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Two-dimensional electron-electron double resonance (2D-ELDOR) is a technique that is sensitive to the
dynamical processes affecting spin labels in complex fluid environments. In ordered fluids, such as membrane
vesicles, the 2D-ELDOR experiment is affected by the molecular tumbling in the locally ordered environment.
This motion occurs on two different time scales, the faster molecular motion relative to the local director,
and the slower collective fluctuations of the director field. In the experimental study of Patyal, Crepeau, and
Freed (Biophys. J.1997, 73, 2201), it was found that the widths of the autopeaks of the 2D-ELDOR spectrum
increased as a function of the mixing time. In the present work, a theory is developed for the effects of
director fluctuations on the autopeaks in the 2D-ELDOR experiment by employing an analytical solution of
the stochastic Liouville equation for which the director field is treated as a multidimensional Gaussian process,
as previously developed by Frezzato, Kothe, and Moro (J. Phys. Chem. B2001, 105, 1281 andJ. Phys.
Chem. B2004,108, 9505). Good agreement is found between theory and experiment, notably the only adjustable
parameter isκ, the bending elastic modulus of the membrane. The values ofκ ) 11 × 10-20 J for 1,2-
dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC) vesicles andκ ) 15 × 10-20 J for DPPC/gramicidin A
(5:1) vesicles, both at 45°C, were found from the analysis and agree well with previous related measurements
by other physical techniques. This establishes 2D-ELDOR as a useful technique to study the elastic properties
of biological membranes.

1. Introduction

Electron spin resonance (ESR) is a versatile spectroscopic
technique that provides a wealth of information on the molecular
structure of various paramagnetic systems. In addition, it can
be used to characterize the dynamics of spin probes embedded
in diamagnetic systems provided that the rotational motions
modulate the magnetic interactions. This application, however,
requires suitable theoretical tools for interpreting the effects of
the molecular motions on the spectroscopic observables. The
simplest situation is certainly that of a fast tumbling spin probe
in an isotropic liquid, where the spectral line widths can be
analyzed according to motional narrowing theory1,2 based on a
separate treatment of the reorientational motions and the
dynamics of the spin degrees of freedom. A quite different
approach is required in the absence of a time scale separation
between the magnetic anisotropies (in frequency units) and the
reorientational rates. In this case, aslow motion theoryhas to
be employed involving a solution of the stochastic Liouville
equation (SLE),3-6 which describes the coupled evolution of
the spin degrees of freedom and the stochastic variables for the
probe orientation. This ensures a rather general treatment of
the magnetization dynamics, albeit analytical solutions for the
direct interpretation of experimental observables are not avail-
able. The standard solution procedure is based on a matrix
representation of the SLE evolution operator to be generated

by using a suitable basis for both the spin degrees of freedom
and the functional dependence on the stochastic variables.7 An
algebraic solution can then be achieved by employing efficient
algorithms to diagonalize this matrix.8

A more complex situation arises for spin probes dissolved in
ordered fluids such as liquid crystals and biological membranes
or their model systems such as vesicles. In these systems, the
spin probe senses an orientational potential with respect to the
local director determining the axis of the most probable
molecular orientation. The director, which depends on the
location within the sample and therefore should be represented
by a vector field, has an intrinsic collective character and its
fluctuations are controlled by the viscous and elastic properties
of the ordered phase.9-11 Thus, two completely different
dynamical processes have to be considered in the analysis of
the experimental observables: (i) the molecular tumbling with
respect to the local director and (ii) the fluctuations of the
director field. While the molecular tumbling occurs on well-
defined time scales (often in the fast motion range), the
fluctuations of the director are characterized by a wide distribu-
tion of relaxation times with components in the millisecond
range or even slower.9-11

We shall consider the specific case (and perhaps the most
interesting one from the point of view of studying director
fluctuations12) of a spin probe embedded in an oriented fluid
whose molecular motions occur within the fast motion regime.
In that case, the motional narrowing theory1,2 can be employed
to describe the magnetic relaxation effects of the rotational
tumbling with respect to the local director. Clearly, the same
approach is inadequate for the modeling of director fluctuations
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because these collective modes involve slow-motional compo-
nents whose frequencies are much smaller than the magnetic
anisotropies (in frequency units). Under these conditions, it is
necessary to employ the full treatment according to the SLE
for the dynamical coupling between the spin degrees of freedom
and the director field. However, the standard methodology based
on a matrix representation of the SLE operator cannot be
employed anymore because a reasonable spatial discretization
of the director field leads to an excessively large number of
stochastic variables. Thus, the slow-motional analysis of director
fluctuations requires an analytical approach.

In ref 13, such an analytical procedure has been introduced
for the transverse nuclear spin relaxation of deuterium nuclei.
This slow-motional theory is valid on condition that the time
evolution of the stochastic variables is described by a generic
multidimensional Gaussian process. As a matter of fact, such a
representation can be adopted for the director field in the
harmonic approximation.9 It should be mentioned that this
methodology has already been applied to the analysis of
transverse nuclear spin relaxation rates measured in vesicles14,15

and in polymeric liquid crystals.16 An extended version of the
theory is reported in ref 17.

Recently, a slow motional analysis of the effects of director
fluctuations on continuous-wave (CW) ESR spectra has been
presented.18 The secular and the pseudosecular contributions
resulting from the hyperfine interaction in a nitroxide spin probe
have been considered, and their effect on the line-shape of a
CW-ESR spectra have been analyzed. The main conclusion was
that, in CW-ESR spectra, the effects of director fluctuations
are hardly detectable because of the difficulty in separating their
contributions to the line widths from those of the probe rotational
motion as well as from the inhomogeneous broadening. As in
the case of NMR transverse relaxation times, this difficulty could
be overcome only by using appropriate pulsed experiments.

Two-dimensional Fourier transform electron spin resonance
(2D-FT-ESR) was introduced as a technique that provides
considerable enhancement in resolution to ordering and dynam-
ics as compared to conventional ESR spectroscopy.19 The 2D
electron-electron double resonance (ELDOR) experimental data
presented in ref 20 for nitroxide-labeled lipids in membrane
vesicles show a dependence of the homogeneous line widths
of the 2D-FT-ESR autopeaks (i.e., the diagonal peaks) on the
mixing time tm in the range of microseconds. Given this order
of magnitude fortm, such a broadening is very likely due to the
process of cooperative order director fluctuations (ODF) of the
lipids in the vesicles. The opportunity to observe in real time
(i.e., as a function oftm) these collective motions in the 2D-
ELDOR experiment was emphasized in the past experimental
studies.21,22

These experimental findings have motivated the theoretical
analysis of the effects of director fluctuations on 2D-ELDOR
spectra, which is presented in this work. Basically we shall apply
the same methodology as in ref 13 by neglecting the pseudos-
ecular contributions in the spin Hamiltonian for hyperfine
interactions. This approximation is justified by the results of
ref 18, where it has been shown that, in ordinary conditions for
director fluctuations, pseudosecular contributions to line widths
are much smaller than those deriving from the purely secular
terms. On the other hand, in 2D-ELDOR, these terms would
contribute primarily to cross-peak development. Thus this
approximation, which simplifies to a large extent the theoretical
analysis, has the drawback that it cannot account for the cross-
peaks. Therefore, the analysis will be confined to the autopeaks
of the 2D-ELDOR spectrum and to their dependence on the

mixing time. Furthermore, the theoretical results will be applied
to the analysis of experimental results reported in ref 20, with
the purpose not only of demonstrating that the theory is capable
of reproducing the experimental trends but also to show how
the proper analysis of 2D-ELDOR spectra allows the charac-
terization of the elastic properties of the vesicles.

The paper is organized as follows. In the next section, the
stochastic Liouville equation for the nitroxide probe is intro-
duced. On this basis, in the third section, we derive a formal
description of the 2D-ELDOR autopeaks in terms of the time
evolution operator for the stochastic variables. In the fourth
section, by assuming a multidimensional Gaussian process for
the director field, explicit relations are derived for the 2D-
ELDOR signal in terms of the correlation function of the
transverse components of the director and its time integrals. In
the following sections, these theoretical results are specified for
two different models of order director fluctuations: an idealized
model consisting of a simple exponential correlation function
(Section 5) and the more realistic but complex model describing
the director fluctuations in vesicles (and in membranes) driven
by shape fluctuations (Section 6). In this latter section, the
experimental results reported in ref 20 are also analyzed. The
main conclusions of the study are given in the final section.

2. The Stochastic Liouville Equation

Let us consider a typical nitroxide spin probe dissolved in a
partly ordered fluid sample (like liquid crystals or the membrane
in a vesicle) with the following spin Hamiltonian that includes
the Zeeman interaction, described by theg tensor, between the
unpaired electron with spinS and the static magnetic fieldB0

and the hyperfine interactions, described by theA tensor,
between the electron and the nitrogen nucleus with spinI7

By introducing the laboratory frame LF) (X, Y, Z) with the
Z axis along the static magnetic field, the spin Hamiltonian in
the secular approximation can be written as

where we have introduced the vectora with componentsaJ )
AJ,Z for J ) X,Y,Z.

