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Algorithm

The algorithm (cf. Algorithm 1) for NERD is given below, and illustrated in the block diagram

given in Fig. S7. The NERD software can be accessed through denoising.cornell.edu

Algorithm 1 NERD Algorithm
1: Select a wavelet.
2: Apply UDWT.
3: Select k (1 ≤ k ≤ N) decomposition levels to denoise the Detail components, where N =
blog2(SignalLength)c.

4: Select the k Detail components and the kth Approximation component for noise thresholding.
5: Calculate noise thresholds each of the k Detail components and the kth Approximation com-

ponent.
6: Apply hard thresholding to the k selected Detail components and the kth Approximation com-

ponent.
7: Select signal location window using the kth Detail component. In some cases one can also use

the kth Approximation component.
8: Apply signal location windowing to the 1 to kth Detail component, except for those Detail

component that contain all noise.
9: Apply signal location windowing to the kth Approximation component. When Approximation

component has signal region different from the kth Detail component, use subjective method
to independently obtain and apply signal location window.

10: Take the inverse undecimated discrete wavelet transform (IUDWT) of the resultant k Detail
components and the kth Approximation component.

Discrete Wavelet Transform

For a discrete signal with length p, the maximum number of decomposition levels that can be

obtained is N, where N = log2 p. The decomposition level can be referred to as j, where (1≤ j ≤

N).

For DWT, the Detail and Approximation components are defined as,1

D j[n] =
p−1

∑
m=0

f [tm]2
j
2 ψ[2 jtm−n] (S1)
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, and

A j[n] =
p−1

∑
m=0

f [tm]2
j
2 φ [2 jtm−n] (S2)

where f [tm] is the discrete input signal, p is the length of input signal f [tm], D j[n] and A j[n]

are the Detail and Approximation components, respectively, at the jth decomposition level, and

ψ[2 jtm−n] and φ [2 jtm−n] are wavelet and scaling functions, respectively. The scaling and wavelet

functions, at a decomposition level, are orthogonal to each other, as they represent non-overlapping

frequency information. Similarly, wavelet functions at different decomposition levels are orthogo-

nal to each other. That is:

L−1

∑
tm=0

ψ j,k[tm]ψ j̃,k̃[tm] =


1, if j = j̃&k = k̃

0, otherwise
(S3)

L−1

∑
tm=0

φ j,k[tm]ψ j,k[tm] = 0 (S4)

where L is the finite length of the scaling and wavelet function and their values are selected

depending on the choice of wavelet.

The signal f [tm] can be reconstructed using the Inverse DWT (IDWT) as follows,

f [tm] =
p−1

∑
k=0

A j0 [k]φ j0,k[tm]+
j0

∑
j=1

p−1

∑
k=0

D j[k]ψ j,k[tm] (S5)

where j0 is the maximum decomposition level from which input signal needs to be recon-

structed.

Wavelet Denoising

The following are the steps used in Noise Elimination and Reduction via Denoising (NERD) to

accomplish denoising.

a) Undecimated Discrete Wavelet Transform:- In NERD, we use the Undecimated DWT
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(UDWT)2 to achieve the maximum signal and noise resolution in the wavelet transform (cf.

Fig. S1). This means that each Detail and Approximation component has the same length

as that of the input signal. For instance, a signal with data length of 128 will have 7 Detail

and Approximation components (from 7 decomposition levels), each having a length of 128

data points. The maximum number of decomposition levels, N, is defined as N = log2 p (p

being the input signal length).3 The UDWT improves the resolution in the wavelet domain

by the preserving the input data length at all decomposition levels.

Furthermore, UDWT preserves the redundancy in the wavelet domain by keeping all the

wavelet coefficients. This provides protection against the noise thresholding procedure.

Even if a signal coefficient is removed by noise thresholding, the information can be eas-

ily recovered from other (redundant) coefficients, which is not possible in the DWT because

each wavelet coefficient represents unique information.

For fast computation, we employ a fast UDWT that uses low and high pass filters shown

in Fig. S2 to replace scaling and wavelet functions, respectively, in order to obtain the

Approximation and Detail components as follows:

A j+1[n] =
L−1

∑
i=0

l[i]A j[i+n] (S6)

and

D j+1[n] =
L−1

∑
i=0

h[i]A j[i+n] (S7)

where l[i] and h[i] are low and high pass signal decomposition filters, respectively, and L is

the length of both the filters (and also the scaling and wavelet functions). The filter values

are the coefficient values of the scaling and wavelet functions.

