
Mode-Coupling SRLS versus Mode-Decoupled Model-Free N-H Bond Dynamics:
Mode-Mixing and Renormalization

Eva Meirovitch,* ,† Yury E. Shapiro,† Zhichun Liang,‡ and Jack H. Freed*,‡

Faculty of Life Sciences, Bar-Ilan UniVersity, Ramat-Gan 52900, Israel, Baker Laboratory of Chemistry and
Chemical Biology, Cornell UniVersity, Ithaca, New York 14853-1301

ReceiVed: April 28, 2003; In Final Form: June 20, 2003

The common approach to N-H motion in proteins is model-free (MF), where the global (RC) and local (RL)
motions are assumed decoupled. We have recently applied to N-H bond dynamics the slowly relaxing local
structure (SRLS) model, which accounts rigorously for mode-coupling. The original and extended MF formulas
are perturbational expansions of SRLS with respect to the local ordering, (S0

2)2, whenRL . RC. Their functional
form, number of terms equal to the number of dynamic modes, is implied by mode-decoupling, and the free
diffusion eigenvalue, 1/τ ) 6RL, by the absence of strong-potential-induced renormalization. However, for
N-H motion, (S0

2)2 is high and in the extended MF regimeR⊥
L ≈ RC. Although the functional form of the

original MF formula is largely valid forRC/RL e 0.01 and (S0
2)2 g 0.8, τe MF represents the significantly

reduced potential-dependent renormalized value ofτ. Hence, the application of this formula to calculate NMR
variables is appropriate in this parameter range, but associatingτe with the local motion correlation time is
inappropriate. Means to deriveτ from τe are provided. For a cosine squared potential, the cone-model-based
MF formula that relatesτe to τ can also be used. Derivingτ from τe is important for proper characterization
of the site-specific local motion and in the context ofτ-dependent MF functionalities. Mode-coupling dominates
the extended MF regime where SRLS must be invariably used. Eigenmode and spectral density analysis is
provided in this study for the two parameter ranges associated with N-H bond motion.

Introduction

NMR spin relaxation in proteins1-3 is commonly analyzed
with the model-free (MF) approach.4-6 The spin-bearing entities
are attached physically to the protein, engaging in both local
and global motion. MF assumes that these dynamic modes are
decoupled and treats simplified geometric situations. In a recent
study,7 we applied the two-body slowly relaxing local structure
(SRLS) approach developed by Freed and co-workers8,9 to 15N-
1H relaxation. SRLS accounts rigorously for coupling between
the local and global motions and treats the global diffusion (RC),
the local diffusion (RL), the local ordering (S) related to the
coupling potential, and the magnetic interactions as asymmetric
tensors of arbitrary orientation, providing thereby important
information related to protein structure.10-12 SRLS can be
considered the generalization of MF. Previous studies7,13,14

indicated that the experimental data are sensitive to the
enhancements inherent in SRLS.

SRLS yields MF in a perturbational approach with respect
to the local ordering in theRL . RC limit.15,16 Dynamical
decoupling requires both separating the time scales and render-
ing the potential very weak. The original MF formula is obtained
for parallel axial ordering (S0

2) and isotropicRL.15 The extended
MF formula is obtained for rhombic ordering (S0

2 andS2
2) and

axial RL.16 These perturbational expansions consist of two (in
the original MF regime) and three (in the extended MF regime)

terms featuring free diffusion eigenvalues. The functional forms
of the perturbational spectral densities are implied by the absence
of mode-coupling. The free-diffusion eigenvalues for local
motion are implied by the absence of the renormalization
phenomenon, which becomes important in the limit ofRL .
RC when the local potential is high.17,18Renormalization reduces
τ significantly in accordance with the magnitude (and shape)
of the potential. For N-H bond motion, the local potential is
typically high and the ratesR⊥

L andRC are comparable in the
extended MF regime. Hence, the conditions underlying the
validity of the perturbational spectral densities are not fulfilled.
Renormalization dominates the original MF regime, and mode-
coupling dominates the extended MF regime. Pertinent implica-
tions are elucidated in this study based on comparative
examination of eigenvalues, associated weighting factors, and
spectral densities.

The functional form of the original MF formula is found to
be a good approximation of the SRLS spectral density forRC/
RL e 0.01 and (S0

2)2 g 0.8, as mode-coupling effects are
relatively small. On the other hand, the effective correlation
time τe MF represents the renormalized value ofτ. Means to
deriveτ from τe are provided. The retrieval of the free-diffusion
correlation time,τ, is important for meaningful characterization
of the dynamic properties of the various N-H sites and in the
context of local-motion-dependent functionalities. Currently, this
is not done. Renormalization reducesτ severalfold,18 with
significant implications to the results of data fitting.7,13,14The
use ofT1/T2 as a criterion for identifying rigid spins,19,20 and
the determination of the range of validity of the reduced spectral
density approach,21,22 may be also affected by usingτe instead
of τ.
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The functional form of the extended MF formula6 is shown
to be a very poor approximation to the SRLS spectral density.
In the extended MF regime, SRLS must be invariably used.