The director field is described through its orientationn(r j) at
an ensemble of discrete locationsr j centered at the smallest
domains compatible with the collective nature of such a field.
Only two components of the local director are independent
because|n| ) 1. Accordingly we can select the following
ensemble of independent stochastic variables:

By introducing the average director frame, ADF) (x, y, z),
with the z axis along the average orientation of the director (z
≡ nj, implying njx ) njy ) 0), the directorn acting on the spin
probe is conveniently represented as (see Figure 1)

The magnetic interactions are modulated mainly by two types
of processes: the fast rotational motion of the molecule with
respect to the local director and the comparatively slower
collective modes of director fluctuations. We assume the
molecular tumbling is fast enough to be treated according to
the motional narrowing theory,1,2 which leads to a set of

H ) âeB0‚gS+ pI‚AS (1)

H ) âeB0gZZ + p(a‚I)SZ (2)

Q ) (...nx(r j), ny(r j), ...) (3)

n ) nxx + nyy + x1 - nx
2 - ny

2z (4)
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relaxation times. On the other hand, the full treatment according
to slow motion theory is required for the order director
fluctuations. The system will be analyzed at time scales longer
than the rotational correlation time so that the spin Hamiltonian
averaged over the molecular orientations for a given director
orientation can be used in the stochastic Liouville equation. The
same notation of ref 18 will be used throughout the paper. Such
an effective spin Hamiltonian is recovered from eq 1 by inserting
the following orientationally averaged tensors

whereg| and A| (g⊥ and A⊥) denote their partially averaged
components parallel (perpendicular) to the local director. The
knowledge of the molecular tensors and of the order parameters
characterizing the orientational distribution of the spin probe
with respect to the local director allows one to evaluate the
parallel and perpendicular components of these averaged tensors.

We choose the ADF frame with they axis collinear with the
Y axis of the LF (see Figure 2), therefore the transformation
from the LF to the ADF can be specified by the Euler angles
Ω ) (0, θB, 0), whereθB is the angle between the static
magnetic fieldB0 and the average directornj at the probe
location. The g-tensor component required in eq 2 can be written
as (Z is the unit vector along the static magnetic field)

where gZZ
0 is the component in the absence of director

fluctuations (n≡ nj),

while δgZZ is its fluctuating part in the linear approximation
with respect to the stochastic variables13,17

Clearly the averageδgZZ vanishes becausenx ) 0. It should be
stressed that the linear approximation holds in the case of small
fluctuation amplitudes, allowing one to neglect in eq 6 higher-
order terms (with respect to powers ofnx andny). Notice that
eq 8 leads to a vanishingδgZZ if θB ) 0°, 90°, that is, for the
so-called canonical geometries with the average director parallel
or perpendicular to the magnetic field. In those situations,
second-order terms have to be necessarily accounted for in the
expansion ofδgZZ.17 However, in the case of vesicles where all
orientationsθB contribute, the minor correction to eq 8 due to
the appearance of second-order terms can be safely ignored.

Let us now examine the hyperfine coupling term in eq 2,
where the vectora depends on the local directorn as

In the absence of director fluctuations (i.e., forn ) nj), such a
vector is given by (zis the unit vector alongnj)

which corresponds to a vector in the (X, Z) plane of the
laboratory frame (LF) with modulus

The direction ofa0 represents the most convenient choice for
the quantization axis of the nuclear spin because, in the absence
of fluctuations, it leads to a diagonal representation of the spin
Hamiltonian eq 2, witha0 determining the hyperfine splitting.
(This argument as well as eq 2 ignores the14N nuclear Zeeman
interaction, which is generally much smaller than hyperfine
interactions for nitroxides, cf. refs 5-8) Thus, to specify the
components of the nuclear spin operator, we introduce a further
reference system, the nuclear spin quantization frame NQF)
(X′, Y′, Z′), with theZ′ axis oriented alonga0 and with theY′
axis collinear with theY axis of LF. Only the angleθ′ between
a0 andB0 is required to specify the relative orientation of the
two reference systems (see Figure 2).

Finally, we isolate from the vectora of eq 9 its fluctuating
part δa ≡ a - a0 and by invoking the linear approximation
with respect the stochastic variables, we obtain

By specifying the nuclear spin operator components in the NQF
frame, the hyperfine interaction term can be written as

where the fluctuating contributions to the hyperfine splitting
are given by

As a further approximation, we neglect the pseudosecular
contributions of hyperfine interactions and obtain the following
spin Hamiltonian

which is diagonal in the product|m,M> ) |m>|M> between

Figure 1. Representation of the local director in the average director
frame ADF) (x,y,z).

Figure 2. Relative orientations of the laboratory frame LF) (X,Y,Z),
the average director frame ADF) (x,y,z), and the nuclear spin
quantization frame NQF) (X′,Y′,Z′), together with two Euler angles
(θB,θ′) used in the transformation between these frames.

g ) g⊥1 + (g| - g⊥)n X n

A ) A⊥1 + (A| - A⊥)n X n
(5)

gZZ ) g⊥+ (g| - g⊥)(n‚Z)2 ) gZZ
0 + δgZZ (6)

gZZ
0 ) g⊥+ (g| - g⊥) cos2(θB) (7)

δgZZ ) (g| - g⊥) sin(2θB)nx (8)

a ) A⊥Z + (A| - A⊥)(n‚Z)n (9)

a0 ) A⊥Z + (A| - A⊥) cos(θB)z (10)

a0 ) |a0| ) xA⊥
2 + (A|

2 - A⊥
2) cos2(θB) (11)

δa ) (A| - A⊥)[cos(θB)(nxx + nyy) - sin(θB)nxz] (12)

a‚I ) a0IZ′ + (δaX′IX′ + δaY′IY′ + δaZ′IZ′) (13)

δaX′ ) (A| - A⊥)nx cos(2θB - θ′)

δaY′ ) (A| - A⊥)ny cos(θB) (14)

δaZ′ ) -(A| - A⊥)nx sin(2θB - θ′)

H ) âeB0(gZZ
0 + δgZZ)SZ + p(a0 + δaZ′)IZ′SZ (15)
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the eigenstates|m> (with m ) ( 1/2) and |M> (with M ) 0,
(1 for the14N nitrogen of nitroxides) of electronSZ and nuclear
IZ′ spin operators, respectively. As we have already noted, such
a simplification of the problem can be justified on the basis of
theoretical results for the CW-ESR line widths reported in ref
18, where it has been shown that pseudosecular contributions
are normally much smaller that the purely secular contributions
for the case of director fluctuations. However, such an ap-
proximation means that we will not be able to describe the
magnetization transfer process generating 2D-ELDOR cross-
peaks, which is controlled by the pseudosecular terms of the
hyperfine interaction.

The above analysis provides the effective spin Hamiltonian,
eq 15, depending on the local transverse components of the
director through the functionsδgZZ in eq 8 andδaZ′ in eq 14.
On the other hand, the dynamics of the stochastic variables are
governed by the viscoelastic properties of the ordered medium.
In the Markovian approximation, the time evolution of the
stochastic variables is specified according to the Fokker-Planck
equation for the probability density function11,23

Here ΓQ denotes the time evolution operator to be modeled
according to the specific viscoelastic behavior of the ordered
medium, either a liquid crystal13 or a membrane.14 The stationary
solution of eq 16 is the equilibrium distribution which will be
denoted bypeq(Q).

The full description of the dynamical coupling between the
spin degrees of freedom and the director fluctuations requires
the solution of the stochastic Liouville equation

for theQ-dependent density matrixF(Q,t) with respect to both
the electron and the nuclear spin states, withH(Q)× denoting
the superoperator for commutation with theQ-dependent
Hamiltonian H(Q). In eq 17, we have included also the
molecular tumbling contributionRmol.

Because of the approximation of neglecting pseudosecular
terms in the Hamiltonian, the spin degrees of freedom may be
factored in the stochastic Liouville equation. Separate solutions
can be written for each element of the density matrix

with γ )1 or 2, where the longitudinalT1,mol
M (the transverse

T2,mol
M ) relaxation times due to fast tumbling molecular motion

have to be inserted ifm ) m′ (if m * m′). ParametersωM and
δωM identify the resonance frequency and its fluctuating part,
respectively, for the hyperfine componentM of the spectrum

whereω0 ) âeB0gZZ
0/p is the (average) Zeeman frequency of

the electron spin. It should be stressed that eq 18 is only a formal
solution of the stochastic Liouville equation, as long as the
effects of the stochastic operatorΓQ on functions of the variables
Q is not yet evaluated. We mention also that, in this notation,

(m - m′) represents thecoherence orderof the electron spin
(that is pS in ref 19), and its allowed values are(1, corre-
sponding to rotatingX-Y components of spin magnetization,
and 0 for the Z component of magnetization.

In eq 18, we have considered the diagonal elements with
respect to the nuclear spin state because only these components
contribute to the magnetization. Indeed, by neglecting the
pseudosecular terms in the Hamiltonian, the overall magnetiza-
tion M(t) can be decomposed into independent contributions

whereMM(t) is due to theMth hyperfine component and can
be specified as

HereN/V is the spin density, the indexu labels the Cartesian
components of the magnetization and of the spin operator, and
the trace Tr{...} is calculated with respect to electron spin states
only.

Similarly, the contribution of each hyperfine component can
be considered independently also in the analysis of pulsed
experiments, as long as the microwave pulse acts on the electron
spin degrees of freedom without modifying the nuclear spin
state. Therefore, in the following treatment of 2D-ELDOR
experiments, we shall confine the analysis to a given hyperfine
contribution with a parametric dependence on the nuclear spin
quantum numberM. Of course, the overall signal has to be eval-
uated as the superposition of the three hyperfine components.

Our calculation requires also the density matrix for the
equilibrium stateFeq(Q). The high-temperature approximation
will be employed so thatFeq(Q) can be specified as the product
between the equilibrium distributionpeq(Q) for the stochastic
variables and the equilibrium density matrix for the spin states

where the latter approximation in eq 22 holds at room
temperatures for ordinary magnetic fields.

