonic, rhombic local ordering
can be treated with the 3D GAF model.40 The local geometry
is predetermined in 3D GAF by selecting Ci-1

R -Ci
R as the

principal ordering axis (z), withx perpendicular to it within the
peptide plane. Contrary to the 3D GAF model, the SRLS
approach is applicable to arbitrary local geometry and arbitrary
rates of local motion.22-25 Rhombic symmetry of the local
ordering is outside the scope of the MF treatment. Taking the
D and15N CSA frames collinear in the MF approach introduces
further inaccuracies (see below).

2c. Single-Exponential Approximation,τe, and the Effect of
Additional Local Motion Eigenmodes.It was shown in early
work that a single exponent, with time constantτe, is a good
approximation for the multiexponential time correlation function
of the wobble-in-a-cone model.50,51 Moreover, an analytical
formula which relatesτe to S2 and the wobbling rate,Dw, was
developed.51 This result is based on the assumption that eq 14
is valid, which implies the neglect of additional local motion
eigenmodes. Table 1 shows the SRLS eigenvalues (and corre-
sponding weights) which contribute toC(t) for a time scale
separationτL/τm ) 0.01 and potential strength decreasing from
c0

2 ) 20 ((S0
2)2 ) 0.901) to c0

2 ) 4 ((S0
2)2 ) 0.507). As a

benchmark we show the eigenvalues and associated weights
when a single local motion eigenmode prevails. These include
1/τm (column 3) and (S02)2 (column 1) for the global motion,
and 1/τren (column 2, calculated with eq 18) and (1- (S0

2)2)
(numbers in parentheses in column 6) for the local motion.

Figure 3. (a) Time correlation function,C(t), corresponding toj0(ω)
of eq 17 (and eq 16 applied in the perturbation limit) with (S0

2)2 f 0
and τ0/τm , 1 (dashed curve). Time correlation function,C(t),
corresponding to eq 16 with (S0

2)2 ∼ 0.8 andτe/τm , 1 (solid curve).
(b) Time correlation function,C(t), corresponding to eq 20 (and eq 19
applied in the perturbation limit) with (S02)2 f 0 and (S22)2 f 0 (Sf

2 ∼
0.25 andSs

2 ∼ 0) andτ0, τ2 , τm (τf, τs , τm) (dashed curve). Time
correlation function,C(t), corresponding to eq 19 as applied to treat
flexible residues in proteins withSf

2 ∼ 0.75,S2 ∼ 0.55,τs/tf ∼ 10 and
τf/τm , 1 (solid curve). The index “p” stands for “perturbational limit”.
The abscissas in (a) and (b) are given in units ofτL/τm. Note thatτe

andτf are significantly smaller than displayed (for visibility), as they
represent renormalized correlation times.

τinitial ) τe∼ τren ) 2τ0/c0
2 (18)
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Column 7 shows the percent deviation of the correlation function
for local motion from its solelyDKM

L -determined single-local-
motion-eigenmode form (see above). Namely, for each value
of c0

2 the numbers in column 7 (in fractional units) have to be
added to wtL (numbers without parenthesis) and wtC to obtain
the total weight of 1.

It can be seen that for 4e c0
2 e 20 the global motion

eigenvalue is given by 1/τm ) 0.06 and its weight, wtC, is given
within a good approximation by (S0

2)2. The main local motion
eigenvalue, 1/τL, decreases relative to 1/τren with decreasingc0

2.
The difference is 2.5% for (S0

2)2 ) 0.901 (c0
2 ) 20), 10% for

(S0
2)2 ) 0.803 (c0

2 ) 10) and 16.7% for (S0
2)2 ) 0.507 (c0

2 )
4). The deviation of the correlation function for local motion
from its solely DKM

L -determined single-local-motion-eigen-
mode form is 0.4% when (S0

2)2 ) 0.901, 2.8% when (S02)2 )
0.803, and 19.4% when (S0

2)2 ) 0.507. A typical (S0
2)2 value

for rigid N-H bonds is 0.8, implying 10% error inτe calculated
with the cone model and 2.8% error in assuming that the weight
of the local motion term is (1- (S0

2)2). This implies 3.1% error
in S2, which should be taken into consideration when the
accuracy and precision ofS2 are estimated in MF studies.11,13

The estimates given above are based on direct calculation. When
S2 is determined with data fitting, the errors can be larger.

The time scale separation between the global and local
motions is evaluated in MF studies on the basis of theτe/τm

ratio, which is substantially smaller than the true measure,τL/
τm, and which isS2-dependent. For example, forτL/τm ) 0.01
the ratioτe/τm is 0.002 for (S0

2)2 ) 0.8 (c0
2 ) 10) and 0.003 for

(S0
2)2 ) 0.75 (c0

2 ) 7.9). As noted above, forτ L/τm g 0.01
mixed modes (see below) contribute significantly to the spectral
density. Tables 2 and 3 show the effect ofτL/τm exceeding 0.01
for (S0

2)2 assuming the values of 0.75 and 0.8. The numbers in
parentheses are the values corresponding to an “accurate” MF
formula whereS2 ) (S0

2)2 andτe ) τren. It can be seen that the
errors are significant forτe/τm values that might be considered
in MF analyses as representing large time scale separations. For
example, although the true time scale separation isτL/τm ) 0.01,
the MF analysis would reportτe/τm ) 0.02 (0.025) as the time
scale separation for (S0

2)2 ) 0.8 (0.75). A 5.3% (6.8%)
contribution of additional local motion eigenmodes implies in
this case an increase in wtC and a decrease in wtL, as shown in
Tables 2 and 3. As pointed out above, the error in the
compromise value ofS2 determined by data fitting may be larger
than the estimates of Tables 2 and 3, which are based on direct
calculations. Further inaccuracies will be implied by the MF
assumption that the dipolar and15N CSA frames are collinear,

and by simultaneously (S0
2)2 being lower, andτL/τm being

higher, than the relevant threshold values.
2d. Extended MF Formula.8 When eq 16 cannot fit the

experimental data, the extended MF spectral density, given by

has been used. The parameterτf is taken as the effective
correlation time for the fast local motion,τs as the effective
correlation time for the slow local motion, andSs

2 andSf
2 as

squared generalized order parameters associated with these
motions. 1/τf′ ) 1/τf + 1/τm and 1/τs′ ) 1/τs + 1/τm. No effort
is made to define any geometric relationships between the axes
of fast and slow local motions. Although eq 19 requires thatτf

, τs , τm, in practice this formula is used whenτs is on the
order ofτm.

2e.Extended MF Formula as a SRLS Asymptote. As shown
previously, an expression similar to eq 19 was obtained in early
work as a perturbational expansion of the SRLS solution in
rhombic local ordering in theRL . RC limit for âMD * 0° (ref
30). Let us reiterate the basics of this derivation.JDD(ω) is given
by eq 10, the functionsjK(ω) are given by eq 13, and setting
âMD ) 90° implies A ) (1.5 cos2 âMD - 0.5)2 ) 0.25,B ) 3
cos2 âMD sin2 âMD ) 0 andC ) 0.75 sin4 âMD ) 0.75 (A,B
andC represent (d00

2 )2, 2(d01
2 )2 and 2(d02

2 )2, respectively, where
“d” denotes reduced Wigner rotation matrix elements). The
function JDD(ω) is then given by

Assuming thatJ(ω) ) JDD(ω) ) JCC(ω), eq 20 is formally
analogous to the extended MF formula8 (eq 19) withτs formally
equivalent toτ0, τf to τ2, and the squared generalized order
parameters,Ss

2 andSf
2, related to (S02)2 and (S22)2 as

TABLE 1: SRLS Eigenvalues 1/τm (1/τL) of the Global
Motion Mode Term (the Main Local Motion Term, i.e., the
Largest 1/τ(i) Value of Eq 13 with Weight Near (1- (S0

2)2)),
and Associated Weights wtC (wtL), as a Function ofc0

2

in Units of kBT (and Corresponding (S0
2)2 Values) Calculated

for τL/τm ) 0.01a

c0
2 ((S0

2)2) 1/τren 1/τm wtC 1/τL wtL b wMM, %c

20 (0.901) 60 0.06 0.903 58.5 0.093(0.099) 0.4
10 (0.803) 30 0.06 0.800 27.9 0.172 (0.197) 2.8
8 (0.754) 24 0.06 0.757 21.6 0.202 (0.246) 4.1
6 (0.671) 18 0.06 0.676 15.4 0.239 (0.329) 8.5
4 (0.507) 12 0.06 0.512 10.0 0.294 (0.493) 19.4

a The eigenvalues are given in units ofRL; hence 1/τL ) 6 and 1/τm

) (τL/τm × 6). The parameter 1/τren represents the renormalized local
motion eigenvalue calculated with eq 18.b The numbers in parentheses
show (1- (S0

2)2). c The percent deviation of the correlation function
for local motion from its solelyDKM

L -determined single-local-motion-
eigenmode form (see above).

TABLE 2: Eigenvalue (1/τm) and Weight (wtC) of the Global
Motion, Eigenvalue (1/τL) and Weight (wtL) of the Main
Local Motion Mode, and Contribution of Additional Local
Motion Eigenmodes Modes (wMM ) to C(t) as a Function of
τL/τm

a

τL/τm 1/τm wtC 1/τL wtL wMM, % τe/τm

0.01 0.06 (0.06) 0.805 (0.803) 27.9 (30.0) 0.172 (0.2) 2.8 0.002
0.030 0.18 (0.18) 0.813 28.5 0.167 3.3 0.006
0.050 0.29 (0.30) 0.819 29.1 0.161 3.9 0.01
0.100 0.55 (0.60) 0.833 30.7 0.147 5.3 0.02
0.200 1.00 (1.20) 0.858 33.8 0.119 8.1 0.04

a The last column showsτe/τm corresponding toτL/τm in column 1
(eq 18). An axial potential with coefficientc0

2 ) 10, corresponding to
(S0

2)2 ) 0.8, was used. The terms in parenthesis represent the case in
which the local motion is given by the eigenvalue 1/τren and the weight
(1 - (S0

2)2), and the global motion by the eigenvalue 1/τm and the
weight (S0

2)2.

TABLE 3: Same as for Table 2 Exceptc0
2 ) 7.9,

Corresponding to (S0
2)2 ) 0.75, Was Used

τL/τm 1/τm wtC 1/τL wtL wMM, % τe/τm

0.01 0.06 (0.06) 0.755 (0.75) 21.30 (23.7) 0.234 (0.25) 1.6 0.003
0.030 0.18 (0.18) 0.763 21.81 0.201 4.9 0.008
0.050 0.29 (0.30) 0.770 22.32 0.196 5.4 0.013
0.100 0.55 (0.60) 0.788 23.61 0.182 6.8 0.025
0.200 1.00 (1.20) 0.818 26.23 0.158 9.2 0.051

J(ω) ) Sf
2 [Ss

2 τm/(1 + ω2τm
2) + (1 - Ss

2)τs′/

(1 + ω2τs′
2)] + (1 - Sf

2)τf′/(1 + ω2τf′
2) (19)

JDD(ω) ) [0.25(S0
2)2 + 0.75 (S2

2)2]τm/(1 + ω2τm
2) +

0.25[1- (S0
2)2] τ0/(1 + ω2τ0

2) + 0.75[1- (S2
2)2]τ2/

(1 + ω2τ2
2) (20)
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and

The equivalence outlined above is only formal. Equation 19 is
a physically vague mathematical formula whereas eq 20 is a
physically precise geometric model based on the SRLS theory.
Note also that other SRLS models, such as one featuring an
additional mode of internal motion, would yield the form of eq
19 in a perturbational limit.

For τf, τs , τm (representing theRL . RC limit) and very
low axial local ordering ((S0

2)2 f 0 and (S2
2)2 f 0) one obtains

Sf
2 ∼ 0.25 andSs

2 ∼ 0 when eqs 21 and 22 are used. The
corresponding time correlation function is shown by the dashed
curve in Figure 3b. However, thisC(t) function is never used
to analyze N-H bond dynamics in proteins because the local
ordering at the N-H site is significantly higher thanSf

2 ∼ 0.25
and Ss

2 f 0, andτs is on the order ofτm rather than being
much smaller thanτm. A typical parameter set obtained with
MF analysis for flexible residues in proteins is given byτf ∼
20 ps,τs ∼ 10 × τf, τm g 10τs, Sf

2 ∼ 0.75 andSs
2 ∼ 0.55. The

corresponding time correlation functionC(t) is shown by the
solid curve in Figure 3b. Table 5 of ref 23 (where the SRLS
theory has been fully developed) shows quantitatively that mode
mixing dominates the time correlation function whenτm g 10τs

and the ordering is (S02)2 ∼ 0.55 (corresponding toc0
2 ∼ 4.4).

In this case the spectral densities given by eq 13 instead of
spectral densities given by eq 17 are to be used. For rhombic
ordering not only diagonal terms,jK(ω), but also cross-terms,
jKK′(ω), need to be considered.Jx(ω) obtained fromjK(ω) and
jKK′ by frame transformations (as determined by the specific
local geometry) are therefore intricate functions. In the MF
formulationJ(ω) ) JDD(ω) ) JCC(ω) is the Fourier transform
of the simple function shown by the solid line in Figure 3b,
with the plateau values determined bySf

2 andS2 ) Ss
2Sf

2, and
the step between them monitored byτs. Therefore, when force-
fitting is successful, i.e., the statistical requirements are fulfilled,
this can be only accomplished with highly inaccurate best-fit
parameters that constitute parametrizing entities. The latter are
field-dependent because parametrization by force-fitting depends
on whichJ(ω) values are to be reproduced. The fitting of larger
data sets obtained by combining multifield data is likely to fail
when standard fitting schemes are used. The trends in the values
of the best-fit parameters upon changing environmental condi-
tions such as temperature and complex formation are devoid of
physical meaning and may show abrupt changes, which are not
associated with genuine physical phenomena. These features
are illustrated below.

The extended MF formula is based on the theory of moments,
which is a mathematical approach that ignores physical details
for convenience. The physical principles underlying NMR spin
relaxation in locally orienting environments have been set forth
previously.52aThe important structural/electronic/charge-related
information one can extract when the restrictions on the local
motion are properly treated as potentials or ordering tensors
have been illustrated amply in the literature (e.g., ref 52b).
Within the scope of these established approaches the solution
offered by the extended MF formula to N-H bond motion in
proteins is physically not reasonable. The very same entity (the
cylindrical N-H bond) cannot be involved in two separate
motions that are isotropic (as manifested by the scalar quantities
τs andτf) and at the same time restricted (as manifested bySs

2

andSf
2). The simplification to isotropic local motion is certainly

not justified for the restricted slow motion,τs, asτs ∼ τm. It is
not reasonable to have no geometric relationship whatsoever
between the fast and slow local motions. The very same
(internal) protein environment cannot exert multiple different
restrictions on the same body. The global motion (τm) cannot
occur on the same time scale as the slow local motion (τs) and
at the same time not lead to mixed modes. A restricted motion
can be nearly “decoupled” from the slowly relaxing environ-
ment, which exerts the spatial restrictions, only when these
processes occur on very different time scales (R|

L/R⊥
L . 1) and

the ordering (S02 and S2
2) is so small that it constitutes a

perturbation on the free motion, or so large that the local motion
correlation times become renormalized by the strong local
potential. Only in these cases can mode mixing be ignored.
Accounting for the correct local geometry (âMD on the order of
90° in the present case), one may use the analytical function
given by eq 20, which is assembled from the simplified functions
jK(ω) given by eq 17. In this case eq 20 describes properly an
axially diffusing N-H bond in the presence of a weak rhombic
potential. Note that even in this limit the global and local modes
are only nearly “independent” because the terms (SK

2)2(τK
L)/

(1 + ω2(τK
L2)), K ) 0 and 2, actually represents statistical

interdependence.48

A numerical example, which illustrates the distorted picture
obtained by using the extended MF formula outside the
perturbation limit, is shown in Table 4.

