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It is shown that the commonly used models for analyzing ESR spectra from nitroxide spin-labeled proteins
or DNA systems are special cases of the more general slowly relaxing local structure (SRLS) model, wherein
the nitroxide spin probe is taken as reorienting in a restricted local environment, which itself is relaxing on
a longer time scale. This faster motion describes the internal dynamics, while the slower motion describes
the global tumbling of the macromolecule. By using the SRLS model as the reference, it is shown (1) under
what conditions the microscopic-order macroscopic-disorder (MOMD) model, wherein the global tumbling
of the macromolecule is in the rigid limit, is valid, and (2) when the fast internal motion (FIM) model,
wherein the internal motion is so rapid as to lead to partial averaging of the magnetic tensors, is valid. The
frequency dependence of these models is studied. A key general property of high frequency ESR that emerges
is that it reports on a faster motional time scale, whereas low frequency ESR reports on a slower motional
time scale. It is shown that, in general, the MOMD model is a better approximation for ESR spectra obtained
at high frequency (250 GHz), whereas, in general, the FIM model is a better approximation for low frequency
(9 GHz) ESR spectra. However, in general, one does not find that the simpler model fits, at a single ESR
frequency, to the more complete SRLS model, return correct motional and ordering parameters. The
simultaneous fitting of both low and high frequency ESR spectra is thus required to remove such ambiguities
and to return all the various dynamic, ordering, and geometric factors that characterize the complex dynamics.
This approach is briefly related to recent ESR spectra from the spin-labeled protein, T4 lysozyme, and from
spin-labeled DNA nucleosides. In order to better apply the slow-motional SRLS model to macromolecular
dynamics, the Polimeno-Freed theory has been extended to the case where the global tumbling is anisotropic
and where the angle between the principal axis of the global motion and the preferred orientation of the
internal modes of motion is arbitrary.

1. Introduction

Ever since the advent of nitroxide spin labeling, it has been
clear that ESR studies of spin-labeled macromolecules can
provide insight into their complex dynamics.1 The recent de-
velopment of the method of site directed spin-labeling of
proteins2 opens the potential to examine the local dynamical
modes at or near each labeled residue (plus the overall motions)
thereby ultimately leading to a “map” of the dynamic structure
throughout the protein or other macromolecule. In addition, the
development of modern ESR methods with enhanced sensitivity
to reorientational dynamics such as two-dimensional Fourier
transform ESR3,4 and high field/high frequency ESR,5,6 may be
expected to improve one’s ability to unravel the complex
dynamic modes from ESR spectroscopy.

In this paper, we wish to examine how a multifrequency
approach, using high as well as low (or standard) ESR fre-
quencies (but otherwise conventional cw methods), can usefully
address the decomposition of the complex dynamic modes
affecting each site label. This primarily theoretical analysis is
motivated, at least in part, by encouraging initial results on site-
directed spin-labeled protein: T4-lysozyme using ESR spectra
at 9 and 250 GHz.7 In addition, recent studies on spin-labeled
DNA nucleosides are encouraging in studying DNA dynamics.8

Let us first analyze the various motions existing in a spin-
labeled protein system (cf. Figure 1). These motions may be
roughly classified into three groups. (i) First, the globular protein
may undergo an overall isotropic tumbling. (ii) Specific side
chains within the protein may also fluctuate around an average
orientation. (iii) Finally, the spin labels reorient rapidly with
respect to the alkyl side chains. Detailed discussions of the
various motions in proteins include recent reviews by Kay9 and
Peng and Wagner.10

The rotational motions existing in a spin-labeled DNA system
may also be grouped in a similar manner11,12 (cf. Figure 2). (i)
The first motion is the global tumbling of the whole DNA helix.
(ii) The second group consists of collective uniform bending
and twisting motions of base pairs. (iii) The next group is the
motion of an individual base which also includes the twisting
and bending modes. For example, a base pair may undergo a
large amplitude opening and closing reaction and a small
amplitude libration. (iv) Finally the spin-label reporter group
may experience a local reorientation with respect to the bond
which connects the nitroxide moiety and the base.

In principle, a complete dynamical model should include all
of these motions. However, a useful model may only explicitly
describe a few “composite” modes of motion, because of the
computational limitations as well as the limited experimental
resolution available. A common practice when investigating the
dynamic behavior of protein and DNA systems is to separate
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the global tumbling from the other motions. In this approach,
one first views the dynamics in the lab frame, observing the
overall reorientation of, for example, a globular protein or a
DNA helix, which is assumed to be a freely diffusing rigid
sphere or cylinder, respectively. We then jump to a reference
frame, which is rigidly attached to the sphere or cylinder, to
observe the other motions. In other words, the effects of these
motions are combined and the resultant dynamics is referred to
as the internal motion. While the overall motion of the proteins
or DNA can be estimated from hydrodynamic theory, the
internal motion is less well characterized. However, the internal
motion is of general interest in connection with many biological
processes such as dye intercalation, enzyme reactions, and
protein-DNA interactions.11,12

Nuclear magnetic resonance (NMR) has been an important
technique for probing the rotational dynamics in macromol-
ecules. A variety of models for internal motion was formulated
by Lipari and Szabo13 to extract dynamic information from
NMR relaxation studies of deoxyribonucleic acid fragments.
However, it was found that the data they used seemed too
limited to lead to a unique physical picture of internal motions
in DNA fragments. They later developed a “model free”
approach14 which has been widely used to interpret NMR
relaxation in macromolecules.15 A generalized order parameter
and an effective correlation time can be specified for internal
motion from relaxation experiments.

