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ABSTRACT: This paper is a continuation of the method introduced by Srivastava and Freed (2017) that is a new method
based on truncated singular value decomposition (TSVD) for obtaining physical results from experimental signals without any
need for Tikhonov regularization or other similar methods that require a regularization parameter. We show here how to
estimate the uncertainty in the SVD-generated solutions. The uncertainty in the solution may be obtained by finding the
minimum and maximum values over which the solution remains converged. These are obtained from the optimum range of
singular value contributions, where the width of this region depends on the solution point location (e.g., distance) and the
signal-to-noise ratio (SNR) of the signal. The uncertainty levels typically found are very small with substantial SNR of the
(denoised) signal, emphasizing the reliability of the method. With poorer SNR, the method is still satisfactory but with greater
uncertainty, as expected. Pulsed dipolar electron spin resonance spectroscopy experiments are used as an example, but this
TSVD approach is general and thus applicable to any similar experimental method wherein singular matrix inversion is needed
to obtain the physically relevant result. We show that the Srivastava−Freed TSVD method along with the estimate of
uncertainty can be effectively applied to pulsed dipolar electron spin resonance signals with SNR > 30, and even for a weak
signal (e.g., SNR ≈ 3) reliable results are obtained by this method, provided the signal is first denoised using wavelet transforms
(WavPDS).

1. INTRODUCTION

1.A. Background. In many physical systems, methods
based on singular value decomposition (SVD) are used to
process data to elicit desired results.1−8 However, uncertainty
determination in the resultant outcome has remained a
challenge and is needed to reliably interpret the results.
There have been some efforts to determine uncertainty such as
for pulsed dipolar electron spin resonance (ESR) experiments
using Tikhonov regularization or model fitting, but they
focused on the overall outcome9,10 of the effects of noise
present in experimental signals and on other factors such as the
background signal.10 However, the uncertainty generated due
to the SVD process has received little attention but is
considered here in the context of the SVD method introduced
by Srivastava and Freed (SF),7 which is a new and improved
method based on the truncated SVD (TSVD).11 The SF
method leads to accurate solutions for singular matrix
inversion by introducing a rigorous cutoff that is a function

of the output location. Herein, we show how to determine the
uncertainty in this SF-TSVD method both for high and low
SNR. This requires one to determine uncertainty at each
output location instead of calculating an overall uncertainty,
which is not appropriate. We illustrate this approach by
successfully applying it to experimental pulsed dipolar ESR
signals. Improvements in ESR instrument technology2,12−15

and developments in data-processing methods, such as wavelet
denoising,16,17 have enabled us to obtain ESR signals with very
high signal-to-noise ratio (SNR) as well as with excellent
fidelity.
We describe this method to quantify the uncertainty

resulting from the SVD-based reconstruction of physical
experiments such as ESR, wherein singular matrix inversion
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is required to obtain the physically relevant result, especially in
the presence of finite noise. Our previous work has shown that
the SVD solution at each output point (e.g., value of r) can be
optimized but after a different number of singular value
contributions (SVCs) before becoming unstable.7 We show in
this paper using the ESR data that this uncertainty in
optimization at each output point is not uniform and varies
among such points. Thus we determine the uncertainty at each
location of the output independently based on the SVCs. (In
our previous paper,7 we used the term “convergence”, but
“optimization” is a better word because in many cases there is
no simple convergence to a constant or asymptotic value but
rather to an “optimum region”.)
1.B. Pulsed Dipolar Spectroscopy. We demonstrate the

method using pulsed dipolar ESR spectroscopy (PDS) as an
example as in our previous study. PDS plays a key role in
determining the structure and dynamics of biological
systems.2,18−25 In PDS, paramagnetic tags26,27 called spin
labels (NO, Cu2+, among others) are attached at specific
locations; then, a dipolar signal is acquired from the interaction
between a pair of spin labels, from which the distance
distribution between them, P(r), may be obtained. A Fredholm
equation of the first kind can be used to represent the system
in the following way

S t r t P r r( ) ( , ) ( ) d
R

R

min

max∫ κ=
(1)

The dipolar signal S(t) is acquired from the experiment,
whereas the kernel κ(r,t) contains the dipolar interaction
between spin pairs and is generated from theory as a function
of time t and distance r. The distance distribution P(r) is
constructed using a mathematical inversion process involving
the dipolar signal S and a kernel matrix K. The mathematical
representation in matrix notation is as follows

KP S= (2)

The matrix dimensions of K, P, and S areM × N, N × 1, andM
× 1, respectively, where N ≤ M. One wishes to obtain the
distance distribution P given K and S. Because K is a singular
matrix, mathematical inversion (P = K−1S) cannot be obtained
simply.