The coefficientsc0
2 ) 2 andc2

2 ) 3 represent rhombicYM

ordering with “nearly planarYM-XM” symmetry, which we
found previously to prevail at the N-H site.26 This symmetry
is reflected clearly in the principal values,Sxx, Syy andSzz, of
the Cartesian tensor. In irreducible tensor notation one hasS0

2

) 0.089 andS2
2 ) 0.572 (Table 4 shows the squared values of

S0
2 and S2

2, which appear in eq 20). The corresponding MF
parameters areSs

2 ) 0.50 andSf
2 ) 0.50. The physical picture

of two independent isotropic local motions of the N-H bond
associated with squared generalized order parameters (inciden-
tally) equal to 0.5 is certainly different from the physical picture
associated with an axial N-H bond diffusing in a well-defined
rhombic local potential associated with a well-defined ordering
tensor with its YM axis aligned preferentially along the
Ci-1

R -Ci
R axis (or the Ni-Ci

R bond).
In practice a reduced form of eq 19, whereτf′ is set equal to

zero, is used in MF studies. The reason for this simplification
is that standard MF fitting schemes can typically only fit three-
point single-field data sets, precluding the variation ofτf as a
free parameter in addition toSs

2, Sf
2 andτs. Values ofSf

2 are
typically in the range of 0.8-0.9. The weight of the last term
of eq 19 is (1- Sf

2). Hence a 20-10% contribution is being
ignored when the reduced extended MF formula is used,
implying further inaccuracies in the best-fit parameters. This
can also be realized by noticing that formally the reduced
extended MF formula is given byJ(ω) ) Sf

2j0(ω), wherej0(ω)

Sf
2 ) 0.25+ 0.75(S2

2)2 (21)

Ss
2) (Sf

2 - 0.25)/Sf
2 + 0.25(S0

2)2/Sf
2 (22)

TABLE 4: Squared Axial (( S0
2)2) and Rhombic ((S2

2)2)
SRLS Order Parameters in Irreducible Tensor Notation,
Formally Equivalent Order Parameters (Sxx, Syy and Szz) in
Cartesian Tensor Notation, and Corresponding Squared
Generalized MF Order Parameters (Sf

2 and Ss
2, Based on

Eqs 21 and 22)a

c0
2 c2

2 (S0
2)2 (S2

2)2 Ss
2 Sf

2 Sxx Syy Szz

2 3 0.008 0.327 0.50 0.50 0.306-0.394 0.088

a The coefficientsc0
2 andc2

2 determine the potentialU/kBT in terms
of which S0

2 andS2
2 are defined (eq 11).
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) Ss
2τm/(1 + ω2τm

2) + (1 - Ss
2)τs′/(1 + ω2τs′2) has the form

of the K ) 0 perturbational expansion (eq 17) featuring the
squared order parameterSs

2 and local motional correlation time
τs′. This is analogous toJDD(ω) ) AjK(0) in the SRLS analysis,
with theK ) 1 and 2 terms set equal to zero in eq 10. We call
this form of JDD(ω) (and ensuingJCC(ω)) “combination 5”, in
analogy with model 5 in the MF treatment (the term “combina-
tion” is used instead of “model” because the hierarchy consists
of different parameter combinations within the scope of the same
model). SettingBj1(ω) ) Cj2(ω) ) 0 in eq 10 was initially
considered justified on the basis of the relationR|

L . R⊥
L

(implicit in the 2D-grid-based calculations),22 which is analogous
to τs . τf in MF analysis.

The fact that the coefficientA is returned by the fitting scheme
as 0.8-0.9 instead of unity means that in the presence of
significant mode mixing theBj1(ω) term will still contribute to
JDD(ω) even thoughR|

L . R⊥
L. This has been verified by us

with relevant calculations.19 Although SRLS combination 5 is
certainly a better spectral density than MF model 5, because
SRLSj0(ω) accounts for mode mixing whereas MFj0(ω) does
not, it still misses 10-20% contributions, to be absorbed by
the best-fit parameters. As shown below, a consistent physical
picture is only obtained with rhombic instead of axial ordering,
and arbitrary instead of very high local diffusion anisotropy,
R|

L/R⊥
L.

In summary, the mathematical model-free formulas were
introduced as parametrizing spectral densities.6-8 Independently,
the stochastic SRLS model has been developed first in the
perturbation limit for certain simplified geometries,30,48 in the
BO limit for axial ordering and isotropic local motion,28 and in
its general form.23,24 It turned out that (1) the original MF
formula is given by the SRLS solution in the BO limit and the
extended MF formula is given by the perturbational SRLS
expansion of ref 30, (2) N-H bond dynamics exceeds the
perturbation limits and in most cases the BO limit, (3) mode-
coupling and general features of local geometry, ignored in both
limits, are important, and (4) MF analysis does not stop at the
stage of parametrization but proceeds by interpreting the
parametrizing quantities in terms of physical quantities (order
parameters, correlation times) inherent to the general SRLS
model. This justifies the assessments associated with the
detrimental implications of interpreting the MF parameters in
terms of physical quantities.

3. Practical Implementation of the Theoretical Premises
of SRLS and MF Analyses.The basic idea underlying the MF
approach is to reproduce the spectral density assuming statistical
independence (decoupling) between the mobility of the probe
and the mobility of the protein.6-8 This requires large time scale
separation between these motions. On the basis of the theory
of moments, analytical expressions for the spectral density were
suggested. The price paid for simplicity becomes relevant when
the parameters obtained by data fitting46,47are interpreted within
the scope of specific models. The MF formulas only agree with
the high symmetry forms of the various physical SRLS
quantities featured, and they accommodate only simplified local
geometry, besides requiring mode-decoupling. Hence the usage
of the MF approach is prone to overextension.

A different but related idea is to envision the overall system
to be composed of two bodies, probe and protein, with mobilities
coupled by a phenomenological potential energy function. An
established set of dynamic variables is modulated according to
an explicit model, typically based on stochastic operators.
Contrary to the MF approach there is no pretence for generating
a universal tool. Instead, there is an attempt to treat the

experimentally relevant situations within the scope of rigorous
formal frameworks. The computational burden is greater than
that of the analytical model-free formulation.

The SRLS model features such a framework. It is based on
a Smoluchowski equation representing the rotational reorienta-
tion of two interacting rotors (bodies).23,24 SRLS analysis was
applied earlier to molecular probes in complex fluids and ESR
spin relaxation in biomacromolecules.24,25Recently, we applied
the SRLS approach to NMR spin relaxation in proteins.19,20,22,26,27

In this application the two rotors are represented by the locally
reorienting spin-bearing moiety (e.g., the N-H bond), and the
globally reorienting protein. The global and local motions are
described at the diffusive level, hence characterized by two
distinct diffusion tensors. The coupling potential, which ex-
presses the spatial restrictions imposed by the immediate protein
surroundings at the site of the motion of the probe, depends on
the mutual orientation of the coupled rotors. The physical tensors
may be asymmetric, and features of general local geometry are
accommodated. Obviously mode-coupling is accounted for
rigorously.

Results of the SRLS analysis were compared with MF results.
The SRLS approach is clearly the generalization of the MF
approach, yielding the latter in asymptotic limits. We found that
the MF formulas are poor approximations of the experimental
spectral density. On the other hand, the SRLS solution appears
to match the integrity of currently available experimental data.

The practical problem with the SRLS model is computational
efficiency, as in some cases the (numerical) calculation of the
SRLS spectral densities is significantly more demanding than
the instantaneous calculation of the simple analytical MF
formulas. Otherwise the SRLS and MF fitting schemes are
similar. In our first implementation of the SRLS model in a
fitting scheme, we precalculated 2D grids of spectral density
values that were then used as look-up tables. This program is
comparable in speed with the MF programs and is operated in
the same way. The best-fit parameters are formally (but not
physically) analogous to the parameters of the extended MF
formula. The deficiencies of this scheme are that (1) the global
motion is isotropic and determined separately from the local
motion (similar to the MF strategy) and (2) the symmetry of
the local restrictions is axial, as in MF analysis. We found that
these limitations must be eliminated. To this end we developed
recently a fitting program for SRLS where the generic spectral
densities (eq 13) are calculated on the fly. In terms of operating
it the only extra requirement on the part of the user is to
determine a truncation parameter that controls the number of
terms that need to be taken into account for convergence of the
solution (given by eq 13 or similar equations). Several trial and
error calculations carried out for typical cases suffice. Some
aspects of this program are still under development. It is
expected that this effort will be brought to completion shortly,
at which time this general fitting scheme will be made available
to the community. The 2D-grid-based fitting scheme, as well
as and the 2D grids, are available upon request. The “Theoretical
Background” section of this paper comprises all the information
needed for ab initio programming.

III. Results and Discussion

1. SRLS versus MF Analysis in the AsymptoticτL f 0
Limit. 1a. Geometric Effects: D f CSA Frame Transformation.
Whenτe is very small, the second term in the MF formula (eq
16) can be ignored, yielding the so-called MF “model 1”. In
this limit the difference between SRLS and MF approaches
consists solely of the D-CSA transformation carried out in the
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SRLS calculation and omitted implicitly in the MF calculation.
The implications of this approximation are illustrated below
using the experimental data obtained at 295 K, 11.7 T, by
Vugmeyster et al.11 for eight out of the 35 residues of the villin
headpiece helical subdomain (VHHS) that were analyzed with
MF model 1.τm ) 2.5 ns was determined on the basis ofT1/T2

ratios.53 We subjected these data to MF model 1 analysis using
the program Modelfree 4.0,46 and to SRLS combination 1
analysis using our current fitting scheme operated for axial
potentials.22 From MFS2 we calculatedc0

2 using eq 4 withc2
2 )

0, and eq 11. In the SRLS calculations we variedc0
2 and

calculated (S02)2 using eq 4 withc2
2 ) 0, and eq 11. The results

are shown in Table 5.
The data in parentheses, obtained by setting D and CSA

deliberately collinear in the fitting program for SRLS, are
practically identical with the corresponding MF data. This
indicates that the two programs perform identically when the
D and CSA frames coincide. Thus, the differences between
corresponding data in columns 2 and 3 are due solely to the
D-to-CSA frame transformation, which was carried out for a
tilt angle θ )17° (ref 3) in the SRLS analysis and omitted
implicitly in the MF analysis. Underestimation of (S0

2)2 by the
MF calculation on the order of 4.5% is not negligible given
that currently reported precision inS2 is, in some cases, on the
order of 1% (ref 11) and the precision in the average value of
S2, on the order of 0.2% (ref 13). The error inS2 has severe
implications for conformational entropy calculations (see below).
Recently,θ ) 21.4°was determined with an extensive ubiquitin
data set.54 The larger angleθ implies even greater inaccuracies
than shown in Table 5.

The MF treatment is clearly force-fitting the experimental
data yieldingS2 and correspondingc0

2 values that are too low.
Table 6 illustrates this using the experimental data of residue
49 of VHHS. Back-calculated15N T1, T2 and15N-{1H} NOE
relaxation parameters obtained with the best-fit SRLS and MF
order parameters of Table 5 are shown in Table 6a aside the
experimental data. Table 6b shows the specificJ(ω) values
associated with the back-calculatedT1, T2 and NOE data of
Table 6a. It can be seen that the MF spectral density can fit the
experimental data as well as the SRLS spectral density (Table
6a) by compensation of the individualJ(ω) values (Table 6b).
In particular, the MF approach yields smallerJDD(ω) values

and largerJCC(ω) values than their correct SRLS counterparts.
Note the significantly different values ofJDD(0) andJDD(ωN)
versusJCC(0) andJCC(ωN) in the SRLS analysis, implied by
carrying out the D-to-CSA frame transformation. Also note that
(with one exception) the experimental NOE exceeds the
maximum NOE as shown by %Dmax > 0 (Table 5). This feature
will be discussed below in detail.

1b. Local Motion Effects. The15N relaxation data of 21 VHHS
residues were fit by Vugmeyster et al.11 with model 2, where
the complete original MF formula (eq 16) is used. We subjected
15 out of 21 residues to SRLS analysis using combination 2,
and we repeated the calculations of Vugmeyster et al.11 using
the same computer program (Modelfree 4.0). The average results
obtained for the squared order parameters and the associatedc0

2

values are shown in Table 7 under the heading “model 2”. For
comparison the average results of Table 5, includingc0

2

corresponding to the squared order parameters, are also shown
under the heading “model 1”.

The differences featured by the “model 1” SRLS and MF
results stem solely from the geometric Df CSA frame
transformation. The differences featured by the “model 2” SRLS
and MF results stem from the Df CSA frame transformation,
and from the effect of additional local motion eigenmodes on
the form of the local motion correlation function, accounted
for in SRLS and ignored in MF. SRLS yielded〈τL/τm〉 ) 0.1
whereas MF yielded〈τe/τm〉 ) 0.02 (data not shown). IfτL would
be derived fromτe according to eq 18, then the MF time scale
separation would have been 0.09, which is close to its SRLS
counterpart (differing by only 10%).

Table 7 shows thatS2 overestimates (S02)2 by nearly 7% in
model 2 and underestimates it by approximately 4.5% in model
1. As already mentioned, this has implications for the precision
of MF S2. Most importantly, it affects the accuracy of
thermodynamic parameters calculated from potentials derived
from MF S2.33-36 The coefficientc0

2 of the general form of the
potential (eq 4 withc2

2 ) 0) is very sensitive to changes in
(S0

2)2 when (S02)2 is high, as shown in Figure 4 which is the
graphical representation of eq 4 withc2

2 ) 0. Because of the
asymptotic form of the (S0

2)2 versusc0
2 curve as (S0

2)2 f 1,
relatively small uncertainty in (S0

2)2 implies large uncertainty
in c0

2. For example, in Table 5 the (S0
2)2 errors cover the range

between-4.5% and+6.8% whereas thec0
2 errors cover the

range between-23% and+20%. Note that these large errors
in the strength of the potential, hence in the probability
distribution functionPeq ) exp(-U/kBT), stem solely from the
geometric effect of omitting the D-to-CSA frame transformation.
Significantly larger inaccuracies are implied by also disregarding
in the MF treatment the possibility that the correlation function
for local motion has a more complex form implied by the
presence of additional eigenmodes, and oversimplifying the
symmetry of the local ordering.

As discussed above, the effective correlation time,τe, typically
reported in MF studies as a “correlation time for local motion”,
is actually a composite, approximately given by 2τL/c0

2 (eq 18).
For S2 ) 0.8, 0.9 and 0.95, corresponding toc0

2 ) 10, 20 and
40, respectively, the parameterτe is 5, 10 and 20 times smaller
thanτL ) 1/6RL. The ratioτe/τm grossly overestimates what is
considered to represent the time scale separation between the
rate of global reorientation (RC) and the rate of local reorientation
(RL) (note that 1/τm and 1/τe are global motion mode and main
local motion mode eigenvalues, respectively, whereasRC )
1/6τm andRL ) 1/6τL are “bare” diffusion constants for global
and local motion, respectively). This may lead to inclusion
of nonrigid residues into data sets used to determineτm from

TABLE 5: Results of Fitting with SRLS Combination 1 and
MF Model 1 the Experimental Data of Eight VHHS
Residues Fit with Model 1 by Vugymeyster et al.11 a

NOE

res
SRLS
(S0

2)2
MF
S2 % diff

SRLS
ø2

MF
ø2 % err %Dmax

45 0.842 0.804 (0.803)-4.5 6.44 1.7 (1.7) 2.1 1.4
49 0.853 0.817 (0.815)-4.2 2.1 2.2 (2.2) 1.9 0.0
57 0.887 0.847 (0.845)-4.5 6.6 1.7 (1.8) 2.2 2.1
58 0.908 0.869 (0.860)-4.3 34.0 15.5 (20.0) 2.2 7.7
59 0.898 0.855 (0.853)-4.8 19.0 12.6 (14.2) 2.4 3.5
60 0.849 0.810 (0.810)-4.6 27.0 18.7 (19.0) 3.3 16.0
69 0.853 0.815 (0.814)-4.5 15.6 7.7 (7.9) 2.2 4.5
71 0.841 0.803 (0.803)-4.5 12.0 3.1 (3.3) 1.9 3.1

a Squared SRLS order parameters, (S0
2)2, obtained from the best-fit

c0
2 values using eq 4 withc2

2 ) 0, and eq 11, and best-fit MFS2 values,
are shown. The correspondingø2 values are also given. The data in
parentheses were obtained with the SRLS program where the15N-1H
dipolar and15N CSA tensors were set deliberately collinear. % diff is
the percent difference between the MF and SRLS squared order
parameters divided by the SRLS value. The last two columns show
the experimental NOE error and the percent difference (%Dmax)
between the experimental NOE and the maximum NOE obtained for a
rigid sphere.
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T1/T2,53 and improper usage of the reduced spectral density55-57

and model-independent58 approaches that are only valid when
the local motion correlation time,τL, is very fast. It was observed
by several authors14-16 that τe is nearly invariant as a function
of temperature. This is not surprising becauseτe ∝ τL/c0

2, with
both the numerator and the denominator decreasing with
increasing temperature. ThoughτL may exhibit Arrhenius-type
temperature dependence,τe might not.