3. The 2D-ELDOR Spectrum
Starting from the equilibrium state, we now consider the

ELDOR pulse sequence

where the angle (phase)φj determines the axis of application
of the jth π/2 pulse, through the conventional associationφX )
0, φY ) π/2, φ-X ) π, φ-Y ) 3π/2. We can recognize four
different time periods in a 2D-ELDOR experiment:24 the
preparation period with the firstπ/2 pulse to generate the initial
transverse magnetization, after which the “spin packets” evolve
with their characteristic frequency during the evolution period
of length t1. The second pulse starts the mixing period, and
during this time, the longitudinal magnetization components of
each hyperfine line may be exchanged in the presence of
pseudosecular hyperfine interactions. Finally, the lastπ/2 pulse
rotates the magnetization again into theXYplane for detection,
and the free induction decay (FID) signal is observed as a
function of the detection timet2.

∂p(Q,t)
∂t

) -ΓQp(Q,t) (16)

∂F(Q,t)
∂t

) -[ i
p
H(Q)× + ΓQ + Rmol]F(Q,t) (17)

Fmm′
M (Q,t) ≡ 〈m,M|F(Q,t)|m′,M〉)

exp{-[i(ωM + δωM)(m - m′) + ΓQ +

1/Tγ,mol
M ](t - t0)}Fmm′

M (Q,t0) (18)

ωM ) ω0 + Ma0

δωM(Q) ) âeB0δgZZ(Q)/p + MδaZ′(Q)
(19)

M(t) ) ∑
M

MM(t) (20)

Mu
M(t) ) - N

V
γp ∫ dQ Tr{SuF

M(Q,t)} (21)

Feq(Q) = peq(Q)
exp(-Hh /kBT)

Tr{exp(-Hh /kBT)}
=

peq(Q)

6 (1 -
pω0

kBT
SZ)
(22)

(π2)φ1

‚‚‚t1‚‚‚ (π2)φ2

‚‚‚tm‚‚‚ (π2)φ3

‚‚‚t2‚‚‚
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For each hyperfine component, the detected signal depends
on the lengths of the three time intervals, and it can be specified
as

whereFM(t2, tm, t1, Q) is the density matrix at the detection
time. The two-dimensional spectrum is obtained by measuring
the FID signal as a function oft2 for a set of different values of
t1, and then by Fourier transforming it with respect to both of
these time variables

To calculate the signal, the density matrixFM(t2, tm, t1, Q) has
to be evaluated from its initial equilibrium stateFeq(Q) through
the various periods of spin dynamics of the 2D-ELDOR
sequence.19 In the following, we shall treat separately the
evolution in the presence of a microwave pulse and during the
free evolution period.

Pulses.In the presence of a microwave pulse, the evolution
of the density matrix should in principle include both the effects
of the pulse and of the relaxation. If the interaction with the
pulse is much more intense than the fluctuating Hamiltonian
term, then all the electron spins are uniformly affected by the
pulse regardless of their resonance frequencies according to the
Fourier theorem, which ensures that a pulse of durationδ covers
a range of frequency 1/δcentered at its frequency.

As long as the duration of such an intense pulse is short, the
relaxation during the pulse can be ignored.25 Let us now consider
the evolution of the density matrix in a frame rotating at the
same frequency as the alternating microwave fieldωmw.26 Under
these conditions, the pulse changes the density matrix according
to a unitary transformation,19 which is equivalent to an opposite
rotation of the reference system. Indeed, the effect of the pulse
on the density matrix can be expressed in terms of the pulse
propagator superoperator as follows

whereP(Ω) is the rotation operator in the Hilbert space, while
FM(tP-) andFM(tP+) are the density matrixes prior to and after
the pulse, respectively. The explicit form ofP(Ω) depends on
the axis of application of the pulse. For a (π/2)φ pulse, it can
be specified by the following transformation of the density
matrix with respect to electron spin states.

whereR andâ are the conventional notations form ) 1/2 and
m ) -1/2 electron spin states.

Free Evolution. In the absence of a microwave pulse, the
evolution of the density matrix in the rotating frame at the
frequencyωmw of the microwave field is fully described by the
stochastic Liouville operatorLM(Q)

given as

Because superoperatorsLM are diagonal with respect to electron
spin states, the following equation can be used for the elements
of the density matrix

whereUm,m′
M (t) are evolution operators acting on the stochastic

variables only

Given the metric properties of the Liouville space generated
by a complete basis set for both the spin states and the functional
dependence on the stochastic variables,18 the time domain signal
eq 23 can be written as the following scalar product in this space

By inserting the explicit form of the rotation operators, eq 26,
we obtain a sum of six different time-dependent operator terms
Ak

M(t2, tm, t1), weighted by numerical factorsak, which depend
on the phase of the pulses27

These numerical factors and the time dependent terms, specified
according to the evolution operator of eq 30, are given by

To eliminate the transverse interference terms, (A1
M, A2

M, A5
M,

A6
M in the present notation), a 16-step phase cycle is performed

FM(Q, t) ) e-LM(Q)tF(Q, t0) (27)

LM(Q) ) i(ωM - ωmw)SZ
× + iδωM(Q)SZ

× + ΓQ + Rmol
M

(28)

Fm,m′
M (Q, t) ) Um,m′

M (t)Fm,m′
M (Q, t) (29)

Um,m′
M (t) )

exp{-[i(ωM - ωmw + δωM)(m - m′) + ΓQ + 1/Tγ,mol
M ]t}

(30)

SELDOR
M (t1, tm, t2) ) (S+

†|FM(t2, tm, t1, Q)) ∝

(S+
†| e-LM(Q)t2P(φ3) e-LM(Q)tmP(φ2) e-LM(Q)t1P(φ1)Szpeq(Q))

(31)

SELDOR
M (t1, tm, t2) ) ∫ dQ ∑

k)1

6

akAk
M(t2, tm, t1)peq(Q) (32)

a1 ) - ieiφ1

8
A1

M(t2, tm, t1) ) UâR
M (t2)UâR

M (tm)UâR
M (t1)

a2 ) iei(2φ2-φ1)

8
A2

M(t2, tm, t1) ) UâR
M (t2)UâR

M (tm)URâ
M (t1)

a3 ) iei(φ1-φ2+φ3)

4
A3

M(t2, tm, t1) ) UâR
M (t2)URR

M (tm)UâR
M (t1)

(33)

a4 ) iei(φ2-φ1+φ3)

4
A4

M(t2, tm, t1) ) UâR
M (t2)URR

M (tm)URâ
M (t1)

a5 ) - iei(φ1-2φ2+2φ3)

8
A5

M(t2, tm, t1) ) UâR
M (t2)URâ

M (tm)UâR
M (t1)

a6 ) iei(2φ3-φ1)

8
A6

M(t2, tm, t1) ) UâR
M (t2)URâ

M (tm)URâ
M (t1)

SELDOR
M (t1, tm, t2) ∝ ∫ dQ Tr{S+FM(t2, tm, t1, Q)} (23)

S̃ELDOR
M (ω1, tm, ω2) )

∫0

+∞
dt1∫0

+∞
dt2 e-iω1t1 e-iω2t2 SELDOR

M (t1, tm, t2) (24)

FM(tP
+) ) P†(Ω)FM(tP

-)P(Ω) ) P(Ω)FM(tP
-) (25)

Pφ(FRR
M

Fââ
M

FRâ
M

FâR
M

) )

(1/2 1/2 (i/2)eiφ -(i/2) e-iφ

1/2 1/2 -(i/2) eiφ (i/2) e-iφ

(i/2) e-iφ -(i/2)e -iφ 1/2 (1/2)e-i2φ

-(i/2) eiφ (i/2) eiφ (1/2)ei2φ 1/2
)(FRR

M

Fââ
M

FRâ
M

FâR
M

) (26)
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in the experiment.19 Then, by using the following combinations
of two signals recorded by changing the first pulse phase of
(π/2)

only the “echo-term”A4
M (ref 19) is selected and included in

the spectra. Thus, the time domain signal for a particular
hyperfine line can be written as

with the following characteristic function taking into account
the effects of director fluctuations

The corresponding spectral densityS̃ELDOR
M (ω1, tm, ω2), to be

evaluated according to the two-dimensional Fourier transforma-
tion eq 24, includes three peaks labeled by the indexM, with
the first exponential term at the right-hand side of eq 35
establishing their position in the (ω1, ω2) plane, while the
characteristic function of eq 36 determines the director fluctua-
tion contribution to their profile. It is easily derived that the
Mth hyperfine component is centered at the frequenciesω2 )
-ω1 ) ωM - ωmw, i.e., along the negative diagonal of the (ω1,
ω2) plane. In general, components with different resonance
frequencies, in particular, those due to inhomogeneities, are
recognized along the negative diagonal of the 2D-ELDOR
spectrum. Because we concentrate the analysis on the shape of
a given peak, in the following, the frequency shift will be
neglected by assuming thatωmw ) ωM.