2. PREVIOUS METHODS
2.A. Tikhonov Regularization, Its SVD Form, and Its

Uncertainty with Respect to Regularization Parameter
(λ). Tikhonov regularization (TIKR) has been traditionally
used to obtain the distance distribution P when noise is present
in the signal. It minimizes the following function8,28

P KP S LPmin( )TIKR
2 2 2ϕ λ[ ] ≡ − + (3)

where λ is the regularization parameter and L is a differential
operator. The solution Pλ can be obtained as

P K K K S( )T T2 1λ= +λ
−

(4)

Equation 4 can be reduced to SVD form in the following way

P I V U S( ) T2 2 1λ= Σ + Σλ
−

(5)

where the K matrix is decomposed in the SVD form as

K U VT= Σ (6)

where U and V are orthogonal matrices with dimensions M ×
M and N × N, respectively, and Σ is an M × N diagonal matrix
consisting of non-negative singular values in decreasing order.
Using eq 5, the solution Pλ can be rewritten as a modified

sum i over SVCs as

P f V U S( )
j

N

i l

M

i ji ii il
T

l
1 1 1

1
i

∑ ∑ ∑= Σλ

σ λ

= =

>

=

−

(7)

where j, i, and l are row and column indices. For physical
interpretation, j is the index that represents the discretized
distance, l represents the discretized time, and i is the index
representing the particular singular value. The diagonal matrix
Σ−1 contains the reciprocal of the singular values, that is, the

( )1

iσ
, and f i is a filter function,28 defined as fi

i

i

2

2 2≡ σ
σ λ+

, that

suppresses the SVCs from small singular values for which σi
2 ≪

λ2. The choice of λ is crucial; a common approach is to obtain
it by the L-curve method,29,30 but other methods such as
generalized cross validation and the Akaike information
criterion to select the regularization parameter can also be
used.31

Tikhonov regularization is applied to yield a P(r) that is a
compromise between good resolution and stability of the
solution. It is dependent on the choice of λ to yield a
satisfactory P(r). More importantly, the uncertainty in distance
distribution caused by selection of the λ value is not known. In
Figure 1, it is shown that selection of different λ values results
in different degrees of resolution in P(r), which now contain
spurious peaks, even for this noise-free model dipolar signal
with a simple unimodal distribution. As can be seen, there is
considerable uncertainty in the width of the distribution with
different selection of λ values. The optimal choice of λ
becomes more challenging when finite noise is present.

Figure 1. Comparison of distance distributions of a model signal (A)
using Tikhonov regularization with different λ values. The model P(r)
is a Gaussian distribution centered at 5 nm with standard deviation of
0.3 nm (B). The maximum entropy method (MEM)28 was used to
constrain P(r) ≥ 0, suppressing the regions of P(r) < 0 in the original
Tikhonov result. Reprinted with permission from ref 17. Copyright
2017 ACS.
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2.B. Theorem for Obtaining Exact Solution Using
SVD. For a system of linear equations KP = S, where K is an M
× N matrix (N ≤ M) with a rank k (k < M), P is a vector with
length N, and S is a vector with length M, there exists an exact
solution using SVD if and only if S is orthogonal to the M−k

left-singular vectors of K.32 To illustrate, in SVD form, KP = S
using eq 6 can be written as

U V P STΣ = (8)