1c.General Considerations. Illustrative simulated SRLS and
MF T1, T2 and NOE values are shown in Figures 5-8 for the
parameter range where the original MF formula is typically
applied. High ordering ((S02)2 ) 0.85) and large time scale
separation (τe/τm ) 0.015 whenτm ) 5 ns, andτe/τm ) 0.005
whenτm ) 15 ns) were used. In Figures 5 and 7c0

2 is fixed at
13.2, corresponding to (S0

2)2 ) 0.85. In the SRLS calculations
the local motion correlation time,τL ) 1/6RL, is varied from 0

to 1000 ps (curves on the left). The corresponding MF effective
local motion correlation time,τe ) 2τL/c0

2 ) τ L/6.6, is varied
from 0 to 150 ps (curves on the right). The global motion
correlation times areτm ) 5 and 15 ns, and the magnetic fields
are 11.7 and 18.8 T. For fixedτm the parameterτL (τe) is in
direct proportion to the time scale separationτL/τm (τe/τm). The
SRLS and MF relaxation parameters in Figures 5 and 7 were
calculated using the same physical input (i.e,τL ) 1/6RL in
SRLS andτe ) 2τL/c0

2 in MF calculations, with all the other
parameters the same). It can be seen clearly that all the SRLS
relaxation parameters depend significantly onτL/τm in ways that
differ for low and high fields and small and large proteins (or
high and low temperatures). On the other hand, in the parameter
range considered, the MFT1 andT2 values vary to a small extent
as a function ofτe/τm, whereas the MF NOEs vary significantly
in ways which differ from the variations in the SRLS NOEs.

Table 8 shows the percent difference between 1/T1, 1/T2 and
NOE shown in Figures 5 and 7 calculated with the SRLS
approach forτL ) 495 ps and the MF approach forτe ) 75 ps.
These data illustrate clearly the field dependence of the best-fit
MF parameters. In this example, the features that are likely to
yield different results at different fields are the opposite trends
in the 1/T1 discrepancy between SRLS and MF data at 11.7
and 18.8 T forτm ) 5 ns, and the very large field-dependence

TABLE 6
(a) Experimental and Back-Calculated SRLS and MF15N T1, T2 and15N-{1H} NOE Values

Obtained with the Best-Fit Squared Order Parameters Shown in Table 5 for Residue 49a

T1, ms T2, ms NOE

exp 381.2( 6.1 251.5( 3.1 0.565( 0.011
SRLS 387.8 250.9 0.5533

MF 386.7 249.5 0.5758

(b) J(ω) Values forω ) 0, ωN, ωH + ωN, ωH andωH - ωN for
Dipolar Autocorrelation and15N CSA Autocorrelationb

input output

(S0
2)2 c0

2 JDD(0) JDD(ωN) JDD(ωH+ωN) JDD(ωH) JDD(ωH-ωN) JCC(0) JCC(ωN)

SRLS: 0.853 13.5 0.854 0.523 0.0168 0.0130 0.0113 0.651 0.398
MF: 0.817 10.8 0.817 0.500 0.0161 0.0130 0.0108 0.817 0.500

a In this table, and in all of the tables and figures below whereT1, T2 and NOE were calculated, we used15N CSA of σ| - σ⊥ ) -170 ppm,rNH

) 1.02 Å (e.g., ref 11) andθ ) 17° (ref 3). b Thec0
2 values (and the corresponding (S0

2)2 values from Table 5) used in these calculations are given
under the heading “input”.τm ) 2.5 ns was used. The units ofJ(ω) are ns.

TABLE 7: Average c0
2 and Corresponding (S0

2)2 Best-Fit
SRLS Parameters and AverageS2 and Corresponding c0

2

MF Best-Fit Parameters

model 1 model 2

SRLS MF % diffa SRLS MF % diffa

(S0
2)2 0.87 0.83 -4.5 0.73 0.78 +6.8

c0
2 15.4 11.7 -23 7.5 9.0 +20

a % diff represents 100× [Param(MF)- Param(SRLS)]/Param-
(SRLS).

Figure 4. Squared order parameter, (S0
2)2 as a function of the potential

coefficient,c0
2 (in units ofkBT) determined with eq 4 withc2

2 ) 0, and
eq 11.

Figure 5. 15N T1, T2 and NOE calculated with SRLS (JDD(ω) was
calculated according to eq 10, andJCC(ω) as explained after eq 9) and
MF (eq 16) formulas forτm ) 5 ns, 11.7 and 18.8 T, as a function of
τL ) τ0 ) 1/6RL (left, SRLS) and correspondingτe ) 2τ0/c0

2 (right,
MF). The potential coefficientc0

2 ) 13.2, corresponding to (S0
2)2 )

0.85, was used.
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of the NOE discrepancy forτm ) 15 ns. Clearly, fitting of
combined multifield data is expected to be problematic and in
most cases impossible with MF analysis, as often encountered
in practice.

Another feature illustrated in Table 8 is the field-dependence
of the deviation of the MFT1/T2 value from the SRLST1/T2

value implying field-dependentτm values, as often encountered
in MF analyses.

The relaxation parameters shown in Figures 5 and 7 were
calculated with the proper analogy between SRLS and MF local
motion correlation times; i.e., SRLSτL corresponds to MFτe

) 2τL/c0
2. The relaxation parameters shown in Figures 6 and 8

were calculated with the improper analogy, i.e., SRLSτL the
same as MFτe. This is done to show how misleading it is to
considerτe as representing a bare (i.e., 1/6RL) local motion
correlation time, although Lipari and Szabo6 indicated that this
quantity is a composite. For example, one expects Arrhenius-
type temperature dependence ofτe, and obtains typically near
temperature independence. Within the scope of the wobble-in-
a-cone modelτe depends onDw and S2 (ref 6). The physical
parameter is the wobbling rate,Dw. If τs andSs

2, obtained from

data dominated by mode-coupling, are used in this context, the
implications can be detrimental, as shown in section 5d.

Figures 5 and 7 show that SRLS relaxation rates calculated
with τL agree reasonably with MF relaxation rates calculated
with τe ) 2τL/c0

2 for τL < 200 whenτm ) 5 ns, and forτL <
100 ps whenτm ) 15 ns. On the other hand, whenτe ) τL

(Figures 6 and 8) the agreement between theT1 andT2 values
is reasonable (because in the MF approachT1 andT2 depend
only to a small extent onτe; see Figures 5 and 7) but the NOEs
differ significantly. This is precisely the empirical observation
that motivated the development of the extended MF formula8

commonly used in its reduced version. In the reduced extended
MF formula a slow effective correlation time,τs, adjusts the
NOE, whereas a scaling factor,Sf

2, adjusts 1/T1 and 1/T2. This
is related intimately to the “mode-independent” form of this
formula, with τm affecting predominantly the global motion
term,τs affecting exclusively the local motion term, and neither
affecting the weights of these terms. On the other hand, in the
SRLS approach the motional rates and the potential coefficients
determine the weights of the various modes contributing to the
spectral density, and the eigenvalues of the solution differ from
the pure “mode-independent” eigenvalues 1/τm and 1/τL. The
MF parametrization of the spectral density impairs statistical
properties of genuine fitting. For example, Vugmeyster et al.11

reported on a nonnormalt-distribution in NOE values back-
calculated using best-fit MF parameters obtained with models
1 and 2.

1d. τm Determination. In MF analysis the determination of
the global diffusion tensor53 is implicitly based on the “Born-
Oppenheimer” type approximation inherent in factoringC(t) into
CL(t) CC(t) (eq 14). WhenCC(t) ) exp(-t/τm), i.e., when the

Figure 6. 15N T1, T2 and NOE calculated with SRLS and MF formulas
for τm ) 5 ns, 11.7 and 18.8 T, as a function of the squared order
parameter, (S02)2 (left, SRLS) and the generalized squared order,S2

(right, MF). The potential coefficientc0
2 ) 13.2, corresponding to

(S0
2)2 ) 0.85, was used.τ0 ) 75 ps in the SRLS andτe ) 75 ps in the

MF calculations were used.

Figure 7. 15N T1, T2 and NOE calculated forτm ) 15 ns, 11.7 and
18.8 T, as a function ofτL ) τ0 ) 1/6RL (left, SRLS) and corresponding
τe ) 2τ0/c0

2 (right, MF). The potential coefficientc0
2 ) 13.2, corre-

sponding to (S02)2 ) 0.85, was used.

Figure 8. 15N T1, T2 and NOE calculated forτm ) 15 ns, 11.7 and
18.8 T, as a function of the squared order parameter, (S0

2)2 (left, SRLS),
and the generalized squared order,S2 (right, MF). The potential
coefficientc0

2 ) 13.2, corresponding to (S0
2)2 ) 0.85, was used.τ0 )

75 ps in the SRLS andτe ) 75 ps in the MF calculations were used.

TABLE 8: Percent Difference ((varMF - varSRLS)/varSRLS),
Where “var” represents 1/T1, 1/T2 or NOE from Figures 5
and 7 for τL ) 495 ps and the Corresponding Value ofτe )
75 psa

% diff versus SRLS 1/T1, 1/s 1/T2, 1/s NOE

5 ns, 11.7 T +0.8 -6.2 -4.3
5 ns, 18.8 T -1.3 -5.2 -6.8
15 ns, 11.7 T -5.9 0.0 -4.8
15 ns, 18.8 T -18.2 +4.4 -16.7

a The potential coefficientc0
2 ) 13.2 ((S0

2)2 ) 0.8) was used. The
τm values and the magnetic field strengths are given in the table.
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protein is spherical, andCL(t) is given by the first term of eq
16 (model 1, whereτL ) 0), then derivingτm from T1/T2 is
appropriate in SRLS studies, but in MF studies it is as inaccurate
as implied by the omission of the D-to-CSA frame transforma-
tion. The various filtering procedures devised to extract from
the complete data set the subset used forRC determination53 do
not eliminate data that correspond to the original MF formula
(eq 16) (“model 2”, whereτL * 0). The high sensitivity toτL

of T1 and T2 for small proteins (Figure 5), andT1 for large
proteins (Figure 7), indicates that significant errors will be
introduced by including “model 2” data in the process ofRC

determination. WhenCC(t) corresponds to axial global diffusion
and/orCL(t) corresponds to eq 19, the full SRLS time correlation
function is to be used. Very preciseτm values were reported
recently by an MF study15 whereC(t) was used in the fitting
process, withCC(t) corresponding to axial global diffusion and
CL(t) given by eq 16 or 19. For the reasons outlined above the
accuracy and precision of these results should be re-assessed.

As shown below, when axial potentials are used model 1 is
often selected instead of model 2 by force-fitting, yielding
unduly high (S0

2)2 values. This has been documented in the
literature by a recent SRLS application to nitroxide-labeled
biomacromolecules that showed force-fitting by use of model
1 on a set of synthetic data corresponding to model 2, which
generated (S02)2 values that are too high andτm values that are
too low.25 The discrepancies increase with increasing magnetic
field.25 These are precisely the trends observed with MF
analyses: higherS2 and lowerτm are obtained at higher fields
(e.g., see ref 64 cited in section 5d below).

We found that a useful method for estimating the precision
of τm is to first determine it fromT1/T2 ratios (desirably acquired
at low magnetic fields) of combination 1 fits, whereτL f 0,
and then scan the vicinity of this value. Illustrative calculations
were carried out for residue 45 of VHHS acquired at 11.7 T,
295 K, fit by Vugmeyster et al.11 with MF model 1. TheT1/
T2-derivedτm value is 2.5 ns.ø2 values obtained as a function
of τm within a (0.5 ns range centered atτm ) 2.5 ns, using
SRLS (black curve) and MF (red curve) approaches are shown
in Figure 9. Let us assume thatø2 ) 10 is the threshold
(Vugmeyster et al.11 setø2 ) 25 as threshold for the site-specific
fitting). It can be seen that in both cases practically identical
(S0

2)2 (S2) values are obtained forτm within a range of 5-6%
from the 2.58 (2.50) ns minimum. We believe that this is a

realistic estimate of the precision with whichτm can be currently
determined in the BO limit for axial local ordering. Precision
estimates of 0.2% (ref 15) are highly overrated. As shown in
Figure 9, about 4% accuracy can be gained by using the SRLS
instead of the MF approach.

2. SRLS versus MF Analysis in the Mode Mixing Regime.
One of the greatest benefits of SRLS analysis lies in the
treatment of flexible residues where mode mixing dominates
the spectral density, as a consequence of local and global
motions occurring on similar time scales. Allowing for rhombic
local ordering, shown previously to prevail at the N-H bond,26

and accounting for general features of local geometry,22-27

constitute an additional significant advantages over MF analysis.
As pointed out previously22,27and mentioned above, the reduced
extended MF formula is formally equivalent toJDD(ω) ) Aj0(ω),
with SRLS fitting yielding typicallyA ∼ Sf

2 ∼ 0.8-0.9. This
spectral density is inaccurate, among others, because a term that
contributes 10-20% has been omitted. Let us illustrate this
quantitatively. The value ofA ) (1.5 cos2 âMD - 0.5)2 ) 0.8
is obtained forâMD ) 15.4°, andA ) 0.9 is obtained forâMD

) 10.7°. The values ofB ) 3 sin2 âMD cos2 âMD (C ) 0.75
sin4 âMD) corresponding to these angles are 0.20 (0.004) and
0.1 (0.0009), respectively.B is clearly not very small, butBj1-
(ω) could become negligible ifj1(ω) were much smaller than
j0(ω), in view of the imposed condition thatR|

L . R⊥
L. This is

not borne out by the SRLS analysis of the experiment, because
if it were, the fitting scheme would have returnedA ) 1,
corresponding toâMD ) 0°. By analogy, the validity of
“reducing” the extended MF formula, based on the condition
that τs . τf, is not borne out by the experiment, because if it
were, the MF fitting scheme would have returnedSf

2 ) 1.
The values ofj1(ω) andj2(ω) are, indeed, much smaller than

j0(ω) values for allω values whenR|
L . R⊥

L, in the absence of
mode mixing. The presence of mode mixing invalidates the
relationsj1(ω) , j0(ω) andj2(ω) , j0(ω) in the highω regime.
This is illustrated in Figure 10, where we show the SRLS
functionsjK(ω) calculated using as input the best-fit parameters
obtained by fitting with the SRLS theory the15N relaxation data
of residue 124 of RNase H, acquired at 11.7 T, 300 K. This
residue pertains to the flexible loopRD/â5 and was fit previously
with model 5 by Mandel et al.12 It can be seen that in the low-
frequency regionj0(ω) . j1(ω) and j2(ω). However, in the
frequency range comprising theω values relevant for the NOE
(ωH + ωN and ωH - ωN) the j1(ω) values exceed the
correspondingj0(ω) andj2(ω) values. Clearly even whenR|

L .

Figure 9. ø2 probability distribution as a function of the global motion
correlation time calculated with SRLS combination 1 (blue) and MF
model 1 (red) for residue 45 of VHHS. The MF calculations used the
same spectral densities as the SRLS calculations, except that the frame
transformation D-to-CSA was omitted.

Figure 10. jK(ω) functions obtained withc0
2 ) 3.2 ((S0

2)2 ) 0.4),
τ0/τm ) 0.45,âMD ) 16.3°andN ) R|

L/R⊥
L ) 916. The high-frequency

region is shown in panel (a), and the low-frequency region in panel
(b).
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R⊥
L (or τs . τf in MF studies) the termBj1(ω) cannot be

ignored in eq 10 when mode mixing is important. For the very
same reason eq 19 is further impaired when its last term is
omitted.

In principle, settingBj1(ω) andCj2(ω) equal to zero implies
theâMD ) 0° geometry, which corresponds toA ) 1. In practice,
the fitting schemes returnsA * 1, indicating that force-fitting
has occurred. TheâMD ) 90° geometry (which is approximately
correct as the angle between N-H and Ci-1

R -Ci
R is 101.3°)

corresponds toA ) 0.25,B ) 0 andC ) 0.75. As shown below,
this materializes by fitting when the potential is allowed to be
rhombic andR|

L/R⊥
L is allowed to be arbitrary instead of being

forced to be very high.
In the perturbation limit the ordering is very small. Motion

aboutZM is prohibited physically as the N-H bond is attached
to the protein backbone. The highly plausible local diffusion/
local ordering axes Ci-1

R -Ci
R and Ni-Ci

R are tilted at ap-
proximately 90°from the N-H bond. Therefore, theâMD )
90° geometry is actually implied in this limit. Outside the
perturbation limit,ZM may betilted with respect to the N-H
bond. To assign physical meaning to the tensorRL, we will
assume, on the basis of stereochemical considerations, that the
âMD ) 90° is preserved in the general case.