The structure of the characteristic function, eq 36, indicates
that one is observing the “real time” motion of a spin label with
the local director orientation (nx, ny) and a resonance frequency
δωM slowly changing to a new orientation (nx′,ny′) with a
resonant frequencyδωM′ during the mixing period. Because this
entails a slight change in the ESR resonance frequency, a
motional cross-peakis expected. But because the systems
experience a continuum of valuesδωM′ close in value toδωM,
these hypothetical cross-peaks lead to an increase in the
broadening of the autopeaks depending on the lengthtm of the
mixing period. This can be best observed by considering the
SECSY (for Spin Echo Correlation Spectroscopy) mode detec-
tion of ELDOR spectra, which is depicted in Figure 3B.
For the sake of comparison, Figure 3A displays the standard
scheme of detection of ELDOR spectra in the COrrelation
SpectroscopY (COSY) mode. Let us consider the simple case
of a spin probe species characterized by inhomogeneous
magnetic interactions, but in the absence of slow-motional
effects, such that each spin packet has a distinct resonance
frequency with a well-defined transverse relaxation timeT2.
Then, as shown in Figure 3B, all the inhomogeneous compo-
nents will be refocused to form a spin-echo at the timet1 of
the detection period in the SECSY mode. The signal measured
afterward would result from the superposition of the FID signals
of the different inhomogeneous components and, by performing
the Fourier transform with respect tot2, they will be separated
along the corresponding frequency axisω2. On the other hand,
the homogeneous line widths will be detected along theω1

frequency axis generated by the Fourier transform with respect
to t1 because, att1 in the detection period, all the inhomogeneities
are refocused into the echo signal, which decays exponentially
with respect tot1/T2. Therefore, theω2 andω1 frequency axes
of the SECSY mode spectra are associated with the inhomo-
geneous and the homogeneous broadening of the line shape,
respectively. In the COSY mode of detection the,Sc- signal is
symmetric about thet1 ) t2 axis, and this feature gives rise to
the echo. In fact, a shearing transformationt2 f t1 + t2 recovers

Figure 3. Pulse sequences and coherence transfer diagram for the (A) standard COSY mode and (B) SECSY mode of 2D-ELDOR. Notice the
different definition of the time intervals in the two modes. The solid line represents the coherence pathway of theSc- signal.td denotes the spectrometer
dead time andtm is the mixing time.

Sc-
M (t1, tm, t2) ) SELDOR

M (t1, tm, t2)′ - iSELDOR
M (t1, tm, t2)′′ (34)

SELDOR
M (t1, tm, t2) )

e-i(ωM-ωmw)(t1-t2) e-tm/T1,mol
M

e-(t1+t2)T2,mol
M
GELDOR

M (t1, tm, t2)
(35)

GELDOR
M (t1, tm, t2) )

∫ dQ e(iδωM-ΓQ)t2 e-ΓQtm e-(iδωM+ΓQ)t1peq(Q) (36)
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the equivalent of the SECSY experiment. In other words, by
considering the COSY mode of detection, the homogeneousT2

may be recovered by considering the signal decay along thet1
) t2 line in the time display. We stress, however, that a clean
separation between the homogeneous and the inhomogeneous
broadening is missed when dealing with the effects of director
fluctuations on the line shape. Indeed, because of the wide range
of time scale involved in this dynamical process, there are
always some fluctuating anisotropies of the spin Hamiltonian
that are neither completely averaged nor completely refocused
by the echo in the time scale of the experiment. As will emerge
from the following analysis of collective fluctuations, we do
not recover a pure exponential decay of the echo, and therefore
the truly homogeneous line width associated with a Lorentzian
line shape is no longer observed.

In the analysis of experimental data for vesicle systems in
ref 20, the authors have evaluated the transverse relaxation times
T2

M by fitting the time-dependent ELDOR signal in the SECSY
format by first Fourier transforming alongt2 and then fitting
the data alongt1 using linear prediction that led to the
exponential functione-2t/T2

M, thereby recovering relaxation times
T2

M(tm) dependent on the mixing timetm. We need to introduce
also in our theoretical analysis a suitable definition of relaxation
times on the basis of the time dependence of the ELDOR signal.
On the basis of the analogy with the exponential model, we
identify the transverse relaxation time as twice the time along
the positive diagonal, (i.e.t1 ) t2) in the COSY mode, which is
required to reduce by a factor 1/ethe ELDOR signal; that is
the solution of the following equation

This approach and that used in ref 20 have been shown to be
equivalent.19 It should be stressed that, in the absence of director
fluctuation effects, that is forGELDOR

M ) 1, the equivalence
with the molecular relaxation timesT2

M ) T2,mol
M is recovered

from eq 35. We mention also that the longitudinal relaxation
timesT1,mol

M have no effect on the calculation of the transverse
relaxation times as long as these parameters control only the
dependence of the signal intensity on the mixing timetm. In
the frequency domain, this corresponds to the control of the
peak intensities by the longitudinal relaxation times but without
modifying their shape.

4. Formal Solution for a Gaussian Process

To derive an explicit form of the characteristic function
GELDOR

M (t1, tm, t2), eq 36, the time evolution for the stochastic
variables has to be evaluated. This can be done in a rather
general way by supposing that director fluctuations constitute
a multidimensional Gaussian process.

Let us assume that there exists a suitable representation of
the director field in terms of normal modes associated with a
transformation of the set of stochastic variablesQ f Q̃. The
determination of variablesQ̃ requires the search for a repre-
sentation in which the elastic free energy of the system can be
written (exactly or approximately) as a sum of uncoupled
evolving terms.10,11 By applying the harmonic approximation
for the elastic free energy, each contribution to the sum is
actually a quadratic contribution. Therefore, the equilibrium
distribution of the transformed field is written as a product of
Gaussian distributions

As long as each normal mode evolves independently, a simple
exponential decay can be assumed for its time correlation
function

where σi
2 and τi are the mean square amplitude and the

relaxation time of theith normal mode. If the transformationQ
f Q̃ is linear, then the fluctuations of the stochastic variable
Q satisfy the requirement of a Gaussian multidimensional
stochastic process.

According to the previous hypothesis, for the generic
representationQ of the stochastic variables, we assume the
following relations for the normalized equilibrium distribution

and the Fokker-Planck-Smoluchowski model23 for the evolu-
tion operator

Both the curvature matrixA and the diffusion matrixD are
real, symmetric, and positive definite. Notice that the inverse
of matrix A determines the second moments in the equilibrium
state (A-1)ij ) QiQj, whereas the diffusion matrix describes
the relaxation rates to equilibrium and the corresponding
dynamical coupling between the stochastic variables. Because
the following analysis does not require specific assumptions
about the structure of the matrixesA andD, the final result can
be applied to different models of director fluctuations, provided
that they can be represented as Gaussian processes.

Let us introduce a formal expression for the transverse
component of the director field at the positionrp where the spin
probe is located

wherev is a vector with null entries except for a single value
of unity corresponding to the selected elementnx(rp) of the
director field. This allows the explicit calculation of the
correlation function for the director fluctuations at the probe
location by taking into account that the evolution operatorΓQ

preserves the linear dependence onQ13

For later use, we introduce also the double time integral of this
correlation function

which corresponds to the second cumulant of the probability
distribution function.

To find an explicit form for the characteristic function of eq
36, it is necessary to evaluate the effects of the evolution

SELDOR
M (T2

M

2
, tm,

T2
M

2 ) ) 1
e

(37)

peq(Q̃) ∝ ∏
i

exp{-Q̃i
2/2σi

2} (38)

Q̃i(0)Q̃i(t) ) σi
2 e-t/τi (39)

peq(Q) ) det(A/2π)1/2 exp(-Q†AQ/2) (40)

ΓQ ) -∑
i,j

∂

∂Qi

Dijpeq(Q)
∂

∂Qj

peq
-1(Q) )

( ∂

∂Q)†

Dpeq(Q)
∂

∂Q
peq

-1(Q) (41)

F(Q) ) nx(rp) ) Q†v (42)

nx(0)nx(t) ≡ F(0)F(t) )

∫ dQF(Q) e-ΓQtF(Q)Peq(Q) ) v† e-DAtv (43)

g(t) ≡ 1
2∫0

t
dt′∫0

t
dtnx(t′)nx(t′′) (44)
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operatorinδωM(Q) + ΓQ, with n ) 0, (1, on a given function
of the stochastic variables

Because of the assumed linear dependence of the Hamiltonian
on the local component of the fluctuating director, a linear
relation is found for theQ-dependence of the resonance
frequency factor

where the proportionality factor is given as

As shown in ref 13, explicit solutions of eq 45 are more easily
derived by employing Fourier transformed functions with respect
to the stochastic variables

which evolve in time as:

with a first-order differential operator

Thus, the formal solution in Fourier space can be specified as

and by noting that the Fourier transform of the equilibrium
distribution is given by

the characteristic function eq 36 is written as

Given the first-order character of the transformed operators
ϑ̃M,n, the explicit solution can be obtained using standard
procedures for ordinary differential equations. Let us consider
the following trial function

which represents a shifted Gaussian with the same widths as
the transformed equilibrium distribution, eq 52, while its center
and intensity are allowed to change in time because of the effects
of the evolution operator. As shown in ref 13, it can be easily
verified that such a trial function is a particular solution of eq
49 associated with eq 52 as the initial state. In particular, the
substitution of the trial function into the time evolution eq 49
and the separation of the terms with the same power ofp, leads
to ordinary differential equations of the first order for the time-
dependent parametersa(t) andb(t), which can be integrated as

wherea(t0) andb(t0) are the generic initial conditions.
Such an integration scheme can be applied to the ELDOR

characteristic function in the Fourier transform representation,
eq 53. For the initial state described by the equilibrium
distribution, eq 52, vanishing values of the integration param-
eters have to be considered

Starting from this initial condition, we can evaluate the
evolution of the function eq 51 during the first period of length
t1. Then, the function at timet1 is taken as the initial condition
for the evolution duringtm. Again, its final state represents the
initial condition for the evolution duringt2. In detail, we obtain

(i) Evolution duringt1 controlled byϑ̃M,-1

whereg(t) is given by eq 44.
(ii) Evolution during tm controlled byϑ̃M,0

(iii) Evolution during t2 controlled byϑ̃M,1

where

In conclusion, according to eq 53, theGELDOR
M (t1, tm, t2)

function can be specified as

and, therefore, the knowledge of the correlation function

nx(0)nx(t) for the local transverse component of the director, is
sufficient for predicting the effects of collective order fluctua-
tions on these pulsed ESR experiments. A similar conclusion
was drawn also for NMR pulsed experiments by analyzing the
effects of director fluctuations on quadrupolar interactions.13 We
emphasize this is strictly a consequence of the assumption of
Gaussian random processes.