To solve for P, eq 8 can be rewritten as

Figure 2. Model data: Exact solution using the SVD method: P(r) versus number of singular value contributions (SVCs). Unimodal distance
distribution: (A1) Noise-free dipolar signal. Comparison of model distribution with P(r) generated from (B1) fewer SVCs k = 3, σk = 8.04, (C1)

exact solution obtained for k = 83, σk = 4.8 × 10−6, (D1) more SVCs k = 85, σk = 10−9, and (E1) Picard plot of ( )U Slog ( )i l
M

ii il
T

l10 1
1 2

∑ ∑ Σ=
−

versus the number of singular values from k = 1 to 200 starting from largest value. It shows the contributions of singular values that lead to stable
and unstable distributions. Bimodal distance distribution: (A2) Noise-free dipolar signal. Comparison of model distribution with P(r) generated
from (B2) fewer SVCs k = 3, σk = 8.04, (C2) exact solution obtained for k = 82, σk = 5.1 × 10, (D2) more SVCs k = 84, σk = 10−7, and (E2) Picard

plot of ( )U Slog ( )i l
M

ii il
T

l10 1
1 2

∑ ∑ Σ=
− versus the number of singular values from k = 1 to 200 starting from largest value. It shows the contributions

of singular values that lead to stable and unstable distributions.7 Reprinted with permission from ref 7.
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P V U ST1= Σ− (9)

or

P V U S( )
j

N

i

N

l

M

ji ii il
T

l
1 1 1

1∑ ∑ ∑= Σ
= = =

−

(10)

which can be written as

P V U S V U S( ) ( )
j

N

i

k

l

M

ji ii il
T

l
j

N

i k

N

l

M

ji ii il
T

l
1 1 1

1

1 1 1

1∑ ∑ ∑ ∑ ∑ ∑= Σ + Σ
= = =

−

= = + =

−

(11)

where those for k < i ≤ N are the zeros.
T h e t h e o r e m s t a t e s 3 2 t h a t i f

U S i k M0, 1,l
M

il
T

l1∑ = ∀ ∈ [ + ]= , then the linear system has
an exact solution for P and can be obtained as

P V U S( )
j

N

i

k

l

M

ji ii il
T

l
1 1 1

1∑ ∑ ∑= Σ
= = =

−

(12)

A more detailed description is given in ref 32. One can
compare this to eq 7, wherein f i may now be considered as
equal to unity for i ≤ k and equal to zero for i > k. Equation 12
represents the truncated SVD in which a single singular value
cutoff is used to obtain P(r). The truncated SVD approach is
well suited when the kernel matrix K has a well-determined
numerical rank,11 and the singular value cutoff k can be
selected such that it is equal to the rank of the kernel matrix, as
demonstrated by Hansen.11 For ill-determined numerical rank
of K, one can obtain a desirable P(r) if the Picard condition8,33

is satisfied11 such that U Sil
T

l decays sufficiently faster than
(Σ−1)ii and has a clear divergence point. The Picard condition
is given as

U SPicard ( )
i

q

l

M

ii il
T

l
1 1

1
2

∑ ∑[ ] ≡ Σ < ∞
= =

−
i

k
jjjjjj

y

{
zzzzzz (13)

for which adding the q + 1 contribution to eq 13 leads to a
divergence.

Figure 2 shows that the exact solution for unimodal and
bimodal P(r) can be obtained (cf. Figure 2C1,C2) for the
noise-free model dipolar signal, for which the condition

U S i k M0, 1,l
M

il
T

l1∑ = ∀ ∈ [ + ]= is satisfied (cf. Figure 3),
which also implies that the kernel K has a well-determined
rank. An exact singular value cutoff can be conveniently
determined by using the Picard condition that informs about
the precise location of divergence of the solution.
The Picard plots provide the singular value cutoff points (q

of 83 and 82, respectively, for the unimodal and bimodal
distribution in agreement with the results in Figure 2C1,C2)
after which the solution P(r) diverges, which can be seen in
Figure 2E1,E2 (red line). That is, the cutoff values of q in eq
13 exactly reproduce the correct k values for eq 12. So we will
replace q by k in the following. The Picard plots are best
obtained using the formula U Slog ( ( ) )i ii il

