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Two-dimensional electronelectron double resonance (2D-ELDOR) is a technique that is sensitive to the
dynamical processes affecting spin labels in complex fluid environments. In ordered fluids, such as membrane
vesicles, the 2D-ELDOR experiment is affected by the molecular tumbling in the locally ordered environment.
This motion occurs on two different time scales, the faster molecular motion relative to the local director,
and the slower collective fluctuations of the director field. In the experimental study of Patyal, Crepeau, and
Freed Biophys. J1997, 73, 2201), it was found that the widths of the autopeaks of the 2D-ELDOR spectrum
increased as a function of the mixing time. In the present work, a theory is developed for the effects of
director fluctuations on the autopeaks in the 2D-ELDOR experiment by employing an analytical solution of
the stochastic Liouville equation for which the director field is treated as a multidimensional Gaussian process,
as previously developed by Frezzato, Kothe, and MdroPhys. Chem. R001,105, 1281 andl. Phys.

Chem. B2004,108, 9505). Good agreement is found between theory and experiment, notably the only adjustable
parameter isc, the bending elastic modulus of the membrane. The values-sf11l x 10720 J for 1,2-
dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC) vesicles ard 15 x 10720 J for DPPC/gramicidin A

(5:1) vesicles, both at 48C, were found from the analysis and agree well with previous related measurements
by other physical techniques. This establishes 2D-ELDOR as a useful technique to study the elastic properties
of biological membranes.

1. Introduction by using a suitable basis for both the spin degrees of freedom
and the functional dependence on the stochastic varial#las.

Electron spin resonance (ESR) is a versatile SpectrOSCOpiCalgebraic solution can then be achieved by employing efficient

technique that p_rowdes a wealth qf information on th<=T _mole_cular algorithms to diagonalize this matrix.
structure of various paramagnetic systems. In addition, it can A more complex situation arises for spin probes dissolved in

be used to characterize the dynamics of spin probes embeddeq, jo e fiyids such as liquid crystals and biological membranes

in (z;almagr;]etlc systems provided trll‘?;_the rtl)_tatlpnalhmonons or their model systems such as vesicles. In these systems, the
modulate the magnetic Interactions. This application, NOWever, ¢ i, nrohe senses an orientational potential with respect to the

requires suitable theoretical tools for interpreting the effects of local director determining the axis of the most probable
the molecular motions on the spectroscopic observables. Themolecular orientation. The director, which depends on the

simplest situation is certainly that of a fast tumbling spin probe |, -4tion within the sample and therefore should be represented
in aln |sgtrop|c cl;_qwd, where trlle spectral Iwéeo’)rmdthsd can be 4 vector field, has an intrinsic collective character and its
analyzed according to motional narrowing t pgse ona  flyctuations are controlled by the viscous and elastic properties
separate treatment of the reorientational motions and theof the ordered phasel! Thus, two completely different
dynamics of the spin degrees of freedom. A quite different g ,omica| processes have to be considered in the analysis of

approach is required_ in the absence_ of a time scale_ separatioqhe experimental observables: (i) the molecular tumbling with
between the magnetic anisotropies (in frequency units) and therespect to the local director and (ii) the fluctuations of the

reorientationall rates.. In this ca;eslaw mation theqr>ha§ to. director field. While the molecular tumbling occurs on well-
be employed involving a solution of the stochastic Liouville defined time scales (often in the fast motion range), the

i e ) ;
equation (SLE}, ® which describes the coupl_ed eV.OIUt'On of fluctuations of the director are characterized by a wide distribu-
the spin degrees of freedom and the stochastic variables for thetion of relaxation times with components in the millisecond

probe orien_tatipn. This ensures a rather _general '_[reatment Ofrange or even slowdr-11

th_e mggnet|zat|o_n dynamlcsz albeit analytical solutions for th_e We shall consider the specific case (and perhaps the most
direct interpretation of experlmental obse_rvables are not avalll- interesting one from the point of view of studying director
able. The standard solution progedure is based on a matr'xfluctuationéz) of a spin probe embedded in an oriented fluid
representation of the SLE evolution operator to be generatedwhose molecular motions occur within the fast motion regime.

In that case, the motional narrowing thebtgan be employed

:Sgir\;gfg?”gif”ga%‘gcg“ E-mail:giorgio.moro@unipd.it. to describe the magnetic relaxation effects of the rotational
*Universig of Freiburg. tumbling v_vit_h respect to the local dir_ector. C_:Iearly, the same
8 Cornell University. approach is inadequate for the modeling of director fluctuations
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because these collective modes involve slow-motional compo- mixing time. Furthermore, the theoretical results will be applied
nents whose frequencies are much smaller than the magnetido the analysis of experimental results reported in ref 20, with
anisotropies (in frequency units). Under these conditions, it is the purpose not only of demonstrating that the theory is capable
necessary to employ the full treatment according to the SLE of reproducing the experimental trends but also to show how
for the dynamical coupling between the spin degrees of freedomthe proper analysis of 2D-ELDOR spectra allows the charac-
and the director field. However, the standard methodology basedterization of the elastic properties of the vesicles.

on a matrix representation of the SLE operator cannot be The paper is organized as follows. In the next section, the
employed anymore because a reasonable spatial discretizatiorstochastic Liouville equation for the nitroxide probe is intro-
of the director field leads to an excessively large number of duced. On this basis, in the third section, we derive a formal
stochastic variables. Thus, the slow-motional analysis of director description of the 2D-ELDOR autopeaks in terms of the time
fluctuations requires an analytical approach. evolution operator for the stochastic variables. In the fourth

In ref 13, such an analytical procedure has been introducedSection, by assuming a multidimensional Gaussian process for
for the transverse nuclear spin relaxation of deuterium nuclei. the director field, explicit relations are derived for the 2D-
This slow-motional theory is valid on condition that the time ELDOR signal in terms of the correlation function of the
evolution of the stochastic variables is described by a generic transverse components of the director and its time integrals. In
multidimensional Gaussian process. As a matter of fact, such athe following sections, these theoretical results are specified for
representation can be adopted for the director field in the tWO different_ mpdels of o_rderdirector flugtuations: an ideali;ed
harmonic approximatioP.It should be mentioned that this ~Model consisting of a simple exponential correlation function
methodology has already been applied to the analysis of (Section 5) and the more realistic but complex model describing

and in polymeric liquid crystal® An extended version of the Py shape fluctuations (Section 6). In this latter section, the
theory is reported in ref 17. experimental results reported in ref 20 are also analyzed. The

Recently, a slow motional analysis of the effects of director main conclusions of the study are given in the final section.

fluctuations on continuous-wave (CW) ESR spectra has been
presented® The secular and the pseudosecular contributions
resulting from the hyperfine interaction in a nitroxide spin probe  Let us consider a typical nitroxide spin probe dissolved in a
have been considered, and their effect on the line-shape of apartly ordered fluid sample (like liquid crystals or the membrane
CW-ESR spectra have been analyzed. The main conclusion wadn a vesicle) with the following spin Hamiltonian that includes
that, in CW-ESR spectra, the effects of director fluctuations the Zeeman interaction, described by thensor, between the
are hardly detectable because of the difficulty in separating their unpaired electron with spiB and the static magnetic fiell
contributions to the line widths from those of the probe rotational and the hyperfine interactions, described by thetensor,
motion as well as from the inhomogeneous broadening. As in between the electron and the nitrogen nucleus with spin

the case of NMR transverse relaxation times, this difficulty could

be overcome only by using appropriate pulsed experiments. H=fBygS+hl-AS 1)

Two-dimensional Fourier transform electron spin resonance By introducing the laboratory frame LE (X, Y, Z) with the

(ZD".:T'ESR) was mtroduc_ed as a technlque_ that provides Z axis along the static magnetic field, the spin Hamiltonian in
considerable enhancement in resolution to ordering and dynam-

ics as compared to conventional ESR spectrosédgyne 2D the secular approximation can be written as

electron-electron double resonance (ELDOR) experimental data H = 8.B,g,, + A(a-1)S, 2)
presented in ref 20 for nitroxide-labeled lipids in membrane erovez

vesicles show a dependence of the homogeneous line widthsynere we have introduced the vectowith componentsy =

of the 2D-FT-ESR autopeaks (i.e., the diagonal peaks) on the, , for J = X,Y,Z.

mixing time ty, in the range of microseconds. Given this order  The director field is described through its orientatign;) at

of magnitude fott, such a broadening is very likely due to the  an ensemble of discrete locationscentered at the smallest
process of cooperative order director fluctuations (ODF) of the gomains compatible with the collective nature of such a field.
lipids in the vesicles. The opportunity to observe in real time only two components of the local director are independent

(i.e., as a function ofy) these collective motions in the 2D-  pecausejin| = 1. Accordingly we can select the following
ELDOR experiment was emphasized in the past experimental ensemble of independent stochastic variables:

studies?122

These experimental findings have motivated the theoretical Q= (...n(r), nyry), ...) ®3)
analysis of the effects of director fluctuations on 2D-ELDOR
spectra, which is presented in this work. Basically we shall apply By introducing the average director frame, AB¥ (X, Y, 2),
the same methodology as in ref 13 by neglecting the pseudos-With the z axis along the average orientation of the director (
ecular contributions in the spin Hamiltonian for hyperfine = f, implying i, = iy = 0), the directom acting on the spin
interactions. This approximation is justified by the results of Probe is conveniently represented as (see Figure 1)
ref 18, where it has been shown that, in ordinary conditions for
director fluctuations, pseudosecular contributions to line widths n=nx+ny+ A1— nX2 — nyzz 4)
are much smaller than those deriving from the purely secular
terms. On the other hand, in 2D-ELDOR, these terms would  The magnetic interactions are modulated mainly by two types
contribute primarily to cross-peak development. Thus this of processes: the fast rotational motion of the molecule with
approximation, which simplifies to a large extent the theoretical respect to the local director and the comparatively slower
analysis, has the drawback that it cannot account for the cross-collective modes of director fluctuations. We assume the
peaks. Therefore, the analysis will be confined to the autopeaksmolecular tumbling is fast enough to be treated according to
of the 2D-ELDOR spectrum and to their dependence on the the motional narrowing theory? which leads to a set of