It should be stressed that, because of the contribution of
g1,2(t1, tm, t2), the characteristic functionGELDOR

M and the
corresponding contribution to the line widths depend on the
mixing time tm. Notice that the contribution ofg1,2(t1, tm, t2)

f (Q,t) ) e-(inδωM+ΓQ)(t-t0)f (Q,t0) (45)

δωM(Q) ) δωM′nx(rp) ) δωM′v†Q (46)

δωM′ )
âeB0

p
(g| - g⊥) sin(2θB) -

M(A| - A⊥) sin(2θB - θ′) (47)

f̃ (p,t) ≡ ∫ dQ e-iQ†pf (Q,t) (48)

∂ f̃(p,t)
∂t

≡ -ϑ̃M,nf̃(p,t) (49)

ϑ̃M,n ) p†Dp + (p†DA - nδωM′v†)
∂

∂p
(50)

f̃ (p,t) ) e-ϑ̃M,n(t - t0) f̃ (p,t0) (51)

p̃eq(p) ) exp(-p†A-1p/2) (52)

GELDOR
M (t1, tm, t2) )

[e-ϑ̃M,-1t2 e-ϑ̃M,0tm e-ϑ̃M,1t1 exp(-p†A-1p/2)]p)0 (53)

f̃ (p,t) ) exp{-a(t)- p†b(t) - p†A-1p/2} (54)

b(t) ) e-DA(t-t0)b(t0) - nδωM′ ∫0

t-t0 e-DAt ′A-1v dt′

a(t) ) a(t0) - nδωM′ ∫t0

t
v†b(t′) dt′

(55)

a(0) ) 0, b(0) ) 0 (56)

b(t1) ) δωM′∫0

t1 e-DAt1′A-1v dt1′

a(t1) ) (δωM′)2∫0

t1 dt1′∫0

t1′
dt1′′v

† e-DAt1′′A-1v )

(δωM′)2g(t1)

b(tm, t1) ) e-DAtmb(t1)

a(tm, t1) ) a(t1)

b(t2, tm, t1) ) e-DAt2b(tm, t1) - δωM′ ∫0

t2 e-DAt2′A-1v dt2′

a(t2, tm, t1) ) (δωM′)2[g(t1) + g(t2) - g1,2(t1 + tm + t2)]

g1,2(t1, tm, t2) ≡ ∫0

t2 dt2′ ∫0

t1 dt1′v
† e-DA(t2′+tm+t1′)A-1v

) ∫0

t2 dt2′ ∫0

t1 dt1′nx(0)nx(t1′ + tm + t2′)
(57)

GELDOR
M (t1, tm, t2) ) e-a(t1,tm,t2) )

exp{-(δωM′)2[g(t1) + g(t2) - g1,2(t1, tm, t2)]} (58)
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decreases whentm is increased, as long as the correlation
function

of director fluctuations is a continually decreasing function of
the time. In particular, fortm f ∞, such a contribution
necessarily vanishes, and the signal becomes the product of two
independent FID signals,18 one recorded duringt1 and the other
during t2.

5. Model Calculations

To illustrate, by a simple model, the effects of collective order
fluctuations on the 2D-ELDOR spectra, let us consider the
hypothetical case of director fluctuations with local components
decaying as a simple exponential

Then the time integrals of the correlation function, which have
been previously introduced, take the explicit form

Even in this simple case, a complex time behavior is found for
the characteristic functionGELDOR

M (t1, tm, t2), which cannot be
reproduced by an exponential decay. Therefore, definition eq
37 will be employed to calculate the transverse relaxation time
T2

M and to evaluate its dependence on the mixing timetm. The
simple structure of the model suggests the use of the fluctuation
amplitude of the resonance frequency

as the scaling factor for time variables (or the inverse for a
frequency). By using the corresponding scaled variables, in the
following denoted by symbols with a tilde

it is shown that only two independent parameters need to be
specified in the model: the scaled decay timeτ̃, characterizing
the collective dynamics, and the scaled relaxation timeT̃2,mol

M

due to the molecular tumbling.
First, let us discuss the main features of the derived ELDOR

signal in the ideal limit of a vanishing molecular tumbling
contribution to the relaxation rate (T̃2,mol

M )-1 ) 0, so that the
relaxation time is completely determined by the collective
dynamics andSELDOR

M (t̃1, t̃m, t̃2) ) GELDOR
M (t̃1, t̃m, t̃2) according

to eq 35. In such a situation, the magnetization evolution is
entirely due to the director fluctuations (DF) and, therefore, the
corresponding transverse relaxation time will be denoted as
T2,DF

M . Figure 4 shows the characteristic function for two
different values of the mixing time. Notice that a faster decay
of the time signal is obtained for longert̃m; however, there is
no dependence on the mixing time along the two time axes,

i.e., for t̃1 ) 0 or t̃2 ) 0. Indeed, for these special casesg1,2 )
0 and the functionGELDOR

M is equivalent to the secular part of
the FID signal derived in ref 16. Furthermore, the relaxation
function decays more slowly along thet̃1 ) t̃2 axis, in agreement
with the echo property of the signal as discussed in the previous
section.

By examining the spectral densityS̃ELDOR
M (ω̃1, t̃m, ω̃2),

defined according to eq 24, one can detect the effects of director
fluctuation on the line shapes. Contour plots of the absorption
profile, obtained as the real part ofS̃ELDOR

M (ω̃1, t̃m, ω̃2), are
depicted in Figure 5. Even in the COSY spectrum, where the
spectral direction associated with the homogeneous line width
is not well defined as in the SECSY spectrum, a narrowing of
the line width is clearly observed when the frequency displace-
ment is considered along the positive diagonal. Furthermore,

nx(0)nx(t)

nx(0)nx(t) ) nx
2e-t/τ (59)

g(t) ) nx
2τ2(e-t/τ - 1 + t/τ) (60)

g12(t1, tm, t2) ) nx
2τ2e-tm/τ(1 - e-t1/τ)(1 - e-t2/τ) (61)

∆ωM ) |δωM′|xnx
2 (62)

ω̃i ) ωi/∆ωM i ) 1, 2

t̃ i ) ∆ωMti i ) 1, 2,m (63)

τ̃ ) ∆ωMτ

T̃2
M ) ∆ωMT2

M

Figure 4. Time dependence of the characteristic function
GELDOR

M (t̃1,t̃m,t̃2) of the ELDOR experiment, characterizing the director
fluctuation contribution to the relaxation process for the model of a
single-exponential correlation function. The time profiles refer to a
scaled decay time ofτ̃ ) 10 and two different values of the scaled
mixing time, i.e.,t̃m ) 0 (upper plot) andt̃m ) 50 (lower plot).

Figure 5. Contour plots of the absorption profile Re[S˜ELDOR
M (ω̃1,t̃m,ω̃2)]

of the ELDOR experiment characterizing director fluctuations for the
model of a single-exponential correlation function. The contour plots
refer to a scaled decay time ofτ̃ ) 10 and two different values of the
scaled mixing time, i.e.,t̃m ) 0 (upper plot) andt̃m ) 50 (lower plot).
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the line width in this direction increases with the mixing time
because the inhomogeneities modulated by director fluctuations
are not completely refocused and, therefore, significant devia-
tions from the Lorentzian shape are expected.

Let us now analyze the mixing time dependence of the
transverse relaxation timeT2,DF

M in the absence of the molecular
tumbling contribution. In Figure 6, such a dependence is
illustrated in some typical conditions. The simplest case is that
of the motional narrowing regimewhere the rate 1/τ of the
dynamical process is much larger than the fluctuation amplitude
∆ωM eq 62 of the resonance frequencies

or τ̃ , 1 in scaled units. The case forτ̃ ) 0.1 in Figure 6 is
representative of such a situation when no dependence on the
mixing time is detected for the transverse relaxation time. From
the τ̃ f 0 expansion in eqs 60-61, one derives the following
analytical approximation of the characteristic function

which leads to a transverse relaxation time independent of the
mixing time

It should be mentioned that, because of the exponential decay
found in this case forGELDOR

M , a Lorentzian line shape repre-
sentation of a truly homogeneous process is recovered in the
frequency domain.

If the condition (eq 64) is not satisfied, that is for

(or τ̃ J 1 in scaled units), the system falls in theslow motion
regime and a mixing time dependence is detected for the
transverse relaxation time. The two cases forτ̃ ) 1 and τ̃ )
10, displayed in Figure 6, clearly show such a dependence and,
furthermore, point out that changes of the transverse relaxation
time are detected when the mixing time is in the same range as
the correlation timeτ of the dynamical process controlling the
resonance frequency fluctuations. This appears to be a rather
general result, which implies that, if (T2

M)-1 displays a tm

dependence within some time window, then there should be a
slow fluctuating component with about the same time scale.
Analytical estimates of the transverse relaxation times for
situations where no dependence on the mixing time is observed
can be obtained forτ̃ . 1 by performing a suitable expansions
of the functions eqs 60-61 with the following results

We mention also that by performing theτ̃ f ∞ limit, the rigid
limit is recovered with a characteristic function given as

corresponding to a Gaussian inhomogeneous broadening which
is refocused fort̃1 ) t̃2 because of the echo property of the
signal.