As can be seen from equations S6 and S7 and illustrated in Fig. S1, the low and high pass

filters are recursively applied on the Approximation component to obtain the Approximation

and Detail components, respectively, at the subsequent level. For decomposition level 1, the
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Figure S1: Block diagram of the undecimated discrete wavelet transform (UDWT) and inverse
undecimated discrete wavelet transform (IUDWT). f [tm] is the discrete input signal, and D j and
A j are the Detail and Approximation components, respectively, at decomposition level j.

input signal is the Approximation component at the 0th level.

The Inverse Undecimated Wavelet Transform (IUDWT) is defined as:

A j[n] =
L−1

∑
i=0

l̃[i]A j+1[i+n]+
L−1

∑
i=0

h̃[i]D j+1[i+n] (S8)

We show in Fig. S2 the Approximation and Detail components for an ESR signal in the

UDWT mode.

b) Wavelet Selection:- There are many standard wavelet families that can be used for the DWT.

We use the coiflet family wavelet “coiflet-3” (cf. Fig. S3). The coiflet family satisfies

the mini-max condition which minimizes the error in extracting the local features. This

feature is essential for enhancing signal resolution between nearby data points as well as for

weak signals. Coiflet-3 wavelet is selected for its appropriate length. A smaller length may
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Figure S2: Approximation and Detail components from UDWT at different decomposition lev-
els of a cw-ESR spectrum. a) Input signal is shown in subfigure with 4096 data points. Level
represents the Decomposition Level.
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Figure S3: Wavelet and Scaling functions of Coiflet-3 wavelet.

not capture all the necessary information, whereas a larger length would yield redundant

information. In Fig. S4, we show the low and high pass filter coefficients used in UDWT

and its inverse for Coiflet-3.

c) Decomposition Level Selection:- For successful noise thresholding in the wavelet domain,

all the Detail components and the highest decomposition Approximation component that

contain noise need to be identified. This is accomplished by selecting the maximum decom-

position level k where noise is still present, keeping Detail components from 1 to k and the

kth Approximation component. Inaccurate selections of k result in either incomplete noise

removal or signal distortion. To determine if a Detail component contains noise, we first

calculate the “sparsity” of each Detail component in the following way:4
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Figure S4: Low and High pass filter coefficients used in UDWT and inverse UDWT for Coiflet-3
wavelet.

S j =
max(|D j|)

∑
p
n=1 |D j[n]|

(S9)

where S j is the sparsity and p is the length of the Detail component (same as the input

signal for UDWT).4 One can see that S j measures the sparsity of the Detail component at

decomposition level j. S j will have smaller values for noisy Detail components compared

to virtually noise-free Detail components. Noise presence reduces sparsity. We use a cut-off

Tr to identify noise and noise-free Detail components. The maximum decomposition level

k = j is where S j < Tr and S j+1 > Tr. The value of Tr ranges between 0 and 1, and we have

found that Tr ≈ 0.2 is an effective cut-off; but this can be varied based on specific needs.

d) Noise Thresholds:- In the wavelet domain, each noisy Detail component contains noise and

signal coefficients that are typically separate from each other. Wavelet coefficients represent-

ing random noise (e.g. generated from instruments) have many small magnitudes, whereas
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Figure S5: The four cases of the Detail component for the noisy signal: a) Detail component
contains only noise, b) Detail component simultaneously contains signal and heavy noise, c) Detail
component contains signal and little noise, and d) Detail component contains primarily signal with
negligible noise. Input signal is shown in Fig. S2a with 4096 data points.

wavelet coefficients representing signal coefficients are fewer but have large magnitudes due

to their coherent nature. Coherent signals can easily be captured using those few coefficients

with high magnitudes. Differences in magnitude of signal (large) versus noise (small) enable

us to use a threshold that can separate them. Selecting an accurate threshold is necessary to

avoid incomplete noise removal and/or signal distortion. We calculate lower and upper noise

thresholds for negative and positive wavelet coefficients in the Detail component. Detail

components are always centered around zero because they represent non-zero frequencies.