As we discussed above, ESR is another powerful tool for
studying the dynamic processes in macromolecules such as
protein16-20 and DNA21-25 systems. Because of its favorable
time scale, ESR experiments can be even more sensitive to the

details of the rotational dynamics in these systems. That is, ESR
involves orientation-dependent terms in the spin-Hamiltonian
(in units of frequency) which are at much higher freqency than
is the case for such NMR terms. Thus, in NMR the (complex)
molecular dynamics leads to nearly complete averaging of the
orientation-dependent terms in liquids with their residual effects
nearly always reflected only in the relaxation timesT1 andT2,
which may be calculated by a second-order perturbation theory
commonly referred to as Redfield theory.26 However, given the
much larger magnitude of the ESR terms, the effects of the
orientation-dependent terms are often more dramatic and cannot
be analyzed by a perturbational approach. In order to extract
useful dynamic information from such ESR experiments, a slow
motional theory based on the stochastic Liouville equation (SLE)
has been developed,27-31 which shows that the more dramatic
lineshape changes are particularly sensitive to microscopic
details of the dynamics. Furthermore, as one increases the
magnetic field and frequency in ESR, the role of theg-tensor
in the spin-Hamiltonian grows linearly. Thus, at high fields and
frequencies, the breakdown of perturbative relaxation theories
becomes more dramatic, so the SLE is required over a greater
range of motional rates.32

Even more important than this is the simple fact that ESR at
higher frequencies will be more sensitive to the faster dynamics
but will lose its sensitivity to the slower dynamics, as compared
to ESR at the lower freqencies. We may speak of the “time
scale” of high frequency ESR being faster than that of low
frequency ESR. Thus, for example, the faster internal dynamic
modes of a macromolecule may be so fast on the slower time
scale of low frequency ESR that one just observes the spectrum
wherein these motions are completely averaged out, whereas
on the faster time scale of high frequency ESR their effects are
clearly discernable. On the other hand, the overall tumbling of
the macromolecule may be so slow on the fast time scale of
high frequency ESR that it is completely frozen out, whereas
on a slower time scale it is substantially affects the ESR
spectrum. In this paper we will clearly illustrate these matters.

The slow motional ESR theory was recently extended to
explicitly account for coupled dynamical motions occuring at
different time scales.33 In the slowly relaxing local structure
(SRLS) model,34,35 the spin probe is assumed to be reorienting
in a local environment which itself is relaxing on a longer time
scale. When applied to macromolecular systems, the faster
motion of the SRLS model is used to describe the internal
dynamics, while the slower motion accounts for the global
rotation of the macromolecule.

We wish to note here that the SRLS model, which was first
used in ESR by Polnaszek and Freed34 and in NMR by Freed35

in the context of liquid-crystal dynamics, largely in the mo-
tionally narrowed regime, by Campbell et al.,36 is a quite general
one with many possible applications. Since high frequency ESR
is almost always in the slow motional regime, the extension of
SRLS to the slow motional regime by means of the SLE was
important.33,37 In the fast motional regime, it should be
mentioned that the “model free” approach of Lipari and
Szabo14,15has many features that are similar to the SRLS model.
A detailed theoretical analysis of the SRLS model has been
reviewed by Polimeno and Freed.38

In nearly all previous ESR studies, the physical picture was
even further simplified. First it was assumed that the global
and the internal motions occur at different time scales, so that
their dynamic effects can be separated. In addition, it was
assumed that either the internal motion is in the very fast
motional limit, or else the global motion is in the rigid limit, so

Figure 1. Schematic illustration of the various dynamical processes
in a protein system. It is adapted from Figure 1 in ref 17.

Figure 2. Schematic illustration of the various dynamical processes
in a DNA system. It is adapted from Figure 1 in ref 47.
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that only one type of dynamic process is evident in the spectrum
and/or the relaxation behavior. In the fast internal motion (FIM)
models,39,40 the internal dynamics, which leads to partial
averaging of the magnetic tensors, is characterized by an
“effective” order parameter, and the global motion is described
in terms of diffusion constant(s). In the model in which the
overall motion is frozen out, the internal dynamics is specified
in terms of the preferred orientation of the internal motion and
the orientational potentials about the preferred orientation,
yielding local order parameters and the rotational diffusion
tensor for the internal motion. This model is usually referred to
as the MOMD model, i.e., microscopic order but macroscopic
disorder.41,42The very early simplified model of McConnell and
co-workers,43,44 which may be referred to as an “averaged
Hamiltonian” model, is in fact the limit when both FIM and
MOMD models are valid, i.e., frozen overall motion and (nearly)
complete averaging over the internal modes.

In our present study we make use of the more sophisticated
SRLS model with special emphasis on its applications to protein
and DNA systems. Utilizing this SRLS model we are also able
to discuss the range of validity of the FIM and MOMD limiting
models.

The paper is organized as follows. In section 2, we present
the theoretical basis of the latest version of the SRLS model in
the context of slow motional theory, that is particularly
applicable for complex macromolecular dynamics. In the
original SRLS treatment by Polimeno and Freed,33 the diffusing
body for the slower motion is assumed to be of spherical shape.
Since macromolecules may often be better approximated by
other shapes (e.g., cylinders), the SLRS model is extended in
this paper to model the overall motion of the macromolecule
by anisotropic rotational diffusion. This further requires that
one specify the tilt between the principal axes of overall
diffusion and the preferred orientation of the internal modes of
motion within the macromolecule. In section 3, we discuss the
various models for the internal dynamics which are of biological
interest. We then show under which conditions the limiting
motional models in the literature can be derived from our general
model in section 4. In section 5, we present some ESR spectral
simulations to establish the range of validity of the simplified
models and to consider the efficacy of the multifrequency
approach. Finally in section 6, the main conclusions are
summarized along with some additional comments.

2. Anisotropic SRLS Model

We will now describe the anisotropic SRLS (or cage) model,
which treats explicitly both the internal motion and the global
tumbling. Let us first define a few coordinate systems, (cf.
Figure 3). The laboratory frame (LF) is a frame at rest whose
z-axis is parallel to the applied magnetic fieldB0. Then to
describe the global tumbling, we define a global diffusion frame,
with its z-axis taken along a principal axis of the macromolecule,
e.g., the long axis of the cylinder for a DNA molecule or a
rodlike protein. This frame will be called the cage frame and is
denoted as CF.33 The Euler anglesΩLC, which transform the C
frame to the lab frame, are modulated by the global tumbling
of the macromolecule, i.e., the instantaneous orientation of the
macromolecule relative to the lab frame, is specified byΩLC.
In a similar manner, to model the internal motion, we define
an internal diffusion frame, MF, which is defined as the
symmetry axes for the diffusion of the internal modes of motion.
Then the Euler angles relating the MF and the LFΩLM are
modulated by both the internal dynamics and the overall
tumbling. Now our discussion will be restricted to isotropic

solutions, (not necessary, but sufficient for present purposes),
so that the macromolecule reorients in an isotropic medium.
However, the internal motion will experience a mean orienting
potential with symmetry axes that may be tilted relative to the
CF. We therefore define an internal ordering frame, C′F, also
known as the internal director frame, or the tilt cage frame,
because it is a frame fixed in the macromolecule. This frame
may be tilted from the CF by Euler anglesΩCC′ ) (0, âCC′, 0)
assumed to be time independent. Note that, for simplicity, we
take the MF to be the principal axes both for diffusion and for
orientational restriction of the internal modes of motion. Finally
the internal diffusion frame may be tilted from the magnetic
g-tensor frame (assumed to coincide with magneticA-tensor
frame) GF by static Euler anglesΩMG ) (RMG, âMG, γMG).