Let us finally examine the effect of the molecular contribution
T2,mol

M , treated within the fast motional regime, on the mixing
time dependence of the transverse relaxation timeT2

M. A very
simple case to analyze is that for the motional narrowing regime
under the condition (eq 64), where additive contributions from
the molecular tumbling and director fluctuations result for the
time dependent ELDOR signal eq 35,

In this case, no mixing time dependence is detected on the
transverse relaxation time. A more interesting situation is that
of the slow motion regime, under the condition (eq 67), when
such a simple additive relation is no more valid. Still, some
general conclusions are easily derived from the basic structure
of eq 35 for the time- dependent ELDOR signal. Given the
director fluctuation contributionT2,DF

M previously discussed,
one can recognize the two obvious limits

When the two rates, (T2,DF
M )-1 and (T2,mol

M )-1, have a compa-
rable magnitude, then the solution of eq 37 is required in order
to evaluate the overall transverse relaxation timeT2

M. Figure 7
reports some typical results for the mixing time dependence of
(T2

M)-1 calculated withτ̃ ) 10 and increasing values of the
molecular tumbling contribution. It is evident that, when the
molecular tumbling prevails, that is if the condition (ii) holds,
the mixing time dependence is completely lost. Such a
dependence is indeed detectable if the molecular tumbling
contribution (T2,mol

M )-1 is comparable to or smaller than the
director fluctuation component (T2,DF

M )-1, provided that the
slow motion condition eq 67 holds.

6. Application to Vesicle Samples

Biological membranes exhibit exceptional mechanical proper-
ties unequalled by any other soft condensed matter material.28

A crucial parameter determining the shape fluctuations and
functionality of closed biomembranes is the bending elastic
modulusκ. Similar to order director fluctuations in nematic

Figure 6. Dependence of the scaled transverse relaxation rate
(T̃2,DF

M )-1, arising from director fluctuations, on the scaled mixing time
t̃m/τ̃ for three different values of the scaled decay timeτ̃ for the director
fluctuation described by the model of a single-exponential correlation
function. The relaxation curves refer to a vanishing molecular contribu-
tion, i.e., (T̃2,mol

M )-1 ) 0.

1/τ . ∆ωM (64)

GELDOR
M ( t̃1,t̃2) = exp[-τ̃( t̃1 + t̃2)] (65)

1/T̃2,DF
M ) τ̃ (66)

1/τ j ∆ωM (67)

t̃m . τ̃ (T2,DF
M )-1 ) (1/2) (68)

t̃m , τ̃ (T2,DF
M )-1 ) (12τ̃)-1/3 (69)

GELDOR
M ( t̃1,t̃2) = exp[-(t̃2 - t̃1)

2/2] (70)

1

T2
M

) 1

T2,DF
M

+ 1

T2,mol
M

(71)

(i)
1

T2,DF
M

. 1
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M

1

T2
M

= 1
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M
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1
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M

, 1
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M
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phases, the shape fluctuations in closed lipid bilayers are
characterized by a broad distribution of thermally activated
modes extending over a wide frequency range down to the kHz
regime.15 It was shown that the transverse31P nuclear spin
relaxation rates, measured in Carr-Purcell multipulse sequences,
are the same for unilamellar and oligolamellar vesicles.15

Evidently, the interbilayer coupling is much weaker than
previously anticipated29,30 and has no effect on the membrane
fluctuations down to the kHz range. Therefore, in the case of
multilamellar vesicles in excess water, where interbilayer water
significantly reduces the coupling between the layers, the shape
fluctuations are expected to be comparable to those of unila-
mellar vesicles.31,32 For this reason, the hydrodynamic model,
developed for the analysis of unilamellar vesicles,14 can also
be used for oligolamellar vesicles explored in the experiment
of ref 20.

The model calculations in this section are reported for a spin
probe in a vesicle in order to describe the effect of director
fluctuations on the 2D-ELDOR relaxation rates (T2

M)-1. First, a
specific spin probe in a given membrane vesicle sample is
chosen in order to evaluate the relevant hyperfine frequencies
and their angular dependence. Second, we summarize the
standard model for the fluctuations of quasispherical vesicles
to provide an explicit relation for the required correlation
function.14 On the basis of these results, we shall analyze the
relaxation of the magnetization by considering the purely secular
contribution of the director fluctuations. This allows the
characterization of their specific features as well as their relevant
dependence on the mixing timetm. Finally, we discuss the so-
called MOMD effect:19 these vesicles samples are characterized
by the lipids being microscopically ordered at a given position
of the vesicle, but the sample is macroscopically disordered
because of the orientational distribution of the normal direction
of the membrane. This leads to a superposition of spectra from
membrane fragments with different orientations.

A complete characterization of these spectra also requires the
relaxation rates (T2,mol

M )-1 due to the fast molecular tumbling.
Although these rates can be evaluated according to a diffusion
model in the presence of an orienting potential,7,33 they will
simply be parametrized in order to avoid a too cumbersome
presentation and to focus attention on the contribution of the
director fluctuations.

The Magnetic Parameters of the Spin Probe.To carry out
calculations pertinent to a realistic situation, we choose the spin

probe 16-PC (1-palmitoyl-2-(16-doxyl stearoyl) phosphatidyl-
choline) dissolved in vesicles of DPPC (1,2-dipalmitoyl-sn-
glycero-phosphatidylcholine). The 2D-ELDOR spectra of this
nitroxide radical have been analyzed in detail by Patyal at al.20

in order to study the effects of adding gramicidin A′ (GA) to
the DPPC membrane. The spectra have been recorded at X-band
(9.25GHz), which corresponds to a static magnetic field ofB0

) 3300 G. Table 1 summarizes the principal values for the
g-tensor and hyperfine tensor of the nitroxide radical, obtained
for 16-PC in pure DPPC vesicles and in DPPC/GA mixed
vesicles (molar ratio 5:1). The orientation of the principal axes
of the magnetic tensors is depicted in Figure 8 together with
the chemical structure of the spin probe.

In ref 20, the axial order parameterS0 ) D0,0
2 and the

biaxial order parameterS2 ) D0,2
2 + D0,-2

2 of the spin probe
in pure DPPC vesicles and in DPPC/GA mixed vesicles are

Figure 7. Dependence of the scaled overall transverse relaxation rate
(T̃2

M)-1 on the ratiot̃m/τ̃ between the scaled mixing time and the scaled
decay time of the model correlation function with a single exponential.
The relaxation profiles, each labeled by the assumed value of the
molecular tumbling contribution (T̃2,mol

M )-1 in scaled units, are calcu-
lated for a scaled relaxation time ofτ̃ ) 10.

TABLE 1: Magnetic and Order Parameters of the Spin
Probe 16-PCa Used to Study the Viscoelastic Properties of
Pure DPPCb Vesicles and of Mixed DPPC/GAc Vesicles by
2D-ELDORd

T ) 318 K 16-PC in DPPC 16-PC in DPPC/GA (5:1)

gxx 2.0089 2.0087
gyy 2.0058 2.0059
gzz 2.0021 2.0021
Axx ) Ayy (G) 5.0 5.0
Azz (G) 33 33.7
S0 0.183 0.218
S2 -0.049 -0.064
Sxx -0.123 -0.1482
Syy -0.063 -0.0698
Szz 0.183 0.2180
A| (G) 17.81 18.74
A⊥ (G) 12.60 12.48
g| 2.0049 2.0047
g⊥ 2.0060 2.0060

a 16-PC: (1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine).b D-
PPC: (1,2-dipalmitoyl-sn-glycero-phosphatidylcholine).c GA: grami-
cidin A′. d Experimental values adopted from ref 20.

Figure 8. Chemical structure of the employed spin probe (1-palmitoyl-
2-(16-doxylstearoyl)phosphatidylcholine). Also depicted is the orienta-
tion of the principal axes of the magnetic tensors (xm,ym,zm). ZR )
principal axis of the ordering matrix.
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reported. The order parameters refer to a temperature of 45°C
and are directly related to the Cartesian componentsSij of the
Saupe ordering matrix, characterizing the alignment of the
molecular axes with respect to the local director. On the
assumption that the magnetic tensors and the Saupe ordering
matrix have the same principal axes, one can calculate the
parallel and perpendicular components of the averagedg-tensor

and the averaged componentsA| andA⊥ of the hyperfine tensor
as well. Given these averaged tensors, we can calculate the
coefficientsδωM′ in eq 47, which determine the weights of order
director fluctuations on the ELDOR observables. Figure 9
depicts the dependence of these coefficients on the angleθB

between the average director and the magnetic field. Notice that
the angleθ′ in eq 47 is calculated for eachθB according to eq
10. One sees that the coefficients (δω0′)2 and (δω-1′)2 are much
smaller than (δω1′)2, which reaches its maximum value atθB

≈ π/4. Consequently, the largest effect of the director fluctua-
tions on the ELDOR line widths is expected for theM ) 1
hyperfine line at a director orientation ofθB ≈ π/4. It should
be noted that only linear contributions of the orthogonal
components of the fluctuating director have been employed in
the analysis. Thus, the theory cannot account for canonical
orientations,θB ) 0 andθB ) π/2, where the average director
is either parallel or perpendicular to the magnetic field.

Fluctuations of Quasispherical Vesicles.The model of
quasispherical fluctuations was developed by Milner and
Safran34 on the basis of Helfrich’s theory of the elasticity of
lipid bilayers35 and the hydrodynamic approach of Schneider
et al.36 In this model, a vesicle is considered to be a quasi-
spherical closed shell of radiusR0 characterized by a fixed
volume V and a fixed areaA. The vesicle is assumed to be
flaccid, with the dimensionless excess area∆ describing the
deviation of the vesicle from a sphere of the same volume:

For a quantitative modeling of the fluctuations, the vesicle is
described by a slightly deformed spherical surface as (see Figure
10)

whereu(θ, φ) is a dimensionless parameter characterizing the
radial deviation from the spherical geometry, whileθ and φ

denote the polar and azimuthal angles of the considered surface
point with respect to an arbitrary reference system. The angular
dependent functionu(θ, φ) can be expanded with respect to the
spherical harmonicsYl,m(θ, φ) according to

where, because of the finite size of the vesicle, the expansion
has to be truncated at an upper limitlmax of the indexl, given
by34

a being the typical distance between adjacent phospholipids.
The expansion coefficientsul,m represent the normal modes for
the thermal fluctuations of quasispherical vesicles, and they are
characterized by independent correlation functions34

where the mean-square amplitudeul,m
2 and the relaxation time

τl for each mode are given as

respectively. Here,η is the viscosity of the surrounding fluid,
κ is the bending elastic modulus of the membrane, whileσ is
the dimensionless effective lateral tension, which is related to
the excess area∆ by the relation37

Figure 9. Angular dependence of the coefficientsδω′M2(θB) character-
izing the strength of the director fluctuation contribution to the relaxation
for the examined spin probe.