2. The Stochastic Liouville Equation
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Clearly the averagég,, vanishes becausg = 0. It should be
stressed that the linear approximation holds in the case of small
fluctuation amplitudes, allowing one to neglect in eq 6 higher-
order terms (with respect to powers mfandny). Notice that
eq 8 leads to a vanishinigz if 0 = 0°, 9C, that is, for the
so-called canonical geometries with the average director parallel
or perpendicular to the magnetic field. In those situations,
Figure 1. Representation of the local director in the average director second-order terms have to be necessarily accounted for in the
frame ADF= (x,y,z). expansion obgzz.1” However, in the case of vesicles where all
orientationsfg contribute, the minor correction to eq 8 due to
the appearance of second-order terms can be safely ignored.
Let us now examine the hyperfine coupling term in eq 2,
where the vectoa depends on the local directaras

a=AZ + (A~ A)(-2Z)n 9)

In the absence of director fluctuations (i.e., for= n), such a
vector is given by (Zs the unit vector alongp)

a®=AZ+ (A~ A) cos()z (10)

Figure 2. Relative orientations of the laboratory frame £X,Y,2), which corresponds to a vector in th&,(Z) plane of the
the average director frame ADE (x,y,z), and the nuclear spin laboratory frame (LF) with modulus

guantization frame NQFE (X',Y',Z"), together with two Euler angles
(68,0") used in the transformation between these frames.

&= = JAZ+ (AT - A codBy)  (11)

relaxation times. On the other hand, the full treatment according o 0 . .
to slow motion theory is required for the order director The direction ofa’ represents the most convenient choice for

fluctuations. The system will be analyzed at time scales longer € quantization axis of the nuclear spin because, in the absence
than the rotational correlation time so that the spin Hamiltonian ©f fluctuations, it leads to a diagonal representation of the spin
averaged over the molecular orientations for a given director Hamiltonian eq 2, witte® determining the hyperfine splitting.
orientation can be used in the stochastic Liouville equation. The (This argument as well as eq 2 ignores ¢ nuclear Zeeman
same notation of ref 18 will be used throughout the paper. Such intéraction, which is generally much smaller than hyperfine

an effective spin Hamiltonian is recovered from eq 1 by inserting intéractions for nitroxides, cf. refs-3) Thus, to specify the
the following orientationally averaged tensors components of the nuclear spin operator, we introduce a further

reference system, the nuclear spin quantization frame RQF
(X', Y', 2", with the Z' axis oriented along® and with theY’

=gl+ (g —gyn®n
9= % @~ 9) (5) axis collinear with ther axis of LF. Only the angl@' between

A=A1+(A—AN®N a® and By is required to specify the relative orientation of the
two reference systems (see Figure 2).
where g, and A, (9o and Ap) denote their partially averaged Finally, we isolate from the vecta of eq 9 its fluctuating

components parallel (perpendicular) to the local director. The partda = a — & and by invoking the linear approximation
knowledge of the molecular tensors and of the order parameterswith respect the stochastic variables, we obtain
characterizing the orientational distribution of the spin probe :
with respect 20 the local director allows one to eva?lua?e the 9a= (A —Ajlcos(G)(nx +ny) —sin(G)nz] (12)
parallel and perpendicular components of these averaged tensors. . . .
We choose the ADF frame with theaxis collinear with the By specifying the _nucl_ear Spin operator components in the NQF
Y axis of the LF (see Figure 2), therefore the transformation Tame, the hyperfine interaction term can be written as
from the LF to the ADF can be specified by the Euler angles
Q = (0, g, 0), wherefg is the angle between the static
magnetic fieldBy and the average directar at the probe
location. The g-tensor component required in eq 2 can be written

a-l = a’l, + (dayly + dayly + dayl,)  (13)

where the fluctuating contributions to the hyperfine splitting

as (Zis the unit vector along the static magnetic field) are given by

oay. = (A, — Apn, cos(2¢ — 6")
Oz =Gt (@ — (N2 =0, + g, () "

day = (A — AJn, cos(6) (14)

where gz° is the component in the absence of director . ,

fluctuations (n= n), oaz = —(A — Agn,sin(26; — 0)

0_ As a further approximation, we neglect the pseudosecular
92z = 91 (91— 90 co§(HB) @) contributions of hyperfine interactions and obtain the following

. . . ) . ) ) spin Hamiltonian
while dgzz is its fluctuating part in the linear approximation

with respect to the stochastic varialdfey H = BBo(0,7 + 09,9)S, + A(@° + da,)l,S,  (15)

09z = (g — 9p) sin(26)n, (8) which is diagonal in the produ¢im,M> = |m>|M> between
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the eigenstatepn> (with m = + 1/,) and|M> (with M = 0, (m — m’) represents theoherence ordepf the electron spin

+1 for theN nitrogen of nitroxides) of electrof; and nuclear (that is pS in ref 19), and its allowed values arel, corre-

Iz spin operators, respectively. As we have already noted, suchsponding to rotating{—Y components of spin magnetization,

a simplification of the problem can be justified on the basis of and 0 for the Z component of magnetization.

theoretical results for the CW-ESR line widths reported in ref  In eq 18, we have considered the diagonal elements with
18, where it has been shown that pseudosecular contributionsrespect to the nuclear spin state because only these components
are normally much smaller that the purely secular contributions contribute to the magnetization. Indeed, by neglecting the
for the case of director fluctuations. However, such an ap- pseudosecular terms in the Hamiltonian, the overall magnetiza-

proximation means that we will not be able to describe the
magnetization transfer process generating 2D-ELDOR cross-
peaks, which is controlled by the pseudosecular terms of the
hyperfine interaction.

The above analysis provides the effective spin Hamiltonian,
eq 15, depending on the local transverse components of th
director through the functiondgz; in eq 8 anddaz in eq 14.

On the other hand, the dynamics of the stochastic variables are

governed by the viscoelastic properties of the ordered medium.
In the Markovian approximation, the time evolution of the
stochastic variables is specified according to the Fokkésnck
equation for the probability density functi&r?3

PQY _

(16)
Here I'q denotes the time evolution operator to be modeled
according to the specific viscoelastic behavior of the ordered
medium, either a liquid cryst&lor a membrané* The stationary
solution of eq 16 is the equilibrium distribution which will be
denoted bype(Q).

The full description of the dynamical coupling between the
spin degrees of freedom and the director fluctuations requires
the solution of the stochastic Liouville equation

9p(Q.0) _
at

~[FHQ" +To+Rulo@  (17)
for the Q-dependent density matrp(Q,t) with respect to both
the electron and the nuclear spin states, wi{Q)* denoting

the superoperator for commutation with thf@-dependent
Hamiltonian H(Q). In eq 17, we have included also the
molecular tumbling contributiof®mol.

Because of the approximation of neglecting pseudosecular
terms in the Hamiltonian, the spin degrees of freedom may be
factored in the stochastic Liouville equation. Separate solutions
can be written for each element of the density matrix

P Q1) = [, M]p(Q,t)|m' M=
exp{ —[i(wy + owy)(Mm—m')+ Ty +

LT ot = 1)} o Quty) (18)

with y =1 or 2, where the longitudinal}', (the transverse

Tg’fmop relaxation times due to fast tumbling molecular motion
have to be inserted ih = m' (if m= m’'). Parameterey and
Jowy identify the resonance frequency and its fluctuating part,
respectively, for the hyperfine componéwitof the spectrum

wy = v, + Ma°
6WM(Q) = ﬂeBoagzz(Q)/h + Méaz’(Q)

wherewo = BBogz%h is the (average) Zeeman frequency of
the electron spin. It should be stressed that eq 18 is only a formal
solution of the stochastic Liouville equation, as long as the
effects of the stochastic operalas on functions of the variables

Q is not yet evaluated. We mention also that, in this notation,

(19)

e

tion M(t) can be decomposed into independent contributions

M(t) = ; MM(t) (20)

where MM(t) is due to theMth hyperfine component and can

be specified as

M0 = - S [ dQTHSMQY)  (21)
HereN/V is the spin density, the indexlabels the Cartesian
components of the magnetization and of the spin operator, and
the trace Tr{..} is calculated with respect to electron spin states
only.

Similarly, the contribution of each hyperfine component can
be considered independently also in the analysis of pulsed
experiments, as long as the microwave pulse acts on the electron
spin degrees of freedom without modifying the nuclear spin
state. Therefore, in the following treatment of 2D-ELDOR
experiments, we shall confine the analysis to a given hyperfine
contribution with a parametric dependence on the nuclear spin
qguantum numbel. Of course, the overall signal has to be eval-
uated as the superposition of the three hyperfine components.

Our calculation requires also the density matrix for the
equilibrium stateoe((Q). The high-temperature approximation
will be employed so thate{Q) can be specified as the product
between the equilibrium distributiope(Q) for the stochastic
variables and the equilibrium density matrix for the spin states

EXp(—l_‘VkBT) ~peq(Q){
Tr{exp(—HksT)} 6 |

hw,

L= 7%
(22)

Ped Q) = PefQ)

where the latter approximation in eq 22 holds at room
temperatures for ordinary magnetic fields.