The experimental data of residue 124 of RNase H are further
used for illustrative purposes as follows. They are shown in
Table 9a along with the NMR relaxation data back-calculated
with MF and SRLS formulas using the best-fit parameters (given
in Table 9b) obtained with the respective fitting processes.
Clearly both SRLS and MF approaches reproduce the experi-
mental data. The specificJ(ω) values entering the expressions
for T1, T2 and NOE are shown in Table 9b. It can be seen that
the MF approach can fit the experimental data as well as the
SRLS approach, but this requires that the relevantJDD(ω) values
be underestimated, and the relevantJCC(ω) values overestimated.
This is a clear example of force-fitting. The different best-fit
parameters can be further rationalized by examining Table 9c,
where we show the dominant eigenvalues and their weights,

which are clearly different in the SRLS and MF analyses. Thus,
a fictitious physical situation characterized by MF eigenvalues
and weights ofC(t) and best-fit parameters ofJ(ω) obtained
with force-fitting can reproduce technically very well the
experimental data.

Note that the weights of the local and global motion terms
in Table 9c, yielded by the reduced extended MF formula (eq
19 with the last term set equal to zero), do not sum up to unity.
There is no requirement in the MF fitting schemes for
normalization in the so-called “model 5”, which uses this
formula. This is yet another aspect of the MF treatment that
implies force-fitting of the experimental data. Additional confu-
sion with regard to what the parameterτs represents is implied
by the phenomenon of renormalization, which is important when
the local potential is high. Because someSs

2 values are low
and others are high, this complicates further the comparison
among theτs values of different N-H sites. Finally, confor-
mational entropy is often calculated fromS2 instead ofSs

2. The
parameterSs

2 is formally equivalent to (S02)2, whereasS2 taken
asSf

2Ss
2 includes the parameterSf

2, which is formally analogous
to a geometric factor, (P2(cos âMD))2.22 Ss

2 is highly inac-
curate;19,20,22S2 is qualitatively problematic.

We conclude this section by discussing the limitN ) R|
L/R⊥

L

. 1, which is the analogue of the MF restrictionτs . τf. The
jK(ω) functions in Figure 10 were obtained withN ∼ 1000. We
show in Figure 11 SRLSjK(ω) functions obtained withN ) 1.
Except for the value ofN, the parameters used to calculate the
Figure 11 functions (RC ) τ⊥

L/τm ) 0.57,c0
2 ) 4.04 ((S02)2 )

0.51),âMD ) 20° andR|
L . R⊥

L) are quite similar to those used
to calculate the Figure 10 functions. It can be seen that for a
small time scale separation (τ⊥

L/τm ) 0.57), moderate ordering
((S0

2)2 ) 0.51) and theâMD ) 20° geometry, the functionsj1(ω)
andj2(ω) are comparable in magnitude toj0(ω) over the entire
range ofω values whenN ) 1 (Figure 11). On the other hand,
j0(ω) . j1(ω), j2(ω) in the low-frequency regime, whereasj1(ω)
> j0(ω), j2(ω) in the high-frequency regime whenN . 1 (Figure
10). Thus, the parameterN affects the analysis significantly.

TABLE 9
(a) Best-FitT1, T2 and NOE Values Corresponding to the Best-Fit

Parameters Shown in Table 9b under the Heading “input”a

T1, ms T2, ms NOE

exp 633.8( 10.1 112.3( 3.1 0.5343( 0.031
SRLS 633.8 112.3 0.5344
MF 633.8 112.3 0.5343

(b) Best-FitJ(ω) Values Corresponding to the Best-Fit Parameters Listed
under the Heading “input”, Used To Calculate the Data of Table 9ab

input output

c0
2 (S0

2)2 âMD RC JDD(0) JDD(ωN) JDD(ωH+ωN) JDD(ωH) JDD(ωH-ωN) JCC(0) JCC(ωN)

SRLS 3.01 0.368 16.6 0.470 2.61 0.318 1.09 0.0093 0.0081 1.96 0.241
MF 10.2 0.806 15.0 0.114 2.48 0.303 1.08 0.0087 0.0074 2.48 0.303

(c) Significantly Contributing SRLS Eigenvalues and Associated Weights,
and Corresponding “Independent” MF Eigenvalues and Associated Weightsc

SRLS MF

eigenvalue 2.13 10.12 24.52 14.13 0.678 6
weight 0.61 0.325 0.042 0.019 0.652 0.157

a The ø2 values were practically zero for both SRLS and MF calculations.b The SRLS input set includesRC ) 0.47 (τ⊥
L ) 4.36 ns,τm ) 9.28

ns)),c0
2 ) 3.04 ((S0

2)2 ) 0.37) andâMD ) 16.6°(formally Sf
2 ) 0.770).N ) R|

L/R⊥
L was fixed at the value of 1000. The MF input set includesτs/τm

) 0.114,c0
2 ) 10.2 derived fromSs

2 ) 0.806 (eqs 4 and 11),Sf
2 ) 0.809 andτf ) 0. The formally22,27 analogous SRLS parameters areRC, c0

2, A
) (P2(cos(âMD)))2 andR|

L . R⊥
L, respectively. The units ofJ(ω) are ns.c The eigenvalues are given in units ofRL; hence the “independent” local

motion eigenvalue is 6.
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The restriction to highN ) R|
L/R⊥

L was imposed in our first
fitting scheme for SRLS (ref 22) for practical reasons.R|

L and
R⊥

L represent the principal values of the diffusion tensor of
“body 1”, i.e., the N-H bond. The inequalityR|

L/R⊥
L . 1 is

clearly a simplifying approximation. As shown below, only by
removing this restriction, and allowing for rhombic potentials,
is a consistent physical picture obtained with data fitting. In
the SRLS approach the principal values of the local diffusion
tensor comprise information on physically meaningful variations
among the various N-H sites (examples of such variations
among nitroxide-labeled sites in proteins appear in ref 37). This
information is lost when the restriction thatN . 1, whereby
R|

L is forced to be in the extreme motional narrowing limit, is
imposed.

Within the scope of theformal (definitely not physical)
analogy between SRLS and MF,R|

L/R⊥
L . 1 in the SRLS

model corresponds toτs/τf . 1 in the MF model. Based on the
results presented below, which indicate thatR|

L/R⊥
L . 1 is not

to be imposed, the mathematical MF inequalityτs/τf . 1
constitutes an inappropriate oversimplification.

For comparison we also show in Figure 11 the reduced
extended MF spectral density obtained with the analogous
parameters:τs′/τm ) 0.57,Ss

2 ) 0.51,Sf
2 ) 0.68 (Sf2 ) A )

1.5 cos2(20°) - 0.5) andτf′ ) 0 (red curve). This function is
clearly a poor approximation ofJDD(ω) assembled according
to eq 10 from thejK(ω) functions of Figure 11, with the
coefficientsA ) 0.68,B ) 0.31 andC ) 0.01, corresponding
to theâMD ) 20° geometry. This illustrates clearly the limited
capabilities of the MF approach, which cannot reproduce
physical situations whereR|

L/R⊥
L ∼ 1.

3. Conformational Entropy Derived in MF Analysis from
S2. In recent years squared generalized MF order parameters
have been used extensively to derive thermodynamic quantities,
notably configurational entropy.33-36 The logic behind this
approach is as follows.S2 is determined with data fitting.
Subsequently, it is assumed thatPeq is axially symmetric.
Thereby the squared generalized order parameter becomes the
square of an axial order parameter. This enables the derivation
of the strength of an axial potentialsthe form of which must
be guessedsbased on equations similar to our eq 11. Because
the MF approach is an SRLS asymptote, the potential form given
by eq 4 (withc2

2 set equal to zero) is appropriate. Employing
other potential forms33-36 may increase the inaccuracy in the
configurational entropy derived from the already inaccurateS2

value.

Large errors in the strength of the potentialU/kBT )
-c0

2P2(cos âMD) are illustrated in Table 7 in the best-case
scenario whereS2 is determined with models 1 or 2. As pointed
out above, the errors inc0

2 are significantly larger than the
errors inS2 due to the functional form of the (S0

2)2 versusc0
2

dependence for high (S0
2)2 values (Figure 4). Table 7 shows

that within the context of model 1 (or combination 1) the
potential coefficient (c0

2) derived fromS2 MF analysisunder-
estimatesthe SRLS potential coefficient on average by 23%,
whereas in the context of model 2 (or combination 2) the
potential coefficient derived fromS2 MF analysisoVerestimates
the SRLS potential coefficient on average by 20%. Much larger
inaccuracies in the potential underlying the calculation of
configurational entropy are expected in the extended MF regime,
where MFSs

2 and SRLS (S0
2)2 differ by factors of 3-4 (refs

19, 20, and 22). When the local potential is rhombic, as it turns
out to be at the N-H site,26 MF studies cannot provide the
equilibrium probability distribution function,Peq ) exp(-U/
kBT), because only one parameter is available whereas a rhombic
potential is defined by at least two coefficients, implying two
order parameters.

Contrary to MF studies, in the SRLS approach the general
rhombic form of the potential is implicit in the theory and its
coefficients (c0

2 and c2
2) can be obtained directly with data

fitting. The SRLS theory also emphasizes the relevance of the
Euler anglesΩC′M. Peq, and therefore the thermodynamic
quantities, are obtained straightforwardly in SRLS. Order
parameters are thus not required to infer the potential to derive
conformational entropy. They can be calculated independently,
if so desired, using eqs 4 and 11.

4. Rhombic Symmetry of the Local Potential/Local
Ordering. 4a.Rhombicity of the Local Ordering and the Axiality
of the Global Diffusion. A very large effect on the analysis not
accounted for in MF analysis is the rhombicity of the potential
U(ΩCM)/kBT. This is illustrated below in quantitative terms. The
form of the potential depends on the symmetry of local diffusion/
local ordering frame, M, and the symmetry of the local director
frame, C. In the SRLS approach the local director is taken to
be uniaxial for simplicity but the M frame is in general allowed
to be rhombic. We found previously that the particular rhombic
symmetry of the M frame is of the “nearly planarYM-XM”
type.26 Figure 12 illustrates these frames in the context of the
stereochemistry of the peptide plane. TheC axis is considered
to lie along the equilibrium Ci-1

R -Ci
R axis. The main ordering

Figure 11. SRLS spectral densitiesjK(ω) obtained withc0
2 ) 4.04

((S0
2)2 ) 0.51),τ⊥

L/τm ) 0.57,âMD ) 20° andR|
L/R⊥

L . 1 (blue curves).
Reduced extended MF spectral density calculated withSs

2 ) 0.51,Sf
2

) 0.68 andτs′/τm ) 0.57 (red curve). The coefficients of the SRLS
jK(ω) functions shown in the expression ofJDD(ω) are 0.68, 0.31 and
0.01 forK ) 0, 1, 2, respectively.

Figure 12. Schematic illustration of high “nearly planarYM-XM

ordering” prevailing at the N-H site, withYM as main ordering axis.
The M frame denotes the rhombic local ordering/local diffusion frame.
YM lies along the instantaneous orientation of the Ci-1

R -Ci
R axis (or the

Ni-Ci
R bond).XM lies along the symmetry axis of the lone pair of the

nitrogen. TheC frame denotes the uniaxial local director frame with
ZC along the equilibrium orientation of the Ci-1

R -Ci
R axis (or the Ni-

Ci
R bond). Within the scope of high orderingYM is aligned preferen-

tially along theC axis.
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axis, YM, is parallel to the instantaneous orientation of the
Ci-1

R -Ci
R axis. ZM is perpendicular toYM within the peptide

plane andXM is perpendicular to bothYM and ZM, i.e.,
perpendicular to the peptide plane. The axisXM lies along the
symmetry axis of the lone electron pair of the nitrogen, assigning
clear meaning to the “nearly planarYM-XM ordering” symmetry,
where |Sxx|, |Syy| . |Szz|, Syy > 0 and |Syy| is slightly larger
than|Sxx|. In the original MF formula, and in the extended MF
formula as presented by its developers, C lies implicitly along
the equilibrium N-H orientation. In a high ordering scenario
the implied motion around N-H is not viable. On the other
hand, motion around Ci-1

R -Ci
R, is definitely viable. Note that

taking the local director to lie along the Ci-1
R -Ci

R axis within a
presumed rigid peptide plane sets the angleâMD close to 90°
for the N-H bond and close to 0° for the C′-CR bond.

The rhombicity of the local ordering tensor,S, is outside the
scope of MF analysis. Because the potential rhombicity was
shown with SRLS to affect the analysis significantly,26 it must
be absorbed by the best-fit MF parameters. We showed
previously26 that the conformational exchange parameter,Rex,
can absorbS rhombicity in the data fitting process. Another
likely candidate, in particular in the BO limit where mode
mixing is limited, isRC axiality, as explored below.

The large effect of the symmetry of the local potential on
the analysis is illustrated in Table 10 which shows NMR
relaxation rates calculated forRC ) 0.01,âMD ) 0°, τm ) 15
ns and axial or rhombic potentials on the order of 10kBT. In
the axial case we utilizedc0

2 ) 8 ((S0
2)2 ) 0.754), whereas in

the rhombic case we utilizedc0
2 ) 8 andc2

2 ) 4. These latter
values represent moderate rhombicity, corresponding to (Sxx -
Syy)/Szz ) 8.6%, whereSxx ) -0.382,Syy ) -0.454 andSzz )
0.836 are the principal values of the corresponding Cartesian
ordering tensor. As shown in Table 10, potential (or ordering)
rhombicity affects the NOE to a very large extent, amounting
to 31.6% (46.3%) difference from the axial case at 11.7 T (18.8
T). The parameters used in Table 10 for the axial potential case
are also used in Table 11 to illustrate the effect of global
diffusion axiality with R|

C/R⊥
C ) 1.2, which is a typical value

for globular proteins.10 “%diff” denotes the percent difference
between corresponding variables calculated withâCC′ ) 0° and
âCC′ ) 90°, whereâCC′ denotes the angle between the (uniaxial)

local director frame, C′, and the (axial) global diffusion frame,
C. The effect illustrated in Table 11 is small relative to the large
effect of moderate potential rhombicity on the NOE illustrated
in Table 10. It is very likely that in many cases the rhombicity
of the ordering tensor,S, was absorbed in the MF analyses by
introducing RC axiality, in particular when the total time
correlation function,C(t), rather than the time correlation
function for global motion,CC(t), was used to determineRC.
In the former case15N T1, T2 and 15N-{1H} NOE enter the
analysis, whereas in the latter case only15N T1 andT2 enter the
analysis.

The data shown in Table 11 were obtained for a time scale
separation of 0.01, which is quite large, and a potential strength
of c0

2 ) 8, which corresponds to the relatively high ordering of
(S0

2)2 ) 0.754. In this parameter range the effect of additional
local motion eigenmodes on the correlation function is not very
large.27 However, not accounting for it, and oversimplifying the
local geometry, render the MF-basedT1 andT2 values inaccurate
by 7% and 9%, respectively. Interestingly, the field dependence
of these discrepancies is small. This indicates that in those cases
where MF analysis yields significantly field-dependentτm values
either mode mixing is pervasive in the experimental data or
the data feature rhombic potentials.

It should be noted that in general all the parameters entering
the Jx(ω) functions, including the global diffusion tensor, are
to be determined in the same fitting process. The separate
determination ofRC in the MF approach is implied by the mode-
independence concept, the applicability of which to N-H bond
dynamics we challenge herein.

4b. “Nearly Planar YM-XM” Rhombic Ordering. As pointed
out above, the “nearly planarYM-XM” ordering symmetry with
YM as the main ordering axis represents realistic stereochemical
and electronic properties of the N-H site in proteins. Let us
investigate this symmetry in further detail. For convenience we
use c0

2 ) 2, and allowc2
2 to increase from 0 to 6, scanning

thereby over a range of symmetries.
Table 12 shows potential coefficients and corresponding

ordering tensor components in spherical tensor notation,S0
2 and

S2
2, and in Cartesian tensor notation,Sxx, Syy and Szz. The

numerical values of the Cartesian tensor components indicate
clearly that the entry withc2

2 ) 0 represents positive axialZM

ordering; the entry withc2
2 ) 2.45 represents negative axialYM

ordering; the entry withc2
2 ) 3 represents rhombic negativeYM

ordering with “nearly planarYM-XM symmetry”; the entry with
c2

2 ) 4 represents positive rhombicXM ordering with “nearly
planarXM-YM symmetry”; the entryc2

2 ) 6 represents positive
XM ordering and substantial negativeYM ordering. The angle
γMD was fixed in the calculations of this study, and all our

TABLE 10: Percent Difference [var(axial) - var(rhombic)]/
var(axial) × 100 between15N T1, T2 and NOE Calculated
with τm ) 15 ns,RC ) 0.01, and an Axial (c0

2 ) 8 and
c2

2 ) 0) or a Rhombic (c0
2 ) 8 andc2

2 ) 4) Potentiala

11.7 T 14.1 T 18.8 T

T1 -2.4 -1.0 +1.5
T2 -7.6 -7.5 -7.6
NOE +31.6 +39.3 +46.3

a Calculations are shown for magnetic fields of 11.7, 14.1 and 18.8
T.

