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ABSTRACT: Noise impedes experimental studies by reducing
signal resolution and/or suppressing weak signals. Signal averaging
and filtering are the primary methods used to reduce noise, but
they have limited effectiveness and lack capabilities to recover
signals at low signal-to-noise ratios (SNRs). We utilize a wavelet
transform-based approach to effectively remove noise from
spectroscopic data. The wavelet denoising method we use is a
significant improvement on standard wavelet denoising approaches.
We demonstrate its power in extracting signals from noisy spectra
on a variety of signal types ranging from hyperfine lines to
overlapped peaks to weak peaks overlaid on strong ones, drawn
from electron-spin-resonance spectroscopy. The results show that
one can accurately extract details of complex spectra, including
retrieval of very weak ones. It accurately recovers signals at an SNR of ∼1 and improves the SNR by about 3 orders of magnitude
with high fidelity. Our examples show that one is now able to address weaker SNR signals much better than by previous methods.
This new wavelet approach can be successfully applied to other spectroscopic signals.

■ INTRODUCTION
Studies in spectroscopy rely on the quality of the data for
accurate analysis. However, the presence of noise in experiments
limits the findings, especially when the signals are very weak. In
many cases, the experiments fail to produce a high quality signal
despite extensive signal averaging, the standard method to
reduce noise. Many postprocessing noise filtering methods have
been used in spectroscopy,1−8 but they are mainly effective for
higher signal-to-noise ratios (SNRs) (SNR > 30). Wavelet
transform (WT)-based denoising methods can reliably dis-
tinguish noise and signal in the wavelet domain, but the standard
wavelet denoising methods9−11 and their application in
spectroscopic signals3−8 have had limited success, and one
desires to achieve wavelet denoising’s true potential, particularly
at low SNRs.
To denoise weaker signals, for example, at SNRs of ∼1, we

utilize, in this work, new features in wavelet denoising methods
that enable better separation of noise and signals in the wavelet
domain. Key features and their effectiveness are described in
prior work12−15 that include (1) better signal and noise
resolution in the wavelet domain and (2) improved noise
thresholding. In this work, we add a new feature (3) signal
identification in the wavelet domain,16 and we show with this
new feature that signal recovery is further improved by
separating the noise and signal coefficients in wavelet domain,
when both of them have comparable magnitude. We use
examples from continuous wave ESR (cw-ESR), demonstrating
how this improved method retrieves signal from noise, including

from very weak signals and overlapping ones. We show that the
signal resolution is greatly improved with as much as 3 orders-of-
magnitude increase in the SNR and with high fidelity. With the
ability to accurately retrieve signals at an SNR of ∼1:

1. Fewer scans are needed to recover the signal, so the signal
acquisition time can be greatly reduced.

2. Both strong and weak signals in the spectra can
simultaneously be recovered.

3. Fine features, such as superhyperfine lines, can be reliably
distinguished.

The method is general and can be applied to any magnetic
resonance and molecular spectroscopic or other data.

■ METHODS
Wavelet Transforms. A signal can be analyzed in the signal

domain (such as time and space, among others) where it is
acquired or a transformed domain in which some character-
istics/features of a signal are especially prominent.17 The
Fourier transform (FT) is the most common as it provides
frequency information for the complete signal. However, the FT
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cannot provide frequency information for a “localized” signal
region (e.g., time) nor does it show how frequency information
is changing from the start of the signal to its end. WTs can
provide these types of information. Furthermore, in a WT, we
can localize the signal and frequency information from single
data points to the complete signal. WTs also display local signal
features when observed from a frequency sub band. This allows
comprehensive analysis of a signal. Mathematically, a WT is
defined as14,18

∫τ ψ τ=
| |
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where s is the inverse frequency (or frequency range) parameter,
τ is the signal localization parameter, t represents the signal
location, f(t) is the signal, F(τ, s) is the wavelet-transformed

signal at a given signal localization and frequency, and ψ* τ−( )t
s

is the signal probing function called “wavelet.”Different wavelets
are used to vary selectivity or sensitivity of adjacent frequencies
with respect to signal localization. They are not dependent on a
priori information of the signal or its characteristics. Depending
on the application, different wavelets can be selected.
Like the FT, a WT has high computational complexity, and

hence, for practical implementation, the discrete WT (DWT) is
used. To avoid redundancy and reduce computational complex-
ity, WTs are taken over nonoverlapping frequency ranges called
“sub bands” or “detail components” in wavelet terminology. To
differentiate between different detail components, sub bands
containing the highest frequencies are called the “detail
component at decomposition level 1” and sub bands containing