3. The 2D-ELDOR Spectrum

Starting from the equilibrium state, we now consider the
ELDOR pulse sequence

JU JT JU
(2)¢1 b (2)¢2 tm (2)¢3 K

where the angle (phase) determines the axis of application
of thejth 7/2 pulse, through the conventional associatanr=

0, ¢y = 7l2, p—x = 7, p—y = 3x/2. We can recognize four
different time periods in a 2D-ELDOR experiméfit:the
preparation period with the first/2 pulse to generate the initial
transverse magnetization, after which the “spin packets” evolve
with their characteristic frequency during the evolution period
of lengtht;. The second pulse starts the mixing period, and
during this time, the longitudinal magnetization components of
each hyperfine line may be exchanged in the presence of
pseudosecular hyperfine interactions. Finally, thei#®tpulse
rotates the magnetization again into ¥ plane for detection,
and the free induction decay (FID) signal is observed as a
function of the detection time.
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For each hyperfine component, the detected signal depends Free Evolution. In the absence of a microwave pulse, the
on the lengths of the three time intervals, and it can be specified evolution of the density matrix in the rotating frame at the
as frequencywmy of the microwave field is fully described by the

stochastic Liouville operatdrM(Q)

Fioorlty tw ) O [ dQ TH{S, pM(ty, t,,, 1y, Q)} (23) M. 1) = e, 1) 7)

where pM(t,, tm, t1, Q) is the density matrix at the detection given as
time. The two-dimensional spectrum is obtained by measuring
the FID signal as a function ¢ for a set of different values of LMQ) = i(wy — 0)S,” + i00,(Q)S, + o+ R
t;, and then by Fourier transforming it with respect to both of (28)
these time variables

Because superoperatdrd are diagonal with respect to electron
S 0oR(@1, by ) = spin states, the following equation can be used for the elements

oo oo ot ot of the density matrix
fo dtljz, dt, e e % Q) pop(ty, th 1) (24) " " "
Pmml Qs 1) = Un ml(DPmm(Q, 1) (29)

WhereU,“T"],m(t) are evolution operators acting on the stochastic
variables only

To calculate the signal, the density matpi(t,, tm, t1, Q) has
to be evaluated from its initial equilibrium statg{Q) through
the various periods of spin dynamics of the 2D-ELDOR
sequencé? In the following, we shall treat separately the UM (t) =
evolution in the presence of a microwave pulse and during the ~ ™™
free evolution period. exp{ —[i(wy — o, + dwy)(m—m")+ Ty + 1/Ti>/!mol]t}

Pulses.In the presence of a microwave pulse, the evolution (30)
of the density matrix should in principle include both the effects
of the pulse and of the relaxation. If the interaction with the  Given the metric properties of the Liouville space generated
pulse is much more intense than the fluctuating Hamiltonian by @ complete basis set for both the spin states and the functional
term, then all the electron spins are uniformly affected by the dependence on the stochastic variabebe time domain signal
pulse regardless of their resonance frequencies according to th€d 23 can be written as the following scalar product in this space
Fourier theorem, which ensures that a pulse of duraticovers M
a range of frequency 1/dentered at its frequency. Fpor(ty t 1) = (S, 110" (ty t, 1, Q) O

As long as the duration of such an intense pulse is short, the T a MQ)z ~LMQ)tm ~LMQ)t
relaxation during the pulse can be ignofétlet us now consider S, 1e P@)e P@) e P(¢1)Szpeq(§:)L)
the evolution of the density matrix in a frame rotating at the (31)
same frequency as the alternating microwave figigl.”® Under By inserting the explicit form of the rotation operators, eq 26,
these conditions, the pulse changes the density matrix accordingye obtain a sum of six different time-dependent operator terms
to a unitary transformatiotf, which is equivalent to an opposite Ait/l(tzi tm, t1), weighted by numerical factois, which depend
rotation of th_e refere_nce system. Indeed, t_he effect of the pulsegp, the phase of the pulgds
on the density matrix can be expressed in terms of the pulse
propagator superoperator as follows 6 N
Stoor(ty tw 1) = f dQ ; AA(t, ty P Q) (32)
p"(te") = P (Q)p"(t:)P(Q) = P(Q)p"(t- ) (25) i

These numerical factors and the time dependent terms, specified

whereP(Q) is the rotation operator in the Hilbert space, while according to the evolution operator of eq 30, are given by
oM(tp™) and pM(tp™) are the density matrixes prior to and after

the pulse, respectively. The explicit form B{Q2) depends on - _ e

a, = A, t 1) = Ul (L)UN (£ YUY (t
the axis of application of the pulse. For a (7/2ulse, it can 1 8 1 (t b 1) = Upa () U (t) Upa(ta)
be specified by the following transformation of the density igi262-6)
matrix with respect to electron spin states. a,= 5 Ag"(tz, to,t) = U?fﬂa(tz)u,/_’\%/la(tm)uyﬂ(tl)
M i ai(¢1—¢ot3)
0 ie
p’ﬁf B=" A3 (2t ) = Upo(t) Ugio () Ui (1)
Pl |= (33)
Pop iAl(@2—p1t¢a)
ie 2 1 3,
Pha a="p— Aty ) = UL QUL )UL)
. i [ —ip M
1/2 1/2 (2)e*  —~(i2) e | [k oz o
12 12 - —(i2) e’ (il2) e "_” Pss (26) 8 =—"—g Asltyty 1) = Ug(t)Us(t)Upa(ty)
(il2) e —(i/2)e™* 1/2 12)e"* || oby _
; i (i i® i2¢ M jg(@¢s01) M M M M
—(il2) €% (il2) € (1/2)e=? 1/2 Ppo == A (t, ty 1) = Ut (t) Ul (t,) Uni(ty)
whereo andf are the conventional notations for= %/, and To eliminate the transverse interference term§, @8/, A7,

m = —1/, electron spin states. Ag" in the present notation), a 16-step phase cycle is performed
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Figure 3. Pulse sequences and coherence transfer diagram for the (A) standard COSY mode and (B) SECSY mode of 2D-ELDOR. Notice the
different definition of the time intervals in the two modes. The solid line represents the coherence pathw&afigmal.t; denotes the spectrometer

dead time andy, is the mixing time.

in the experiment? Then, by using the following combinations
of two signals recorded by changing the first pulse phase of
(7t/2)

Qllf(tb tmv t2) = ¥LDOR(tl’ tmv t2)' - iﬁLDOR(tl' I:m' t2)” (34)

only the "echo-term’Aﬁ" (ref 19) is selected and included in
the spectra. Thus, the time domain signal for a particular
hyperfine line can be written as

¥LDOR(t1= t ) =

e_i(wM_wmw)(tl_tZ) e_tm/Tl,moN e—(t1+t2)T2,moMG’l\E/|LDOR(t1 t t2)
» Y
(35)

with the following characteristic function taking into account
the effects of director fluctuations

M —
C:’ELDOR(tli tm’ t2) -

f dQ i@ Toliz g Talm g-(dwutToltyy {Q) (36)

The corresponding spectral dens&), jor(®1, tm, ®2), to be
evaluated according to the two-dimensional Fourier transforma-
tion eq 24, includes three peaks labeled by the indlexvith

the first exponential term at the right-hand side of eq 35
establishing their position in the (ww>,) plane, while the
characteristic function of eq 36 determines the director fluctua-
tion contribution to their profile. It is easily derived that the
Mth hyperfine component is centered at the frequenoies
—w1= wm — Omw, 1.€., along the negative diagonal of the,(

w7) plane. In general, components with different resonance

The structure of the characteristic function, eq 36, indicates
that one is observing the “real time” motion of a spin label with
the local director orientatiomy, ny) and a resonance frequency
dwwn slowly changing to a new orientatiomy(,n,/) with a
resonant frequenaywy’ during the mixing period. Because this
entails a slight change in the ESR resonance frequency, a
motional cross-peakis expected. But because the systems
experience a continuum of valuéay' close in value t@wpw,
these hypothetical cross-peaks lead to an increase in the
broadening of the autopeaks depending on the legtt the
mixing period. This can be best observed by considering the
SECSY (for Spin Echo Correlation Spectroscopy) mode detec-
tion of ELDOR spectra, which is depicted in Figure 3B.
For the sake of comparison, Figure 3A displays the standard
scheme of detection of ELDOR spectra in the COrrelation
SpectroscopY (COSY) mode. Let us consider the simple case
of a spin probe species characterized by inhomogeneous
magnetic interactions, but in the absence of slow-motional
effects, such that each spin packet has a distinct resonance
frequency with a well-defined transverse relaxation time
Then, as shown in Figure 3B, all the inhomogeneous compo-
nents will be refocused to form a spin—echo at the timef
the detection period in the SECSY mode. The signal measured
afterward would result from the superposition of the FID signals
of the different inhomogeneous components and, by performing
the Fourier transform with respect tg they will be separated
along the corresponding frequency axis On the other hand,
the homogeneous line widths will be detected along dhe
frequency axis generated by the Fourier transform with respect
tot; because, dt in the detection period, all the inhomogeneities
are refocused into the echo signal, which decays exponentially
with respect td,/T,. Therefore, thev, andw; frequency axes

frequencies, in particular, those due to inhomogeneities, areof the SECSY mode spectra are associated with the inhomo-

recognized along the negative diagonal of the 2D-ELDOR

geneous and the homogeneous broadening of the line shape,

spectrum. Because we concentrate the analysis on the shape akspectively. In the COSY mode of detection tBe, signal is

a given peak, in the following, the frequency shift will be
neglected by assuming thatn,, = ww.