TABLE 11: Percent Difference [var(âCC′)0°) -
var(âCC′)90°)]/var(âCC′)0°) × 100 between15N T1, T2 and
NOE Calculated with τm(app) ) 15 ns,RC(app) ) 0.01, an
Axial Potential Given by c0

2 ) 8, âCC′ ) 0° and a Global
Diffusion Anisotropy of R|

C/R⊥
C ) 1 or 1.2a

11.7 T 14.1 T 18.8 T

T1 +7.4 +7.1 +6.1
T2 -9.0 -9.0 -9.2
NOE -2.7 -3.5 -4.0

a Calculations are shown for magnetic fields of 11.7, 14.1 and 18.8
T.

TABLE 12: Potential Coefficients c0
2 and c2

2 (Eq 4) and
Corresponding Principal Values of the Ordering Tensor in
Spherical Tensor Notation,S0

2 and S2
2 (Eq 11),

and in Cartesian Notation, According toSxx ) (1/2)x3/2S2
2 -

0.5S0
2; Syy ) -(1/2)x3/2S2

2 - 0.5S0
2; Szz) S0

2 a

c0
2 c2

2 S0
2 S2

2 Sxx Syy Szz

2 0 +0.440 0.000 -0.220 -0.220 +0.440
2 2 +0.265 +0.368 +0.093 -0.358 +0.265
2 2.45 +0.188 +0.460 +0.188 -0.376 +0.188
2 3 +0.088 +0.572 +0.306 -0.394 +0.088
2 4 -0.082 +0.750 +0.500 -0.418 -0.082
2 6 -0.183 +0.878 +0.739 -0.446 -0.293

a Note that reversing the sign ofc2
2 will cause the values ofSxx and

Syy to be exchanged.
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previous studies, at 90°, in agreement with stereochemical
considerations (Figure 2b).

The high sensitivity of the analysis to the symmetry of the
local ordering (local potential) is illustrated in Figure 13. We
show the functionsjKK′(ω) for all the relevant combinations of
quantum numbersK andK′, as determined by the symmetry of
the local potential. The potential is axial in Figure 13a, withc0

2

) 1.5, and of the “nearly planarYM-XM ordering” type in
Figures 13b (c0

2 ) 2 andc2
2 ) 3) and 13c (c0

2 ) 2 andc2
2 )

3.25). To calculate thejKK′(ω) functions, we usedRC ) 0.001,
and to further calculateT1, T2 and NOE, we usedâMD ) 0° in
Figure 13a andâMD ) 90° in Figure 13b,c, and the value ofτm

) 5.5 ns.
There are significant differences between the axial and

rhombic potential scenarios. First of all, rhombic symmetry
requires the cross termsj2-2(ω) ) j-22(ω), j20(ω) ) j02(ω) and
j1-1(ω) ) j-11(ω) in addition to the diagonal termsj0(ω), j1(ω)
and j2(ω) required for axial symmetry. The corresponding
relaxation rates of Figure 13a,b differ significantly, illustrating
the importance of the symmetry of the potential and the local
geometry. The NOE generated with the rhombic potential given
by c0

2 ) 2 andc2
2 ) 3.25 (Figure 13c) can also be reproduced

with an axial potential given byc0
2 ) 1.5 (Figure 13a) (with all

the other input parameters being the same). However,T1 and
T2 differ substantially indicating that a completely different set
of input parameters featuring an axial potential would be
required to reproduce satisfactorily theT1, T2 and NOE of Figure
13c. This illustrates force-fitting, with Figure 13c representing
“model” experimental data. Parts b and c of Figure 13 show
that the NMR relaxation rates are altered substantially when
the rhombicity of the potential changes moderately. Thus, an
8% increase inc2

2/c0
2 implies a 53% increase in the NOE,

pointing out the very high sensitivity of the analysis to the
precise form of the local potential.

The examples shown in Figure 13 pertain to the large time
scale separation regime where mode mixing is limited. The

effect of potential symmetry on the experimental variables for
RC ) 0.5, where mode mixing is important, is illustrated in
Figure 14. The other parameters used includeτm ) 6.1 ns and
c0

2 ) 2. IsotropicRL (N ) 1) andâMD ) 0° were used in Figure
14a-c, and axialRL (with N ) 10) andâMD ) 90° were used
in Figure 14d-f. The rhombic potential coefficient,c2

2, was
varied from 0 to 6. Positive axialZM ordering corresponds to
c2

2 ) 0 (Szz ) 0.440, Sxx ) Syy ) -0.220), negativeYM

corresponds toc2
2 ) 2.45 (Syy ) -0.376,Sxx ) Syy ) 0.188),

“nearly planarYM-XM ordering” with YM as main (negative)
ordering axis corresponds toc2

2 ) 3 (Sxx ) 0.306, Syy )
-0.394 andSzz) 0.088), and rhombicXM ordering corresponds
to c2

2 ) 6 (Sxx ) 0.629,Syy ) -0.446 andSzz ) -0.184).
The “nearly planarYM-XM” ordering symmetry withYM as

the main (but negative) ordering axis, which corresponds toc0
2

) 2 andc2
2 ) 3, has unique features. ForâMD ) 0° the NOE

andT2 assume their maximum values, whereasT1 assumes its
minimum value for this symmetry. ForâMD ) 90°, T1 goes
through a shallow minimum, whereasT2 and the NOE exhibit
maximum slope for this symmetry in thec2

2 range shown.
Particularly noteworthy is the fact that the NOE is significantly
higher when the symmetry of the local potential is rhombic
instead of axial.By analogy with Figure 14, the maximum NOE
corresponding to rhombic “nearly planar YM-XM ordering”
is expected to be higher than the maximum NOE corresponding
to axial ordering of similar magnitude.This turns out to be an
important issue, discussed below in detail.

5. Examples of Misleading Force-Fitting with MF Analy-
sis. 5a. “Missing” Contribution to15N 1/T2. Lee and Wand,9

who carried out a comprehensive MF analysis of multifield
ubiquitin data acquired at 300 K, reported on an apparently
missing contribution to 1/T2 that led to largeτm values despite
having allowed for variations in the15N CSA interaction. Only
whenT2 was excluded from the analysis was the expected value
of τm ) 4.1 ns recovered. As shown in Figure 5, forτm ) 5 ns
mixed modes contribute to 1/T2 significantly already forτe on
the order of 20 ps forS2 ) 0.85. Quantitative estimates given
in Table 8 show that even when the contribution of mixed modes
is relatively small, the 1/T2’s obtained with MF analysis are
5-6% lower than the 1/T2’s obtained with SRLS analysis.
Smaller time scale separation and lower ordering, which imply
larger effects of additional eigenmodes for local motion on the

Figure 13. FunctionsjK(ω) ) jKK(ω) (a) andjK(ω) ) jKK(ω) andjKK′(ω)
(b, c) calculated forRC ) 0.001, andc0

2 andc2
2 as depicted in (a)-(c).

The potential coefficients correspond to axial symmetry withc0
2 ) 1.5

(a), and “nearly planarYM-XM symmetry” withc0
2 ) 2 andc2

2 ) 3 (b)
and c0

2 ) 2 and c2
2 ) 3.25 (c). The black, red and green curves

represent the functionsjK(ω) with K ) 0, 1, 2, respectively. The blue,
yellow and indigo curves in (b) and (c) represent the functionsjKK′(ω)
with KK′ ) (2,0) ) (0,2),KK′ ) (2,-2) ) (-2,2) andKK′ ) (1,-1)
) (-1,1), respectively. The NMR relaxation rates were calculated for
âMD equal to 0°(a) or 90°(b, c), τm ) 5.5 ns and a magnetic field of
11.7 T. Note that forâMD ) 90° the contributing cross-terms include
j20(ω) ) j02(ω) and j2-2(ω) ) j-22(ω)).

Figure 14. 15T1, T2 and15N-{1H} NOE calculated withτm ) 6.1 ns,
RC ) 0.5 and a magnetic field of 11.7 T. IsotropicRL andâMD ) 0°
were used in (a)-(c), and axialRL with N ) R|

L/R⊥
L ) 10 andâMD )

90° were used in (d)-(f). The potential used was given byc0
2 ) 2,

with the rhombic coefficient,c2
2, varied from 0 to 6.
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correlation functions, will increase further the difference between
1/T2 obtained with SRLS and 1/T2 obtained with the MF
approach. The data shown in Table 8 were obtained with axial
potentials. For rhombic potentials the 1/T2 differences will be
significantly larger because the SRLS and MF approaches differ,
in general, to a larger extent when the potential is rhombic in
SRLS and axial in MF (e.g., see Table 10).

Because MF analysis does not account for either mode mixing
or potential rhombicity, the only way to render the fitting
feasible is to excludeT2 from the analysis.9 SRLS-based data
fitting with rhombic potentials and arbitraryR|

L/R⊥
L is expected

to provide insightful fitting of complete multifield data from
ubiquitin and other proteins.

5b. Low Performance of the N-H Bond as Dynamic Probe.
The commonly used probe for studying protein backbone
dynamics is the N-H bond. The experimental autocorrelated
relaxation rates15N T1, T2 and 15N-{1H} NOE are analyzed
with data fitting. Recently the13C′-13CR bond has been
suggested as a complementary dynamic probe (ref 13 and papers
cited therein). In this application the13C′-13CR dipolar-13C′ CSA
cross-correlated relaxation rate,Γ, is measured. Because only
a single relaxation rate is measured only model 1 cases, which
featureτm andS2(C′-CR) as free variables, can be treated. In
such cases one can calculateS2(C′-CR) from the expression of
Γ usingτm determined with15N spin relaxation. Hence within
the scope of the MF approach, combined N-H and C′-CR

analysis is relevant for rigid proteins where model 1 applies,
assuming that the peptide plane is rigid.

The ribonuclease binase was studied earlier with15N spin
relaxation at 11.7 and 18.8 T,21 and recently with combined
15N-1H and C′-CR spin relaxation at 11.7 T.13 In the earlier
study the 18.8 T data could not be fit with MF formulas, and
the 11.7 T data yielded an altogether rigid backbone although
other methods (X-ray crystallography, molecular dynamics and
13C′-13CR cross-relaxation) indicated that the catalytic loops
L2 and L5 are flexible.21 In ref 13 it was found that at 278 K
S2(N-H) andS2(C′-CR) are practically the same, in agreement
with nearly rigid N-H and C′-CR bonds. However, when the
temperature was increased to 303 K,S2(C′-CR) decreased by
10%, whereasS2(N-H) decreased by only 2%. This was
considered contrary to the expectation that at the higher
temperature the N-H bond should be more sensitive than the
C′-CR bond to the crankshaft motion38 occurring about an axis
close to the Ni-Ci

R bond, because N-H is perpendicular to

this axis whereas C′-CR is parallel to it. Similar results were
obtained for ubiquitin.

The unexpected temperature-independence ofS2(N-H) is
actually imprinted in the raw data. Figure 15 shows the
experimental NOEs obtained at 303 K, 11.7 and 18.8 T. The
horizontal lines show the maximum “rigid sphere” NOEs
corresponding toτm values determined withT1/T2 analysis. It
can be seen that most NOEs exceed the “rigid sphere” value.
This feature necessarily imposes on the fitting scheme model
1, where the “rigid sphere” NOE value is obtained. The latter
is independent ofS2. T1 andT2 assume minimum values forS2

) 1. As shown in Table 13, the difference between the average
experimental and minimumT1 andT2 values is approximately
8% at 278 K and 10% at 303 K. TheS2 values yielded by the
MF analysis are 0.903 at 278 K and 0.884 at 303 K, which
differ from 1 by 10 and 12%, respectively. Hence, the
unexpectedly small temperature-dependence ofS2(N-H) is to
be assigned to issues related to the analysis, rather than issues
related to the sensitivity of the experimental data. A plausible
interpretation is outlined below.

The maximum theoretical NOE value has been determined
for axial local potentials. However, we found previously that
“nearly planarYM-XM ordering” prevails at the N-H bond.
Figure 16 shows the effect of potential symmetry on the NOE.
Calculations were performed forτm ) 6.1 ns,τ⊥

L/τm ) 0.5,R|
L/

R⊥
L ) 0.5, c0

2 ) 2 and âMD ) 0°. The rhombic potential
coefficient,c2

2, was varied from 0 to 6, scanning thereby over
the various symmetries of the coupling potential and the
corresponding ordering tensor. As pointed out earlier,c2

2 ) 0
corresponds to axialZM ordering; c2

2 ) 2 corresponds to

Figure 15. Experimental NOEs of the ribonuclease binase acquired
at 11.7 and 18.8 T, 303 K.21 The horizontal lines show the maximum
NOE for 6.1 ns (11.7 T) and 5.5 ns (18.8 T), with the global motion
correlation times determined on the basis ofT1/T2 ratios.

TABLE 13: Maximum NOE (Obtained with Model 1) and
Minimum T1 and T2 (Obtained with Model 1 and S2 ) 1)
Values Corresponding to 11.7 T and 13.44 (5.5) ns at 278
(303 K) (Row 1); Average ExperimentalT1 and T2 and NOE
Values from Ref 13 (Row 2); and Percent Difference
between Corresponding Data in Rows 1 and 2 (Row 3)

T1, ms T2, ms NOE

303 K
1 368.5 117.2 0.771
2 408.2( 6.5 (1.6%) 129.4( 2.5 (1.9%) 0.771
3 10.8% 10.4% 0

278 K
1 720.4 55.0 0.816
2 781.3( 18 (2.3%) 59.2( 2.1 (3.6%) 0.816
3 8.5% 7.7% 0

Figure 16. 15N-{1H} NOE calculated withτm ) 6.1 ns,RC ) 0.5,
R|

L/R⊥
L ) 0.5 andc0

2 ) 2. The rhombic potential coefficient,c2
2, was

varied from 0 to 6.
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rhombicZM ordering;c2
2 ) 2.45 corresponds to axial perpen-

dicular YM ordering;c2
2 ) 3 corresponds to rhombic “nearly

planarYM-XM ordering” withYM as the main ordering axis;c2
2

∼ 5 corresponds to rhombicXM ordering. It can be seen that
the largest NOE value is obtained forc2

2 ) 2 andc2
2 ) 3, i.e.,

rhombic “nearly planarYM-XM ordering”, with YM as main
ordering axis.

Figure 16 shows clearly that rhombic potentials can yield
higher NOEs than axial potentials. Therefore, if the theoretical
spectral density used in the fitting scheme yieldsmaximum
NOEs corresponding to “nearly planarYM-XM ordering”, the
experimental NOEs may not exceed the maximum NOE, and
model 1 may not be imposed on the fitting scheme. Instead
model 2, which yields significantly lowerS2 values than model
1 (Table 7), may be selected at 303 K.

Yet another illustrative example is presented in Table 14
which shows highc0

2 and c2
2 values, corresponding to high

order parameters,S0
2 andS2

2, as appropriate for model 1. For
the expectedâMD ) 90° geometry corresponding to the “nearly
planar YM-XM ordering”, the termτm/(1 + ω2τm

2) in the
combination 1 spectral density is multiplied by the coefficient
[0.25 (S0

2)2 + 0.75 (S22)2], because (d00
2 )2 ) 0.25 and 2[d20

2 )2]
) 0.75 (eq 20). Let us assume that this expression is mimicked
by (S0

2)axial
2 in an axial potential scenario. We calculatedS0

2

andS2
2 in terms of the potential of eq 4 withc0

2 ) 10 andc2
2

varied from 16 to 22. These potentials correspond to “nearly
planarYM-XM ordering”. Table 14 also showsc0

2
(axial), corre-

sponding to (S0
2)axial

2. It can be seen that forc2
2/c0

2 g 1.6 the
axial mimic (S0

2)axial
2 corresponds to very high potentials. This

agrees with the highS2(N-H) values obtained in ref 13 at the
higher temperatures for binase and ubiquitin.

Combined analysis of N-H and C′-CR bond dynamics can
be carried out when the peptide plane is assumed to be rigid.
The local ordering tensor (diagonal in the M frame) is then a
common property. Because the magnetic frames of15N-1H and
13C′-13CR differ, the local geometry (ΩMD) differs. However,
for high local ordering corresponding to model 1 (combination
1) S2 ((S0

2)2) represents the mean square fluctuation amplitude
of all the local motions.25 In this limiting case the angleâMD

does not enter the analysis any longer. For that, a rhombic M
frame is required (eq 20). Hence one cannot expect differential
sensitivity of the N-H and C′-CR bonds to the crankshaft
motion unless the local ordering is allowed to be rhombic in
the theoretical spectral density. As pointed out previously,26 this
ordering symmetry actually prevails at the N-H site. As shown
herein, it can be treated with the SRLS model.