Figure 1. Example showing the denoising procedure. (a1−a6) Original decomposition level components and prior to noise thresholding; (b1−b6)
levels after the noise thresholding procedure; (c1−c6) levels after signal location windowing based on (b6); (d1−d6) same decomposition levels
obtained from the reference signal. As noted, (b6) is used to locate the windows. After windowing (c3,c4) are rendered in good agreement with
reference (d3,d4), while even (c5) is slightly improved. Note that the windowing is not applied to (c1,c2) because they are all noise as can be seen from
(d1,d2).
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lower frequencies are labeled in the ascending numerical order
of the decomposition level. At each decomposition level, the
residual lower frequency sub band is stored as the “approx-
imation component” at that decomposition level so that signal
information at all the frequencies is still contained at any given
decomposition level.
Wavelet Denoising.The word “denoising” to remove noise

was first used in the context of WTs.10 Unlike FT and short time
FT (STFT), the WT can identify and distinguish noise and
signal frequencies using the signal domain-frequency represen-
tation that is reflected through the approximation and detail
components and their decomposition levels. The separation of
noise from signal in WT relies on the following:

1. Noise and signal will typically not have the same
frequency at the same signal location because all the
noise frequencies do not occur at every signal location.
Therefore, when noise and signal frequencies overlap in
the approximation and detail components, they can be
distinguished using the signal location information.

2. For rare cases where noise and signals have the same
frequency at the same signal location, the noise strength at
that location is usually negligible compared to the signal
strength or the contribution of the information in the
overall signal is minuscule.

3. The signal strength is substantially greater than the noise
strength in the wavelet domain. This is because the signal
is coherent and is represented by a few wavelet
coefficients with high magnitude. In contrast, noise,
being random, is represented by many coefficients each
with small magnitude. It is based on the entropy concept:
randomness has higher entropy.

Noise Elimination and Reduction via Denoising
(NERD). The methodology is described in detail in the
Supporting Information. However, we illustrate the method in
Figure 1. The average of a 16-scan noisy ESR signal from a
nitroxide is shown in the upper left, which is collected in 4096
points. It is transformed into the discrete wavelet domain as
shown in subfigures labeled a. Here, level 1 is the highest
frequency band, with each successive level representing a lower
frequency band. The x-axis corresponds to 4096 discrete points
in the signal localization parameter, τ (cf. eq 1). The higher
frequency levels are largely noise, whereas the lowest levels are
mostly signals. After the denoising process, also known as noise
thresholding, only signal components remain as shown in
subfigures labeled b. However this procedure, which eliminates
the noise coefficients that are weak in the wavelet domain (cf.
comment #3 above), also removes signal coefficients whose
magnitude is less than the maximum magnitude of noise
coefficients. This is a weakness of all previous methods including
our original one.12,14 To overcome this weakness, we introduce
the new concept of signal location windowing.16 In this step,
illustrated in subfigures labeled c, the vertical lines in purple,
green, and blue delineate the “windows”. They are determined
from subfigure b6 that clearly shows the dominant signal
regions, which must contain some semblance of the signal in the
higher frequency levels 3, 4, and 5. Thus, within these three
windows, one restores the components that had been eliminated
by the prior noise thresholding step. Levels 1 and 2 are not
included in this step because they are dominated by high
frequency noise. Finally, one may compare the “windowed”
results in subfigures c with the wavelet components shown in
subfigures d that are obtained from the virtually noise-free

average of a 500 scan reference spectrum shown in the upper
right corner of Figure 1. One sees significantly better agreement
between the “windowed” components in subfigures c and the
reference results in subfigure d than is the case for the
components in subfigures b. The results in subfigures c are
then converted back into the original ESR signal by inverse
transformation (see the Supporting Information section Wave-
let Denoising), which now has had its noise removed, that is, it is
“denoised”. In the next section, we show with examples from
several types of ESR cases the power of this method, which we
call noise elimination and reduction or NERD. As noted above, a
more detailed description of NERD is given in the Supporting
Information.