To complete defining the anisotropic cage model, we next
write down the time dependent part of the spin Hamiltonian
for this two body system:33

where Xµ,N
(l,m) stands for themth component of thelth rank

irreducible spherical tensor or tensor operatorX defined in the
N frame, withµ specifying the kind of interaction [Zeeman (g)
or hyperfine (A)]: Dnn′

l (ΩNN′)’s are Wigner rotation matrix
elements which relate the N frame to the N′frame. The detailed
form of Âµ,L

(l,m) and Fµ,G
(l,m′′) can be found elsewhere.30 It can be

seen from eq 1 that the spin Hamiltonian depends on the
modulation ofΩLM due to both types of motion. The dynamic
effects of both the global tumbling and the internal motions
are incorporated into the ESR line shape through the diffusion
operator

The first two terms in this equation refer respectively to the
isotropic portions of the two motions, which are functions of
the respective Euler angles. The last two terms are the
contributions due to the internal orienting potential, which
couples the internal and global tumbling motions. They are thus
a function ofΩC′M, which transforms the MF into the C′F. It
can be further expressed as the overall effect of the successive
rotations: -ΩCC′ - ΩLC + ΩLM.

When modeling the global tumbling, we usually consider the
protein or DNA fragment as either spherical or a rigid cylinder,

Figure 3. Reference frames which define the structural and dynamic
properties of the combined system of spin-labeled moiety and macro-
molecule. LF) lab frame, CF) cage frame, C′F ) internal director
frame, MF) internal diffusion frame, GF) g tensor frame, AF) A
tensor frame.

Ĥ ) ∑
µ)g,A

∑
l)0,2

∑
m)-l

l

∑
m′)-l

l

∑
m′′)-l

l

Âµ,L
(l,m)

Dmm′
l (ΩLM)Dm′m′′

l (ΩMG)Fµ,G
(l,m′′)* (1)

Γ̂ ) Γ̂global(ΩLC) + Γ̂internal(ΩLM) + Fglobal(-ΩC′M) +

Finternal(-ΩC′M) (2)
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which undergoes free Brownian diffusion. That is, we adopt a
rotational diffusion expression that assumes axial symmetry for
convenience. (This simplifying assumption is, of course, not
necessary, cf. ref 33). That is

Here Ĵc is equal to the vector operator that generates an
infinitesimal rotation of the probe (except for a factor-i), with
components specified in the CF. Thus, the global motion is
completely specified by two diffusion constants,R⊥

c and R|
c,

describing the wobbling and spinning motions of the “cylinder”,
respectively. To a first approximation, these constants can be
estimated from the approximate hydrodynamic expressions.45

By contrast, the internal motion is more complex in nature.
As we may recall from the introduction, the internal motion
consists of the collective and individual base motions for DNA,
or the side-chain fluctuations for a protein, as well as the spin-
label motion in both cases. In a particular experiment, one or
several modes of these motions may be monitored, and for
different modes, different models may need to be employed. A
few models have been developed in several studies on the
internal motions of DNA and of proteins, and some of them
will be mentioned below.

In most cases, the internal motion is modeled as an anisotropic
Brownian diffusion30,42

whereĴo is the infinitesimal rotation operator for the internal
motion, and the rotational diffusion tensor for this motion has
principal componentsRxx

o , Ryy
o andRzz

o . In the special case that
Rxx

o ) Ryy
o ) R⊥

o andRzz
o ) R|

o, eq 4 becomes

Now the internal motion within the macromolecule (cage) is
restricted, and this is represented by an orienting potential,
U(ΩC′M), which is assumed to take the following form

i.e., this represents internal motion relative to the preferred
orientation in the cage given by C′F. More generally we can
expandU(ΩC′M) in a complete set ofDK,M

L (ΩC′M), but eq 6 is
the simplest form consistent with the model.33 This will lead to
a set of operator expressions forFinternalandFglobal which appear
in the complete diffusion operator given by eq 2:

and

We therefore have four model parameters in the simplest case
for the internal motion: two diffusion constants describing
diffusion parallel and perpendicular to the principal internal

diffusion axis,R⊥
o andR|

o, respectively, as well as two potential
coefficients c0

2 and c2
2. (Note that c2

2 * 0 if the orienting
potential is asymmetric about the internal ordering axis). When
applied to protein systems, these model parameters describe the
side-chain reorientation. In the case of DNA, it is reasonable to
assume that the collective base motion is slower than the
individual base motions, since the former involves collective
movement of more than one base. So if the individual motion
is observed and the collective motion is in the rigid limit, then
these parameters describe the individual motion and the effect
of the collective motion can be included in the Euler angleΩCC′.
On the other hand, if the collective motion is monitored and
the individual motion is in the fast limit, then the internal motion
model describes the collective motion and the effect of the
individual motion can be accounted for by the Euler angleΩMG.

Now we would like to summarize the model parameters of
the anisotropic cage model in its simplest useful form. They
are four diffusion constants,R⊥

o, R|
o, R⊥

c , andR|
c, two potential

parameters,c0
2 andc2

2, and two polar anglesâCC′ (cage tilt) and
âMG (diffusion tilt).

3. Simplified Models at Different Motional Limits

From the above discussion, it is clear that there are at least
eight model parameters in the anisotropic cage model, if the
anisotropic diffusion model is used for the overall motion.
Furthermore, the total number of fitting parameters will become
14 when two sites are required to calculate a spectrum (cf.
section 5), since each site will have its own internal dynamics.
However, the experimental data measured under normal condi-
tions are usually too limited to uniquely determine these
parameters. One way of overcoming this problem would be to
obtain more extensive data at different magnetic fields and
frequencies, a matter we shall turn to in the next section.
However, in the past, simplified models have been introduced
to reduce the number of parameters to be fit. We consider the
main ones below and show that they are special limiting cases
of the SRLS model.

3.1. Very Slow Gobal Tumbling: MOMD Model. For a
relatively long DNA or large protein aggregate, the global
rotation of the whole body may become too slow to be observed
in an ESR experiment. As a result, we will see a static uniform
orientational distribution of the cylinders, so that the Euler angles
ΩLC′ ) ΩLC + ΩCC′, become time independent. Thus, the
internal motion can be defined with respect to the internal
ordering frameC′, which is now fixed in the lab frame for each
local site in the sample. Thus

This Hamiltonian defines the MOMD model (cf. section I) for
which the internal diffusion axis is microscopically ordered
within each macromolecule but the internal ordering axis for
each macromolecule in the sample is macroscopically disor-
dered, i.e., randomly oriented in space. Now only the internal
motion contributes to the diffusion operator.41

The parameter space of this model contains only the following
five parameters for the internal motion,R⊥

o, R|
o, c0

2, c2
2, andâMG.