In summary, the MF formulas are presented in this study as
perturbational SRLS expansions with their validity range
exceeded when applied to N-H bond motion. The consequences
of renormalization dominating the original MF regime, and
mode-coupling the extended MF regime, are investigated with
a detailed analysis of eigenmodes and spectral densities.

Theoretical Background

General Form of SRLS. Please see the subsection “ηxy in
the SRLS Approach” in the Theoretical Background section of
ref 23.

MF Formulas as Perturbational SRLS Expansions.For RL

. RC and simplified geometric cases, the SRLS spectral density
yields the MF formulas in a perturbational approach with respect
to the local ordering.15,16 For isotropicRC, collinear CSA and
DD frames and axial ordering it was shown15 that

with CK(t) denoting the components of the time correlation
function. BecauseRL is also approximated as isotropic, only
theK ) 0 component contributes, withτ ) τ0 ) τ⊥ ) τ|. C1 is
associated with the freely diffusing local mode,C2 is the
pertubational correction associated with the global mode, and
C3 is the perturbational correction toC1, reflecting the statistical
dependence between the global and local motions.15 Fourier
transformation leads to

This expression forJ(ω) is formally analogous to the original
MF formula,4,5 with the effective MF correlation time for
internal motion,τe, corresponding toτ0 and the MF squared
generalized order parameter,S2, to (S0

2)2. Note, however, that
τ0 is a free diffusion correlation time, whereasτe is an effective
correlation time. This will be discussed in detail in the following.
An earlier approach to this was discussed by Polnaszek and
Freed.18

Lin and Freed16 extended this treatment to asymmetric
ordering, wherein both principal values of the irreducible tensor
S, S0

2 andS2
2, enter the calculation.RL was considered to be

axially symmetric, with all three componentsK ) 0, 1, and 2
of eq 1 contributing. Fourier transformation of eq 1 yields

The spectral densityJx(ω) (cf. eq 11 of ref 23) (it is assumed
here that the15N CSA tensor is axially symmetric and collinear
with the dipolar15N-1H tensor, hence x) cc ) dd ) cd) is
given by

Let us assume thatâMD ) 90°. In this case

and by substitutingjK)0(ω) and jK)2(ω) from eq 3 into eq 5,
one obtains

This is formally analogous to the extended MF formula6 with
τs corresponding toτ0 and τf to τ2. The squared generalized
order parametersSs

2 andSf
2 are given by linear combinations

of (S0
2)2 and (S22)2.

Renormalization ofτ by Strong Local Potentials.Renormal-
ization was studied previously by Freed et al.17,18in the context
of a spin-bearing particle reorienting in a strong static potential
exerted by a locally ordered medium. This model is analogous
to the limiting case of SRLS, and the original MF approach,
whereRL . RC implies a global diffusion axis,C, that reorients
only over a much longer time scale. It was shown17,18 that for
a highly ordered prolate top the relaxation of a nonequilibrium
orientation happens by the molecularzaxis (ZM in SRLS) being
rapidly restored to the directorz axis (C in SRLS). The
respective correlation time, denotedτren in the following, is given
by18

This result for frozen global motion can be employed in the
present case by using a Born-Oppenheimer type approximation
where one first solves for the fast local motion for frozen global
motion.18 The SRLS analysis accounts automatically and
rigorously for this renormalization. In theRL . RC limit, the
SRLS spectral density comprises a main local motion term with
weighting factor close to [1- (S0

2)2] (see below). We found
that its eigenvalue, denoted 1/τren_SRLS, is in agreement with 1/τren

given by eq 7 as shown in Table 1. The error implied by using
eq 7 does not exceed 6.5% for (S0

2)2 g 0.8 andRC/RL e 0.01.
The original MF formula is given by4

where 1/τe′ ) 1/τe + 1/τm ≈ 1/τe. The effective correlation time
τe is defined as the area of the local motion correlation function
divided by [1 - S2], assumingτe is in the extreme motional
narrowing limit.4 Hence, by definition,τe MF represents
τren_SRLS. It was pointed out previously4 that τe can be related
to the diffusion rate for local motion and the generalized order
parameter,S2, within the framework of a particular model. The
relation for the diffusion-in-a-cone model is given by eq A4 of
ref 4. Table 1 shows 1/τe(cone) in units of the diffusion-in-a-
cone rateD, along with 1/τren and 1/τren_SRLSin units of RL. It