Denoising ESR Spectra.We use cw-ESR spectroscopy data
for testing and demonstrating the effectiveness of NERD. cw-
ESR is used extensively to study the dynamics and structure of
biomolecules and is the most commonly used ESR technique.19

The cw-ESR spectrum is acquired in the magnetic field (B0)
domain, which is swept, that is, B0 = B0(t) in a linear fashion.
Moreover, a variety of spectra can be provided as test signals.

ESR Experiment and Sample Preparation. We acquired
three types of experimental signals as examples showing the
power of the denoising method. Example 1 contains three main
14N components and six weak 13C ones. The sample used was a
50 μM aqueous solution of Tempol (4-hydroxy-2,2,6,6-
tetramethylpiperidine 1-oxyl).19−22 The ESR experiments
were performed at 20 °C on a commercial spectrometer (Bruker
ELEXYS-II E500) at 9.4 GHz microwave frequency that
corresponds to a 0.34 T dc magnetic field. The spectral data
set consisted of 4096 points along the magnetic field sweep. It
provides both strong and weak spectral features for denoising.
Example 2 provides a more overlapped signal to study. The

sample consisted of a concentrated water suspension of
multilamellar vesicles of DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine) doped with 0.5% of a lipid spin label, 16-PC
(1-acyl-2-[16-(4,4-dimethyloxazolidine-N-oxyl)stearoyl]-sn-
glycero-3-phosphocholine). The spectra were recorded in the
liquid crystalline membrane (Lβ) phase at 37 °C on a home-built
ACERT 95 GHz ESR spectrometer21 with a dc magnetic field of
3.3 T. The spectral data set contained 512 data points.
Example 3 contains multiple narrow ESR lines due to the

interaction of the unpaired electron with a 14N nucleus and
several protons. The radical di-(4-tert-butyl-phenyl) nitroxide
was dissolved in toluene at a 100 μM concentration and
thoroughly deoxygenated using the freeze-thaw technique. The
spectra were recorded under the same conditions as for sample
1. However, a small magnetic field modulation at 100 kHz of 20
mG was used to produce the weak signal obtained from a single
scan, whereas the strong reference signal from an average of 500
scans was obtained with a 100 mG field modulation to enhance
the signal and suppress noise. (Magnetic field modulation is
used to provide the derivative of the absorption signal.19)

Signal Averaging. In example 1, two separately averaged
signals were generated by averaging 4 and 16 scans, resulting in
SNRs of 15 and 57, respectively, for the main components and
SNRs of 1.5 and 0.5, respectively, for the weak components (cf.
Table 1). A reference signal was also generated by averaging 500
scans. In example 2, three noisy signals were generated by
averaging 1, 4, and 18 scans. Their respective SNRs were 10, 19,
and 39. Example 3 is noted in the previous paragraph.

Objective Measures. Signal-to-Noise Ratio (SNR). To test
the efficacy of NERD, the SNR is used for calculating the noise
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presence in the noisy and denoised signals. The SNR is defined
as

=SNR
signal

noise
peak

rms (2)

where signalpeak is the maximum peak height of the signal and
noiserms is the root-mean-square of the noise present. The noise
present is measured from spectral positions where there is no
signal present in the experimental data. The SNR is thus the
inverse of the amount of noise present with respect to the
maximum peak height of the signal. Of course, the remaining
signal peaks, whose maxima are less than the maximum peak
height, have lower SNRs.
We also use SNRpeak‑to‑peak to calculate the SNR of the overall

signal as follows

=‐ ‐
‐ ‐SNR

signal

noisepeak to peak
peak to peak

rms (3)

where SNRpeak‑to‑peak is the magnitude between maximum and
minimum peak heights.
Equations 2 and 3 are used for calculating local and global

SNRs, respectively. Since signals shown in the examples contain
multiple peaks with different magnitudes, eq 2 is used to find the
SNR of each peak. Equation 3, on the other hand, provides the
standard measure of the overall SNR for the complete signal,
which is composed of derivatives of the absorption.