Unlike S2(N-H), which is determined with combined fitting
of the relaxation quantities15N T1, T2 and 15N-{1H} NOE,
S2(C′-CR) is calculated directly from the expression for the
cross-correlated relaxation rate,Γ. This can be accomplished
by assuming that model 1 is valid, i.e., the spectral density is
given by the first term of eq 16. Withτm determined with N-H
bond dynamics analysis,S2(C′-CR) is the only unknown
parameter. The maximumΓ value for 11.7 T is-2.395 (-1.194)
for τm ) 13.44 ns (5.5 ns) whereas the corresponding experi-
mental value is-1.992 (-0.885). Hence limitations implied

by the experimental values exceeding maximum values implied
by axial potentials, as in the N-H case, do not exist in this
case. For rigid residues the13C′-13CR dipolar-13C′ CSA cross-
correlated relaxation rate depends to a large extent onJDD(0)
andJCC(0). Therefore, local motion effects are small, justifying
the use of model 1. BecauseâMD is approximately 0° for C′-
CR, (S0

2)axial
2 is approximately equal to (S0

2)2. For this reason
at the higher temperatures the relatively accurateS2(C′-CR) MF
value is smaller than the force-fittedS2(N-H) MF value.

The 3D Gaussian axial fluctuations (GAF) model40 accounts
quantitatively for the different geometric features at the N-H
and C′-CR sites. In this approach the MFS2 is expressed in
terms of harmonic fluctuations around the Ci-1

R -Ci
R axis (σγ

2)
and perpendicular to it (σRâ

2). The 3D GAF model was applied
to ubiquitin at 300 K.40 Molecular dynamics simulations showed
that σγ

2 > σRâ
2. MF fitting of the 15N relaxation data showed

the same trend with even larger absolute magnitudes ofσγ
2 and

σRâ
2. TheS2(N-H) values obtained with the usual MF analysis

were reproduced by theS2(N-H) values calculated with the
3D GAF model when (relatively small) contributions, which
are usually ignored in15N spin relaxation of15N,13C-labeled
proteins, were taken into account.S2(C′-CR) values calculated
with the 3D GAF model were found to behigher thanS2(N-
H) as N-H senses theσγ

2 fluctuations, which can be considered
to represent the crankshaft motion, whereas C′-CR senses the
σRâ

2 fluctuations.Thus,accounting for the asymmetry of the
local ordering with the 3D GAF model yields S2(N-H) <
S2(C′-CR), as expected.

Instead of harmonic fluctuationsσγ
2 and σRâ

2 (suitable for
“rigid” residues only) and a predetermined geometry, which is
implicit in the 3D GAF model, the SRLS approach allows for
a rhombic ordering tensor with principal valuesS0

2 andS2
2 (eq

11) defined in terms of a rhombic potential (eq 4). Furthermore,
the SRLS treatment is not limited to “rigid” residues, and the
orientation of the M frame is not fixed. The perpendicular (to
the Ci-1

R -Ci
R axis) orientations are not considered equivalent

and the magnitude of the local asymmetry is quantified through
c0

2 and c2
2, or S0

2 and S2
2. The local motion is treated as

diffusive, which is reasonable (although improved modeling can
be introduced to account for any inertial effects).23

Calculations using our fitting scheme for SRLS, which allows
for rhombic ordering, were carried out for the average values
of 15N T1, T2 and NOE acquired at 303 K and 11.7 T, and for
combined 11.7 and 18.8 T data of residue 16 of binase acquired
at 303 K. In the former case we fixed the ratioR|

L/R⊥
L at 1000

and the angleâMD at 90°, allowingc0
2, c2

2 andRC to vary. In the
latter case we allowedc0

2, c2
2, RC, R|

L/R⊥
L andâMD to vary. The

results are shown in Table 15.S2(C′-CR) ) 0.806 was derived
in ref 13 from the experimental cross-correlated relaxation rate,
Γ, measured at 11.7 T and 303 K, as outlined above. On the
basis of eq 11,S2(C′-CR) ) 0.806 corresponds toc0

2 ) 10.2.
The components of the Cartesian ordering tensor areSxx ) Syy

) -0.449,Szz ) 0.898. It can be seen that the magnitudes of

TABLE 14: Order Parameters S0
2 and S2

2, and (S0
2)axial

2 )
0.25 (S0

2)2 + 0.75 (S2
2)2, for c0

2 and c2
2 As Given in the Table

c0
2 c2

2 S0
2 S2

2 (S0
2)axial

2 c0
2
(axial) c2

2/c0
2

10 16 -0.305 1.034 0.825 11.3 1.6
10 18 -0.381 1.100 0.943 34.9 1.8
10 20 -0.412 1.130 0.971 >50 2.0
10 22 -0.432 1.147 1.005 very high 2.2

TABLE 15: Best-Fit Parameters for N-H Site Dynamics
Obtained with Rhombic Potentials for the Average
Experimental Data of Binase at 11.7 T, 303 K (Ref 21a) and
for the Combined 11.7 and 18.8 T Data of Binase Residue 16
at 303 K (Ref 21a) (τm ) 5.5 ns)

c0
2 c2

2 RC âMD, deg R|
L/R⊥

L Sxx Syy Szz

av 5.5 9.7 0.97 90_fixed 1000_fixed-0.470 0.761 -0.291
res 16 5.0 10.0 1.0 90.0 30.0 -0.65 0.75 -0.10

a Kindly provided by Prof. E. R. P. Zuiderweg of the University of
Michigan, Ann Arbor, MI.
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the local potentials at N-H and C′-CR sites are similar (c0
2

associated with13C′i-1-13Ci-1
R motion is comparable in magni-

tude with c2
2 associated with15Ni-1Hi motion). The local

geometry is different withâMD ) 90° for the N-H bond and
âMD ) 0° for the C′-CR bond. BecauseR|

L/R⊥
L andâMD were

fixed in the fitting of the average15N relaxation data (as only
3 data points are available), and rhombic potentials could not
be used to treat C′-CR bond dynamics (as only one data point
is available), we regard the data in Table 15 as interim results.
However, they can be used for illustrative purposes. If the
peptide plane is rigid, it is expected to determine the same tensor
components permuted fromZM ordering for C′-CR to YM

ordering for N-H. Thus,Szz ) 0.898 is to be compared with
Syy ) 0.761 (results for the average data). If (Syy)2 is considered
to represent the crankshaft fluctuations, then 0.58 for N-H is
to be compared with 0.20 for C′-CR. Clearly proper analysis
bears out the higher sensitivity of N-H bond dynamics as
compared to C′-CR bond dynamics to the crankshaft fluctua-
tions.

It is concluded that the effects of potential rhombicity, mixed
modes and the D-to-CSA tilt must be accounted for in the
theoretical spectral density to obtain physically insightful
information. This is outside the scope of the model-free approach
and can only be accomplished with the SRLS model. As shown
above, combined15N and13C spin relaxation analysis is expected
to be useful within the scope of SRLS analysis. As shown below,
binase is not a singular case but a representative case.

Figure 17 shows the experimental NOEs of oxidized fla-
vodoxin acquired at 11.7 T, 300 K.17 Similar to the case for
binase, most NOEs exceed the maximum NOE calculated for
axial potentials, depicted by the horizontal line.15N spin
relaxation data of oxidized flavodoxin data could not be fit with
the standard MF fitting scheme. Fitting became possible only
after reducing the experimental NOEs globally by 10%, render-
ing them smaller than the maximum NOE. Even then model 1
was used predominantly, theS2 values were very high, andτm

was 7.6 ns, which is about 2 ns shorter than expected for a
bare sphere with a molecular weight of nearly 20 kDa,
corresponding to oxidized flavodoxin. Clearly, the experimental
data were force-fitted, similar to the binase case. SRLS-based
fitting with axial potentials gave similar results, in support of
the assessment that rhombic potentials are to be used.

The enzyme ribonuclease H (RNase H) was studied with15N
spin relaxation at 285, 300 and 310 K, 11.7 T.12 The experi-

mental NOEs are shown in Figure 18. It can be seen that quite
a few NOEs exceed the maximum NOE values depicted by
horizontal lines. The average slope d(1- S)/dTdetermined with
MF analysis was 5.9× 10-4 K-1, to be compared to 8× 10-4

K-1 for binase, considered to be low. SRLS analysis, using the
equivalents of MF models 1-5 (ref 46) as implemented in our
2D grid-based fitting scheme for SRLS featuring axial poten-
tials,22 yielded 6.4× 10-4 K-1 for the â2 strand of RNase H.
Thus, the detrimental features of model 1 analysis with axial
potentials outlined for binase recur with RNase H.

15N relaxation data of RNase H were also acquired at 11.7,
14.1 and 18.8 T, 300 K (ref 57). The NOEs obtained for the
rigid part of the protein backbone are shown in Figure 19. NOEs
exceeding the maximum NOE are pervasive at 18.8 T, where
the local motion contributes significantly to the spectral density.
Hence valuable information will be lost with force-fitted MF
analysis.

A small value of d(1- S)/dT was also reported for ubiquitin.
The experimental NOEs acquired for ubiquitin by Lee and
Wand9 are shown in Figure 20. It can be seen that similar to
the cases for binase and RNase H, many NOEs exceed the
maximum NOE.

Figures 15-20, as well as the last column of Table 5, indicate
that in many cases MF fitting schemes select model 1 by force-
fitting, yielding inaccurateS2 values. When the main effect is
the omission of the D-to-CSA frame transformation, as for the
villin headpiece (Table 5), (S0

2)2 is underestimated byS2. When
the main effect is oversimplified symmetry of the local ordering,

Figure 17. Experimental NOEs of oxidized flavodoxin acquired at
11.7, 303 K (ref 17). The horizontal line shows the maximum NOE
for 7.6 ns, with the global motion correlation time determined on the
basis ofT1/T2 ratios.

Figure 18. Experimental NOEs of RNase acquired at 285, 300 and
310 K, 11.7 T.12 The horizontal lines show the maximum NOE for the
τm values shown, which were determined on the basis ofT1/T2 ratios.

Figure 19. Experimental NOEs of RNase H acquired at 11.7, 14.1
and 18.8 T, 300 K.59 The horizontal lines show the maximum NOE
for the τm ) 9.28 ns determined on the basis ofT1/T2 ratios.
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(S0
2)2 is overestimated byS2 (Table 14). Thus, theS2 profile

over the protein backbone may become qualitatively inaccurate.

5c. Limited Information on Main-Chain Conformational
Entropy from N-H Bond Dynamics. Similar to its low sensitiv-
ity to temperature variations,S2(N-H) was also found to exhibit
low sensitivity to ligand binding. The parametersS2(N-H) and
S2(C′-CR) of ligand-free and ligand-bound Ca2+-calmodulin
(CaM) were derived in ref 18. The experimental data were
acquired at 11.7 T, 308 K, and the MF analysis used predomi-
nantly model 1. Except for the central linker and several loops,
S2(N-H) changed very little whereasS2(C′-CR) changed
significantly upon ligand binding. As in the temperature-
dependent study, it was concluded that the N-H bond does
not sense (in this case ligand-binding-dependent) backbone
fluctuations sensed by the C′-CR bond. This is important for
conformational entropy derivation from MFS2 in the context
of complex formation.

Similar to the apparently low sensitivity ofS2(N-H) of
binase, RNase H and ubiquitin to temperature changes, the
apparently low sensitivity ofS2(N-H) to ligand binding to CaM
stems from force-fitting the experimental data with axial
potentials, instead of using physically sounder rhombic poten-
tials. Routine interpretation requires a very efficient SRLS fitting
scheme featuring rhombic potentials, which is currently being
developed. Therefore, we illustrate below the need for model
generality using our SRLS fitting scheme featuring axial
potentials. Table 16 features results obtained for the residues
30, 100 and 135 of CaM (associated with high experimental
NOEs) and for the central linker residues 77 and 80 (associated
with low experimental NOEs).τm ) 7.5 ns for the free form
and τm ) 8.3 ns for the bound form were used.35,60 SRLS
combinations 1 and 2, which correspond to MF models 1 and
2, did not yield acceptable results. SRLS combination 5, with
N fixed at the value of 1, gave the results shown in Table 16.
This combination differs from MF model 2 in allowing the
orientation of the ordering tensor,âMD, to vary (recall that (1.5
cos2 âMD - 0.5)2 is formally equivalent toSf

2 in MF analysis).
For all the residues examined the local potential and the local
ordering are high for both calmodulin forms, as found in ref
60, whereasâMD is small for the free form and on the order of
25° for the bound form. Thus, ligand binding changes the
orientationof the ordering tensor preserving themagnitudeof

its principal value. This could not be determined with the MF
approach because in models 1 and 2 the angleâMD is implicitly
zero.

As shown in Figure 11, MF analysis does not have the
capability to fit flexible N-H sites whereN ∼ 1 because it
does not know of the spectral density componentsj1(ω) and
j2(ω). The fact that the MF scheme converged to models 1 and
2 instead of model 5 is a consequence of force-fitting. With
SRLS analysis we found that residues 77 and 80 of the central
linker are associated with an averagec0

2 value of 8.5 (corre-
sponding to an average (S0

2)2 value of 0.77), whereas residues
30, 100 and 135 are associated withc0

2 ∼ 17.9 ((S02)2 ∼ 0.9).
Hence axial-potential-based SRLS fitting differentiates between
the central linker and the N- and C-domains of CaM. The results
will change when the potential will be allowed to be rhombic
andN will be allowed to vary. However, Table 16 illustrates
clearly the fact that sensitivity to ligand binding can be borne
out by properties of the ordering tensor other thanS2, which is
the only ordering-related parameter determined with MF models
1 and 2. The local ordering is characterized by a tensor, not
merely a parametrizing scalar quantity,S2.

5d. Calmodulin: Detection of an Incorrect Phenomenon.
Ca2+-ligated calmodulin is made of an N-terminal domain and
a C-terminal domain connected by a helical linker, which is
flexible in the middle. In the crystal CaM adopts an elongated
dumb-bell structure61 with the N- and C-terminal regions of the
helical linker parallel to one another (Figures 21 and 22).
Because the middle linker region is flexible the N- and
C-domains may adopt various relative orientations in solution.

Figure 20. Experimental NOEs of ubiquitin acquired at 11.7, 14.1
and 18.8 T, 298 K.9 The horizontal line shows the maximum NOEs
for 4.1 ns.

TABLE 16: Best-Fit Parameters Obtained by Subjecting the
Domain Residues 30, 100 and 135, Which Feature High
Experimental NOEs, and Residues 77 and 80 of the Central
Linker Region, Which Feature Low Experimental NOEs, to
SRLS Analysis Using Combination 5 ((S02)2, RC and
âMD Varied) with N ) R|

L/R⊥
L ) 1a

c0
2 (S0

2)2 RC âMD, deg ø2 b

30_f 19.3 0.897 0.05 0.01 4.9
30_b 18.3 0.892 0.06 20.0 5.0
100_f 16.4 0.879 0.07 2.6 0.016
100_b 15.7 0.874 0.05 22.5 25.2
135_f 21.4 0.907 0.01 0.03 0.3
135_b 16.4 0.879 0.06 22.2 13.1
77_f 8.6 0.771 0.06 8.0 0.0
77_b 8.4 0.765 0.03 24.8 7.9
80_f 8.7 0.773 0.06 0.0 18.2
80_b 8.2 0.760 0.03 28.0 21.6

a The symbols “f” and “b” denote the ligand-free and ligand-bound
forms, respectively.b Note that a threshold value ofø2 ) 25 was also
used by Vugmeyster et al.11

Figure 21. Ribbon diagram of Ca2+-ligated calmodulin reproduced
from ref 64. The coordinates of the crystal structure of Babu et al.61

(PDB accession number 3CLN) were used. The data depicted define
the global diffusion tensor as determined in ref 64. “N” and “C” denote
the N- and C-terminal domains of Ca2+-ligated calmodulin.
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The helical target peptide, essential for CaM recognition and
regulation, binds between the domains. Hence molecular shape,
linker flexibility, and domain mobility are related to function,
and deriving a reliable dynamic picture is important.

Several experimental and theoretical methods, including NMR
spin relaxation, have been used to study CaM flexibility. The
NMR-based dynamic picture changed as data were acquired at
an increasing number of magnetic fields and temperatures. The
first 15N spin relaxation study of Ca2+-saturated Drosophila CaM
data acquired at 11.7 T, 35°, was carried out in 1992.62 These
data were analyzed with the original MF formula. The assump-
tion that Ca2+-CaM is nearly spherical in solution (also found
in refs 18 and 60) was corroborated by comparing N-H
orientations in solution and in the crystal structure,61 and by
the nearly flat T1/T2 profile. Somewhat different isotropic
correlation times on the order of 6-8 ns were assigned to the
N- and C-domains. Except for the flexible residues 78-81 of
the central linker and two loops, the CaM backbone was found
to be quite rigid, withS2 ∼ 0.85 andτe < 100 ps.