Figure 10. Schematic representation of the shape fluctuations of
quasispherical vesicles.θ andφ denote the polar and azimuthal angles,
respectively, of the considered surface point with respect to an arbitrary
reference system.R0u(θ,φ) characterizes the radial deviation from the
spherical geometry.

g| ) ∑
j)x,y,z

gjj

1 + 2Sjj

3
g⊥ ) ∑

j)x,y,z

gjj

1 - 2Sjj

3
(72)

A ) (4π + ∆)R0
2 (73)

R(θ,φ) ) R0(1 + u(θ, φ)) (74)

u(θ, φ) ) ∑
l)2

lmax

∑
m)-l

l

ul,mYl,m(θ, φ) (75)

lmax≈
πR0

a
(76)

ul,m(0)ul′,m′(t) ) δl,l′δm,m′ul,m
2 e-t/τl (77)

ul,m
2 ) ul

2 )
kBT

κ

1

(l + 2)(l - 1)(l2 + l + σ)

τl )
ηR0

3

κ

(2l + 1)(2l2 + 2l - 1)

(l - 1)l(l + 1)(l + 2)(l2 + l + σ)
(78)

∆ )
kBT

2κ
∑
l)2

lmax 2l + 1

l2 + l + σ
(79)
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Ref 14 reports the derivation of the time autocorrelation
function of the transverse component of the local director
defined as the orthogonal direction to the fluctuating membrane
at a given position. We recall here only the final result for the
correlation function of the transverse component of the director
at a given position

By performing a suitable double integration over the time
variables, the functionsg(t) (eq 44) andg1,2(t1, tm, t2) (eq 57)
are easily derived, and from them, the characteristic function
GELDOR(t1, tm, t2) describing the ELDOR experiment.

ELDOR Line Shape and Transverse Relaxation Time.To
demonstrate the effect of vesicle shape fluctuations on the
ELDOR observables, we first show representative calculations
of the characteristic functionGELDOR

M based on the parameters
listed in Table 2. The value for the bending elastic modulusκ

is adopted from the literature. The value forη corresponds to
the viscosity of water. For the effective lateral tension, values
in the range 0eσ e100 have been reported.28 For simplicity,
a value ofσ ) 0 is assumed.

We recall that the characteristic functionGELDOR
M (t1, tm, t2)

depends on the magnetic parameters only through the coefficient
(δωM′)2, whose angular dependence has been already examined
in Figure 9. One can easily deduce the effects of changing the
coefficient (δωM′)2 for a given model of director fluctuations.
Clearly, an increase of (δωM′)2 leads to a faster relaxation of
the magnetization described byGELDOR

M (t1, tm, t2), and cor-
respondingly to a broader line shapeS̃ELDOR

M (ω1, tm, ω2) in the
ELDOR spectrum. We concentrate here the analysis for a fixed
coefficient (δω′M)2 ) 5.8 × 1015 s-2, which corresponds to a
maximum value for the hyperfine lineM ) 1. In Figure 11, the
time dependence ofGELDOR

M (t1, tm, t2) is displayed for two
different values of the mixing time. Although the model
describing fluctuations of quasispherical vesicles is more
complex than the simple exponential model considered in
Section 5, the characteristic ELDOR function displays the same
main features. Accordingly, the effects of director fluctuations
can be well characterized through transverse relaxation times
T2

M defined in eq 37
Calculations of the characteristic functionGELDOR

M (t1, tm, t2)
with different values of the parameters listed in Table 2 have
shown a well-defined dependence only with respect to the
bending elastic modulusκ for a given temperature. As a matter
of fact, ELDOR observables are found to be independent of
the effective lateral tensionσ, of the viscosity of the surrounding
fluid η, and of the size of the vesicleR0, (this is strictly true for
R0 > 100 nm). This is an important conclusion, which simplifies
to a large extent the analysis of the experimental data because
only one physical parameter has to be determined. Furthermore,
such a conclusion can be justified by considering that, with the
physical parameters in the same range as those in Table 2, the
following approximation can be employed for the director

correlation function,

where η, R0, and σ enter only through the parametertb. In
Appendix A, we have reported the analysis leading to such an
approximation. Interestingly, the use of eq 81 leads to time
integrals for the functionsg(t) andg1,2(t1, tm, t2), which can be
performed analytically. Thus, one obtains as the characteristic
function of the ELDOR experiment

where all the terms containingtb (see eq A-5) cancel out exactly,
thereby explaining the independence of the ELDOR signal with
respect to theη, R0, andσ parameters. Althoug eq 82 represents
the easiest way to evaluate the ELDOR relaxation time, in the
following, we shall report the results with the full correlation
function to avoid any possible deviation from the approximate
form, eq 81.

In summary, the bending elastic modulusκ is, apart from
the strength of the magnetic interactions, the relevant parameter
determining the transverse relaxation time at a given temper-
ature. Figure 12 shows the decay profile along thet1 ) t2 ) t
direction of the functionGELDOR

M (t1, tm, t2) for two different
values of the bending elastic modulus: increasing this parameter
entails a slower decay of the signal. Indeed, a stiffening of the
vesicles determines a reduction of the amplitude of the shape
fluctuations and a faster decay of reorientational correla-
tions. Clearly, the bending elastic modulus is also the crucial
parameter in determining the variation of the transverse
relaxation rates (T2,DF

M )-1 with the mixing time tm. This is
shown in Figure 13 for five different values of the bending
elastic modulusκ. For simplicity, the molecular tumbling
contribution was set to zero, i.e., (T2,mol

M )-1 ) 0. One sees that

TABLE 2: Values of Physical Parameters Used in Model
Calculations of ELDOR Observables Determined by Vesicle
Shape Fluctuations

R0 vesicles radius, nm 1000
κ bending elastic modulus, J 13× 10-20

kBT thermal energy, J (T) 318 K) 4.4× 10-21

η viscosity, Pa s 6.5× 10-4

σ lateral tension 0
a intermolecular distance, nm 1

nx(0)nx(t) )
1

8π
∑
l)2

lmax

l(l + 1)(2l + 1)ul
2 e-t/τl (80) Figure 11. Time dependence of the characteristic function

GELDOR
M (t1,tm,t2) of the 2D-ELDOR experiment describing the director

fluctuation contribution of a nitroxide spin probe in quasi- spherical
vesicles. The time profiles refer to two different values of the mixing
time, i.e.,tm ) 0 (upper surface) andtm ) 3 µs (lower surface). The
parameter values used in the calculation are listed in Table 2, the
employed magnetic anisotropy is (δω′M)2 ) 5.8 × 1015 s-2.

nx(0)nx(t) )
kBT

12πκ
ln(tb/t) (81)

ln{GELDOR
M (t, tm, t)} ) -(δωM′)2

kBT

12πκ[-t2(ln t - 3
2) +

(2t + tm)2(12 ln(2t + tm) - 3
4) - (t + tm)2(ln(2t + tm) - 3

2) +

tm
2(12 ln tm - 3

4)] (82)
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as long as a time window of microseconds is accessible fortm,
the bending elastic modulus can be determined from this type
of ELDOR experiments.

Microscopic Order/Macroscopic Disorder (MOMD) Ef-
fect. Actually, the experimental ESR spectrum of a vesicle
sample is a superposition of spectra from locally ordered
environments (or fragments), which are randomly distributed
with respect to the direction of the constant magnetic field, i.e.,
the labZ axis. As long as the lateral diffusion of the spin probe
molecules is slow compare to the time scale of the experiment,
the measured ESR signal can be written as

whereSc-(θB) is the ESR spectrum of a particular membrane
fragment characterized by the angleθB between the bilayer
normal (z-axis of the average director frame) and the magnetic
field.

The MOMD case is important for biologically relevant
membrane systems, where it is not easily possible to prepare
macroscopically aligned samples, but macroscopically disor-
dered “dispersion” samples are readily available. Now, let us
examine the MOMD effects on the contribution of the director
fluctuations to the relaxation. First, we note that, because of
the “echo-like” cancellation of the inhomogeneous broadening
along the temporal dimension,t1 ) t2, the different orientations
of the ADF with respect the LF do not induce any change in
the resonance frequency of the resulting line shape. On the other
hand, the variations of the coefficientsδω′M(θB) have to be
considered according to Figure 9. Clearly, the dependence of
the line width on the angleθB follows the behavior of the
coefficientδω′M(θB): when it is near its maximum value, the
corresponding membrane regions give a broader absorption,
while those for whichδω′M(θB) is small contribute with a
narrower signal. The resulting line shape is calculated according
to eq 83.

In addition, the dependence of the ELDOR line width on the
mixing time tm is affected by MOMD, as shown in Figure 14.
One sees that both the absolute value of (T2,DF

M )-1 as well as the
variation of (T2,DF

M )-1 with tm are attenuated but the overall
behavior of (T2,DF

M )-1 is unchanged. This indicates that 2D-
ELDOR studies of macroscopically disordered samples still
allow a reliable characterization of director fluctuations.