CK(t) ) CK
1(t) + CK

2(t) + CK
3(t) (1)

J(ω) ) jK)0(ω) ) τ0/(1 + ω2τ0
2) + (S0

2)2τm/(1 + ω2τm
2) -

(S0
2)2τ0/(1 + ω2τ0

2) (2)

jK(ω) ) τK/(1 + ω2τK
2) + (SK

2)2[τm/(1 + ω2τm
2) -

τK/(1 + ω2τK
2) (3)

Jx(ω) ) [d00
2(âMD)]2 jK)0(ω) + 2[d01

2(âMD)]2 jK)1(ω) + 2

[d02
2(âMD)]2 jK)2(ω) ) (1.5 cosâMD - 0.5)2 jK)0(ω) +

3 sin2 âMD cos2 âMD jK)1(ω) + 0.75 sin4 âMD jK)2(ω) (4)

Jx(ω) ) 0.25jK)0(ω) + 0.75jK)2(ω) (5)

TABLE 1: Renormalized Eigenvalues [(S0
2)2 and RC/RL,

Input Values]

(S0
2)2 RC/RL 1/τe(cone)

a 1/τren
b 1/τren_SRLS

c

0.96 112.6 153.0
0.90 0.01 51.2 59.4 58.2
0.85 0.01 32.3 39.6 37.2
0.80 0.01 24.4 29.4 27.6

a Effective MF rate for the diffusion-in-a-cone model calculated with
eq A4 of ref 4, in units of the diffusion rateD. b Renormalized value
of τ calculated with eq 7, in units ofRL. c Renormalized eigenvalue of
the dominant local motion term in the SRLS spectral density, in units
of RL.

Jx(ω) ) [0.25(S0
2)2 + 0.75(S2

2)2]τm/(1 + ω2τm
2) +

0.25[1- (S0
2)2] τ0/(1 + ω2τ0

2) + 0.75[1- (S2
2)2]τ2/

(1 + ω2τ2
2) (6)

τren ) 1/(3c0
2RL) (7)

J(ω) ) jK)0 (ω) ) S2 τm/(1 + ω2τm
2) + [1 - S2] τe′/

(1 + ω2τe′
2) (8)
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can be seen that corresponding 1/τe and 1/τren ≈ 1/τren_SRLS

values are similar in magnitude, in agreement with the definition
of τe. It appears that diffusion-in-a-cone is a good approximation
for Brownian motion in a cosine squared potential forRL .
RC and high (S0

2)2. Thus,τ can be derived fromτe after fitting
using eq 7 above or eq A4 of ref 4, to overcome the fact that
the MF calculation does not account for renormalization.

Results and Discussion

1. Perturbation Limit. In the context of a comprehensive
comparison among various spectral densities, we compare the
perturbational expansion given by eq 2 with the SRLS spectral
density calculated using eq 11 of ref 23 withK ) 0, for
parameters typical of the perturbation limit. Calculations were
carried out forc0

2 ) 0.04 kBT[(S0
2)2 ) 0.05] andRC/RL )

0.0015. The first term of the perturbational expansion, with a
small eigenvalue 1/τC ) 1/τm) 6RC and weighting factorWC

) (S0
2)2, is associated with the global motion and the second

term, with a large eigenvalue 1/τL ) 1/τ and weighting factor
WL ) 1 - (S0

2)2, with the local motion.RL was set equal to 1
to obtain ω ≡ ω/RL and j(ω) ≡ j(ω)RL. The respective
parameters are given italicized in Table 2 under “perturbation
limit”. The SRLS eigenvalues and weighting factors and the
combined mixed-mode contribution denoted MM are shown in
Table 2 in the same section in regular printing type. It can be
seen that the 1/τC and WC values generated by the two
calculations are identical. Three local motion SRLS eigenvalues
with magnitude close to the free diffusion eigenvalue 1/τ ) 6
(in units ofRL), and weighting factors adding up to 0.945, were
obtained. These eigenvalues were found to be given predomi-
nantly by the eigenvalue 1/τ. The MM contribution, on the order

of 0.5%, is negligible. Clearly, the SRLS spectral density
calculated with the general SRLS theory is practically identical
to the perturbational expansion. Although this result was
expected in general, the quantitative aspects of this comparison
are of interest.