At low magnetic fields the local motion makes a relatively
small contribution to the spectral density. If the spectral density
used to calculate the NMR variables is appropriate, the addition
of higher field data will merely increase accuracy and precision.
If it is not, then inconsistencies will arise because local motion
effects will be parametrized in different ways at different
magnetic fields. The Ca2+-free Xenopus CaM study of Tjandra
et al.63 identified such inconsistencies when 11.7 and 14.1 T
data were analyzed in concert. The inconsistencies detected
could be reconciled by using the reduced extended MF formula
(eq 19 withτf′ set equal to zero) instead of the original MF
formula (eq 16). WithSf

2 fixed at 0.85 and uniform parameters
within each domain, the fitting yieldedτm ) 12 ns,Ss

2 ∼ 0.7
andτs ∼ 3 ns. The parametersSs

2 andτs were interpreted within
the scope of wobble-in-a-cone motions of the two domains. The
vertex angle of the cones was approximately 30°, which is
incompatible with isotropicτm. Semiquantitative arguments in
support of an elongated solution structure withN ) R|

C/R⊥
C ∼

1.6 were invoked.
15N spin relaxation data of Ca2+-saturated Xenopus CaM were

acquired by Baber et al.64 at 8.5 (except for NOEs), 14.1 and
18.8 T, 308 K. The analysis was similar to that of Tjandra et
al.63 The larger data set available made possible determination
of the global diffusion tensor,RC, and removal of the restrictions
that τf ) 0 and Sf

2 ) 0.85. Chang et al.65 extended the

experimental data set of Baber et al.64 so that15N T1, T2 and
NOEs became available at 8.5, 14.1 and 18.8 T, at 294, 300,
308 and 316 K. These data were analyzed in concert assuming
that (1)Sf

2, τf andN ) R|
C/R⊥

C are the same for all the residues
within a given domain and are independent of temperature, and
(2) the temperature dependence ofτm(app) (with τm(app) )
1/6D(app), D(app) ) 1/3(2D⊥ + D|)) is controlled by the
Stokes-Einstein formula. A sudden decrease (increase) inSs

2

(τs) was observed when the temperature was increased from
308 to 316 K, interpreted as “melting” of residues 74-77 of
the central linker, considered important from a biological point
of view.

Because data acquired at several magnetic fields and several
temperatures are analyzed in concert, the analysis is particularly
prone to force-fitting. It will be shown below that qualitatively
erroneous results were obtained in the case of Ca2+-calmodulin.

5d-i. Global Diffusion.The axial global diffusion tensor,RC,
was determined together with the site-specific parameters using
the total time correlation function,C(t) (eq 14), withCL(t) given
by the extended MF formula, and using the coordinates of the
elongated dumb-bell shaped crystal structure.61 In most MF
studiesRC is determined separately on the basis ofCC(t). The
C(t)-based fitting of the combined multifield multitemperature
data yieldedΘ ) 68°, as shown in Figure 21, with the global
diffusion axis,C, along the symmetry axis of the molecule.
Accordingly, the principal axis of the inertia tensor,I, must be
tilted at 68° from C. This disagrees with the orientation of the
inertia tensor in the crystal structure, shown in Figure 22. Clearly
the latter orientation of the inertia tensor is correct, hence the
orientation of the global diffusion tensor is likely in error.

Figure 23 shows the experimentalT1/T2 data acquired at 8.5,
14.1 and 18.8 T, and 294 and 316 K and filtered according to
traditional criteria.64,65The width of the distribution divided by
the average error is 6 (4), 8.5 (9.0) and 13.0 (14.0) for 8.5,
14.1 and 18.8 T at 294 K (316 K). It is obvious that the
distribution in T1/T2 is significantly smaller at 8.5 T, in
agreement with the 11.7 T data of Barbato et al.62 and Wand
and co-workers.18,60Isotropic global diffusion analysis with the
program QUADRIC66 yielded theτm values depicted in Figure
23. The shape of the distribution inT1/T2 values is both field-
and temperature-dependent, although it has been assumed that
RC is temperature-independent except forτm(app), which does
not affect the shape of theT1/T2 distribution. It is very likely
that the structuredT1/T2 profiles at the higher fields represent
mixed-mode contributions and unaccounted for geometric

Figure 22. Ribbon diagram of the crystal structure of Babu et al.61

(PDB accession number 3CLN) and corresponding inertia frame, I. The
global diffusion frame, D, shown in Figure 21 is also depicted.

Figure 23. ExperimentalT1/T2 ratios at 8.5, 14.1 and 18.8 T, 294 and
316 K, from ref 65. The isotropic global diffusion correlation times,
τm, determined with the program QUADRIC,66 are also shown.
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effects. If this is not the case, then analyses based on single-
field data and the concerted analysis should yield the same
results. This test is carried out below.

Using the filteredT1/T2 data of Chang et al.65 we determined
the axial global diffusion tensorRC at each magnetic field and
temperature separately with the program QUADRIC.66 This
corresponds to usingCC(t) instead ofC(t). In Figure 24 we show
D(app)) 1/3(D| + 2D⊥) (RC(app) in our notation) as a function
of P2(cos(âCC′)) at 8.5, 14.1 and 18.8 T, and at the temperatures
of 294 and 316 K.

The spread of points about the theoretical straight lines
(obtained with linear regression) in Figure 24 is invariably large,
indicating that theory and data are incompatible. There are
relatively few points corresponding toâCC′ ) 0, in disagreement
with the purported solution structure (Figure 21). The largest
spread of points is obtained for 8.5 T, 316 K, althoughø2

assumes the smallest value (ø2 ) 2) in this case. This is certainly
not expected for models matching the data to which they are
applied, but it can occur when force-fitting sets in. All four
parameters defining the global diffusion tensor are field-
dependent. In all the cases except for 8.5 T, 316 K, the angle
Θ of the individual analyses is much closer to 0° (coincident
inertia and diffusion frames) than to the nonphysical angle of
68° yielded by the concerted multifield multitemperature MF
analysis. The contradictions between the raw data, the single-
field analysis and the concerted MF analysis are substantial.
For example, the rawT1/T2 profile at 8.5 T, 316 K is nearly
flat (Figure 23), whereas theRC tensor illustrated in Figure 24
is closest to the axial tensor yielded by the concerted analysis.
As shown in Figure 23, isotropicRC analysis also yielded
inconsistentτm values. Inaccuracies inCL(t) must have been
clearly absorbed byCC(t). Therefore, the local motion param-
eters must be highly inaccurate, as demonstrated below.

5d-ii. Local Motion. Figure 25 reproduces theSs
2 and τs

temperature-dependent profiles obtained by Chang et al.65 The
squared generalized order parameterSs

2 shows very limited
temperature dependence between 294 and 308 K and decreases
abruptly upon increasing the temperature to 316 K. The slow
local motion correlation time,τs, is temperature-independent
between 294 and 308 K andincreasesabruptly upon increasing
the temperature to 316 K. Within the scope of the cone model
used by Chang et al.65 the correlation time for slow local motion,
τs, depends analytically onSs

2 andDw. The respective expression
is used to show that the abrupt increase inτs is due to the abrupt

decrease inSs
2, whereasDw increases with temperature.

However, inspection of the absolute values ofDw shows that
1/6Dw is equal to 8.3 (6.8) ns for the N-domain (C-domain),
whereas the apparent global motion correlation time is 6.88 ns.
Thatτs is larger thanτm is not tenable physically, nor consistent
with the basic MF mode-independence assumption of time scale
separation between the global and local motions.

The discontinuities inSs
2 andτs between 308 and 316 K in

Figure 25 results from the force-fitting process veering into a
different region of the parameter space at 8.5 T and 316 K.
Inspection of the experimental data presented in Figures 26-
28 shows that theT2’s at 8.5 T, 316 K, are outliers. Figure 24
shows that the graph obtained for 8.5 T, 316 K is an outlier.
Inspection of Figures 5-8, where SRLS and MF analyses are
compared for corresponding parameter values near the BO limit,
shows that forτm ) 15 ns the corresponding NMR variables
are comparable in magnitude. On the other hand, forτm ) 5 ns
T2 obtained with the MF approach is significantly higher than
T2 obtained with the SRLS approach. This supports the assertion
that artificial results can be obtained by force-fitting large data
sets covering extensive parameter ranges. In the case under
consideration the experimental data acquired at low fields and
high temperatures do not accommodate the force-fitted param-
eters, which fit all the other data. Therefore, discontinuities in
Ss

2 andτs, which are merely technical in nature, ensue.
5d-iii. SRLS Analysis.The calmodulin data were analyzed

separately for each temperature and magnetic field using our
SRLS fitting scheme based on axial potentials. We assumed
that in view of large-amplitude domain motionRC is on average
isotropic, and used theτm(app) values of Chang et al.65 Isotropic
RC is consistent with the calmodulin studies of Barbato et al.62

and Wand and co-workers,18,60and with other15N spin relaxation
studies of proteins exhibiting large-amplitude domain mo-
tion.19,21As mentioned above, this SRLS fitting scheme assumes
implicitly that R|

L . R⊥
L, in analogy withτs . τf in the MF

approach. The SRLS fitting scheme selected primarily combina-
tion 5, which corresponds to MF model 5. The average (S0

2)2

(the formal analogue of MFSs
2) andτ⊥

L (the formal analogue
of MF τs) values for each magnetic field are shown as a function
of temperature in Figure 29.

It can be seen that SRLSτ⊥
L differs in magnitude from MFτs

(cf. Figure 25).τs shows the nonphysical temperature depen-

Figure 24. Analysis of the experimental data shown in Figure 23 with
the program QUADRIC66 assuming axial global diffusion (RC). The
resulting parameters, which define theRC tensor, are also shown.

Figure 25. Best-fit Ss
2 andτs values obtained with the extended MF

formula as outlined in ref 65 for the N-domain (open squares) and
C-domain (solid circles) for Ca2+-saturated Xenopus CaM. Additional
best-fit parameters areSf

2 ∼ 0.86, τf ∼ 15 ps and global diffusion
parametersD|/D⊥ ) 1.62,Θ ∼ 68°, Φ ∼ 94° for the N-domain and
146° for the C-domain. Theτm(app) values are 11.55, 9.87, 8.12 and
6.88 ns at 294, 300, 308 and 316 K.
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dence illustrated in Figure 25, whereasτ⊥
L shows physically

reasonable temperature dependence illustrated in Figure 29.
SRLS (S02)2 is approximately half of MFSs

2 and decreases
monotonically with increasing temperature. No sudden change
is observed between 308 and 316 K in either parameter. The
inconsistencies among (S0

2)2 andτ⊥
L values obtained at differ-

ent magnetic fields are expected to be eliminated in future work,
where rhombic potentials will be used.

5d-iV. Dynamic Picture According to MF Analysis.65 CaM
is an elongated dumb-bell shaped molecule. The N- and
C-terminal domains wobble within cones with vertex angles
increasing suddenly from 22.5° (27°) to 27° (37°) for the
N-domain (C-domain) when the temperature is increased from
308 to 316 K. This corresponds to a squared generalized order
parameter,Ss

2, decreasing from 0.77 (0.68) to 0.68 (0.53) for
the N-domain (C-domain). The average wobbling rate,Dw, is
1.7 × 107 (2.0 × 107) s-1 at 295 (316 K) for the N-domain,
which translates into correlation times, 1/6Dw, of 9.8 (8.3) ns.
The value ofDw is 2.0× 107 (2.45× 107) s-1 at 295 (316 K)
for the C-domain, which translates into correlation times of 8.3
(6.8 ns). The correlation time for global motion is 11.55 (6.88)
ns at 295 (316 K). Hence, at 316 K the correlation time for

local motion, 1/6Dw, is larger than the correlation time for global
motion,τm, for the N-domain, and equal toτm for the C-domain.
Motion about the N-H bond is on the order of 20 ps andSf

2 is
on the order of 0.85 throughout the temperature range investi-
gated.

The abrupt change in best-fit parameters values upon increas-
ing the temperature from 308 to 316 K is interpreted as
“melting” of residues 74-77. This process is purported to have
biological implications for target peptide binding by prolonging
the flexible part of the central linker by 50%. Note that the
experimental data of residues 74-77 (as well as many other
CaM residues) are not observed experimentally at 316 K
(Figures 26-28, residues demarcated by the dashed vertical
lines).

5d-V. Dynamic Picture According to the Current SRLS
Analysis.CaM is on average spherical in solution due to large-
amplitude nanosecond segmental motions of its N- and C-
terminal domains. This is physically plausible, consistent with
the T1/T2 profiles at 11.7 T that are determined predominantly
by the global motion, and the quantitative analysis by Barbato
at al.62 and Wand and co-workers.18,60Average spherical shapes
in solution were also determined with15N spin relaxation for

Figure 26. Longitudinal15N T1 relaxation times of Ca2+-calmodulin at 294 K (black), 300 K (red), 308 K (green) and 316 K (blue), and 8.5, 14.1
and 18.8 T.65 The vertical dashed lines depict the central linker (residues 74-78).

Figure 27. Transverse15N T2 relaxation times of Ca2+-calmodulin at 294 K (black), 300 K (red), 308 K (green) and 316 K (blue), and 8.5, 14.1
and 18.8 T.65 The vertical dashed lines depict the central linker (residues 74-78).
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AKeco19 and binase,21 which, being similar to CaM, feature
large-amplitude domain or loop motions in solution. Both
AKeco and binase have elongated shapes in the crystalline state,
similar to the crystal structure of CaM.

Domain motion is expected to occur on the same time scale
as the global motion, implying mode mixing. This is accounted
for by the SRLS analysis, which yieldsτ⊥

L on the order of 3-6
ns in the temperature range of 294-316 K. As expected,τ⊥

L

decreases monotonically with increasing temperature. (S0
2)2 is

on the order of 0.2-0.35 in this temperature range and decreases
monotonically with increasing temperature. No discontinuity is
exhibited by either theτ⊥

L or the (S02)2 temperature profiles.
The results shown in Figure 29 are interim results because

the analysis used oversimplified axial symmetry for the local
orienting potential/local ordering, and assumed implicitly that
R|

L/R⊥
L . 1. The implications of removing these restrictions are

illustrated and discussed in the next section.
6. Reliable Fitting; Mixed Mode Concept. In our current

fitting scheme the local and global diffusion tensors are allowed
to be axially symmetric, and the local ordering tensor (or local
coupling/mixing/orienting potential) is allowed to be rhombic.

The magnetic tensors have arbitrary symmetry and orientation.
Starting with the original MF limit, where the magnetic tensors
are collinear, their frame is the same as the local ordering frame,
and the global and local diffusion tensors are isotropic, one can
then systematically lower symmetries until the complexity of
the model matches the integrity of the data. In this case reliable
fitting, which extracts properly the dynamic information inherent
in the experimental data, can be accomplished. Table 17
illustrates the last part of such a process, where SRLS spectral
densities are upgraded to include more detailed features in a
stepwise fashion.

The example considered is residue 124 of RNase-H, which
pertains to the flexible loopRD/â5. The 15N relaxation data
acquired at 11.7 T, 300 K, were fit previously with MF model
5.12 The global motion correlation time of RNase H was
determined to beτm ) 9.28 ns at 300 K, and it has been
ascertained that the protein is spherical within a good ap-
proximation. We subjected the combined 11.7, 14.1 and 18.8,
300 K, data of this residue (kindly provided by Prof. A. G.
Palmer III of Columbia University), to SRLS analysis.

The first row of Table 17 shows the best-fit parameters
obtained with SRLS combination 5 (SRLS_5), which is formally
analogous with MF model 5. In this scenario the local ordering
is axially symmetric andN ) R|

L/R⊥
L . 1. The potential is

small (c0
2 ) 3.2), the corresponding squared order parameter is

small ((S0
2)2 ) 0.47), the D-to-M tilt is small (âMD ) 16.1°),

and there is only a modest time scale separation between the

Figure 28. Steady-state15N-{1H} NOEs of Ca2+-calmodulin at 294 K (black), 300 K (red), 308 K (green) and 316 K (blue), and 8.5, 14.1 and
18.8 T.65 The vertical dashed lines depict the central linker (residues 74-78).

Figure 29. Best-fit (S0
2)2 andτ⊥

L values obtained with SRLS combi-
nation 5 by averaging over the results obtained for the individual
residues usingτm values of 11.55, 9.87, 8.12 and 6.88 ns at 294, 300,
308 and 316 K.âMD was on average 15°. Experimental data from ref
65 were used.