Structural Similarity Index Measure (SSIM). Although the
SNR provides noise error bounds and confidence measures for
the recovered signal, it lacks information on how well the signal
is recovered, that is, its fidelity. We use the structural similarity

Table 1. Example 1SNR and SSIM of Noisy and Denoised
Signals at 16- and 4-Scan

noisy noisy denoised denoised

data averaging SNR SSIM SNR SSIM

16-scan signal 57 0.9899 9.2 × 104 0.9975
peak 1 0.5 0.1885 2.1 × 103 0.8244
peak 2 15 0.9967 4.6 × 104 0.9976
peak 3 10 0.9925 4.6 × 104 0.9942
peak 4 0.7 0.1027 2 × 103 0.8329
peak 5 0.7 0.2018 1.9 × 103 0.7274
peak 6 14 0.9970 4.4 × 104 0.9975
peak 7 14 0.9962 4.4 × 104 0.9974
peak 8 0.9 0.1980 2 × 103 0.6149
peak 9 1.1 0.3249 1.5 × 103 0.9267
peak 10 19 0.9985 4.3 × 104 0.9987
peak 11 20 0.9985 4.2 × 104 0.9988
peak 12 0.3 0.0811 322 0.5439

4-scan signal 15 0.9724 4.7 × 103 0.9992
peak 1 0.3 0.0067 NA-distorted 0.1201
peak 2 9 0.9931 2.4 × 103 0.9974
peak 3 8 0.9896 2.2 × 103 0.9936
peak 4 0.3 −0.0264 NA-distorted 0.1949
peak 5 0.3 0.0133 179 0.6668
peak 6 10 0.9939 2.3 × 103 0.9985
peak 7 7 0.9866 2.3 × 103 0.9940
peak 8 0.4 0.0393 NA-distorted 0.2034
peak 9 0.4 0.1077 192 0.8161
peak 10 8 0.9923 2.3 × 103 0.9968
peak 11 7 0.9904 2.1 × 103 0.9934
peak 12 0.4 0.0565 126 0.7855

Figure 2. Experimental data example 1results of NERD at 16- and 4-scan cw-ESR spectra with the SNR at individual peaks in Table 1. (a) 16-scan
noisy signal overlapped with its denoised signal, (b) denoised signal of the 16-scan noisy signal overlapped with the reference signal, (c) 4-scan noisy
signal overlapped with its denoised signal, and (d) denoised signal of the 4-scan noisy signal overlapped with the reference signal. P1 is peak 1.
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index measure (SSIM)23 to complement the SNR as the
criterion for the signal recovery. The SSIM can be calculated as

μ μ σ
μ μ σ σ

=
+ +

+ + + +
c c

c c
SSIM(X, Y)

(2 )(2 )

( )( )
X Y 1 XY 2

X
2

Y
2

1 X
2

Y
2

2 (4)

where X is the noisy or denoised signal; Y is the reference signal;
μX and μY are the mean values of X and Y, respectively; σX and σY
are the standard deviations of X and Y, respectively; σXY is the
covariance of X and Y; and c1 and c2 are small positive constants
used for stabilizing each term. The range [−1, 1] reflects the
resemblance of X w.r.t. Y. For identical X and Y, the SSIM is 1. In
all the examples described in the next section, the experimental
result to be used as the reference signal was first denoised to
remove the small amount of residual noise to better serve as the
reference.
In addition to finding the SSIM of the complete signal, we also

obtained localized SSIMs for individual peak regions. Because
the strong peaks can overwhelm or dominate the overall SSIM
value, the local SSIM provides better information about the
fidelity of each peak for noisy and denoised data. To ensure the
appropriate measure, c1 and c2 were selected to be 10% of the
peak magnitude of the peak under consideration.
Software Availability.TheNERDmethod is available both

in automated and user interface forms. The website
denoising.cornell.edu contains all the steps required for
denoising, including wavelet selection, decomposition level
selection, noise thresholding, and signal location windowing.
The automated code for each step is continuously added to the
online software and can also be requested from the authors. The
process to develop the automated code is provided in our patent
and publications.12−16 The user interface, in addition to
denoising, can be used to overcome anomalies in experimental
data such as those associated with artifacts.