symmetric about thé = t, axis, and this feature gives rise to
the echo. In fact, a shearing transformatign> t; + t, recovers
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the equiyalent of the SECSY experiment. In other words, by peq(Q) 0 |—| exp{—QZ/ZGiZ} (38)
considering the COSY mode of detection, the homogen&gus i

may be recovered by considering the signal decay along; the

= t, line in the time display. We stress, however, that a clean As long as each normal mode evolves independently, a simple
separation between the homogeneous and the inhomogeneouéxponential decay can be assumed for its time correlation
broadening is missed when dealing with the effects of director function

fluctuations on the line shape. Indeed, because of the wide range

of time scale involved in this dynamical process, there are Q,(O)Q(t) =o’e U (39)
always some fluctuating anisotropies of the spin Hamiltonian

that are neither completely averaged nor completely refocusedwhere oi? and 7; are the mean square amplitude and the
by the echo in the time scale of the experiment. As will emerge relaxation time of théth normal mode. If the transformatia®

from the following analysis of collective fluctuations, we do — Q is linear, then the fluctuations of the stochastic variable
not recover a pure exponential decay of the echo, and thereforeQ satisfy the requirement of a Gaussian multidimensional
the truly homogeneous line width associated with a Lorentzian stochastic process.

line shape is no longer observed. According to the previous hypothesis, for the generic
representatiorQ of the stochastic variables, we assume the
following relations for the normalized equilibrium distribution

Pe{Q) = det(A/27)* exp(~Q'AQ/2) (40)

and the FokkerPlanck-Smoluchowski modét for the evolu-
tion operator

In the analysis of experimental data for vesicle systems in
ref 20, the authors have evaluated the transverse relaxation time
Tg" by fitting the time-dependent ELDOR signal in the SECSY
format by first Fourier transforming alonig and then fitting
the data alongt; using linear prediction that led to the
exponential functioe2T2", thereby recovering relaxation times
Tg"(tm) dependent on the mixing tintg. We need to introduce
also in our theoretical analysis a suitable definition of relaxation .
times on the basis of the time dependence of the ELDOR signal.['q = —z D.J peq(Q) peq Q)=
On the basis of the analogy with the exponential model, we i 9Q,

identify the transverse relaxation time as twice the time along 0 1
the positive diagonal, (i.¢; = t,) in the COSY mode, which is (BQ) peq(Q) peq Q) (41)
required to reduce by a factor 1flee ELDOR signal; that is
the solution of the following equation Both the curvature matribA and the diffusion matr>D are
real, symmetric, and positive definite. Notice that the inverse
T’V' Tg" 1 of matrix A determines the second moments in the equilibrium
g;'ALDOR ' m17 ~ e (37) state (A%); = QQ;, whereas the diffusion matrix describes

the relaxation rates to equilibrium and the corresponding

This approach and that used in ref 20 have been shown to pedynamical coupling between the stochastic variables. Because

equivalent? It should be stressed that, in the absence of director thbe f(t)ltlﬁwmtg atnalyskstk:joes tnot reql(Jj|[r)e tzpefCIfltlt aSSllJtmpt|ons
fluctuation effects, that is foGy por = 1 the equivalence about the structure of the matrixésan € linal result can

li ifferent models of dir rfl ions, provi
with the molecular relaxation timeg, = Zmo, is recovered be applied to different models of director fluctuations, provided

. . that they can be represented as Gaussian processes.
f!rom ech1/I 35. We mention also that the Io.ngltudlnal relaxation Let us introduce a formal expression for the transverse
times Ty, have no effect on the calculation of the transverse component of the director field at the positigswhere the spin
relaxation times as long as these parameters control only theprobe is located
dependence of the signal intensity on the mixing tigeln
the frequency domain, this corresponds to the control of the FQ)=n(r.) = QTV (42)
peak intensities by the longitudinal relaxation times but without xp

modifying their shape. wherev is a vector with null entries except for a single value
of unity corresponding to the selected elemet,) of the
4. Formal Solution for a Gaussian Process director field. This allows the explicit calculation of the
correlation function for the director fluctuations at the probe
To derive an explicit form of the characteristic function |gcation by taking into account that the evolution operatgr
GELDOR(tl, tm, t2), €9 36, the time evolution for the stochastic preserves the linear dependence@¥
variables has to be evaluated. This can be done in a rather

general way by supposing that director fluctuations constitute n (0)n (t) = F(0)F(t) =
a multidimensional Gaussian process. . + DAt

Let us assume that there exists a suitable representation of J dQF(Q) e "UF(Q)P{Q) = V' e v (43)
the director field in terms of normal modes associated with a
transformation of the set of stochastic variabl@s— Q. The
determination of variable® requires the search for a repre-
sentation in which the elastic free energy of the system can be 1 _—
written (exactly or approximately) as a sum of uncoupled g(t)EE ﬂ) dt j(; dtin(t')n(t") (44)
evolving termst%11 By applying the harmonic approximation
for the elastic free energy, each contribution to the sum is which corresponds to the second cumulant of the probability
actually a quadratic contribution. Therefore, the equilibrium distribution function.
distribution of the transformed field is written as a product of  To find an explicit form for the characteristic function of eq
Gaussian distributions 36, it is necessary to evaluate the effects of the evolution

For later use, we introduce also the double time integral of this
correlation function
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operatolindww(Q) + I'g, with n = 0, £1, on a given function __ _—DA(t—to) _ t—to @ DA
of the stochastic variables b() =e b(to) — ndwy’ f AV dt
i j— 6 ’ t Tb I dl (55)
f(Q,f) = e (MowtTalt-hf (@ t ) (45) a(t)=a(t) — ndwy’ f; v'b(t) dt

Because of the assumed linear dependence of the Hamiltoniarivherea(to) andb(to) are the generic initial conditions.

on the local component of the fluctuating director, a linear ~ Such an integration scheme can be applied to the ELDOR
relation is found for theQ-dependence of the resonance characteristic function in the Fourier transform representation,

frequency factor eq 53. For the initial state described by the equilibrium
distribution, eq 52, vanishing values of the integration param-
dwy(Q) = 5wM'nx(rp) = 5wM'vTQ (46) eters have to be considered
where the proportionality factor is given as a(0)=0, b(0)=0 (56)
5B Starting from this initial condition, we can evaluate the
owy' = i 0(9” o) sin(26;) — evolution of the function eq 51 during the first period of length

t;. Then, the function at timg is taken as the initial condition
M(A, — A sin(26; — 6') (47) for the evolution durindy,. Again, its final state represents the
initial condition for the evolution during. In detail, we obtain
As shown in ref 13, explicit solutions of eq 45 are more easily (i) Evolution duringt; controlled bydy, -1
derived by employing Fourier transformed functions with respect

to the stochastic variables b(t,) = 6wM'ftl e DAt ALy dt;
0

- B ot , )

f(ph)= [dQe ™ @Pr Q. 48)  at) = (Bw,) Ot dt, ﬁ dtvt e DA ATy =
which evolve in time as: (dwy)2g(t)

8f(p t) whereg(t) is given by eq 44.
at Pl (0.0 (49) (i) Evolution duringtm, controlled bydw o
with a first-order differential operator b(t,, t,) = e—DAtmb(t )
Jyn=P'Dp + (p'DA — ndm,/v )— (50) a(t, t) = a(t)

o _ B (iii) Evolution duringt, controlled by, 1
Thus, the formal solution in Fourier space can be specified as

bty ty ty) = € PA(t,, 1)) — Sy [17 e PATATY dity

f(pt)= g Imalt —W0F (0.t (51)
"2
= +9(ty) — +t, +
and by noting that the Fourier transform of the equilibrium At tn 1) = On )T +9() ~ Gl + 1]
distribution is given by where
=ex A 1p/2 52 n
Pe(P) = eXp(—p n/2) (52) O oty o ) = . dt2 ﬁ) dtlv g DAt +artt!) p 1,
the characteristic function eq 36 is written as oot ; ;
o db JE) dt;'n,(O)n(ty’ + t, + 1)
GELDOR(tl’ to ) = (57)
[e "t g Puom g~ Imatl exp(—p'A Yp/2)] _, (53) In conclusion, according to eq 53, th@8Y por(ts, tm, 1)

function can be specified as
Given the first-order character of the transformed operators
dun, the explicit solution can be obtained using standard GY por(ty, t, t,) = € 2 =

rocedures for ordinary differential equations. Let us consider
P Y a exp{ —(dap)l9(t) + 9(t) — Gy Aty s L]} (58)

the following trial function

T (p.t) = exp{ —a(t)— p'b(t) — p'A " p/2} (54) and, therefore, the knowledge of the correlation. functign

n(0)n (t) for the local transverse component of the director, is

which represents a shifted Gaussian with the same widths assufficient for predicting the effects of collective order fluctua-
the transformed equilibrium distribution, eq 52, while its center tions on these pulsed ESR experiments. A similar conclusion
and intensity are allowed to change in time because of the effectswas drawn also for NMR pulsed experiments by analyzing the
of the evolution operator. As shown in ref 13, it can be easily effects of director fluctuations on quadrupolar interactitta/e
verified that such a trial function is a particular solution of eq emphasize this is strictly a consequence of the assumption of
49 associated with eq 52 as the initial state. In particular, the Gaussian random processes.
substitution of the trial function into the time evolution eq 49 It should be stressed that, because of the contribution of
and the separation of the terms with the same power lefads O1.At1, tm, t2), the characteristic functiorG'g"LDOR and the
to ordinary differential equations of the first order for the time- corresponding contribution to the line widths depend on the
dependent parameteaft) andb(t), which can be integrated as  mixing time t,,. Notice that the contribution ofj; o(t1, tm, t2)
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decreases whety, is increased, as long as the correlation GM (f 7 f)
function oo \sTms1a

n(0)n(H)

of director fluctuations is a continually decreasing function of
the time. In particular, forty, — o, such a contribution
necessarily vanishes, and the signal becomes the product of two
independent FID signal$,one recorded during and the other
during to.