T
l10

1 2∑ | Σ |− , which is
the log of eq 13 to reduce the divergence that occurs.
Figure 2 also shows that premature (cf. Figure 2B1,B2) and

delayed selection (cf. Figure 2D1,D2) of a singular value cutoff
leads to undesirable results. The singular value cutoff at σk =
3.63 yields a poorly resolved P(r), whereas the singular cutoff
at and above σk = 10−7 yields an unstable solution.
However, in the presence of noise in the signal, the theorem

is, in general, not applicable because the condition

U S i k M0, 1,l
M

il
T

l1∑ = ∀ ∈ [ + ]= is not satisfied (cf. Figure
3). Hence, the single singular value cutoff (or truncated SVD)
will not yield the exact solution but will yield a solution in a
least-squares sense,32 although it is still favorable compared
with the Tikhonov regularization because it will be less
sensitive to noise than the Tikhonov regularization.11 Figure 4
and Figure S1 show that there is no longer a clear singular
value cutoff k for the distance distribution at which one can get
the desired solution, even at an SNR ≈ 850. The Picard plots
(Figure 4B and Figure S1B) reflect this, as there is not an
abrupt divergence for the solution. They also show that the
optimal choice for k is ca. 40−67 for Figure 4 and ca. 40−69
for Figure S1, but this range shows both positive and negative
distortions in P(r).

Figure 3.Model data: Orthogonality validation for the noiseless data and data with some noise (SNR ≈ 850). Unimodal distance distribution: (A1)
noiseless data, (B1) data with some noise, and (C1) comparison of results of U Sl

M
il

T
l1∑ = at the ith column vector for noiseless data and data with

some noise. Bimodal distance distribution: (A2) noiseless data, (B2) data with some noise, and (C2) comparison of results of U Sl
M

il
T

l1∑ = at the ith
column vector for noiseless data and data with some noise. Signal in red is noise added to the noise-free data (blue) to obtain data with some noise
(black). The orthogonality requirement shown in panel C is clearly met for the noiseless data but not for data with some noise. Reprinted with
permission from ref 7.
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2.C. Distance Distribution Reconstruction in PDS
Using New SVD Approach.7 It was shown in our previous

paper7 that the imperfections of the SVD solution in the

presence of noise can be remedied by requiring individual

singular value cutoffs for each distance or distance range, as

shown in Figure 5 and Figure S2 (for bimodal and unimodal

cases, respectively). One sees in these Figures that the correct

solution to P(r) is obtained without any of the spurious peaks

and negative excursions exhibited in Figure 4 and Figure S1,
where a single cutoff k independent of r was used.
For this method,7 we rewrite eq 12 as

P V U S SVC( ) ( )j
i

k

l

M

ji ii il
T

l
i

k

j i
1 1

1

1

j j

∑ ∑ ∑= Σ ≡
= =

−

= (14)

where kj is the number of nonzero singular values associated
with jth index of distance. We refer to each term in the sum

Figure 4. Model data with some noise (SNR ≈ 850): Bimodal distance distribution. (A) Noisy model data dipolar signal. (B) Picard plot of the
bimodal distribution from the noisy model data at different number of singular value contributions (SVCs) represented by i, the enlarged inset
covers SVCs from 55 to 90. (C−J) Comparison of model distribution with the distance distribution generated from (C) k = 3, σk = 8.04, (D) k = 5,
σk = 3.63, (E) k = 8, σk = 2.04, (F) k = 40, σk = 0.33, (G) k = 67, σk = 0.01, (H) k = 69, σk = 3 × 10−3, (I) k = 71, σk = 1 × 10−3, and (J) k = 82, σk =
10−5. Reprinted with permission from ref 7.
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over i of eq 14 given by ( )V U S( )ii ji i
M

il
T

l
1

1Σ ∑−
= as the singular

value contribution (SVCj)i to Pj associated with singular value
σi.
The solution of Pj should be obtained for each distance value

j, as given in eq 14. This is because for signals with noise each
Pj is, in general, optimized at a different singular value cutoff kj
before becoming unstable. One can select a single singular
value cutoff kj, but there still could be a range of optimum
cutoffs before the result becomes unstable, as we discuss below.
(Note that the sum over i is taken over decreasing singular
values, σi).
The use of f i in Tikhonov regularization provides a “softer”

suppression than the sharp suppression in the new SVD
method, where the i = kjth SVC is kept and all SVC’s for i > kj
are set to zero. Tikhonov regularization has not been
implemented with r dependence; it solves a least-squares
problem using a single λ.