Γ̂global(ΩLC) ) R⊥
c Ĵc2 + (R|

c - R⊥
c )Ĵz

c2 (3)

Γ̂internal(ΩLM) ) Ĵo‚Ro‚Ĵo (4)

Γ̂internal(ΩLM) ) R⊥
oĴo2 + (R|

o - R⊥
o)Ĵz

o2 (5)

U(ΩC′M)/kbT ) c0
2 D00

2 (ΩC′M) + c2
2[D02

2 (ΩC′M) +

D0-2
2 (ΩC′M)] ≡ u(ΩC′M) (6)

Finternal) 1
2
(R⊥

o(Ĵo2u) + (R|
o - R⊥

o)(Ĵz
o2u)] -

1
4
[(R⊥

o)(Ĵ+
o u)(Ĵ•

o u) + R|
o(Ĵz

ou)2] (7)

Fglobal ) 1
2
(R⊥

c (Ĵc2u) + (R|
c - R⊥

c )(Ĵz
c2u)] -

1
4
[(R⊥

c )(Ĵ+
c u)(Ĵ•

c u) + R|
c(Ĵz

cu)2] (8)

Ĥ ) ∑
µ)g,A

∑
l)0,2

∑
m)-l

l

∑
m′)-l

l

∑
m′′)-l

l

∑
m′′′)-l

l

Âµ,L
(l,m)

Dmm′
l (ΩLC′)Dm′m′′

l (ΩC′M)Dm′′m′′′
l (ΩMG)Fµ,G

(l,m′′′)/ (9)

Γ̂ ) Γ̂internal(ΩC′M) + Finternal(ΩC′M) (10)
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3.2. Very Fast Internal Motion: FIM Model. We next
consider another motional limit, where the internal motion is
in the extreme narrowing regime, i.e., the FIM model (cf. section
1). In this limit, we cannot observe the dynamic effect of the
internal motion but only its averaging effect. This enables us
to perform an ensemble average of the spin Hamiltonian over
the internal variables. If we further assume that the internal and
the overall motions occur at different time scales, then, in a
time interval, τ, which is short compared with the global
tumbling time scale but long compared with the internal
motional time scale, i.e.,

the slower motion will appear static. In this case, an average
can be performed on the rotational transformation matrix
elementsDm′′m′′′

2 (ΩC′M), which gives one or a few time inde-
pendent order parameters. The spin Hamiltonian for the FIM
model is then given by

where the angular brackets indicate ensemble averaged quanti-
ties, (cf. below).

The number of the order parameters,〈Dm′′m′′′
2 (ΩC′M)〉 (there

are 25 of them in general) may be reduced by utilizing the
symmetries of the system. If there is at least a 3-fold symmetry
around the local director of the internal motion, i.e., C′F, then
m′′ ) 0; and if there is at least a two-fold symmetry around the
internal diffusion axis, thenm′′′ is either 0 or(2. We then have
〈Dm′′m′′′

2 (ΩC′M)〉 ) 0 unlessm′′ ) 0 andm′′′ ) 0 or (2. If, in
addition, only the polar angleâMG is needed to transform
between the M and G frames,Fµ,G

(l,m′′′′) will then depend on
|m′′′′|. Then, one would only need to define two order
parameters,

where the ensemble averages are defined in terms of the
orienting potential in eq 6,

The internal motion would be completely specified by these
order parameters,S0

2 and S2
2. The diffusion operator is only

dependent on the global dynamics, which is described byR⊥
c

andR|
c [cf. eq 3]:

The other parameters for the FIM model areâCC′ andâMG.
In a model developed by Timofeev and co-workers for protein

systems,40 the internal motion is also accounted for by two-
order parameters. However, their global motion is described by

only one diffusion constant, which implies that the protein
complex is approximated as an isotropic body. This model can
be obtained from our FIM model by setting the two global
diffusion constants equal to each other. In a closely related
dynamic model developed by Hustedt et al. for DNA systems,39

two diffusion constants are explicitly included for the global
motion, but the fast internal motion is characterized by a simple
parameter, which is a measure of the total mean-squared
amplitude of all internal motions. This parameter can be related
to the order parameterS0

2 defined in eq 14 when the the
internal motion has a small amplitude of oscillation. Thus, this
model is equivalent to our FIM model at high orienting potential.
The dynamic cylinder model used by Keyes and co-workers47

is another variant of our FIM model. However, instead of the
order parameters, the magneticg andA tensor components are
varied in a spectral simulation. The order parameter is finally
calculated from these tensor components.

3.3. FIM + Very Slow Wobbling Global Motion. For the
case of DNA, the FIM model can be simplified by the fact that
the length of a DNA helix is usually much larger than its
diameter. As a result, when the spinning motion of the cylinder
is in the slow motional region, the wobbling diffusion may be
well into the rigid limit. If we explicitly express the Wigner
rotation matrix for the global motion, we obtain the following
spin Hamiltonian

Here the polar angleâLC, is now time independent, and a static
averaging should be performed on it. On the other hand, the
azimuthal angleγLC is modulated by the spinning motion, and
its time evolution is governed by a new diffusion operator

We are then left with five model parameters:R|
c, S0

2, S2
2, âCC′

andâMG.
3.4. The Averaged Hamiltonian Model: MOMD + FIM.

In this early model of McConnell and co-workers (cf. section
1) the global motion is assumed to be so slow that it is in the
rigid limit, whereas the internal motion is so fast that it simply
leads to partial averaging of the spin Hamiltonian. That is, we
obtain the following time independent spin-Hamiltonian:

Thus only the order parametersS0
2 andS2

2 need to be specified,
and they are the same as those in the FIM model.