2. RL . RC and High (S0
2)2 Limit. Eigenmodes.Calculations

were carried out for (S02)2 ) 0.7-0.85 andRC/RL ) 0.0045.
For (S0

2)2 g 0.8, the value ofRC/RL ) 0.01 was also used. The
results appear in Table 2 under “RL . RC and high (S0

2)2 limit”,
using the parameter notations outlined above. In this case, 1/τL

denotes the main local motion eigenvalue. The perturbational
expansion data (labeled “pert”) appear italicized. The MF and
SRLS data are given in regular printing type, and are labeled
“mf” and “srls”, respectively. The pert data were obtained using
eq 2, the srls data were obtained using eq 11 of ref 23 withK
) 0, and the mf data were obtained using eq 8 withS2 ) (S0

2)2.
The same input of (S0

2)2 and RC/RL, as outlined in Table 2,
was used for all three calculation types. We first compare the
pert and srls data.WC and WL show small discrepancies and
the MM contribution is on the order of 3% for (S0

2)2 g 0.8,
pointing out relatively small mode-coupling effects on the
eigenvectors of the SRLS solution, which determine the weights
in the spectral density. The pert global motion eigenvalue, 1/τC,
is preserved in SRLS within a good approximation. On the other
hand, the pert and srls local motion eigenvalues, 1/τL, differ
significantly. In the perturbation limit 1/τL ) 6 (in units ofRL)
and in SRLS 1/τL is given by the renormalized eigenvalue,
1/τren_SRLS, which is in good agreement with 1/τren given by eq
7 (Table 1). 1/τren_SRLSexceeds the free diffusion eigenvalue of
6 approximately 3-6 times for 0.7e (S0

2)2 e 0.85. MF features
1/τC, WC, andWL as in pert, and 1/τL as in srls. Hence, mode-

TABLE 2: Eigenvalues, 1/τC and 1/τL, and Weighting Factors,WC and WL, of the Global Motion Term and the Dominant Local
Motion Term in the Spectral Density for SRLS, Its Perturbation Limit (Italics), and MF. The Italicized Data under
“Mode-Coupling Region with R|

L . R⊥
L” Pertain to the Reduced Extended MF Spectral Density. MM, Mixed SRLS Modes.

(S0
2)2 and RC/RL, Input Valuesa

(S0
2)2 RC/RL 1/τC WC 1/τL WL MM K

perturbation limit
0.05 0.0015 0.009 0.05 6.00 0.95 0
0.05 0.0015 0.009 0.05 5.95 0.413 0.005 0

7.08 0.296 0
5.58 0.236 0

RL . RC and high (S02)2 limit
pert 0.70 0.0045 0.027 0.70 6.00 0.30 0
mf 0.027 0.70 16.0a 0.30 0
srls 0.027 0.69 17.0 0.25 0.06 0
pert 0.80 0.0045 0.027 0.80 6.00 0.20 0
mf 0.027 0.80 24.4a 0.20 0
srls 0.027 0.79 27.3 0.18 0.03 0
pert 0.80 0.01 0.06 0.80 6.00 0.20 0
mf 0.06 0.80 24.4a 0.20 0
srls 0.059 0.79 27.5 0.18 0.03 0
pert 0.85 0.0045 0.027 0.85 6.00 0.15 0
mf 0.027 0.85 32.3a 0.15 0
srls 0.027 0.83 37.4 0.14 0.03 0
pert 0.85 0.01 0.06 0.85 6.00 0.15 0
mf 0.06 0.85 32.3a 0.15 0
srls 0.059 0.83 37.7 0.14 0.03 0
mode-coupling region withR|

L . R⊥
L

RC/ R⊥
L

0.51b 0.57 3.42 0.51 6.0 0.49 0
0.51c 0.57 2.30 0.75 14.1 0.19 0.06 0
0.51d 0.57 3.00 0.73 15.1 0.25 0.02 1
0.51e 0.57 5.00 0.90 17.1 0.09 0.01 2

a 1/τL MF values were calculated using eq A4 of ref 4 (see alsoτe(cone) in Table 1).b Model-free analogue of the SRLSK ) 0 component;
corresponding coefficient in the expression forJ(ω) in eq 9 isSf2 ) 0.68. 1/τL represents 1/τs′. c Corresponding coefficient in the expression for
Jdd(ω) of eq 11 of ref 23 isA(dd)) 0.68 forâMD ) 20°. d Corresponding coefficient in the expression forJdd(ω) of eq 11 of ref 23 isB(dd)) 0.31
for âMD ) 20°. e Corresponding coefficient in the expression forJdd(ω) of eq 11 of ref 23 isC(dd) ) 0.01 for âMD ) 20°.
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coupling effects exist in the original MF regime but are quite
small for (S0

2)2 g 0.8 andRC/RL e 0.01. On the other hand,
renormalization is a large effect in this parameter range. It should
be accounted for in MF by using eq 7 to derive the physical
correlation time,τ, from the effective renormalized correlation
time, τe, obtained by fitting. For a cosine squared potential, eq
A4 of ref 4 can also be used (Table 1) to this end. In SRLS,
renormalization is accounted for automatically and the fitting
returnsτ.