■ RESULTS AND DISCUSSION
Example 1: Nonoverlapping Signals with the Super-

hyperfine Structure. The results of example 1 are shown in
Figures 2 and 3 and Table 1. (The numbering of the peaks is

given in Figure 2a,c.) Note that peaks 2, 3, 6, 7, 10, and 11 are the
strong peaks from 14N hyperfine splitting (hfs) and peaks 1, 4, 5,
8, 9, and 12 are the weak (hfs) peaks from 13C in natural
abundance (1.1%). The strong peaks, with overall SNRs of 57
for the 16-scan average and 15 for 4-scan, are well recovered
before and after denoising. The weak peaks are not observable in
the original “noisy” spectra in either case of signal averaging.
However, Figure 2b shows that they are recovered for the 16-
scan cases, but only partially for the 4-scan case (Figure 2d). The
noisy SNRs and the SSIMs for both the noisy and denoised weak
peaks are given in Table 1.
We first consider the 16-scan case. The original SNR for the

weak peaks is around unity (≳0.5), but very good to excellent
recovery is achieved for most of them. In the 4-scan case, the
weak peaks have noisy SNRs <0.5 (generally about half that for
the 16-scan case, as expected), implying that there is still a
substantial noise presence in the designated signal coefficients
we are retaining. NERDdoes however inform about the accurate
peak locations. In summary, these results do indicate that when
the initial SNR ≳0.5, NERD is reliable in recovering the signal.
There is another feature of these spectra to test the method.

When the main peaks are spread out as in Figure 3a,b, one
observes the superhyperfine structure (shfs) on them due to 1H

Figure 3. Experimental data example 1results of the strong peak
obtained from the NERD method at 16-scan (a) and 4-scan (b)
showing shfs. NERD denoised signals are compared with the reference
and noisy signals.

Figure 4. Experimental data example 2results of NERD at 18-, 4-,
and 1-scan cw-ESR data with the SNR in Table 2. (a) 18-scan noisy
signal overlapped with NERD denoised data, (b) 4-scan noisy signal
overlapped with NERD denoised data, (c) 1-scan noisy signal
overlapped with NERD denoised data, and (d) peaks 5 and 6 are
blown up showing great fidelity with NERD especially for the 1-scan
case.
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hf lines. We see in Figure 3a, for the 16-scan case, the excellent
recovery of this shfs, whereas in the original noisy spectrum, it is
somewhat corrupted. For the 4-scan case, NERD is still
successful (cf. Figure 3b), whereas it is substantially corrupted
in the noisy spectrum. The importance of signal location
windowing here is that it retains the shfs and just removes the
noise. In the absence of windowing, the shfs is also largely
suppressed by denoising, especially in the 4-scan case.
Example 2: Overlapped Signals. In example 2 shown in

Figure 4, NERD is applied to 18-scan, 4-scan, and 1-scan signal-
averaged noisy data. The overall signal SNRs for each of them
are 73, 33, and 21, respectively, and the minimum peak SNR is 2
(with an SSIM value of 0.6554) for peak 3 of the 1-scan case. As
with the previous experimental case, one can see that the
denoised results enhance the SNR for each peak and the overall
signal SNR by several orders of magnitude for 18-, 4-, and 1-scan
(cf. Table 2). More importantly, the denoised signal is able to
successfully extract the lineshapes that are buried under the
noise. For example, the third peak in subfigure c is overwhelmed
by noise with little evidence of its presence. After denoising, this
peak is now well resolved as we see by comparing with the 18-
scan denoised spectra.
Example 3: Hyperfine Spectra. Example 3 demonstrates

the ability of NERD to extract a periodic, repeating pattern in the
processed data from a signal with an SNR of ∼unity (cf. Figure
5a). The reference spectrum of di-(4-tert-butyl-phenyl) nitro-
xide in degassed toluene is shown in Figure 5c obtained from
500 averages and more favorable experimental conditions. It

consists of many narrow hf lines. This hyperfine structure is from
three main groups of lines due to the 14N nucleus; each of these
is further split into a larger number of lines resulting from the
interaction of the unpaired electron with two groups of four
equivalent protons in the ortho- and meta-positions relative to
the nitroxide moiety, that is, four ortho protons split each 14N hf
line into a quintet of hf lines, and each of them is further split into
a quintet of hf lines by the four meta protons. These hf lines
overlap, so the whole spectrum is difficult to analyze or even
detect in the presence of substantial noise. However, NERD has
the unique ability to elicit the periodic patterns that are
undetectable by the eye. It is able to recover all 66 peaks with
high fidelity (SNR = 8.5 × 103 and SSIM = 0.9608, cf. Table 3)