3. UNCERTAINTY DETERMINATION

The uncertainty estimate using the SF-TSVD method is
determined by identifying the optimum region, which exists
from just after convergence to just before divergence of P(rj)

with respect to SVCs. Prior to convergence, solution P(rj) is
not stable, and after divergence, the solution P(rj) is certainly
not, as can be seen from the Picard plots as well as the P(rj)
values themselves. The variation in P(rj) in the optimum
region is taken as the uncertainty in the solution.
This uncertainty of the distribution for each distance (or

distance range) is determined using the following three steps.
The example used to demonstrate these steps is an
experimental unimodal distribution obtained from a T4
Lysozyme sample (cf. Section 4.A, case 1, for more details)

3.A. Determination of Singular Value Cutoff.7 The
singular value cutoff is determined for each distance labeled by
the index j after which the distribution value becomes unstable.
This is accomplished using a modified Picard condition, in
which eq 13 is now written as

V U SPicard log ( )j
i

k

l

M

ji ii il
T

l10
1 1

1

2
j

∑ ∑[ ] = Σ < ∞
= =

−
i

k

jjjjjjjjj

i

k

jjjjjjj
y

{

zzzzzzz

y

{

zzzzzzzzz (15)

where 1 ≤ kj < M. (Note that eq 15 is the form used in ref 7,
but this equation does not explicitly appear there.) Compared
with eq 13, this modified Picard condition informs about the

Figure 5. Bimodal model: Reconstruction of distance distribution for noise-free model data and noisy model data (SNR ≈ 850) using the new SVD
method. (A) Model dipolar signal. (B) Model dipolar signal with added noise (see added noise in red plot). (C) Singular value cutoff at each
distance (nm) for the model dipolar signal. (D) Singular value cutoff at each distance range (nm) for the model dipolar signal with added noise.
(E) Distance distribution reconstructed from the model dipolar signal and model dipolar signal with noise using the singular value cutoffs shown in
panels C and D, respectively. Note that the added noise is so small that panels A and B still appear identical, but convergence to the virtually
identical final results requires the segmentation shown in panel D in the latter case. Reprinted with permission from ref 7.
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convergence of the solution for each j by incorporating Vji.
Furthermore, the square after the summation better dramatizes
the point of divergence. In eq 15, the numerator (VjiUil

TSl)
should decay sufficiently faster than the denominator
( ii

1 1
i

Σ = σ
− ) for the solution to remain converged. The kj is

taken as the last singular value σkj, after which the solution
diverges for that j. Figure 6C,D shows modified Picard plots at
2 and 4.3 nm for the unimodal distribution (Figure 6B).
3.B. Identification of Minimum and Maximum SVCs

in the Optimum Range. The SVCs in the sum over i in eq
14, at which the distribution is converged and remains so, need
to be determined. The maximum value of i in the converged

region or Maxj can be found with the help of the modified
Picard plot to determine the kj given that the following SVCs
diverge. The selection of the minimum Minj is aided by
plotting the P(r) values as a function of the added SVCs. It is
at the onset of the region where the solution remains stable (or
converged), (i.e., flat and nearly constant, which we refer to as
the optimum region). Minj is may be identified visually from
the plot of P(r), cf. Figure 6E,F. That is, it is the starting
singular value where this “flat” region begins. An objective
approach for locating Minj is to measure the cumulative
difference between the minimum and maximum values of Pj as
a function of SVCs removed, starting from the Maxj value and

Figure 6. Stepwise process of obtaining uncertainty in the distance distribution from the dipolar signal. (A) Denoised experimental dipolar signal
using WavPDS (cf. Figure 7 for noisy data). (B) Distance distribution reconstructed using the SVD method.7 (C) Modified Picard plot for the 2
nm distance, revealing that the solution for this distance never diverges. Hence, the last data point is selected as SVC cutoff. (D) Modified Picard
plot for the 4.3 nm distance, revealing the singular value cutoff before which solution at this distance diverges. (E) P(r) values obtained at the 2 nm
distance by different SVCs until the SVC cutoff; if it never diverges as in this case then the last SVC is selected as cutoff. (F) P(r) values obtained at
the 4.3 nm distance by different SVCs until the SVC cutoff. (G) Distance distribution with uncertainty in distribution shown in red.
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moving in the direction of decreasing numbers of SVCs in the
optimum region. The difference between the minimum and
maximum value in the optimum region will stabilize, but just
after Minj is reached this difference starts to increase
significantly with every additional SVC removed (e.g., 50%).
A series of five consecutive significant changes each by at least
50% allows the identification of Minj, which will be the SVC
value just before these consecutive changes occur. Figure 6E,F
show the values at 2 and 4.3 nm for the unimodal distribution,
revealing the converged ranges, which are contained in the
rectangular boxes corresponding to the “optimum regions”. We
discuss this further in Section 4.B.
3.C. Minimum and Maximum Value of the Distance

in the Min−Max SVC Range. One examines the values of Pj
within the optimum range, that is, those with index i lying
between Minj and Maxj, and selects the minimum Pj value
(Pj