5. Model Calculations

Toillustrate, by a simple model, the effects of collective order
fluctuations on the 2D-ELDOR spectra, let us consider the
hypothetical case of director fluctuations with local components
decaying as a simple exponential

Figure 4. Time dependence of the characteristic function
GM bor(tntm ) of the ELDOR experiment, characterizing the director
— fluctuation contribution to the relaxation process for the model of a

n(0)n(t) = nxze’t’I (59) single-exponential correlation function. The time profiles refer to a

scaled decay time of = 10 and two different values of the scaled
Then the time integrals of the correlation function, which have Mixing time, i.e..tn = 0 (upper plot) andr = 50 (lower plot).
been previously introduced, take the explicit form 37 5 s
SELDOR (a)l’ fm » mz )

gty =n2e " — 1+ th) (60)
— 2
Oulty, tm ) =N (L —e (1 - &™) (61)
Even in this simple case, a complex time behavior is found for = 9
the characteristic functiofBy, por(ts, tm, t2), Which cannot be

reproduced by an exponential decay. Therefore, definition eq -2
37 will be employed to calculate the transverse relaxation time

T and to evaluate its dependence on the mixing timéThe

simple structure of the model suggests the use of the fluctuation

amplitude of the resonance frequency 4
> 2
Awy, = 10wy, N, (62)
as the scaling factor for time variables (or the inverse for a S50
frequency). By using the corresponding scaled variables, in the -
following denoted by symbols with a tilde
0; = w;lAw,, i=1,2 R 5 S i
t = Aoyt i=1,2,m (63) @,
~_ Figure 5. Contour plots of the absorption profile R&[Sor(@1,tm®2)]
7= Aoyt

of the ELDOR experiment characterizing director fluctuations for the
model of a single-exponential correlation function. The contour plots
refer to a scaled decay time of= 10 and two different values of the
scaled mixing time, i.ety = 0 (upper plot) andy, = 50 (lower plot).

it is shown that only two independent parameters need to be

specified in the model: the scaled decay titneharacterizing i.e., forty = 0 ort; = 0. Indeed, for these special caggs =
the collective dynamics, and the scaled relaxation t"fﬁﬁm 0 and the functiorGy, pog is equivalent to the secular part of
due to the molecular tumbling. the FID signal derived in ref 16. Furthermore, the relaxation

First, let us discuss the main features of the derived ELDOR function decays more slowly along the= 1, axis, in agreement
signal in the ideal limit of a vanishing molecular tumbling with the echo property of the signal as discussed in the previous
contribution to the relaxation raté'xmol)*l = 0, so that the section.
relaxation time is completely determined by the collective By examining the spectral densit§ por(@1, tm, @2),
dynamics and®, por(ts, tm 1) = Gt por(t, T, T2) according defined according to eq 24, one can detect the effects of director
to eq 35. In such a situation, the magnetization evolution is fluctuation on the line shapes. Contour plots of the absorption
entirely due to the director fluctuations (DF) and, therefore, the profile, obtained as the real part @"LDOR(J)L tm, @), are
corresponding transverse relaxation time will be denoted as depicted in Figure 5. Even in the COSY spectrum, where the
TXDF. Figure 4 shows the characteristic function for two spectral direction associated with the homogeneous line width
different values of the mixing time. Notice that a faster decay is not well defined as in the SECSY spectrum, a narrowing of
of the time signal is obtained for longés; however, there is the line width is clearly observed when the frequency displace-
no dependence on the mixing time along the two time axes, ment is considered along the positive diagonal. Furthermore,
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mp \l F=10 dependence within some time window, then there should be a
(Tz.DF) 0.5¢ ; : :
- slow fluctuating component with about the same time scale.
izl Analytical estimates of the transverse relaxation times for
0.4f g situations where no dependence on the mixing time is observed

. can be obtained fdf > 1 by performing a suitable expansions
.............................. of the functions egs 60—61 with the following results

0.3f
th>7 (T '=(12) (68)
0.2}
- th<?  (Tpop) =012 " (69)
7=0.1 :
(0.8 o s s s B B 5
We mention also that by performing tfie— oo limit, the rigid
limit is recovered with a characteristic function given as
O ] ] 1
10°® 10° 10° 7 /= - ..
./t G por(Tyty) = exp[—(, — 1,)%2] (70)

Figure 6. Dependence of the scaled transverse relaxation rate

g‘T’Q’fDF)‘l, arising from director fluctuations, on the scaled mixing time  corresponding to a Gaussian inhomogeneous broadening which
tw/7 for three different values of the scaled decay tifrfer the director is refocused fort; = t, because of the echo property of the
fluctuation described by the model of a single-exponential correlation signal.

function. The relaxation curves refer to a vanishing molecular contribu- Let us finally examine the effect of the molecular contribution

I P Xa _ : ut
tion, i.e., (Blmo) 0. Tg’fmol, treated within the fast motional regime, on the mixing

the line width in this direction increases with the mixing time time dependence of the transverse relaxation fifieA very
because the inhomogeneities modulated by director fluctuationsSimple case to analyze is that for the motional narrowing regime
are not completely refocused and, therefore, significant devia- under the condition (eq 64), where additive contributions from

tions from the Lorentzian shape are expected. the molecular tumbling and director fluctuations result for the
Let us now analyze the mixing time dependence of the time dependent ELDOR signal eq 35,

transverse relaxation tim‘ég’fDF in the absence of the molecular 1 1 1

tumbling contribution. In Figure 6, such a dependence is v bervai ey (72)

illustrated in some typical conditions. The simplest case is that Tgﬂ Toor Tomo

of the motional narrowing regimevhere the rate 1/of the ) o )
dynamical process is much larger than the fluctuation amplitude !N this case, no mixing time dependence is detected on the

Awy eq 62 of the resonance frequencies transverse relaxation time. A more interesting situation is that
of the slow motion regime, under the condition (eq 67), when
1/r> Awy, (64) such a simple additive relation is no more valid. Still, some

general conclusions are easily derived from the basic structure
or 7 < 1 in scaled units. The case féor= 0.1 in Figure 6 is of eq 35 for the time- dependent ELDOR signal. Given the
representative of such a situation when no dependence on thedirector fluctuation contributionTy 5. previously discussed,
mixing time is detected for the transverse relaxation time. From one can recognize the two obvious limits
theT — 0 expansion in eqs 6661, one derives the following

analytical approximation of the characteristic function (i) 1 > 1 1_1
Sor Tomo T3 Toor
-~ - - 2,DF ,mo ,
GELpor(tyto) = exp[—(t; + b)) (65)
(i) 1 _ 1 1 _1
which leads to a transverse relaxation time independent of the ™oe Tou LES P
mixing time ' ' '

5 5 When the two rates, {f)* and ($',,)"% have a compa-
Uy pe=7% (66) rable magnitude, then the solution of eq 37 is required in order
) . to evaluate the overall transverse relaxation tl'Fﬁ"e Figure 7
It should be menUonethhat, because of the exponential decayreports some typical results for the mixing time dependence of
found in this case foGg por @ Lorentzian line shape repre- (=1 calculated with = 10 and increasing values of the
sentation of a truly homogeneous process is recovered in themgjecylar tumbling contribution. It is evident that, when the

frequency domain. _ . _ molecular tumbling prevails, that is if the condition (i) holds,
If the condition (eq 64) is not satisfied, that is for the mixing time dependence is completely lost. Such a
1/ 5 Awy, (67) dependence is indeed detectable if the molecular tumbling

contribution (ﬁmofl is comparable to or smaller than the

(or # = 1 in scaled units), the system falls in telew motion ~ director fluctuation component {TA % provided that the
regime and a mixing time dependence is detected for the SIOw motion condition eq 67 holds.

transverse relaxation time. The two cases#er 1 and7? =

10, displayed in Figure 6, clearly show such a dependence an
furthermore, point out that changes of the transverse relaxation Biological membranes exhibit exceptional mechanical proper-
time are detected when the mixing time is in the same range asties unequalled by any other soft condensed matter maférial.
the correlation timer of the dynamical process controlling the A crucial parameter determining the shape fluctuations and
resonance frequency fluctuations. This appears to be a rathefunctionality of closed biomembranes is the bending elastic
general result, which implies that, iﬂ'X')*l displays atn modulusk. Similar to order director fluctuations in nematic

46 Application to Vesicle Samples
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10"t TABLE 1: Magnetic and Order Parameters of the Spin