3.5. The Very Anisotropic Rotation (VAR) Model

The VAR model proposed by Mason et al.46 corresponds to
the SRLS model wherein the internal motion is so strongly
coupled to the cage that we can assume the orienting potential
coefficient ofD00

2 (ΩC′M) in eq 6 becomes extremely large (i.e.
c0

2 f ∞). Also for simplicity one letsR|
c ) R⊥

c . Then the overall

Ĥ ) ∑
µ)g,A

∑
l)0,2

∑
m)-l

l

∑
m′)-l

l

∑
m′′)-l

l

∑
m′′′)-l

l

Âµ,L
(l,m)

dmm′
l (âLC)exp(-m′γLC)Dm′0

l (ΩCC′)Sm′′
2 Dm′′m′′′

l (ΩMG)Fµ,G
(l,m′′′)*

(17)

Γ̂ ) R|
c Ĵz

c2 (18)

Ĥ ) ∑
µ)g,A

∑
l)0,2

∑
m)-l

l

∑
m′)-l

l

∑
m′′)-l

l

∑
m′′′)-l

l

Âµ,L
(l,m)

Dmm′
l (ΩLC′)〈Dm′m′′

l (ΩC′M)〉Dm′′m′′′
l (ΩMG)Fµ,G

(l,m′′′)* (19)

τglobal . τ . τinternal (11)

Ĥ ) ∑
µ)g,A

∑
l)0,2

∑
m)-l

l

∑
m′)-l

l

∑
m′′)-l

l

∑
m′′′)-l

l

∑
m′′′′)-l

l

Âµ,L
(l,m)

Dmm′
l (ΩLC)Dm′m′′

l (ΩCC′)〈Dm′′m′′′
l (ΩC′M)〉Dm′′′m′′′′

l (ΩMG)Fµ,M
(l,m′′′′)*

(12)

S0
2 ) 〈D00

2 [ΩC′M(t)]〉 (13)

S2
2 ) 〈D02

2 [ΩC′M(t)]〉 + 〈D0-2
2 [ΩC′M(t)]〉 (14)

〈D0n
2 [ΩC′M(t)]〉 )

∫ dΩD0n
2 (Ω) exp[c0

2 D00
2 (Ω) + H2c2

2ReD02
2 (Ω)]

∫ dΩ exp[c0
2 D00

2 (Ω) + H2c2
2ReD02

2 (Ω)]
(15)

Γ̂ ) Γ̂global(ΩLC) (16)
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diffusion operator of eq 2 takes on the following simple form:

Also, in this case the form of the spin Hamiltonian given by eq
1 is used directly. Here, only the diffusion parametersR|

o and
R⊥

c and the tilt angleâMG are needed, when onlyâMG is
sufficient to determineΩMG.

The base disk model used by Keyes et al.47 is a simple variant
of the VAR model. It considers the spin-labeled base as the
diffusion system rather than the DNA helix. The principal

diffusion axis coincides with the bond connecting the spin label
to the base and tilts from the magnetic principal axis by a static
angle. The model treats the diffusion process as an anisotropic
body rotating in an isotropic environment. The two diffusion
rates represent all motions contributing to the motion of the
labeled base including the global tumbling.R⊥

c in eq 21

Figure 4. 9 GHz theoretical spectra: (a) Comparisons between SRLS
(solid line), MOMD (dashed), and FIM (dotted line) models, using the
parameters listed in Table 1. (b) NLLS fits of MOMD (dashed line)
and FIM (dotted line) models to simulated SRLS spectra (solid line).
The best fit parameters are given in Table 2.

TABLE 1: Magnetic Tensor Parameters

xx yy zz

g 2.0096 2.0067 2.0028
A (gauss) 7.47 7.21 36.3

f0 (GHz)a 9.786 94.696 249.721
B0 (gauss)b 3495 33820 89186

a f0 gives the exact values of the resonance frequency that is
nominally given as 9, 95, or 250 GHz.b B0 corresponds to the center
field (g ) 2.002 31) for the respective Larmor frequencies.

Γ̂ ) Γ̂internal) R|
o Ĵz

o2 + R⊥
c Ĵo2 (20)

Figure 5. 250 GHz theoretical spectra: (a) Comparisons between
SRLS (solid line), MOMD (dashed) and FIM (dotted line) models, using
the parameters listed in Table 1. (b) NLLS fits of MOMD (dashed
line) and FIM (dotted line) models to simulated SRLS spectra (solid
line). The best fit parameters are given in Table 3.

TABLE 2: MOMD and FIM Fitting Parameters to a SRLS
Simulated 9 GHz Spectrum

model
R⊥

c ) R|
c ×

10-7 (s-1)
R⊥

o ) R|
o ×

10-8 (s-1) c0
2 S0

2 W1 (G)

SRLS 1 1 3 (0.61) 2
MOMD 0.53 1.6 (0.36) 1.4
FIM 2.6 0.89 1.1

TABLE 3: MOMD and FIM Fitting Parameters to a SRLS
Simulated 250 GHz Spectrum

model
R⊥

c ) R|
c ×

10-7 (s-1)
R⊥

o ) R|
o ×

10-8 (s-1) c0
2 S0

2 W1 (G)

SRLS 1 1 3 (0.61) 2
MOMD 0.99 2.83 (0.58) 1.9
FIM 16.3 1.0 54.8
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includes the effect of all motions, except for the internal motion
of the N-O bond, which is given byR|

o.

4. Theoretical Simulations

We have described the SRLS model and a few simplified
models derived from it in different motional limits. These
limiting models contain fewer model parameters and thus require
less experimental “resolution” to extract dynamic and structural
information about the systems under investigation. However,
certain limiting criteria must be fulfilled for these simplified
models to yield reliable information. In this section, we will
compare the various models presented in this work and consider
the consequences of an improper use of the limiting models.
The precise frequencies and their associated center magnetic
fields (for g ) 2.00231) as well as the magnetic tensor
components used in this section are listed in Table 1.

Let us first provide a “test” of the effects of utilizing an
oversimplified model. That is, we shall assume that a SRLS
model is the correct one and utilize some spectra simulated with
the SRLS model as the reference. We shall then attempt to
obtain best fits (in a least squares sense) to these spectra using
the two simpler models: MOMD and FIM. We shall attempt

to see if a limiting model might be satisfactory. By comparing
results obtained at a low frequency (9 GHz) with those obtained
at a high frequency (250 GHz), we wish to see to what extent
the simultaneous use of these two frequencies can resolve
ambiguities and inaccuracies that would exist if only a single
frequency were used.

In Figure 4a, we compare the theoretical 9 GHz ESR spectra
of the SRLS, MOMD, and FIM models, using the following
parameters:R⊥

o ) R|
o ) 108 s-1, R⊥

c ) R|
c ) 107 s-1, c0

2 ) 3 (
S0

2 ) 0.605),âCC′ ) 0, âMG ) 0, and a Lorentzian line widthW
) 2 G. This corresponds to a case in which the internal rotations
are fairly (but not very) fast, the overall motion is an order of
magnitude slower, and there is substantial internal ordering. It
can be seen from the figure that, for the given set of parameters,
the FIM model, while it does not give a very good fit, does
gives a better approximation to the SRLS model than does the
MOMD model.