Spectral DensitiessGeneral.To gain further insight into
N-H bond dynamics, we examine below typical examples of
the spectral densitiesjK(ω) andJx(ω) that underlie the expres-
sions for the NMR variables. The functionsjK(ω) are the
building blocks of a particular dynamic model.7-9 The functions
Jx(ω) are the building block for a particular geometric imple-
mentation of the dynamic model considered.7-9 The indexx
differentiates amongJcc(ω), Jdd(ω), andJcd(ω), where c denotes
the 15N CSA interaction and d denotes the15N-1H dipolar
interaction. The functionsJx(ω) depend on the anglesθ, âMD,
andγMD which determine the coefficientsA(x), B(x), andC(x)
in eq 11 of ref 23. The Wigner rotation from the CSA frame to
the DD frame was performed according to eq 10 of ref 23 with
Θ ) (0, -16, 0).24 The Wigner rotation from the DD frame to
the M frame was performed withΘ ) (0, âMD, γMD). For the
ps regime, the assumption thatRL is isotropic impliesâMD )
0° and independence of the calculation onγMD.7 For the ns
regime (to be discussed below), we found in previous work13

that âMD ≈ 20° andγMD ≈ -90° are typical values for N-H
bond motion in proteins. Table 3 shows theA(x), B(x), andC(x)
values forâMD ) 0° andγMD ) 0, as well asâMD ) 20° and
γMD ) -90°, for an axial15N CSA tensor. Table 4 shows the
A(x),B(x), andC(x) values forâMD ) 0° andγMD ) 0, as well
asâMD ) 20° andγMD ) -90°, for a rhombic15N CSA tensor,
with the CSAf DD frame transformation given by the Euler
anglesΩ ) (90°, -16°, 0°).25 As already mentioned, a rhombic
15N CSA tensor also features rhombic components ofJcc(ω)
andJcd(ω) (eq 10 of ref 23). It can be seen that noncollinearity
between the CSA and dipolar frames entails a 21% [11%]
reduction inA(cc) [A(cd)] versusA(dd) (Table 3 forâMD ) 0°
andγMD ) 0°). Taking into account the rhombicity of the15N

CSA tensor entails an 8% [5%] reduction inA(cc)(axial) [A(cd)-
(axial)] versus their axial15N CSA tensor counterparts (Tables
3 and 4 forâMD ) 0° andγMD ) 0°). This should be taken into
consideration when precise structural information is derived
using the MF formulas, whereJcc(ω) ) Jdd(ω).

For comparison, we also present the coefficients associated
with the 13CO-13CR system in Table 5. The rhombicity of the
13CO CSA tensor (absolute valuesσ11 ) -70.5, σ22 ) -4.8
andσ33 ) 65.8,σiso ) 175.9 ppm) and the relative orientation
with respect to the dipolar13CO-13CR tensor given byΘ ) (90,
156, 0)25-28 are significantly larger than the analogous param-
eters of the15N-1H spin system. This entails larger diversity
among the coefficientsA(x), B(x), andC(x), associated in this
case with three axial and two rhombic components (eq 10 of
ref 23). The Euler anglesΘ ) (0°, 20°, -90°) were used for
the transformation from the DD to the M frame in the ns regime.

Spectral DensitiessTable 2 Data.In Figure 1, parts a-c,
we show the SRLSjK(ω) functions calculated withRC/RL )
0.0045, (S0

2)2 ) 0.8 [c0
2 ) 9.87kBT], τm ) 15.1 ns, andθ )

-16°. The original MF spectral density obtained with the same
parameters is indistinguishable from SRLSjK)0(ω) on the scale
of Figure 1a. ForRL . RC, the tensorRL may be approximated
as isotropic. In this case,âMD ) 0 and the contributions of the
SRLS componentsjK)1(ω) andjK)2(ω) will be zero, asB(x) )
C(x) ) 0 in eq 11 of ref 23. This is certainly a good
approximation in the low-frequency region dominated by the
global motion. However, in the high-frequency region, theK
) 1 and 2 components, absent in MF, may contribute forâMD