Min) and the maximum Pj value (Pj
Max) within this optimum

region. The uncertainty ranges within the Pj
Min and Pj

Max values.

4. RESULTS AND DISCUSSION

4.A. Experimental Data. Three sets of experimental data
are used to illustrate the uncertainty analysis. Case 1 (cf. Figure
7) consists of a unimodal distribution from T4 lysozyme
(T4L), where the 63 μM protein sample is of spin-labeled T4L
mutant 44C/135C. The signal was averaged for 952 min to
obtain an SNR of 37. In case 2 (cf. Figure 8), a bimodal
distribution was used that is also generated from T4L, where
the sample is a mixture of mutants spin-labeled at 8C/44C and
44C/135C with concentrations of 44 and 47 μM, respectively.
The dipolar signal was acquired after signal averaging for 360
min to obtain an SNR of 80. The data from the samples are the
same as those used in both the WavPDS method paper17 and
the SVD paper.7 Case 3 (cf. Figure 9) is also from a sample
with a bimodal distribution but at a submicromolar
concentration. The sample is a spin-labeled Immunoglobulin
E (IgE) cross-linked with trivalent DNA−DNP ligand in
phosphate-buffered saline (PBS) buffer.7,34 The dipolar signal
was obtained after 18 h of signal averaging, resulting in an SNR
of only 3.8. The WavPDS method was then applied to remove

Figure 7. Case 1: SVD reconstruction with uncertainty analysis of the noisy and denoised dipolar signal for unimodal distribution. (A1) Noisy data.
(B1) Distance distribution from noisy data with uncertainty (in red). (C1) Modified Picard plot for the 2 nm distance, revealing that the solution
for this distance never diverges. Hence, the last data point is selected as SVC cutoff. (D1) Modified Picard plot for the 4.3 nm distance, revealing
the singular value cutoff before which solution at this distance diverges. (E1) P(r) values obtained at the 2 nm distance by different SVCs until the
SVC cutoff; if it never diverges, as in this case, then the last SVC is selected as cutoff. (F1) P(r) values obtained at the 4.3 nm distance by different
SVCs until the SVC cutoff. (A2) Denoised data using WavPDS. (B2) Distance distribution from denoised data with uncertainty (in red). (C2)
Modified Picard plot for the 2 nm distance, revealing that the solution for this distance never diverges. Hence, the last data point is selected as SVC
cutoff. (D2) Modified Picard plot for the 4.3 nm distance, revealing the singular value cutoff before which solution at this distance diverges. (E2)
P(r) values obtained at the 2 nm distance by different SVCs until the SVC cutoff; if it never diverges, as in this case, then the last SVC is selected as
cutoff. (F2) P(r) values obtained at the 4.3 nm distance by different SVCs until the SVC cutoff.
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the noise from the dipolar signals in all three cases (cf. Figures
7A2, 8A2, and 9B2).
In cases 1 and 2, WavPDS was applied after baseline

subtraction, whereas in case 3, the denoising was applied
before baseline subtraction in the log-domain (cf. Figure 9A).
The denoising greatly helped us to obtain an accurate baseline
in case 3, as it was not really possible from the noisy data with
SNR of 3.8. The baseline to subtract obtained from the
denoised data was then used for both the noisy and denoised
data in this illustration.
4.B. Distance Reconstruction and Uncertainty Anal-

ysis. In Figure 6, the stepwise process of estimating the
uncertainty in a distribution is illustrated. The distance
distribution P(r) is reconstructed (cf. Figure 6B) from the
SVD method based on eq 14. At each distance, the modified
Picard plot (eq 15) is used to obtain the SVC cutoff (cf. Figure
6C,D), and then the actual distribution values versus added
SVCs are plotted (cf. Figure 6E,F) to confirm the optimum
regions because the Picard plot is in the log-domain and can
conceal part of this region. The modified Picard plot in Figure