We now perform two nonlinear least-squares (NLLS) fits to
the SRLS spectrum with the MOMD and FIM models respec-
tively, as though they were each the correct model. As Figure
4b indicates, reasonable, but not perfect, fits are obtained in
both cases, but with the high field line being better reproduced

Figure 6. Comparison between SRLS (solid) and MOMD (dashed) models.c0
2 ) 3, W ) 2 G, âCC′ ) 0, R⊥

o ) 1 × 108 s-1, R|
o ) 1 × 109 s-1. The

other parameters are (a) 9 GHz:R⊥
c ) 1 × 107 s-1, R|

c ) 5 × 107 s-1. (b) 250 GHz: parameters are the same as those in (a). (c) 9 GHz:R⊥
c ) 1

× 106 s-1, R|
c ) 5 × 106 s-1. (d) 250 GHz: parameters are the same as those in (c).
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by the FIM model and the low field line better represented by
the MOMD model. The best fit parameters are listed in Table
2. We find the following: (i) The FIM model overestimates
the order parameter and underestimates the size of a DNA or
protein complex (i.e., itsRc is too large). Since the internal
motion is assumed to be in the fast limit, the FIM model with
the correct parameters produces narrowed lines, as shown in
Figure 4a. This is compensated for by reducing the effect of
the fast averaging in the only way that the FIM model is capable
of, i.e., by increasing the order parameter from 0.61 to 0.89. In
addition, is was necessary to increase the global tumbling rate
somewhat. (Note that we constrainedR⊥

c ) R|
c for simplicity).

(ii) By contrast, the MOMD model predicts a lower ordering
and a slower internal dynamics than the correct values. This is
due to the extremely slow global motion assumed in the MOMD
model, which tends to make the line shapes more like the rigid
limit, compared with the SRLS spectrum where the global
motional rate is 107 s-1 (Figure 4a). To fit the SRLS spectrum,
the order parameter has been reduced from 0.61 to 0.36 by the
MOMD model. This reduces the effect of the rigid-limit
assumption for the global motion. The internal dynamics has

been slowed down by a factor of about 2, since it must partly
compensate for the global motion that was not included.

A similar comparison is also made between SRLS, MOMD
and FIM models at 250 GHz, with the corresponding model
parameters given in Table 3. As displayed in Figure 5a, the
spectra from SRLS and MOMD models using the same
parameters show good agreement except in the high field region,
but the FIM model provides a very poor fit. This is just the
opposite of the situation for 9 GHz. A NLLS fit to the SRLS
spectrum using the MOMD model did not significantly improve
the agreement between the spectra from the two models (Figure
5b and Table 3). This result indicates that a global motion of
107 s-1 is already in the rigid limit with respect to the 250 GHz
ESR time scale. On the other hand, the FIM model gives a
spectrum, which is so different from that from the SRLS model
that it even failed to reproduce the SRLS spectrum in a NLLS
fit (cf. Figure 5b and Table 2). In other words, for motional
rates relevant to DNA or protein systems, the SRLS model can
be well represented by the simpler MOMD model at 250 GHz.
In the recent study on spin label lysozyme,7 this feature was
utilized in order to effectively separate the motions of different

Figure 7. Comparison between SRLS (solid) and FIM (dashed) models.c0
2 ) 3, W ) 2 G, âCC′ ) 0, R⊥

c ) 1 × 107 s-1, R|
c ) 1 × 108 s-1. The

other parameters are (a) 9 GHz:R⊥
o ) 1 × 108 s-1, R|

o ) 1 × 109 s-1. (b) 250 GHz: parameters are the same as those in (a). (c) 9 GHz:R⊥
o ) 1

× 109 s-1, R|
o ) 1 × 1010 s-1. (d) 250 GHz: parameters are the same as those in (c).
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time scales. That is, from MOMD fits to the 250 GHz
experimental spectra, reliable parameters were produced for the
internal motions. Then these internal motional parameters were
employed in a full SRLS model fit to the 9 GHz spectra to
yield the global tumbling rate.

More generally, we see that the high frequency spectra
provide better sensitivity to the faster motions (e.g., the internal
motion), whereas in the low frequency spectra they are nearly
averaged out, but these latter spectra then provide the greater
sensitivities to the slow motions (e.g., the global tumbling
motion). Given the limited resolution of the EPR spectra, they
allow for ambiguity in the fitting model (especially at low
frequency, cf. Figure 4b). However this example implies that,
when fit simultaneously, low frequency and high frequency
spectra can provide the information needed to fit a model as
complex as the SRLS model.

We next wish to estimate the dynamic range over which the
MOMD result is a good approximation to the SRLS result for
both 9 and 250 GHz. This is shown in Figure 6 where we
compare MOMD results to SRLS results using the same
parameters. We see from Figure 6c, for the case of 9 GHz ESR,
that whenR⊥

c andR|
c are 1 and 5× 106 s-1, respectively, the

motion has already slowed down sufficiently that the SRLS
result is roughly approximated by the MOMD result; however

for R⊥
c andR|

c appreciably greater than this (e.g., 1 and 5× 107

s-1 respectively, cf. Figure 6a), then MOMD is a very poor
approximation to SRLS. However, for 250 GHz the MOMD
limit is a reasonable approximation even with substantial global
motion (cf. Figure 6b and Figure 5a).

In Figure 7, we have an analogous comparison between the
FIM result and the SRLS result. Here we compare results for a
range of large values ofR⊥

o andR|
o to see when the FIM model

approximates the SRLS result. In Figure 7a and b, we use values
of 0.1 and 1× 109 s-1 respectively, which are already quite
fast. Neither the 9 GHz nor the 250 GHz spectra show
satisfactory agreement. The FIM model is not an acceptable
approximation in either case. However, whenR⊥

o and R|
o are

both increased by 1 order of magnitude, the 9 GHz SRLS
spectrum (cf. Figure 7c) is very well approximated by the FIM
model (see also Figure 4a for somewhat different values),
although for 250 GHz (cf. Figure 7d) SRLS is poorly ap-
proximated by the FIM model. One must increaseR⊥

o andR|
o

by additional order of magnitude for the FIM model to yield a
rough approximation to the corresponding 250 GHz SRLS
spectrum (not shown).