angles that are not very small. Because in theRL . RC regime
data fitting7,13,14 leads to models whereâMD ) 0°, it can be
concluded that the experimental data are not sensitive enough
to pick up the contribution of thejK)1(ω) and jK)2(ω) compo-
nents in this case. The curves labeled 1, 2, and 3 in Figure 1d
representJdd(ω), Jcc(ω), andJcd(ω), respectively (eq 11 of ref
23 and Table 3 forâMD ) 0° andγMD ) 0°). The difference
betweenJdd(ω) and Jcc(ω), implied by the noncollinearity
between the CSA and dipolar tensors, is significant. The inset
of Figure 1d showsJx(ω) for the rhombic15N CSA case. The
axial components associated with the rhombic tensor are very
similar to the corresponding functions associated with the axial
CSA tensor, whereas the rhombic components are close to zero.
Although the effect of CSA rhombicity appears to be small, it
was found to be significant in some cases.29 The effect of13CO
CSA rhombicity on the relaxation rates is expected to be large
for the 13CO-13CR system, as illustrated in Figure 1e where we
show the correspondingJx(ω) functions. The curves labeled 1,
2, 3, 4, and 5 represent the functionsJdd(ω), the axial component
of Jcc(ω), the rhombic component ofJcc(ω), the axial component
of Jcd(ω), and the rhombic component ofJcd(ω), respectively.

TABLE 3: Coefficients A(x), B(x), and C(x) for an Axial 15N
CSA Tensor Obtained with θ ) -16° (Ref 24) and Euler
Angles Θ ) (0°, âMD°, γMD°) for the Transformation from
the DD to the M Framea

âMD ) 0°, γMD ) 0° âMD ) 20°,γMD ) -90°
spectral
density
function A(x) B(x) C(x) A(x) B(x) C(x)

Jdd(ω) 1.00 0.00 0.00 0.68 0.31 0.01
Jcc(ω) 0.79 0.21 0.00 0.52 0.45 0.03
Jcd(ω) 0.89 0.00 0.00 0.60 0.29 0.00

a x denotes dd, cc, or cd, in accordance withJx(ω).

TABLE 4: Coefficients A(x), B(x), and C(x) for a Rhombic
15N CSA Tensor Obtained Using the Principal Axes
Orientation of the 15N CSA and 15N-1H Dipolar Tensors as
Given in Ref 25 and Euler AnglesΘ ) (0°, âMD°, γMD°) for
the Transformation from the DD to the M Framea

âMD ) 0°, γMD ) 0° âMD ) 20°,γMD ) -90°
spectral
density
function A(x) B(x) C(x) A(x) B(x) C(x)

Jdd(ω) 1.00 0.00 0.00 0.68 0.31 0.00
Jcc(ω) axial 0.71 0.00 0.00 0.47 0.35 0.00
Jcc(ω) rhombic 0.00 0.00 0.00 0.00 0.00 0.00
Jcd(ω) axial 0.84 0.00 0.00 0.56 0.28 0.00
Jcd(ω) rhombic 0.00 0.00 -0.05 0.00 0.10 0.00

a x denotes dd, cc, or cd, in accordance withJx(ω).

TABLE 5: Coefficients A(x), B(x), and C(x) for a Rhombic
13CO CSA Tensor Obtained Using the Principal Axes
Orientation of the 13CO CSA and 13CO-13Cr Dipolar Tensor
as Given in Ref 26 [where the Euler Angles for the
Transformation from the CSA to the DD Frame are Θ )
(90°, 156°, 0°)]a

âMD ) 0°, γMD ) 0° âMD ) 20°,γMD ) -90°
spectral
density
function A(x) B(x) C(x) A(x) B(x) C(x)

Jdd(ω) 1.00 0.00 0.00 0.68 0.31 0.01
Jcc(ω) axial 0.25 0.00 0.75 0.11 0.31 0.46
Jcc(ω) rhombic 0.38 0.50 0.00 0.23 0.49 0.00
Jcd(ω) axial -0.50 0.00 0.00 -0.27 0.00 -0.01
Jcd(ω) rhombic 0.00 0.00 0.00 0.00 -0.21 0.00

a x denotes dd, cc, or cd, in accordance withJx(ω).
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The diversity featured is indicative of the potential inherent in
SRLS for the analysis of13C-related cross-correlated relaxation.