6C shows that at 2 nm (j = 19) the converged solution remains
optimal until the last SVC (i.e., 155), whereas the modified
Picard plot at 4.3 nm (j = 59, cf. Figure 6D) diverges at the
57th SVC. The modified Picard plot at 2 nm, where P(r) = 0,
is a special case for which the solution at that location does not
diverge. Usually, the singular values that should be ideally 0 but
are close to 0 because of computer numerical round-off error
cause the solution to diverge. But in this special case, the
numerator (VjiUil

TSl) in eq 15 is itself virtually 0, preventing
the divergence from the very small singular value in the
denominator. The optimum regions can be seen in Figure
6E,F, where the distribution values are plotted for 2 (between
80 and 155 SVCs) and 4.3 nm (between 13 and 56 SVCs),
where values of the distribution hardly change.
The minimum and maximum values of P(r) in the optimum

region are taken as the uncertainty in P(r). This process is
repeated for each distance. Figure 6G shows the distance
distribution P(r) (cf. Figure 6B) along with its uncertainty (in
red) for each distance. It can be seen that there is very little
uncertainty in the distribution.

Figure 8. Case 2: SVD reconstruction with uncertainty analysis of the noisy and denoised dipolar signal for bimodal distribution. (A1) Noisy data.
(B1) Distance distribution from noisy data with uncertainty (in red). (C1) Modified Picard plot for the 3.2 nm distance, revealing the singular
value cutoff before which solution at this distance diverges. (D1) Modified Picard plot for the 4.3 nm distance, revealing the singular value cutoff
before which solution at this distance diverges. (E1) P(r) values obtained at the 3.2 nm distance by different SVCs until the SVC cutoff; if it never
diverges, as in this case, then the last SVC is selected as cutoff. (F1) P(r) values obtained at the 4.3 nm distance by different SVCs until the SVC
cutoff. (A2) Denoised data using WavPDS. (B2) Distance distribution from denoised data with uncertainty (in red). (C2) Modified Picard plot for
the 2 nm distance, revealing that the solution for this distance never diverges. Hence, the last data point is selected as SVC cutoff. (D2) Modified
Picard plot for the 4.3 nm distance, revealing the singular value cutoff before which solution at this distance diverges. (E2) P(r) values obtained at
the 2 nm distance by different SVCs until the SVC cutoff; if it never diverges, as in this case, then the last SVC is selected as cutoff. (F2) P(r) values
obtained at the 4.3 nm distance by different SVCs until the SVC cutoff.
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This procedure to find the uncertainty in P(rj) for each value
of j is somewhat different from the SVD method
recommended in Paper I7 to obtain the P(r) by dividing r
into just three or four ranges and using a common SVC cutoff
within each of these ranges.7 These ranges can be selected so
that within a given range of r a common acceptable cutoff
exists, providing good optimization, but the extent of optimum
cutoff does vary for each rj within a given range, thereby
necessitating the more detailed analysis to provide the
uncertainty versus r.
In experimental cases 1 and 2 (cf. Figures 7 and 8,

respectively), the uncertainty in the distance distribution shows

that the SVD solution can be obtained with high confidence
for both unimodal and bimodal experimental cases. The SVD
solutions for noisy and denoised signal are similar; however,
the uncertainty from the noisy data cf. (Figures 7B1 and 8B1)
is greater than that for the denoised data (cf. Figures 7B2 and
8B2), as expected. Whereas high SNR is usually needed to
obtain good results (which can be accomplished through
denoising17), even for SNRs of 38 and 80 (cf. Figures 7A1 and
8A1), one can obtain a reasonable distribution using the SVD
approach. Further details of the determination of the
uncertainty range for cases 1 and 2 are shown in Figures 7
and 8 (cf. panels C1, D1, E1, F1, C2, D2, E2, F2).