(Tz"fwl )71 =5 Probe 16-PQ Used to Study the Viscoelastic Properties of
L T O Pure DPPC Vesicles and of Mixed DPPC/GA Vesicles by
( 2 ) 2D-ELDOR®
ST T=318K 16-PC in DPPC 16-PC in DPPC/GA (5:1)
( 2,m,,z) =1 e 2.0089 2.0087
L0 b o S Oy 2.0058 2.0059
(74,) " =01 Ou 2.0021 2.0021
) e Ax= Ay (G) 5.0 5.0
Az(G) 33 33.7
(T )*1 =0 S 0.183 0.218
........................ 2mol S —0.049 —0.064
Sex -0.123 —0.1482
107 Sy —0.063 —0.0698
4 2 o 2 - 4 Sz 0.183 0.2180
10 fo 10 100 7,/7 10 A (G) 17.81 18.74
Figure 7. Dependence of the scaled overall transverse relaxation rate Ao (G) 13-8849 1;-3847
FMy—1 Py i 1 (o] . .
(T5) "t on the ratiot,/7 between the scaled mixing time and the scaled o > 0060 5 0060

decay time of the model correlation function with a single exponential.
The relaxation profiles, each labeled by the assumed value of the a16-PC: (1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholir)-
molecular tumbling contribution‘T’Q’fmoD‘l in scaled units, are calcu-  PPC: (1,2-dipalmitoyknglycero-phosphatidylcholine}.GA: grami-

lated for a scaled relaxation time &f= 10. cidin A". ¢ Experimental values adopted from ref 20.
phases, the shape fluctuations in closed lipid bilayers are 16-PC
characterized by a broad distribution of thermally activated

modes extending over a wide frequency range down to the kHz CH,
regime®® It was shown that the transver$& nuclear spin 9

relaxation rates, measured in CaRurcell multipulse sequences, _O_T_O_CHZ_CH2_+N_ CH,

are the same for unilamellar and oligolamellar vesiétes. CH,
Evidently, the interbilayer coupling is much weaker than CH,—CH— CH,

previously anticipated-3°and has no effect on the membrane ' i

fluctuations down to the kHz range. Therefore, in the case of Zzo -0

multilamellar vesicles in excess water, where interbilayer water Nitroxide Moiety
significantly reduces the coupling between the layers, the shape Side view  View along 2,

fluctuations are expected to be comparable to those of unila- z, z}

mellar vesicle$:32 For this reason, the hydrodynamic model, N

developed for the analysis of unilamellar vesiciésan also v

be used for oligolamellar vesicles explored in the experiment JX

of ref 20. "
The model calculations in this section are reported for a spin

probe in a vesicle in order to describe the effect of director

fluctuations on the 2D-ELDOR relaxation raté’ﬁ"][*l. First, a

specific spin probe in a given membrane vesicle sample is

chosen in order to evaluate the relevant hyperfine frequencies

and their angular dependencg. Second, we su'mmarizg the .

standard model for the fluctuations of quasispherical vesicles 5

to provide an explicit relation for the required correlation _. . . .
function4 On the basis of these results, we shall analyze the Figure 8. Chemical structure pf the er_nployed spin probe_(l-palm_ltoyl-

L L L 2-(16-doxylstearoyl)phosphatidylcholine). Also depicted is the orienta-
relaxation of the magnetization by considering the purely secular tjon of the principal axes of the magnetic tensaxs,Ymzm). Zr =
contribution of the director fluctuations. This allows the principal axis of the ordering matrix.

characterization of their specific features as well as their relevant
dependence on the mixing tintg. Finally, we discuss the so-
called MOMD effect!® these vesicles samples are characterized
by the lipids being microscopically ordered at a given position
of the vesicle, but the sample is macroscopically disordered
because of the orientational distribution of the normal direction

of the membrane. This leads to a superposition of spectra from(g.ZSGHz), which corresponds to a static magnetic fiel@of

mimbrr?]ntle Iragr:n(rent? ‘:‘{'Zthtidgfe;?ﬂt orlentat{(r)ns.l requires the. 3300 G. Table 1 summarizes the principal values for the
compiete charactéerization of these Spectra also requires th€g i, g hyperfine tensor of the nitroxide radical, obtained

relaxation ratesTo',,) " due to the fast molecular tumbling. ¢, "16.pc in pure DPPC vesicles and in DPPC/GA mixed
Although these rates can be evaluated according to a diffusionyegicles (molar ratio 5:1). The orientation of the principal axes

model in the presence of an orienting potenti#they will of the magnetic tensors is depicted in Figure 8 together with
simply be parametrized in order to avoid a too cumbersome the chemical structure of the spin probe.

presentation and to focus attention on the contribution of the ) -

director fluctuations. In ref 20, the axial order paramet& = D,, and the
The Magnetic Parameters of the Spin ProbeTo carry out biaxial order paramete®, = Do + Do -7 of the spin probe

calculations pertinent to a realistic situation, we choose the spinin pure DPPC vesicles and in DPPC/GA mixed vesicles are

[

probe 16-PC (1-palmitoyl-2-(16-doxyl stearoyl) phosphatidyl-
choline) dissolved in vesicles of DPPC (1,2-dipalmitep-
glycero-phosphatidylcholine). The 2D-ELDOR spectra of this
nitroxide radical have been analyzed in detail by Patyal .2t al

in order to study the effects of adding gramicidinh &A) to

the DPPC membrane. The spectra have been recorded at X-band
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6;_(1015 M= Z

(50)'M)2 .

Figure 10. Schematic representation of the shape fluctuations of

Figure 9. Angular dependence of the coefficiedis'w?(0g) character- quasispherical vesicle8.and¢ denote the polar and azimuthal angles,
izing the strength of the director fluctuation contribution to the relaxation respectively, of the considered surface point with respect to an arbitrary
for the examined spin probe. reference systenkou(6,¢) characterizes the radial deviation from the

spherical geometry.
reported. The order parameters refer to a temperature 845
and are directly related to the Cartesian compong&ntsf the whereu(6, ¢) is a dimensionless parameter characterizing the
Saupe ordering matrix, characterizing the alignment of the radial deviation from the spherical geometry, whileand ¢
molecular axes with respect to the local director. On the denote the polar and azimuthal angles of the considered surface
assumption that the magnetic tensors and the Saupe orderingoint with respect to an arbitrary reference system. The angular
matrix have the same principal axes, one can calculate thedependent function(6, ¢) can be expanded with respect to the
parallel and perpendicular components of the averggedsor spherical harmonic¥) (6, ¢) according to

1+ 25 1-2§ Inax |
9= 45— W= G (2 UO.D=S S Uninl0. ) (75)

i%y.2 i=%y.2 & e

and the averaged componeAtsandAg of the hyperfine tensor
as well. Given these averaged tensors, we can calculate th
coefficientsdwy' in eq 47, which determine the weights of order
director fluctuations on the ELDOR observables. Figure 9
depicts the dependence of these coefficients on the ahgle R,
between the average director and the magnetic field. Notice that | a0 (76)

where, because of the finite size of the vesicle, the expansion
fhas to be truncated at an upper limitx of the indexl, given

by34

the angled’ in eq 47 is calculated for eadhs according to eq e a

10. One sees that the coefficiendssg')? and Pw-1')? are much

smaller than (d&/)?, which reaches its maximum value @ a being the typical distance between adjacent phospholipids.
~ 7i/4. Consequently, the largest effect of the director fluctua- The expansion coefficients, represent the normal modes for
tions on the ELDOR line widths is expected for the= 1 the thermal fluctuations of quasispherical vesicles, and they are

hyperfine line at a director orientation 6 ~ /4. It should characterized by independent correlation functibns

be noted that only linear contributions of the orthogonal

components of the fluctuating director have been employed in T av. () — 2 -t

the gnalysis. Thus, the thegry cannot account for (F:)an):)nical U m(O)ty (1) = Oy O mlhm” € (77)

orientationsfg = 0 andfg = 7/2, where the average director -

is either parallel or perpendicular to the magnetic field. where the mean-square amplituajgf and the relaxation time
Fluctuations of Quasispherical Vesicles.The model of 1) for each mode are given as

quasispherical fluctuations was developed by Milner and

Safrar* on the basis of Helfrich’s theory of the elasticity of — kT 1

lipid bilayers’®®> and the hydrodynamic approach of Schneider U|,m2 = U|2 =— >

et al3f In this model, a vesicle is considered to be a quasi- (- +1+0)

spherical closed shell of radiug, characterized by a fixed 3 5

volume V and a fixed aresA. The vesicle is assumed to be . = Ry (2 +1)@2r+21—1) 78)

flaccid, with the dimensionless excess arealescribing the ! k(=0 + )7+ 2)(|2 +1+0)

deviation of the vesicle from a sphere of the same volume:

respectively. Herey is the viscosity of the surrounding fluid,
A= (47 + ARy (73) « is the bending elastic modulus of the membrane, while
the dimensionless effective lateral tension, which is related to
For a quantitative modeling of the fluctuations, the vesicle is the excess areA by the relatioR”
described by a slightly deformed spherical surface as (see Figure
10) kgTlma 2] 41
A [

— (79)
R(6,¢) = Ry(1 + u(6, 9)) (74) 2k 2P +1+0
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TABLE 2: Values of Physical Parameters Used in Model GM (t gl )

Calculations of ELDOR Observables Determined by Vesicle ELDOR \"1>"m>"2

Shape Fluctuations 10° -
Ro vesicles radius, nm 1000 1
« bending elastic modulus, J 31072 1 0
ksT thermal energy, J (¥ 318 K) 4.4x 1072 | S
7 viscosity, Pa s 6.5 104 107 ‘“.'o,‘.:'.:-"- .
o lateral tension 0 ] S
aintermolecular distance, nm 1 ] e t =3us