3. Mode-Coupled Region.When the time scale separation
between the global and local motions is not so large, as in the
extended MF regime, mode-coupling is pervasive, and the
complete SRLS spectral density must be used. A typical example
for axial potentials, featuring the input parametersc0

2 ) 4 kBT,
RC/R⊥

L ) 0.57, andR|
L . R⊥

L, similar to results obtained
previously with data fitting,13,14is shown under “mode-coupling
region withR|

L . R⊥
L” in Table 2. Only the dominant global

and local motion eigenvalues and weighting factors are shown
for K ) 0, 1, and 2. Because MF does not featureK ) 1 and
2 contributions, it is necessary to simplify eq 11 of ref 23 to
enable meaningful comparison between SRLS and MF. As-
suming thatB(x)jK)1(ω) andC(x)jK)2(ω) contribute negligibly
whenR|

L f ∞, which applies to N-H bond motion, the SRLS
spectral density,Jdd(ω), was shown previously7 to beformally
analogous to the reduced extended MF spectral density. The
latter is given by

where 1/τs′ ) 1/τs + 1/τm, with τs denoting the slow local motion
correlation time. The SRLS and MF spectral densities described
correspond to model 5 in the model selection hierarchy.30,7The
generalized MF order parameterSf2 is formally analogous to
the SRLS coefficientA(dd) ) (1.5 cos2 âMD - 0.5)2 in eq 11
of ref 23, and the MF function multiplyingSf2 in eq 9 isformally
analogous tojK)0(ω) in eq 11 of ref 23. It should be pointed

out that the various analogies drawn here are merely formal,
with the meaning of the constituents compared being very
different.

The corresponding SRLS and MF dominant global and local
motion eigenvalues and weighting factors appear in Table 2
under “mode-coupling region withR|

L . R⊥
L”. The SRLS

parameters, which are associated withjK)0(ω) of eq 11 of ref
23, indicate very clearly that modemixing takes place. For
example, forK ) 0 1/τC ) 2.3 as compared to the free diffusion
global motion eigenvalue of 1/τm ) 3.42) 6 × 0.57, and 1/τL

) 14.1 as compared to the value of 1/τs′ ) 6 one would obtain
in the absence of modemixing. It can be seen clearly that MF
can only try to reproduce SRLStechnicallywith force-fitted
parameters. This was borne out previously by data fitting7,13,14

and is also illustrated in Figure 2a. It is concluded that the
reduced extended MF formula, and, on the basis of similar
considerations, the extended MF formula, constitute poor
approximations of the corresponding mode-coupled SRLS
spectral densities. If used in data fitting schemes, these MF
formulas will generate highly inaccurate force-fitted micrody-
namic parameters, which as such provide very limited physical
insight.

The following comment is in order. It can be seen in Figure
2 that for âMD ) 20° the term B(dd)jK)1(ω) contributes
significantly to Jdd(ω), as jK)1(ω) is on the same order of
magnitude asjK)0(ω) andB(dd)) 0.31 (Table 2). In a previous
study,14 this contribution was estimated to exceed 20%. As
pointed out in that study, the spectral density corresponding to
model 5, whereB(x)jK)1(ω) is ignored, is a poor approximation
to the exact spectral density whenâMD ≈ 20°. In SRLS,

Figure 1. SRLS spectral densities as a function ofω obtained withRC/RL ) 0.0045,τm ) 15.1 ns,c0
2 ) 9.87 [(S0

2)2 ) 0.8]. (a-c)jK(ω) with K
) 0, 1, and 2 (blue). The function in green shown in Figure 1a is the original MF spectral density obtained with (S0

2)2 ) 0.8, τm ) 15.1 ns, and
RC/RL ) 0.0045. (d)Jdd(ω), 1 (green);Jcc(ω), 2 (blue); andJcd(ω), 3 (red) obtained from the functionsjK(ω) in Figure 1a-c and the data given in
Table 3 forâMD ) 0° andγMD ) 0°, using eq 11 of ref 23. Inset of Figure 1d:Jdd(ω), Jcd(ω)(axial), Jcc(ω)(axial), Jcc(ω)(rhombic), andJcd(ω)-
(rhombic), from the highest to the lowest curve, obtained from thejK(ω) functions in Figure 1a-c, using the coefficients given in Table 4 forâMD

) 0° andγMD ) 0°. (e) Jdd(ω), 1 (green);Jcc(ω)(axial), 2 (solid blue);Jcc(ω)(rhombic), 3 (dashed blue);Jcd(ω)(axial), 4 (solid red); andJcd(ω)-
(rhombic), 5 (dashed red) for the13CO-13CR spin system obtained from the functionsjK(ω) in Figure 1a-c and the data given in Table 5 forâMD

) 0° andγMD ) 0°, using eq 11 of ref 23. For Figure 1a-d, 15N CSA of σ| - σ⊥ ) -170 ppm,rNH ) 1.02 Å, andθ ) 16° were used. For Figure
1e, 13CO CSA data given in ref 26, andrCO-CR ) 1.52 Å, were used.