In addition, by comparison of Figures 6 and 7, in which
anisotropic (but axially symmetric) diffusion has been intro-

Figure 8. 9 GHz SRLS model simulations (solid,âCC′ ) 0; dashed,âCC′ ) 90). c0
2 ) 3, W ) 2 G. The other parameters are (a)R⊥

c ) 1 × 107 s-1,
R|

c ) 1 × 108 s-1, R⊥
o ) 5 × 109 s-1, R|

o ) 1 × 1010 s-1. (b) R⊥
c ) 1 × 107 s-1, R|

c ) 5 × 107 s-1, R⊥
o ) 5 × 109 s-1, R|

o ) 1 × 1010 s-1. (c)
R⊥

c ) 1 × 107 s-1, R|
c ) 1 × 108 s-1, R⊥

o ) 1 × 108 s-1, R|
o ) 1 × 109 s-1. (d) R⊥

c ) 1 × 106 s-1, R|
c ) 5 × 106 s-1, R⊥

o ) 1 × 108 s-1, R|
o ) 1

× 109 s-1.
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duced, with Figures 4a and 5a for isotropic diffusion, we can
note the sensitivity to anisotropy in diffusion. First, a comparison
of Figure 6a with Figure 4a shows just a small change in both
the predicted 9 GHz SRLS and MOMD spectra by increasing
N c ≡ R|

c/R⊥
c from 1 (Figure 4a) to 5 (Figure 6a) andN o ≡ R|

o/
R⊥

o from 1 to 10. On the other hand, a comparison of Figure 6b
with Figure 5a shows a much more substantial spectral change
at 250 GHz for the same change inN c andN o. Since Figure
6b is already close to the MOMD limit, we may safely conclude
that this is mainly due to the increase inR|

o that yieldedN c )
5. This indicates that the 250 GHz spectra will be more sensitive
to anisotropy in the internal dynamics than the 9 GHz spectra.
In addition, a comparison of the SRLS spectra in Figures 6a
and 7a for 9 GHz vs. Figures 6b and 7b for 250 GHz shows
that whenN c increases from 5 to 10, there is a noticeable change
in the 9 GHz spectrum, but the 250 GHz spectrum is virtually
unchanged. This indicates that the 9 GHz spectra will be more
sensitive to anisotropy in the overall motional dynamics. This
is, of course the expected result, since the 250 GHz spectra are,
in general, insensitive to all aspects of the overall motional
dynamics.

We now introduce a cage tiltâCC′ into the SRLS model and
address the issue of the ability to distinguishâCC′. We do this
for the three frequencies: 9, 95, and 250 GHz. In Figure 8 we

show the results for 9 GHz. Case a is forR⊥
c ) 1 × 107 s-1, R|

c

) 1 × 108 s-1, R⊥
o ) 5 × 109 s-1, R|

o ) 1 × 1010 s-1, i.e.,
rather fast motions. In case b,R|

c drops by a factor of 2 from
case a to 5× 107 s-1. In case cR⊥

o andR|
o drop by factors of 50

and 10, respectively, from case a toR⊥
o ) 1 × 108 s-1 andR|

o

) 1 × 109 s-1, whereas in case dR⊥
c andR|

c drop by factors of
10 and 20 respectively from case a toR⊥

c ) 1 × 106 s-1 andR|
c

) 5 × 106 s-1. In case a we observe significant differences
between theâCC′ ) 90° and 0°cases. In case b, the modest
drop in R|

c reduces these differences somewhat, undoubtedly
because the ratioR|

c/R⊥
c is reduced [recall that, asR|

c/R⊥
c

approaches one, i.e., isotropic global tumbling, cage tilt should
have no effect on the spectrum]. Note, however, from case c
that a large drop inR|

o andR⊥
o also tends to reduce the effect of

âCC′. When bothR|
c and R⊥

c become very small, i.e., case d,
then SRLS is approaching the MOMD limit, wherein the
spectrum must become independent ofâCC′, as confirmed in
Figure 8d.

In Figure 9 for 95 GHz and 10 for 250 GHz we see the same
cases a-d illustrated. When we compare the respective case
a’s, we observe substantial differences betweenâCC′ ) 0° and
90° for all frequencies, but they are somewhat reduced at 250
GHz. We attribute this to the fact that the high frequency

Figure 9. 95 GHz SRLS model simulations (solid:âCC′ ) 0; dashed,âCC′ ) 90). The parameters are the same as in Figure 8.
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spectrum at 250 GHz is closer to the MOMD limit, which
suppresses sensitivity toâCC′, as we have seen. This reduced
resolution toâCC′ at the high frequencies is seen for the case b
series where theR|

c/R⊥
c anisotropy ratio is reduced by a factor

of 2. However, the large reductions inR|
o andR⊥

o also suppress
the sensitivity toâCC′, especially at the higher frequencies.
Finally, the MOMD limit is reached at all frequencies for case
d. Clearly, a sensitivity toâCC′ requires first and foremost that
R|

c/R⊥
c * 1, but also that the spectrum not be near the MOMD

limit, and this is made more probable by using low fre-
quencies. In addition, slow internal motions also appear to mask
this sensitivity, as the spectrum approaches the rigid limit.
Actually, one does not have to be very close to the rigid limit
for the loss of sensitivity toâCC′. In fact, if one decreases the
values ofR⊥

o andR|
o from those for case d, each by a factor of

10, the spectra are still not close the rigid-limit (cf. Figure 11).
Thus, the best way to enhance sensitivity toâCC′ would be to
increase the temperature to produce faster motional rates in
general.

The SRLS and the related simplified models presented in this
work have been applied to a protein system7 and some DNA
systems.8 For the protein system (T4 lysozyme), since the overall
rotational diffusion rate was found to be too slow to significantly
affect the 250 GHz ESR spectra (R⊥

c ≈ R|
c ≈ 1 × 107 s-1), the

MOMD model was employed to analyze the 250 GHz data to
yield dynamical information for the internal motion [R⊥

o ≈ (2-
4) × 108 s-1, R|

o ≈ 107-108 s-1 and c0
2 ∼ 4 and 1.5 for

different species]. However, in the slower “time scale” of the 9
GHz ESR experiment, the overall rotational diffusion had to
be accounted for in the spectral analysis as noted above. This
was accomplished by using the SRLS model. In this way a
simultaneous fit was successfully obtained for both 9 GHz and
250 GHz ESR spectra. For the DNA systems, since the 250
GHz ESR data was not available, a different approach was
adopted. The overall diffusional rates were determined using
the hydrodynamic theory and fixed in the 9 GHz ESR spectral
analysis. Since the overall tumbling is both anisotropic and in
the slow motional regime with respect to the 9 GHz ESR time
scale [R⊥

c ≈ (0.1-1.5)× 107 s-1, R|
c ≈ (0.1-3.6)× 107 s-1],

the anisotropic SRLS model with the cage tiltâCC′ had to be
used to obtain reliable internal dynamics [R⊥

o ≈ 106-108 s-1,
R|

o ≈ 108-1010 s-1 andc0
2 ∼ 0.8-3.0,âCC′ ≈ 90].