' s m
go,uuo.u'“

=
8
=
5355
3

Ref 14 reports the derivation of the time autocorrelation 1074 ,:.:.:;0“4:.:"
function of the transverse component of the local director ] %",’o‘
defined as the orthogonal direction to the fluctuating membrane ] %
at a given position. We recall here only the final result for the 104; JHAL:
correlation function of the transverse component of the director 0 e il
at a given position 4 (52 e I{""-~~-.6 s i JIE s
- o x 10 1,(s) x10”

nO)n(t) = — Z I(I + 1)21+ 1)u|2 e Un (80) Figure 11. Time dependence of the characteristic function
87 (= Gr bor(tntm ) Of the 2D-ELDOR experiment describing the director
] ] ) ] ) fluctuation contribution of a nitroxide spin probe in quasi- spherical
By performing a suitable double integration over the time vesicles. The time profiles refer to two different values of the mixing
variables, the functiong(t) (eq 44) andy A(t1, tm, t2) (€q 57) time, i.e.,tn = O (upper surface) antl, = 3 us (lower surface). The
are eas“y derived’ and from them, the characteristic function parameter Values_usec_i in the palculation are listed in Table 2, the
GeLpor(ty, tm, t2) describing the ELDOR experiment. employed magnetic anisotropy is (4" = 5.8 x 10 s™2
ELDOR Line Shape and Transverse Relaxation TimeTo
demonstrate the effect of vesicle shape fluctuations on the
ELDOR observables, we first show representative calculations — kT
of the characteristic functioBY, ;o based on the parameters nO)n(t) = 75— In(t/H) (81)
X . ) ' K
listed in Table 2. The value for the bending elastic modulus
is adopted from the literature. The value fpicorresponds to where, Ry, and ¢ enter only through the parametiy In
the viscosity of water. For the effective lateral tension, values Appendix A, we have reported the analysis leading to such an

correlation function,

in the range 0<o <100 have been reportédiFor simplicity, approximation. Interestingly, the use of eq 81 leads to time
a value ofo = 0 is assumed. integrals for the functiong(t) andgy (1, tm, tz), which can be
We recall that the characteristic functi@}| por(ts, tm, to) performed analytically. Thus, one obtains as the characteristic

depends on the magnetic parameters only through the coefficientfunction of the ELDOR experiment
(0wwm')?, whose angular dependence has been already examined
in Figure 9. One can easily deduce the effects of changing the M RLANEE 3
coefficient (dam')? for a given model of director fluctuations. In{ GeLpor(t, ty 1} = —(0y) ml_t (In t— é) +
Clearly, an increase of(')? leads to a faster relaxation of o1 3 5 3
the magnetization described H?E”LDOR(tl, tm, t2), and cor- (2t+t,) 2 In(2t + t)) — Z) —(t+ty) (In(2t+ tn) — E) +
respondingly to a broader line shafl$ por(@1, tm, 2) in the o1 3
ELDOR spectrum. We concentrate here the analysis for a fixed t (E Int, — Z)] (82)
coefficient (dwi)2 = 5.8 x 105 s72, which corresponds to a
maximum value for the hyperfine lind = 1. In Figure 11, the where all the terms containirig(see eq A-5) cancel out exactly,
time dependence 0By por(t, tm o) is displayed for two  thereby explaining the independence of the ELDOR signal with
different values of the mixing time. Although the model respect to the, R, ando parameters. Althoug eq 82 represents
describing fluctuations of quasispherical vesicles is more the easiest way to evaluate the ELDOR relaxation time, in the
complex than the simple exponential model considered in following, we shall report the results with the full correlation
Section 5, the characteristic ELDOR function displays the same function to avoid any possible deviation from the approximate
main features. Accordingly, the effects of director fluctuations form, eq 81.
can be well characterized through transverse relaxation times In summary, the bending elastic moduluds, apart from
Tg" defined in eq 37 the strength of the magnetic interactions, the relevant parameter
Calculations of the characteristic functi®y, por(ts, tm, t2) determining the transverse relaxation time at a given temper-
with different values of the parameters listed in Table 2 have ature. Figure 12 shows the decay profile alongtthe t; =t
shown a well-defined dependence only with respect to the direction of the functionGy| pog(ts, tm, tz) for two different
bending elastic modulusfor a given temperature. As a matter ~ Vvalues of the bending elastic modulus: increasing this parameter
of fact, ELDOR observables are found to be independent of entails a slower decay of the signal. Indeed, a stiffening of the
the effective lateral tensiam of the viscosity of the surrounding ~ Vesicles determines a reduction of the amplitude of the shape
fluid #, and of the size of the vesicRy, (this is strictly true for fluctuations and a faster decay of reorientational correla-
Ry > 100 nm). This is an important conclusion, which simplifies tions. Clearly, the bending elastic modulus is also the crucial
to a large extent the analysis of the experimental data becausé®arameter in determining the variation of the transverse
only one physical parameter has to be determined. Furthermorefelaxation rates Typ)~! with the mixing time tm. This is
such a conclusion can be justified by considering that, with the shown in Figure 13 for five different values of the bending
physical parameters in the same range as those in Table 2, thelastic modulusk. For simplicity, the molecular tumbling
following approximation can be employed for the director contribution was set to zero, i.e.'l,'Z’(mOD*1 = 0. One sees that
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xk=13-102J

107} N

107}

10’30 02 oz o8 o8 ] 0 05 1 15 2 25 3
. . : . .
t(s) x10° 1,(s) x10
Figure 12. Time dependence of the characteristic function Figure 14. Dependence of the transverse relaxation rat,) 2,
GEALDOR(t,O-t) of the 2D-ELDOR experiment calculated for=t, = t arising from vesicle shape fluctuations, on the mixing time a 2D-

and a vanishing mixing timex, = 0. The time profiles refer to two ELDOR experiment. The two relaxation curves refer to a particular

different values of the bending elastic modulusf the vesicle, i.e.c orientation@ls = /4 (dotted line) of the average director and magnetic
=4 x 1020 ] (dashed line) and = 13 x 1020 J (continuous line). field and to the MOMD (microscopic order/macroscopic disorder)

The parameter values used in the calculation are listed in Table 2, the@Verage (solid line). The other parameter values are listed in Table 2,
employed magnetic anisotropy is (4@ = 5.8 x 10" 572, the employed magnetic anisotropy is (§97 = 5.8 x 10°°s™2.

x 107 The MOMD case is important for biologically relevant

' ‘ ' Tk =410 membrane systems, where it is not easily possible to prepare
macroscopically aligned samples, but macroscopically disor-
dered “dispersion” samples are readily available. Now, let us
examine the MOMD effects on the contribution of the director
fluctuations to the relaxation. First, we note that, because of
the “echo-like” cancellation of the inhomogeneous broadening
along the temporal dimensiof,= t, the different orientations

of the ADF with respect the LF do not induce any change in
the resonance frequency of the resulting line shape. On the other
hand, the variations of the coefficiende»'m(6g) have to be
considered according to Figure 9. Clearly, the dependence of
the line width on the anglé@g follows the behavior of the

08, 05 ] s 5 25 2 coefficientdw'm(6s): when it is near its maximum value, the
/ (S) x10° cor.responding membrane regiops give a bro_ader apsorption,
_ " _ while those for whichdw'w(0g) is small contribute with a
Figure 13. Dependence of the transverse relaxation ratf,9 %, narrower signal. The resulting line shape is calculated according
arising from vesicle shape fluctuations, on the mixing time a 2D- to eq 83
ELDOR experiment. The calculations refer to five different values of - . .
the bending elastic modulus and a vanishing molecular tumbling In addition, the dependence of the ELDOR line width on the
contribution, (¥ )~ = 0. The other parameter values are listed in MiXing time t, is affected by MOMD, as shown in Figure 14.
Table 2, the employed magnetic anisotropy is (@)#'= 5.8 x 105 One sees that both the absolute vaIueng(‘fD(c)*1 as well as the
s variation of Ty,) ! with ty, are attenuated but the overall

) ] ) ) ) behavior of ('E’fDF)‘l is unchanged. This indicates that 2D-
as long as a time window of microseconds is accessibléxfor £ pOR studies of macroscopically disordered samples stil
tf;eEtI)_%ng::\r)lg elastic m(t)dulus can be determined from this type gjjo a reliable characterization of director fluctuations.
of ! EXPErIMens. — Analysis of the Experimental Data. In this section, the

Microscopic Order/Ma_croscop|c Disorder (MOMD) Ef- . experimental results obtained by Patyal a’are interpreted
fect. Actually, the experimental ESR spectrum of a Vesicle ', ormg of the relaxation model developed in this paper.

Sam.p'e s a superposition of spectra from Iocally. or.dered However, the study of the transverse relaxation rates as a
environments (or fragments), which are randomly distributed function of the mixing time was not the principal aim of the

with respect to the direction of the constant magnetic f'eld’ €., experimental ELDOR study, so only limited results are available
the labZ axis. As long as the Iateral_ diffusion of the spin p_robe for an analysis of the collective motions. Nevertheless, it can
molecules is slow compare to the time scale of the experiment, be shown that the model calculations are in good agreement
the measured ESR signal can be written as with the experimental observations, and reasonable values for
the bending elastic modulus of the DPPC vesicles can be
NP = 'S, (6g) sin b by (83) extracted from the analysis of the data. As we have extensively
discussed in the previous sections, two parameters are relevant
where S-(6g) is the ESR spectrum of a particular membrane in order to fully characterize the mixing time dependence of
fragment characterized by the anglg between the bilayer  the transverse relaxation rates in an ELDOR experiment of a
normal (z-axis of the average director frame) and the magnetic vesicle sample: the bending elastic modulasd the molecular
field. contributionTg’fmol to the relaxation. In Figures 15 and 16, the
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x 167 TABLE 3: Bending Elastic Moduli and Transverse
L8 ‘ ‘ ' ' ' Molecular Relaxation Rates Extracted from 2D-ELDOR
(T2M) .| | Experiments® Using a Slow-Motional Model
sample temp (°C) x(J) (o) T (AP s

8 . DPPC 45 11x 102 6.4
15l ] DPPC 70 4.7 10 4.4

' DPPCI/GA 45 15x 10720 10
1.4 ] DPPC/GA 70 8x 10720 6.6

o a Experimental data adopted from ref 2DPPC: (1,2-dipalmitoyl-
18 08 | sn-glycero-phosphatidylcholiné) GA: gramicidin A'.
—- . —26 i ) .