The noise thresholds are calculated using the following formulae:4

λ j,L = µ j−κ j,Lσ j (S10)
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and

λ j,H = µ j +κ j,Hσ j (S11)

where λ j,L and λ j,H are the lower and upper thresholds, µ j and σ j are the mean and standard

deviation of the Detail component, and κ j,L and κ j,H are adjustable parameters associated

with the lower and upper thresholds, respectively. The κ j,L and κ j,H values can be obtained

from the formulae presented in Srivastava et al.4

e) Noise Thresholding Function:- The noise thresholds are applied in the Detail component

using the hard thresholding function as follows:4

D′j[n] =

 0 : λ j,L ≤ D j[n]≤ λ j,H

D j[n] : otherwise
(S12)

where D′j[n] is the denoised (or noise-thresholded) Detail component. Hard thresholding

is used because each wavelet coefficient is taken as either a noise coefficient or a signal

coefficient. Applying soft thresholding would result in signal distortion.

f) Denoising Approximation Component:- Unlike standard denoising methods, in NERD

noise thresholding is also applied to the Approximation component (as previously done in

Srivastava et al.4). The noise thresholds are applied to the kth Approximation component and

are calculated in a similar manner to the Detail components using equations S10 and S11.

However, the Approximation component need not be centered around 0, as it contains a d.c.

component (i.e., value at 0th frequency). Therefore, its lower and upper thresholds can have

any value and one does not need to represent negative and positive wavelet coefficient values,

respectively. The hard noise thresholding in equation S12 is modified for the Approximation

component in the following way:
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A′k[n] =

 a : λk,L ≤ Ak[n]≤ λk,H

Ak[n] : otherwise
(S13)

where Ak[n] and A′k[n] are the noisy and denoised Approximation components, respectively,

at the kth decomposition level, and a is the constant with which noisy values are replaced.

For a signal with baseline centered around 0, a = 0. For a non-zero baseline signal, a is

assigned the baseline value.

g) Signal Location Windowing:- Standard wavelet denoising methods, including our previous

method,4 use noise thresholds based on the magnitude of the wavelet coefficients for each

wavelet component. This approach is sufficient when the magnitude of the signal coefficients

is greater than the noise coefficients as expressed below:

max(|wNoise
j ≥ 0|)< min(|wSignal

j ≥ 0|) (S14)

max(|wNoise
j < 0|)< min(|wSignal

j < 0|) (S15)

where wNoise
j and wSignal

j are noise and signal coefficients, respectively, of Detail or Ap-

proximation components. Equation S14 states that the magnitude of all the positive signal

coefficients is larger than all the positive noise coefficients, whereas equation S15 states

that the magnitude of all the negative signal coefficients is larger than all the negative noise

coefficients.

The above condition also states that each wavelet coefficient is either a signal coefficient or

a noise coefficient. This can be seen in Figs. S5a and S5d, where each wavelet coefficient

is either signal or noise. It is particularly true for higher SNRs where the noise contribution

is relatively small and is separated out in the first few Detail components. However there

may be situations where both signal and noise exist in a wavelet coefficient, so it can be
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taken as a signal or a noise coefficient based on which one dominates, because the other’s

contribution to the coefficient is small. Figs. S5b and S5c illustrate this point. One can see

that the few signal coefficients have very limited noise present in them, so the coefficients are

overwhelmingly dominated by the signal information. Moreover, the overall contribution of

a particular wavelet coefficient to the original signal is limited. Thus, its limited noise will

have negligible effect on the final result.

These equations and noise thresholds based on the coefficient magnitudes also imply that

one has to select a wavelet that can satisfy the above condition as well as have the signal

SNR sufficiently high to ensure that wavelet coefficients representing signal are larger in

magnitude than those of noise coefficients.

However, for smaller initial SNRs (e.g. of the order of unity) equations S14 and S15 will no

longer be generally applicable; in such situations, signal coefficients can have magnitudes

smaller than the noise coefficients. For this purpose, we introduce the concept of signal lo-

cation windowing based on the coefficient location. Although the noise of the components

may be larger in magnitude than signal coefficients, signal location windowing can still be

utilized to recover signal coefficients using the location information. Because the signal will

occur at the same location in each wavelet component, we can use cross-component informa-

tion to localize where signal coefficients are occurring. We can then apply this to avoid noise

thresholding those wavelet component locations and hence restore the coefficients whose

signal magnitudes are smaller than the noise magnitudes. This procedure can be applied

to both Detail and Approximation components. This is conveniently accomplished using

the UDWT for taking wavelet transforms, since there is a one-to-one location correlation

amongst the components for localizing the signal coefficients.