J(ω) ) jK)0(ω) ) Sf2{Ss
2 τm/(1 + ω2τm

2) +

[1 - Ss
2] τs′(1 + ω2τs′

2)} (9)
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significant improvement can be achieved by using model 6,
where the spectral density does feature theB(x)jK)1(ω) term.
In MF, the efficacy of using model 6 instead of model 5 is
reduced, as mixed modes and theK ) 1 contribution are absent.
The term added to the reduced extended MF formula to obtain
the extended MF formula is merely a fast local motion mode
mimic of C(dd)jK)2(ω) (eq 6). It is of interest to note that in
cases whereâMD ≈ 20° SRLS fitting selected predominantly
models 6 and 8 (whereRex is added as free parameter to model
6) rather than models 5 and 7 (whereRex is added as free
parameter to model 5) when models 5-8 were offered as
options.13,14 This indicates that SRLS leads to physically
meaningful, rather than technical, minima.

4. SRLS versus Previous Theories.We conclude this section
with a comment on the SRLS concept versus the previous
theories for treating N-H bond motion.31 All of the previous
theories assume thatC(t) ) CC(t) CL(t), whereC(t), CC(t), and
CL(t) denote the time correlation functions for overall, global,
and local motion, respectively. They differ by the form proposed
for CL(t), and the means for deriving this function, but rely on
the following common assumptions. (1) The local diffusion
frame L reorients with respect to the global diffusion frame C
that is taken to be fixed, rendering the L-frame motion a one-
body problem. (2)S2 represents the total mean-squared ampli-
tude of fast oscillations representing all internal motions, with
the spatial restrictions intrinsically axially symmetric. This
conceptualization ofS2 is only valid when the internal motions
are in the extreme motional narrowing limit and much faster
than the global motion. (3) The local geometry is oversimplified
because the fast local fluctuations are considered to be centered
at the N-H bond, which is taken to be collinear with the
symmetry axis of the collinear axial15N CSA and15N-1H dipolar
magnetic tensors. In contrast to the picture outlined above, SRLS
is a stochastic model solving a coupled two-body problem of
general geometry. (1) The N-H bond vector is considered
reorienting in a local environment which is itself relaxing usually
on a longer time scale. The longer time relaxation of the local
environment is provided by the global tumbling of the protein.
The faster internal N-H dynamics is readjusting itself to the
changing orientation of the protein, which it must follow. This
provides the coupling between the global and local motions,
materialized by a coupling potential exerted by the local
environment at the N-H bond. The general SRLS approach
allows one to consider comparable rates of dynamics. The
solution of the coupled diffusion equation uses basis sets which
include products of functions that span the orientations of the
N-H bond vector and functions that span the orientations of
the macromolecule, where both are relative to the same fixed

laboratory frame. Thus, SRLS is a generalization of the standard
methods of solving the diffusion equation for a static ordering
potential17,18 to the case where the ordering potential is itself
reorienting.8,9 (2) The order parameters are ensemble averages
defined in terms of the orienting potentials. These equilibrium
quantities areindependentof the diffusion tensors. (3) The local
geometry is general in nature, with asymmetric local diffusion,
local ordering, and magnetic tensors. The asymmetry of the local
diffusion tensor and/or the local ordering tensor distinguishes
the componentsjK)1(ω) and jK)2(ω), which are ignored in all
of the previous theories. However, the distinction of theK ) 1
and 2 components is important when the magnetic tensors are
not axially symmetric or are axially symmetric but with their
principal axes tilted relative to the local diffusion and ordering
frame. In a previous study,14 the contribution of theK ) 1 term
in eq 11 of ref 23 toJ(ω) was estimated to be at least 20%
because of “diffusion tilt”. For other geometries, theK ) 2
term may also contribute significantly, and for smaller time scale
separations betweenRL andRC, theK ) 1 and 2 contributions
will increase further. Although the previous theories, featuring
the K ) 0 contribution only, were developed for fast local
motions, in many cases, slow local motions were also treated.

Conclusions

The original and extended MF formulas are perturbational
expansions of SRLS. However, in their application to N-H
bond dynamics, the perturbational conditions are violated. As
a consequence, the original MF regime is dominated by
renormalization, and the extended MF regime is dominated by
mode-coupling. The functional form of the original MF formula
is appropriate within a good approximation for (S0

2)2 g 0.8 and
RC/RL e 0.01, as mode-coupling effects are small in this
parameter range. On the other hand,τe MF was found to
represent the significantly reduced renormalized value ofτ.
Therefore, when the magnitude of the local motion correlation
time is involved,τ should be recovered fromτe. Means to
accomplish this are provided. For a cosine squared potential,
eq A4 of ref 4 can also be used. The functional form of the
extended MF formula, dominated by mode-coupling, is inap-
propriate and perforce the parameters it features are highly
inaccurate. In this case, the SRLS spectral density must be
invariably used.
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