Figure 9. Case 3: SVD reconstruction with uncertainty analysis of the noisy and denoised dipolar signal at submicromolar concentration. (A) Noisy
(red) and denoised (black) data with baseline. (B1) Noisy data. (C1) Distance distribution from noisy data with uncertainty (in red). (D1)
Modified Picard plot for the 3 nm distance, revealing that the solution for this distance never diverges. Hence, the last data point is selected as SVC
cutoff. (E1) Modified Picard plot for the 3.7 nm distance, revealing the singular value cutoff before which solution at this distance diverges. (F1)
P(r) values obtained at the 3 nm distance by different SVCs until the SVC cutoff; if it never diverges, as in this case, then the last SVC is selected as
cutoff. (G1) P(r) values obtained at the 3.7 nm distance by different SVCs until the SVC cutoff. (B2) Denoised data using WavPDS. (C2) Distance
distribution from denoised data with uncertainty (in red). (D2) Modified Picard plot for the 3 nm distance, revealing that the solution for this
distance never diverges. Hence, the last data point is selected as SVC cutoff. (E2) Modified Picard plot for the 3.7 nm distance, revealing the
singular value cutoff before which solution at this distance diverges. (F2) P(r) values obtained at the 3 nm distance by different SVCs until the SVC
cutoff; if it never diverges, as in this case, then the last SVC is selected as cutoff. (G2) P(r) values obtained at the 3.7 nm distance by different SVCs
until the SVC cutoff.
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In cases 1 and 2, the baseline subtraction was carried out on
the original noisy data before applying denoising; this can
negatively affect P(r) at longer distances. The uncertainty
around 6 nm in Figures 7B1 and 8B1 is likely because of
limited accuracy in baseline selection for the noisy data.
In case 3, the dipolar signal in Figure 9 is first denoised;

then, the baseline is subtracted in the log-domain (with the
same baseline then used for both noisy and denoised data).
Because of prior denoising, the baseline was accurately
determined (cf. Figure 9A) despite the poor SNR of the
original data. The uncertainty analysis shows that the distance
distribution of the denoised data is very reliable (cf. Figure
9B2,C2), but unlike cases 1 and 2, the SVD solution from the
noisy data in case 3 is not (cf. Figure 9B1,C1). This illustrates
that prior denoising is required to obtain an accurate SVD
solution from noisy data. Further details of the determination
of the uncertainty range for case 3 are shown in Figure 9
(panels D1, E1, F1, G1, D2, E2, F2, and G2).
For both noisy and denoised data, the determination ofMaxj

is straightforward using the modified Picard plot (cf. Figures
7D1,D2, 8D1,D2, and 9D2,E2). However, for noisy data,
selecting Minj becomes less certain as one has to decide on the
exact convergence point (cf. Figures 7E1,F1, 8E1, and
9F1,G1). Denoising helps to make the selection rather
straightforward as the optimum region and convergence
point become obvious (cf. Figures 7E2,F2, 8E2, and
9F2,G2). However, the optimum region in the noisy data is
less stable and diverges at earlier singular value cutoffs
compared with the denoised data (cf. Figures 7−9). In case
3, the optimum regions are not so clearly defined for the noisy
data (Figures 9F1,G1), but after denoising it becomes readily
distinguishable (Figures 9F2,G2).
Therefore, higher SNR enables clearer estimation of Minj

and Maxj, a more stable and distinguishable optimum region,
and more SVCs to the solution. The WavPDS method can be
effectively used to improve SNR while providing high-fidelity
retention of the signal.17 Cases 1−3 show that the SVD
method and uncertainty can be applied to noisy experimental
signals at SNR > 30 to obtain desirable P(r), whereas for SNR
< 30, denoising is highly recommended. Denoising can still be
used for SNR > 30 to reduce uncertainty and improve P(r)
resolution.

5. CONCLUSIONS

The results from the three experimental cases show that the
distance distribution P(r) obtained using the new TSVD
method for (denoised) signals with large SNR has very small
uncertainty. This will be particularly important in studying
cases with several overlapping and nonoverlapping distribu-
tions.
We have presented a method to determine uncertainty due

to using the SF-TSVD method. We suggest that this SVD
method with or without uncertainty estimate should be
referred to by the name Picard-Selected Segment-Optimized
SVD or PICASSO-SVD (in short, PICASSO; we thank Dr. S.
Han for suggesting this acronym). Although PDS was used as
an example, PICASSO can be applied to SVD-based methods
used in other spectroscopies and physical methods.1−6,35 It can
be applied to noisy or denoised signals but yields the least
uncertainty for the latter case.
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