Subjective Approach:- For subjective analysis, we first apply noise thresholding to all the

Detail components (cf. Fig. 1a) up to the maximum decomposition level k selected to

denoise (cf. Fig. 1b). This removes noise coefficients and the signal coefficients whose

magnitude is less than the maximum magnitude of noise coefficients. We then plot all the k
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noise-thresholded Detail components (shown in Fig. 1b). The noise coefficients dominating

the signal coefficients will primarily be in the initial decomposition levels as this is where

noise is heavily present and signal is weak, but as we move towards the maximum decom-

position level k, the signal coefficients will become dominant (cf. Fig. 1b6); therefore, the

noise thresholding at that decomposition level will only remove the noise coefficients. We

select the location of signal coefficients from the maximum decomposition level k, to apply

signal location windowing. Once determined, we then apply the signal location window to

all the Detail components where both signal and noise are present to recover the low magni-

tude signal coefficients (cf. Fig. 1c). Note that the results in Fig. 1c compare favorably with

those from the reference, shown in Fig. 1d. The Detail components containing only noise

coefficients are exempted in the signal location windowing procedure, since they do not con-

tain signal coefficients in the first place. The noise-only Detail components are determined

using the sparsity parameter S j in equation S9 and described in Srivastava et al.4 in detail.

For practical purposes, S j values less than 0.01 indicate noise-only.

Figs. 1a,b,c,d are in the main text

Objective Approach:-In the objective approach, similar to the subjective one, the Detail

components are first noise thresholded up to the maximum decomposition level k. Then, the

boundaries of the non-zero component values at this kth decomposition level are assigned as

defining the signal location window. Then windowing is applied to the Detail components

that contain both signal and noise coefficients, leaving the noise-only coefficients unaffected.

That is, such wavelet coefficients lying within the signal location window are restored. The

all-noise Detail components are identified using the sparsity parameter S j, as in the subjective

approach. The procedure can be formulated as:

Vloc = {n : ∀Dk[n] 6= 0} (S16)
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D′j[n] =

 D j[n] : i f n ∈Vloc

D′j[n] : otherwise
(S17)

where Vloc is the index of all the non-zero Detail coefficients. Equation 16 yields all the

locations of signal coefficients (i.e., non-zero Detail coefficients at decomposition level k).

Equation 17 assigns the wavelet coefficients their original value within the vertical thresholds

for decomposition levels 1 to k−1, except for those that are all noise Detail components.

The all-noise Detail components are determined using equation 9, where for all the noise

Detail components, S j ≤ 0.01. (This value can be adjusted depending upon the type/class of

signal and the number of data points in the input signal.)

i) Signal Location Windowing on Approximation Component:- The signal location win-

dowing procedure can also be applied to the Approximation component at the kth decompo-

sition level (cf. Fig. S6). The signal location window selected for the kth Detail component

is utilized for restoring the signal coefficients in the Approximation component. In many

cases, the noise thresholding procedure is sufficient to remove all the noise coefficients in

the Approximation component (Fig. S6c), like for the kth Detail component, so signal loca-

tion windowing may not be necessary. Note that in those cases the signal location window

can also be selected from the Approximation component and applied to the Detail compo-

nents, because the signal locations for both of them are the same due to the use of UDWT.

However, in the case where low frequency noise is substantial, the signal location window-

ing needs to be selected from the kth Detail component and applied to the Approximation

component to reinstate the signal coefficients. The procedure can be formulated as:

Vloc = {n : ∀Dk[n] 6= 0} (S18)
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Figure S6: Example of signal location windowing in the kth Approximation component (Level 6)
using the window obtained from the kth Detail component (Level 6).

A′j[n] =

 A j[n] : i f n ∈Vloc

A′j[n] : otherwise
(S19)
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Figure S7: Block diagram of NERD Approach. f [tm] and f ′[tm] are the noisy and denoised sig-
nals, respectively, and D j and A j are the Detail and Approximation components, respectively, at
decomposition level j.

In special cases, the Approximation component may have a wider or narrower signal co-

efficient location window compared to the Detail component due to baseline or any other

low frequency feature. In those scenarios, the subjective approach will be applied to the

Approximation component.

The NERD approach is summarized in the block diagram of Fig. S7.
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