TABLE 17: Best-Fit Parameters Obtained with the SRLS
Combination 5 (SRLS_5) and SRLS Combination 6
(SRLS_6) Using the Axial-Potential 2D Grid-Based Fitting
Schemea

RC c0
2 c2

2 Sxx Syy Szz

âMD,
deg N

SRLS_5 0.44 3.2 0.0-0.315 -0.315 0.63 16.1 1000 (fixed)
(ø2 ) 15.9)

SRLS_6 0.45 3.2 0.0-0.315 -0.315 0.63 16.3 916 (ø2 ) 15.8)
SRLS_rh 0.23 4.8 10.1-0.469 0.799-0.330 99.5 40.0 (ø2 ) 12.3)

a SRLS_rh represents the calculation carried out with the fitting
scheme allowing for rhombic potentials and arbitraryN ) R|

L/R⊥
L

values, with thejKK′(ω) functions calculated on the fly. The combined
15N relaxation data of residue 124 of RNase H acquired at 11.7, 14.1
and 18.8 T, 300 K, were used.τm ) 9.28 ns was used.RC is the same
as τ⊥

L/τm, andN ) R|
L/R⊥

L. Sxx, Syy and Szz are the components of the
Cartesian ordering tensor.
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global and perpendicular component,R⊥
L (i.e., RC ) 0.44 in

units of R⊥
L). Similar values were obtained previously for the

flexible residues of a large number of proteins and can be
considered typical. A modest time scale separation between the
global and local motion (RC) is expected. Quite unexpectedly,
the local potential is weak (c0

2 ) 3.2) for the tightly packed
globular proteins; i.e., the local ordering is low ((S0

2)2 ) 0.40).
Also, the diffusion tilt is on the order of 16° instead of being
on the order of 90°, corresponding to preferred ordering around
Ci-1

R -Ci
R or Ni-Ci

R. No improvement was achieved by allow-
ing N to vary (SRLS_6), indicating thatN . 1 is not the main
reason for these difficult-to-reconcile results. On the other hand,
significant improvement was achieved by allowing the potential
to be rhombic, in addition to allowingN to vary, as shown by
the last row of Table 17.

Let us compare the results obtained for axial (SRLS_6) and
rhombic (SRLS_rh) potentials. The value ofN ) 40 corresponds
to τ|

L ) 53 ps whereasN ) 916 corresponding toτ|
L ∼ 0. The

ordering is high in the rhombic case, as implied byc2
2 ) 10.1,

and low in the axial case. The ratioc2
2/c0

2 obtained with
SRLS_rh corresponds to “nearly planarYM-XM ordering”, as
expected. This is borne out clearly by the values of the
components of the Cartesian ordering tensor shown in Table
17. The diffusion tilt is âMD ∼ 90° in the rhombic case,
compatible with crankshaft fluctuations38 or peptide-plane
reorientation about the Ci-1

R -Ci
R axis or the Ni-Ci bond,

respresented byτ⊥
L, as well as small-amplitude N-H wobbling

motion and/or nitrogen pyramidalization,39 represented byτ|
L

(Figure 30). The rateR⊥
L ) 0.23× 9.28) 2.1 ns shows that, as

expected, loops move on the same time scale as the entire
molecule. Unlike the axial scenario the rhombic scenario is
consistent and physically appropriate.

Data fitting with rhombic potentials was also carried out for
residues 46 and 47 of adenylate kinase fromE. coli (AKeco),
which are representative of the mobile domain AMPbd of
AKeco. The results are shown in Table 18. The symmetry of
the rhombic potential is of the same type as found for residue
124 of RNase H, and the angleâMD is also close to 90°.
However,RC is on the order of 0.8 for the AKeco residues 46
and 47 as compared to 0.2 for residue 124 of RNase-H, andτ|

L

∼ 1.5 ns for the AKeco residues 45 and 47 as compared toτ|
L

) 75 ps for residue 124 of RNase-H. This indicates significantly
stronger dynamical coupling and smaller local diffusion ani-
sotropy for mobile domains (AKeco) than for flexible loops.

The SRLS version that allows for rhombic potentials and axial
local diffusion clearly yields a consistent physical picture. It

appears that this is as much as one can extract from15N
relaxation data in proteins. Note that nine data points, acquired
at three magnetic fields were successfully used in the RNase
calculations. The rhombic potential coefficient,c2

2, is the only
extra parameter in the SRLS analysis as compared with the
extended the MF analysis. On the other hand, for flexible
residues that are typically of biological interest, the SRLS model
features a single local motion whereas the MF approach features
two local motions (fast and slow), so the MF concept is actually
a more compounded one.

6a. Meaning of Mixed Modes.Let us consider a cylinder
diffusing freely in an isotropic medium. The diffusion rates are
R|

L and R⊥
L, with N ) R|

L/ R⊥
L determined by its shape. The

solution of the diffusion equation yields eigenvaluesτK
-1 )

6R⊥
L + K2(R|

L - R⊥
L), with K ) 0, 1, 2. Let us now consider the

same cylinder diffusing in the presence of a locally orienting
potential. This is a reasonable model for an N-H bond attached
physically to the protein, with the local potential representing
the restrictions imposed on its motion by the immediate protein
environment. The protein itself is reorienting at a slower rate
with respect to a fixed lab frame. When the local and global
motions do not occur on a greatly separated time scale, and the
local potential is neither very low nor very high, the potential
couples or mixes the motions of the N-H bond and the protein.
The local ordering can be expressed (as usually done for
restricted motions in liquids) in terms of an ordering tensor with
principal values defined in terms of the orienting potential.

This is the two-body problem solved by the SRLS model. A
Smoluchowski equation of the form of eq 1 is solved where
the SRLS diffusion operatorΓ̂ can be written in either of the
two equivalent forms given by eq 2 or eq 3. In eq 2 the
orientation of each body is referred to the lab (inertial) frame,
but with a potential coupling them, which depends on their
relative orientations. Simple products of basis functions of the
two rotators (N-H body and protein), corresponding to their
free diffusion (i.e., zero potential coupling them), are utilized
to provide a matrix representation ofΓ̂. This is a convenient
basis set when the potential is relatively small, i.e., weak
coupling. In eq 3 only the global motion of the protein is referred
to the lab frame, whereas the local motion of the N-H bond is
referred to the local director frame fixed in the protein. This
latter scenario thus describes the local motion in relative
coordinates. Then product basis functions for the overall motion
and the relative motion are used to provide the matrix
representation ofΓ̂. This is a more natural choice when the
coupling potential is large. Because these two approaches are
mathematically equivalent, one may use either choice. In our
past work we have utilized eq 2, whereas in the newer work
we have reported in this paper we utilized eq 3.

The eq 2 perspective on mixed modes means that as a
coupling potential is added, the new eigenmodes ofΓ̂ become
linear combinations of the product functions of the two free
rotors. This is a point of view where there are two sources of
“mixed-modes”: the first results from the coupling between the

Figure 30. Various local motion modes including the anti-correlated
Φi andΨi-1 crankshaft motion (upper left), peptide-plane motion about
Ci-1

R -Ci
R (upper right), nitrogen pyramidalization (lower left) and fast

small-amplitude fluctuations (lower right).

TABLE 18: Best-Fit Parameters Obtained with the SRLS
Combination 6 Featuring Rhombic Potentials Using
Adenylate Kinase Data Acquired at 14.1 and 18.8 T, 303
K19 a

res c0
2 c2

2 RC Sxx Syy Szz âMD, deg N

46 5.7 10.5 0.82 -0.465 0.827 -0.361 101.4 9.6
47 4.3 10.3 0.73 -0.470 0.761 -0.291 100.7 6.3

a τm ) 15.1 ns was used.RC ) τ⊥
L/τm. Sxx, Syy and Szz are the

components of the Cartesian ordering tensor.
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two rotors, so that the motion of the internal rotor becomes more
that of its motion relative to the protein. This is a feature that
exists even when there is time-scale separation, i.e.,RC/RL ,
1. The second arises whenRC/RL ∼ 1, so there is no longer a
significant time-scale separation. In that case the diffusive
reorientation of the internal rotor becomes a mixture of the
global and local motions. That is, an observer that detects just
the 15N label on a particular N-H bond can no longer
distinguish between a local and a global mode of motion. Thus,
these modes become mixed. In the case wherein eq 3 and its
convenient basis set are used, the intuitive picture changes
somewhat, but the final analysis must remain equivalent. In
simple mathematical terms this means that the eigenvalues of
Γ̂ are unchanged, but the eigenmodes are represented in (or
referred to) the different basis sets, and appear different, although
(again) they must be equivalent. Here, for very high ordering
and RC/RL , 1, the eigenmodes can be represented by the
overall motion and by the relative internal motion with
eigenvalues given (for axial potentials) by eq 18, and eigen-
functions given elsewhere (refs 29 and 48), yielding simple
limiting correlation functions. As the coupling potential is
reduced (butRC/RL , 1), the correlation functions for the
relative motion (i.e., for theDMK

2 (ΩCM)) become more com-
plex, involving several eigenmodes of this motion. Again, as
RC/R⊥

L f 1, there must be “mixed modes” of the two coupled
dynamic processes.

We illustrate some of these concepts with a relevant
computational study presented by Polimeno and Freed.23 This
was performed using the basis set appropriate for eq 2; i.e., the
global and internal rotors both referred to the lab frame. Table
19 shows the eigenvalues (in units ofRL) and corresponding
weights of the two isotropic rotors coupled by an axial potential
whose strength is given byc0

2. Values ofRC/RL of 1.0, 0.1 and
0.01 are considered, andc0

2 ranges from 0 to 4. Whenc0
2 ) 0,

the motions are uncoupled, so only the motion of the local rotor
relative to the lab frame is relevant. It corresponds to eigenvalue
6 (or more precisely 6RL) with weight 1.00, independent ofRC/
RL. For the case ofRC/RL ) 0.01 there is good time-scale
separation of the motions. Thus, asc0

2 is increased the global
motion retains the eigenvalue 0.06, but its relative weight in
the correlation functionC0(t) increases roughly according to
(S0

2)2. The local motion is represented by several eigenvalues
with the (typically two) major ones given in Table 19. The

results forRC/RL ) 0.1 are qualitatively similar. ForRC/RL )
1 the results are quite different. Asc0

2 is increased from 0, two
main mixed modes appear, one of which decreases from the
value of 6.00, while the other increases from this value, and
the former becomes relatively more important inC0(t). We can
intuitively suggest that the former represents a mixed mode,
wherein as the protein reorients in one sense (e.g., clockwise),
the internal rotor is attempting to reorient in the opposite (e.g.,
counterclockwise) sense; the latter mixed mode would cor-
respond to more additive reorientational diffusion (i.e., both are
in the same sense).

Finally, a comment on the tensorsRC andRL that constitute
input values in a given SRLS calculation, or best-fit parameters
in fitting actual experiments, is in order. These quantities may
represent more complex local and global rotators, and not just
the RC and RL tensors corresponding to simple rotators. One
can suggest tentative interpretations, as was done in a recently
published SRLS application to nitroxide-labeled T4 Lysozyme.37

In that paperR|
L was interpreted as motion around a specific

bond of the nitroxide tether, whereasR⊥
L was associated with

motion around the symmetry axis of the helix comprising the
nitroxide-labeled residue. For N-H bond motion we associated
at this stage of our studiesR⊥

L with motion around the Ci-1
R -Ci

R

axis and R|
L with motion around an axis perpendicular to

Ci-1
R -Ci

R within the peptide plane.
Table 20 illustrates the high sensitivity of the eigenvalues

and weights comprised in the time correlation functionsCKK′(t)
to the symmetry of the coupling potential. The parameters used
includeRC ) 0.001 andc0

2 ) 2, with c2
2 ) 0 for axial ordering

andc2
2 ) 3 for rhombic “nearly planarYM-XM ordering”. For

axial ordering onlyC0(t) is relevant. For theâMD ) 90°
geometry only the correlation functionsC0(t), C2(t) andC2-2(t)
) C-22(t) contribute to the measurable spectral density. The
dominant eigenvalues and their eigenmode composition depend
to a large extent on the symmetry of the coupling potential.
The individual Lorentzians in a given functionjKK′(ω), obtained
by Fourier transformation of the corresponding time correlation

TABLE 19: Dominant Eigenvalues and Respective Weights
(in Parentheses) in theC0(t) Correlation Function for Two
Isotropic Rotators, RC and RL ) 1, Mixed by an
Axial Potential of Strength 0 e c0

2 e 4, and Time Scale
Separation Given byRC ) 1.0, 0.1 and 0.01a

RC

c0
2 (S0

2)2 1.0 0.1 0.01

0 0 6.00 (1.00) 6.00 (1.00) 6.00 (1.00)
1 0.049 4.79 (0.60) 0.59 (0.06) 0.06 (0.05)

7.57 (0.39) 5.94 (0.65) 5.57 (0.32)
7.33 (0.15) 6.04 (0.27)

2 0.193 3.90 (0.71) 0.58 (0.23) 0.06(0.19)
10.0 (0.27) 6.55 (0.57) 6.04 (0.26)

8.10 (0.11) 6.68 (0.36)
3 0.366 3.41 (0.79) 0.56 (0.41) 0.06 (0.37)

13.43 (0.17) 7.95 (0.37) 7.20 (0.15)
9.47 (0.12) 8.02 (0.33)

4 0.506 3.19 (0.85) 0.55 (0.56) 0.06 (0.51)
10.06 (0.22) 10.0 (0.30)
11.54 (0.14)

a The (S0
2)2 values corresponding to thec0

2 values are also pre-
sented.

TABLE 20: Dominant Eigenvalues and Respective Weights
(in Parentheses) of theCKK′(t) Components That Contribute
to the Measurable Spectral Densitya

c2
2 S0

2 S2
2

eigenvalue
(weight) K K′

(d00
2 )2 or

2(dKK′
2 )2 b

0.0 0.439 0.0 6.58 (0.415) 0 0 1.0
0.006 (0.193)
5.95 (0.193)
8.52 (0.161)

3.0 0.088 0.572 5.40 (0.349) 0 0 0.25
4.44 (0.237)
4.36 (0.232)
8.31 (0.114)
0.006 (0.008)

4.36 (0.214) 2 2 0.75
1.85 (0.209)
5.70 (0.184)
0.006 (0.098)

4.36 (0.428) 2 -2 0.75
0.006 (0.163)

14.40 (0.125)
5.40 (0.120)
4.44 (0.08)

a For the axial case we utilizedRC ) 0.001,c0
2 ) 2, c2

2 ) 0 andâMD

) 0°, and for the rhombic case we utilizedRC ) 0.001,c0
2 ) 2, c0

2 )
3 andâMD ) 90°. The respective irreducible ordering tensor compo-
nents,S0

2 andS2
2, are also presented.b WhereK * 0 andK′ * 0.
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function, are multiplied by (d00
2 ) or 2(dKK′

2 ), whereK * 0 or
K′ * 0, to yield the measurable spectral density. ThedKK′

2

values are also presented in Table 20. The additional contribu-
tions, comprising a large number of eigenvalues with small
individual weights, are not shown. It can be seen clearly that
potentials of similar magnitudes but different symmetries are
associated with a different composition of dynamic modes.
Obviously potential symmetry is a very influential component,
to which the experimental data are highly sensitive.

As indicated, we have developed recently a fitting scheme
for SRLS where the spectral densitiesjK(ω) and jKK′(ω) are
calculated on the fly. This fitting scheme allows for rhombic
potentials, and arbitrary axiality of the local and global diffusion
tensors. Efforts to improve the computational efficiency of this
scheme are underway.

IV. Conclusions

Model-free is a very simplified approach for analyzing spin
relaxation data in proteins, such that the quality of the
experimental data and their variations (e.g., with magnetic field)
are frequently beyond its capabilities. Small data sets (three data
points at a given field in the case of N-H bond dynamics) can
usually be force-fitted with good statistics but inaccurate best-
fit parameters, which are obtained through parametrization of
the experimental spectral densities. When larger data sets
acquired at several magnetic fields, temperatures, states of
complex formation, etc., are subjected to MF analysis, or when
N-H and C′-CR bond dynamics are analyzed in concert, force-
fitting is so pervasive that functional dynamics may be missed,
qualitatively erroneous results may be derived, and incorrect
phenomena may be detected. Conformational entropy derived
from parametrizing entities is inaccurate. Entropy profiles over
the protein backbone may even be qualitatively inaccurate.

On the other hand, the experimental data can be analyzed
significantly more reliably with SRLS spectral densities, which
constitute generalized forms of the MF formulas. The main
aspects that greatly improve the analysis include axial local
motion, rhombic local ordering, rigorous account of mode-
coupling, and proper treatment of general features of local
geometry. The dynamic picture emerging, which differs sig-
nificantly from the MF picture, is physically insightful, con-
sistent and comprehensive. Conformational entropy can be
derived with SRLS in a straightforward manner from experi-
mentally determined local potentials of arbitrary symmetry.
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