5. Summary and Comments

By means of spectral simulations of nitroxide spin label
spectra at low and high frequencies, we have confirmed the fact
that ESR at high frequencies will be more sensitive to the faster
dynamics that may well be averaged out at lower frequencies,

Figure 10. 250 GHz SRLS model simulations (solid,âCC′ ) 0; dashed,âCC′ ) 90). The parameters are the same as those in Figure 8.
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whereas ESR at lower frequencies will be more sensitive to the
slower dynamics that may well be frozen out at higher
frequencies. A multifrequency study thus has the advantage of
enabling one to decompose the dynamic modes into respective
components acting on different time scales. In addition,
examples were provided to show how individual spectra may
be fit to oversimplified models due to their limited resolution
to the dynamics, but this ambiguity can be removed by
simultaneously utilizing spectra at different frequencies. Nev-
ertheless, under certain limiting conditions, more general models
such as the SRLS (or dynamic cage) model studied in this work
will legitimately reduce to simpler models with fewer param-
eters, e.g., when the overall tumbling of the macromolecule is
very slow, the MOMD model becomes satisfactory, especially
for high frequency ESR spectra, and when the internal modes
of motion are very fast, then the FIM model becomes satisfac-
tory, especially for low frequency ESR spectra. While these
limits may be useful for fitting individual ESR spectra, they in
no way reduce the need for a multifrequency ESR study to
obtain all the relevant dynamic (e.g., the diffusion coefficients),
ordering (e.g., ordering parameter) and orientational (e.g.,
âCC′ and âMG) parameters for the various relevant modes of
motion.

In addition to the reasons described in the previous paragraph
for a multifrequency approach, there are indeed many subtle
aspects requiring it. One that we studied in detail in this work
is a determination of the cage tilt angleâCC′, associated with
the internal motion, which is possible to accomplish only when
R|

c/R⊥
c is sufficiently different from unity. One may use high

frequency ESR to freeze out the global motion, as we have seen,
in order to more clearly study the internal motions, but it will
also remove any effects ofâCC′ on such spectra. Low frequency
ESR would then be required to obtain this important parameter,
which gives the orientation of the principal axis of internal
motion relative to the principal axes of the biomolecule.

The analysis in the paper treated the internal modes of motion
in a rather simple manner, i.e., by means of the parameters:
R|

o, R⊥
o, c0

2, c2
2, andâCC′. Just as it was possible to decompose

the fast internal modes from the slower global tumbling by virtue
of their different time scales by utilizing a multi-frequency ESR
approach, one may expect that by extending the models used
and by employing a range of several ESR frequencies, it should
be possible to decompose the internal modes of motion into
components acting over sufficiently different time scales. In
spin-label work, one wishes at the very least to separate the

Figure 11. Comparison between SRLS (solid,âCC′ ) 0; dashedâCC′ ) 90; note that they are nearly identical) and rigid limit (dotted) models.c0
2

) 3, W ) 2 G, R⊥
o ) 1 × 107 s-1, R|

o ) 1 × 108 s-1, R⊥
c ) 1 × 106 s-1, R|

c ) 5 × 106 s-1. (a) 9 GHz, (b) 95 GHz, (c) 250 GHz.
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internal motion of the spin-label from the internal modes
characteristic of the biomolecule. One simple approach for
dealing with this is to use a spinning diffusion coefficientR|

int

to represent this spin-label motion, withR⊥
o playing the role of

the composite of the other internal modes. This model assumes
that the spin-label motion and other modes of internal motions
are decoupled from each other and can be treated as independent
processes.48 However, a further decomposition of the other
internal modes would still be desirable.49

We have so far not considered the case of two-site jumps, in
which the internal diffusion axis jumps between two nonequiva-
lent sites, each site having different orientation. This model has
been employed in NMR relaxation studies of DNA systems. If
the exchange rate between the two sites is too slow compared
with the ESR time scale, the ESR line shape would be a
superposition of the contributions from the two sites. These sites
may have different dynamics, which are described by different
model parameters. The general case in which the exchange rate
is fast enough to affect the ESR line shape is a complex one,
especially in the slow motional regime. In principle, it would
be necessary to write a separate SLE for each site, which would
include the respective diffusion operator for each site, as well
as an exchange term between them.

In conjuction with the ESR approach discussed in this paper,
one would want to utilize structural models to infer how the
projections of the “characteristic” internal modes affect the local
motion of the labeled residue, and this needs to be studied as a
function of the different labeled sites. Whereas this would be a
complex and tedious challenge, it could well lead to a detailed
mapping of the dynamic structure of the macromolecule.

Finally, we note that time domain ESR, such as 2D-FT-ESR,
has the capacity to look directly at relaxation processes, and
unlike cw-ESR can distinguish between homogeneous broaden-
ing, which reports on dynamics, and inhomogeneous broadening,
which often reports on microscopic ordering. More powerful
multifrequency ESR approaches should ultimately emanate from
such technologies.
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(49) In the spirit of the present SRLS model we can illustrate how one

may begin to accomplish this. That is, one can try to employ a fast internal
motional limit for the nitroxide internal motion for the low frequency ESR
spectra. After averaging over this motion, then the full SRLS model may
be employed to yield bothR⊥

o and R|
o for the “characteristic” internal

modes, assumed to be slower. The analysis of the high frequency ESR
spectra on the same system could be simplified if the global motion is slow
enough to have been frozen out. One must then perform a MOMD-like
averaging over all orientations of the macromolecule, but the SRLS model
could still be used such thatR⊥

c andR|
c of the SRLS model now represent

the “characteristic” internal modes, whereasR⊥
o and R|

o represent the
internal nitroxide motion. Despite the different usages of the SRLS model
for the low and high frequency spectra, these spectra could still be
simultaneously analyzed to provide a decomposition in terms of three time
scales. One would, of course, be advised to use more than one high
frequency and low frequency ESR spectrum. In this spirit, generalizations
to more complex cases may be readily conceived.
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