Table 2. Example 2SNR and SSIM of Noisy and Denoised
Signalsa

SNR SSIM

data averaging noisy NERD noisy NERD

18-scan signal 73 1.1 × 108 NA NA
peak 1 38 6.1 × 107 NA NA
peak 2 17 2.5 × 107 NA NA
peak 3 2.7 5.1 × 106 NA NA
peak 4 32 5.3 × 107 NA NA
peak 5 13 2.4 × 107 NA NA
peak 6 9 1.4 × 107 NA NA

4-scan signal 33 1.1 × 105 0.8830 0.9968
peak 1 17 6.04 × 104 0.9073 0.9934
peak 2 8 2.5 × 104 0.9269 0.9899
peak 3 3 5.8 × 103 0.8741 0.9753
peak 4 14 5.3 × 104 0.9208 0.9964
peak 5 7 2.4 × 104 0.9182 0.9982
peak 6 6 1.3 × 104 0.8971 0.9945

1-scan signal 21 3.2 × 104 0.6938 0.9946
peak 1 9 1.7 × 104 0.7684 0.9978
peak 2 4 8.1 × 103 0.7324 0.9804
peak 3 2 2.1 × 103 0.6554 0.9391
peak 4 9 1.5 × 104 0.8018 0.9935
peak 5 4 5.7 × 103 0.7827 0.9866
peak 6 5 4.6 × 103 0.6823 0.9895

aSNR is calculated at 18-, 4-, and 1-scan at different peaks, whereas
SSIM is obtained for 4- and 1-scan because denoised NERD data at
18-scan are used as the reference. Hence, not applicable (NA) is
noted for 18-scan SSIM values for noisy and denoised data. SSIM
constant parameters are selected as c1 = c1 = 10−13 in order to measure
the small differences in the spectrum. Signal refers to the complete
spectrum for which the SNR and SSIM are obtained, and peak refers
to SNR and SSIM values for individual peak regions.

Figure 5. Experimental data example 3results of the NERD for a cw-
ESR hyperfine data set with an SNR of ∼1. (a) NERD denoised signal
superposed on the original noisy signal, (b) NERD denoised data, and
(c) reference data. The reference data were acquired with 500 scans at
higher modulation amplitude.

Table 3. Example 3SNR and SSIM of Noisy and Denoised
Signalsa

noisy NERD reference

SNR 1.1 8.5 × 103 1.7 × 104

SSIM 0.08 0.9608 NA
hyperfine lines NA 66 66

aThe table also shows the number of hyperfine lines retrieved by the
NERD method. The SNR for the reference was obtained under
different experimental conditions to guarantee a very high SNR.
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from an initial noisy spectrum SNR of 1.1 and SSIM value of
0.08. The hyperfine lines appear in distinct positions,
represented by a few wavelet coefficients, and can be readily
separated by NERD from the random noise (cf. Figure 5a,b).
The NERD result compares very favorably with the reference
(cf. Figure 5c), providing nearly perfect recovery of all features.
In the absence of signal location windowing, most of the
hyperfine lines cannot be recovered.

■ CONCLUSIONS

In this paper, we have shown that the NERD method
significantly enhances the denoising capabilities so that weak
signals with SNRs on the order of unity can be recovered with
high fidelity and of the order of 3 orders of magnitude increase in
SNR. This capability of recovering weak signals represents a
significant improvement over previous wavelet denoising
methods. We have supplied three distinct examples in this
paper from ESR spectroscopy (out of numerous others) that
demonstrate in several ways the great power of NERD in
recovering spectral details even from cases where they appear to
be buried within the noise. This can allow studies to be
conducted at low sample concentrations and/or studies that
were not feasible due to long acquisition times, given that using
NERD reduces required signal averaging times by orders of
magnitude. Since NERD requires no prior information about
the signal nor is tailored for any particular type of signal, it can be
used to recover weak signals obtained in many fields of study. In
addition, it can be adapted to two-dimensional spectrosco-
py.12−16,18
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