Er x=11-107J T Several experimental techniques have been developed in order
| 1{’ (TM )*1 —6.4-10°s" | to quantitatively study the bending rigidity of vesicles and its

' Zmol ) temperature dependence: our resulicof 11 x 10720 J for

1 : : : ! ! pure DPPC vesicles at 4% compares favorably with those
0 0.5 1 1.5 2 25 3 . : ahta ;

{ (s) «10° obtalneql by heat capacity measurem tscdeo rr_ucroscop§P

m and optical technique®.It should also be mentioned that the
Figure 15. Dependence of the transverse relaxation ratf)( on bending moduli of fluid-phase phosphatidylcholine (PC) mem-
the mixing timet, in a 2D-ELDOR experiment for pure DPPC vesicles  branes, which have been determined by NfARre substantially
at 45°C. Experimental data taken from ref 20 are indicated by open gmaller than that for DPPC. In our case, however, the spin probe
circles. The dotted line represents a best-fit simulation based on the 15 b yiven its low concentration. contributes only slightly to
slow-motional model developed in this paper. The fit parameters are g. . ’ y gntly

the elastic properties of the system, and the bending modulus

= 20 -1 — —1
11 107203 and (Fo) 6.4x 10 s can be identified with that of pure DPPC. For DPPC/GA mixed

x 107 vesicles at 45C, a value ofc = 15 x 10720 J is estimated in
11-8 ' ' ' ' the present study. Evidently, gramicidin (a membrane peptide)
(TzM) e causes a stiffening of the vesicles, increasing the bending elastic
1.7} o . modulus significantly>4!Inspection of Table 3 reveals that the
value ofx sensitively depends on the temperature of the sample.
18l Notably, x decreases by a factor of 2 when the temperature is

raised from 45C to 70°C. This is in agreement with previous
results for other phospholipid vesicl&s.

15 o ]

5 In summary, the values farare reasonable and indicate that
transverse electron spin relaxation is able to provide information
1.4¢ concerning viscoelastic properties in biological membranes.
k=15-10"J
Conclusion
e (r,) '=10"s 1 | .
2.mol An analytical theory for the dependence of the transverse
1o , ‘ ‘ . relaxation times for the auto-peaks in 2D-ELDOR experiments
0 0.2 0.4 0.6 0.8 1 on membrane vesicles has been developed. It is based upon
t, (.s) x10° treating fluctuations of the director field as a multidimensional

Figure 16. Dependence of the transverse relaxation ratl) ¢ on Gaussian process, and it includes just the secular contributions

the mixing timet,, in a 2D-ELDOR experiment for mixed DPPC/GA of the ﬂuctua}lﬂq part'of the spin .Hamlltoma.n, The main
vesicles (molar ratio 5:1) at 4%C. Experimental data taken from ref ~ outcome of this theoretical analysis is that the time-dependent
20 are indicated by open circles. The dotted line represents a best-fitELDOR signal, which can be used to define the transverse
simulation based on the slow-motional model developed in this paper. relaxation time, is specified in terms of the correlation function
The fit parameters are= 15 x 102 J and T3, * =1 x 107s™L, describing the director fluctuations at the spin probe location.
Moreover, it is shown that the transverse relaxation time displays
transverse relaxation rate®,)~* of the ELDOR experiments 5 definite dependence on the mixing timewhenever some
are plotted as a function of the mixing tirye Results are shown  gynamical process, which modulates the magnetic interaction,
for pure DPPC vesicles (Figure 15) and for DPPC/GA mixed qccurs in a comparable time scale. Our theory provides precise
vesicles (molar ratio 5:1) (Figure 16), respectively. In each case, tools for the interpretation of the 2D-ELDOR experiments of
the experimental data (open circles) refer tolthe- 1 hyperfine  ordered fluids once the correlation function for the director
line and a temperature of 4%. One observes a pronounced fiyctuations is evaluated according to standard viscoelastic
dependence of the relaxation raf§'}~* on the mixing time  models for collective fluctuations of the systems considered.
tm, indicating that director fluctuations constitute the dominant  |n the present analysis, the model for the shape fluctuations
relaxation process. Consequently, we can analyze the relaxatiorof quasispherical vesicles has been considered in detail, and
curves on the basis of the relaxation model developed in this good agreement has been found in the comparison with
paper. The employed magnetic parameters of the spin probeexperiments. The theory provides a useful way to exirattie
are summarized in Table 1. Calculated relaxation curves werepending elastic modulus of the membranes, from experiments.
fitted to the experimental curves by varying the parameters  Of particular importance from a biological point of view is that
and (B,;) " In the calculations, the MOMD effect has been the technique may be exploited to investigate modifications of
considered. The resulting values«oénd ('I';’fmc,D*l parameters membrane viscoelastic behavior caused by inclusion of sterols,
are reported in Table 3. The dotted lines in Figures 15 and 16 peptides, or proteins. Indeed, these effects are not small and
represent the best simulations of the relaxation curves. Evidently,invite speculation regarding the consequences for overall
the agreement between experiment and theory is good. biological membrane functions.
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Finally, we recall that the present theory is confined to the 25¢ 1 =3000,0=0
diagonal peaks of the ELDOR spectra because of the secular f(g) w
approximation invoked in the analysis. According to a previous
treatment of CW-ESR spectt&we expect a negligible con-
tribution to the autopeaks due to the fluctuating pseudosecular | ===y~
contribution of the hyperfine interactions, while they should have 18-
a major role in determining the shape of the cross-peaks.
Theoretical work is in progress in order to extend the theory to
account for the fluctuating pseudosecular terms of the spin
Hamiltonian.

1. =1000,0=0
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Figure 17. Representation of the scaled correlation funcfifipfor
Appendix A: Approximate Form of the Correlation two values ofinax and two values of: dashed line @lax= 3000,0 =

Function n(0)n(t) for Quasispherical Fluctuations of 100), heavy continuous lindnfx = 1000,0 = 0), light continuous
Membrane Vesicles line (Imax = 3000,0 = 0). For the latter case, the approximate form is

also depicted (dotted lines).

By scaling the time according to the parameter ) ) o
f(0), evaluated according to eq A-3, the following approximation

4,7903 is derived for the function in the entire time domains
t.= A-1 A~ A
oK (D) fo) fort=<t,
the correlation function of the director fluctuation, eq 81, is f(t) =y In(ty/t) fort,<t=t, (A-6)
conveniently represented as 0 fort = t,

kB with a further parametet,, dependent ofmay and o, to be
(O)F&(t) = f(t) (A-2) obtained by matching the linear behavior with the initial value
of the function

wheret is the scaled timef, = t/ts, and the functiorf(t)

Int,=Int,—f(0) (A-7)
Imax
f(f) =Y 3p o @ (A-3) For the sake of comparison, in Figure 17, we have also
; represented the approximation eq A-6 to= 0, and a very
good agreement is recovered, particularly in the linear regime.
is specified through the coefficients It should be mentioned that approximation eq A-6 can be
justified under the assumption of a vanishing lateral tension on
4 A-DI0+100+ 2)P+1+0) the basis of an integral representation for the summation in eq
- %_l - @l + 1)(2|2 +21—1) A-3. In_de«_—zd, for the coefficients eq A-4, the following limiting
behavior is found for largé
Il +1)2l+1
= (I +1)( : ) (A-4) L .
200+ 2)(1 — D)(*+1+0) b~7 a-~| (A-8)

We stress that the functiof(f) depends on the physical
parameters describing the vesicle system only thromgimd
Imax IN Figure 17, we have represented the profile of such a
function for two values ofnaxand two values of by employing y —th

a logarithmic scale for the time axis. Some key features are f(i) = 3f "d (A-9)
clearly evident: (i) the function is initially constant, with the

valuef(0) depending ormax and o; (ii) at intermediate time,  \yhere the boundaries, and Xyay are adjustable parameters

f(t) displays a linear dependence on’jrénd is a function of  (equired to achieve the numerical matching between egs A-3
the surface tension which determines a shift in the values. gnq a-9. By performing the change of variables~ y = x3,

The linear regime ends up with the final relaxation with very gne optains
small values of such a function. Once one fixes the value, of
the scaled correlation function acquires a universal character in

which can be exploited to convert the summation of eq A-3
into the integral form

the time window of the linear dependence, so that one can f(t)= Xmax dy7 E1(%°D) = Ex(Xnax t) (A-10)
employ the following representation for the linear behavior
. A whereE;(z) denotes the “exponential integral” functfén
f(t) = In(t,/t) (A-5)
with the parametet, dependent on the value. The particular E2)= f; dUT (A-11)

value of such a parameter has to be optimized by fitting the
linear portion of the profiles in Figure 17. For instance, the value having the asymptotic limit&,(z) = 0 for z> 1 andE(z) =
t, = 0.1901 has been obtained for the case 0. Then, given —Iny —In zfor z< 1, wherey is the Euler number. Then, in
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agreement with eq A-6, a vanishing value and a constant valuerotational slow motion regime. The fast tumbling regime is the most
favourable situation for observation of director fluctuations in the ESR

are recovered fot > 1/%? and fort < 1/xna3, respectively,

while a linear behavior eq A-5 is found forXiax 3 < t <
1/%°.

In summary, the behavior df(t) can be specified through
the scaled parametetsandt,, which, once converted to real
time units by accounting fdx in eq A-1, take on typical values
of a fraction of picoseconds and a few milliseconds by using
representative parameters of Table 2 for a vesicle system. Thus

observables.
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1281.
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in the time scale of microseconds characterizing the mixing time g931: Frezzato, D.: Kothe, G.: Moro, G.I.Chem. Phy<2003 119, 6946.

in the ELDOR experiments, we are allowed to use the linear
approximation eq A-5. Correspondingly, the correlation functio
for the director fluctuations in quasispherical vesicles can be

represented as

kT kT
n(O)n () = %( In(tyt) = %( In(t,/H (A-12)

wheret, = tsfb.
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