Analysis of the Experimental Data. In this section, the
experimental results obtained by Patyal at al.20 are interpreted
in terms of the relaxation model developed in this paper.
However, the study of the transverse relaxation rates as a
function of the mixing time was not the principal aim of the
experimental ELDOR study, so only limited results are available
for an analysis of the collective motions. Nevertheless, it can
be shown that the model calculations are in good agreement
with the experimental observations, and reasonable values for
the bending elastic modulusκ of the DPPC vesicles can be
extracted from the analysis of the data. As we have extensively
discussed in the previous sections, two parameters are relevant
in order to fully characterize the mixing time dependence of
the transverse relaxation rates in an ELDOR experiment of a
vesicle sample: the bending elastic modulusκ and the molecular
contributionT2,mol

M to the relaxation. In Figures 15 and 16, the

Figure 12. Time dependence of the characteristic function
GELDOR

M (t,0,t) of the 2D-ELDOR experiment calculated fort1 ) t2 ) t
and a vanishing mixing time,tm ) 0. The time profiles refer to two
different values of the bending elastic modulusκ of the vesicle, i.e.,κ
) 4 × 10-20 J (dashed line) andκ ) 13 × 10-20 J (continuous line).
The parameter values used in the calculation are listed in Table 2, the
employed magnetic anisotropy is (δω′M)2 ) 5.8 × 1015 s-2.

Figure 13. Dependence of the transverse relaxation rate (T2,DF
M )-1,

arising from vesicle shape fluctuations, on the mixing timetm in a 2D-
ELDOR experiment. The calculations refer to five different values of
the bending elastic modulusκ and a vanishing molecular tumbling
contribution, (T2,mol

M )-1 ) 0. The other parameter values are listed in
Table 2, the employed magnetic anisotropy is (δω′M)2 ) 5.8 × 1015

s-2.

Sc-
MOMD ) ∫ Sc-(θB) sin θB dθB (83)

Figure 14. Dependence of the transverse relaxation rate (T2,DF
M )-1,

arising from vesicle shape fluctuations, on the mixing timetm in a 2D-
ELDOR experiment. The two relaxation curves refer to a particular
orientationθB ) π/4 (dotted line) of the average director and magnetic
field and to the MOMD (microscopic order/macroscopic disorder)
average (solid line). The other parameter values are listed in Table 2,
the employed magnetic anisotropy is (δω′M)2 ) 5.8 × 1015 s-2.
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transverse relaxation rates (T2
M)-1 of the ELDOR experiments

are plotted as a function of the mixing timetm. Results are shown
for pure DPPC vesicles (Figure 15) and for DPPC/GA mixed
vesicles (molar ratio 5:1) (Figure 16), respectively. In each case,
the experimental data (open circles) refer to theM ) 1 hyperfine
line and a temperature of 45°C. One observes a pronounced
dependence of the relaxation rate (T2

M)-1 on the mixing time
tm, indicating that director fluctuations constitute the dominant
relaxation process. Consequently, we can analyze the relaxation
curves on the basis of the relaxation model developed in this
paper. The employed magnetic parameters of the spin probe
are summarized in Table 1. Calculated relaxation curves were
fitted to the experimental curves by varying the parametersκ

and (T2,mol
M )-1. In the calculations, the MOMD effect has been

considered. The resulting values ofκ and (T2,mol
M )-1 parameters

are reported in Table 3. The dotted lines in Figures 15 and 16
represent the best simulations of the relaxation curves. Evidently,
the agreement between experiment and theory is good.

Several experimental techniques have been developed in order
to quantitatively study the bending rigidity of vesicles and its
temperature dependence: our result ofκ ) 11 × 10-20 J for
pure DPPC vesicles at 45°C compares favorably with those
obtained by heat capacity measurements,38 video microscopy39

and optical techniques.40 It should also be mentioned that the
bending moduli of fluid-phase phosphatidylcholine (PC) mem-
branes, which have been determined by NMR,43 are substantially
smaller than that for DPPC. In our case, however, the spin probe
16-PC given its low concentration, contributes only slightly to
the elastic properties of the system, and the bending modulus
can be identified with that of pure DPPC. For DPPC/GA mixed
vesicles at 45°C, a value ofκ ) 15 × 10-20 J is estimated in
the present study. Evidently, gramicidin (a membrane peptide)
causes a stiffening of the vesicles, increasing the bending elastic
modulus significantly.15,41Inspection of Table 3 reveals that the
value ofκ sensitively depends on the temperature of the sample.
Notably,κ decreases by a factor of 2 when the temperature is
raised from 45°C to 70°C. This is in agreement with previous
results for other phospholipid vesicles.15

In summary, the values forκ are reasonable and indicate that
transverse electron spin relaxation is able to provide information
concerning viscoelastic properties in biological membranes.

Conclusion

An analytical theory for the dependence of the transverse
relaxation times for the auto-peaks in 2D-ELDOR experiments
on membrane vesicles has been developed. It is based upon
treating fluctuations of the director field as a multidimensional
Gaussian process, and it includes just the secular contributions
of the fluctuating part of the spin Hamiltonian. The main
outcome of this theoretical analysis is that the time-dependent
ELDOR signal, which can be used to define the transverse
relaxation time, is specified in terms of the correlation function
describing the director fluctuations at the spin probe location.
Moreover, it is shown that the transverse relaxation time displays
a definite dependence on the mixing timetm whenever some
dynamical process, which modulates the magnetic interaction,
occurs in a comparable time scale. Our theory provides precise
tools for the interpretation of the 2D-ELDOR experiments of
ordered fluids once the correlation function for the director
fluctuations is evaluated according to standard viscoelastic
models for collective fluctuations of the systems considered.

In the present analysis, the model for the shape fluctuations
of quasispherical vesicles has been considered in detail, and
good agreement has been found in the comparison with
experiments. The theory provides a useful way to extractκ, the
bending elastic modulus of the membranes, from experiments.
Of particular importance from a biological point of view is that
the technique may be exploited to investigate modifications of
membrane viscoelastic behavior caused by inclusion of sterols,
peptides, or proteins. Indeed, these effects are not small and
invite speculation regarding the consequences for overall
biological membrane functions.

Figure 15. Dependence of the transverse relaxation rate (T2
M)-1 on

the mixing timetm in a 2D-ELDOR experiment for pure DPPC vesicles
at 45°C. Experimental data taken from ref 20 are indicated by open
circles. The dotted line represents a best-fit simulation based on the
slow-motional model developed in this paper. The fit parameters areκ

) 11 × 10-20 J and (T2,mol
M )-1 ) 6.4 × 106 s-1.

Figure 16. Dependence of the transverse relaxation rate (T2
M)-1 on

the mixing timetm in a 2D-ELDOR experiment for mixed DPPC/GA
vesicles (molar ratio 5:1) at 45°C. Experimental data taken from ref
20 are indicated by open circles. The dotted line represents a best-fit
simulation based on the slow-motional model developed in this paper.
The fit parameters areκ ) 15 × 10-20 J and (T2,mol

M )-1 ) 1 × 107 s-1.

TABLE 3: Bending Elastic Moduli and Transverse
Molecular Relaxation Rates Extracted from 2D-ELDOR
Experimentsa Using a Slow-Motional Model

sample temp (°C) κ (J) (T2,mol
M )-1 (106 s-1)

DPPCb 45 11× 10-20 6.4
DPPC 70 4.7× 10-20 4.4
DPPC/GAc 45 15× 10-20 10
DPPC/GA 70 8× 10-20 6.6

a Experimental data adopted from ref 20.b DPPC: (1,2-dipalmitoyl-
sn-glycero-phosphatidylcholine).c GA: gramicidin A′.
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Finally, we recall that the present theory is confined to the
diagonal peaks of the ELDOR spectra because of the secular
approximation invoked in the analysis. According to a previous
treatment of CW-ESR spectra,18 we expect a negligible con-
tribution to the autopeaks due to the fluctuating pseudosecular
contribution of the hyperfine interactions, while they should have
a major role in determining the shape of the cross-peaks.
Theoretical work is in progress in order to extend the theory to
account for the fluctuating pseudosecular terms of the spin
Hamiltonian.
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Appendix A: Approximate Form of the Correlation
Function nx(0)nx(t) for Quasispherical Fluctuations of
Membrane Vesicles

By scaling the time according to the parameter

the correlation function of the director fluctuation, eq 81, is
conveniently represented as

where t̂ is the scaled time,t̂ ) t/ts, and the functionf(t̂)

is specified through the coefficients

We stress that the functionf(t̂) depends on the physical
parameters describing the vesicle system only throughσ and
lmax. In Figure 17, we have represented the profile of such a
function for two values oflmaxand two values ofσ by employing
a logarithmic scale for the time axis. Some key features are
clearly evident: (i) the function is initially constant, with the
value f(0) depending onlmax and σ; (ii) at intermediate time,
f(t̂) displays a linear dependence on ln(tˆ) and is a function of
the surface tensionσ which determines a shift in the values.
The linear regime ends up with the final relaxation with very
small values of such a function. Once one fixes the value ofσ,
the scaled correlation function acquires a universal character in
the time window of the linear dependence, so that one can
employ the following representation for the linear behavior

with the parametert̂b dependent on theσ value. The particular
value of such a parameter has to be optimized by fitting the
linear portion of the profiles in Figure 17. For instance, the value
t̂b ) 0.1901 has been obtained for the caseσ ) 0. Then, given

f(0), evaluated according to eq A-3, the following approximation
is derived for the function in the entire time domains

with a further parametert̂a, dependent onlmax and σ, to be
obtained by matching the linear behavior with the initial value
of the function

For the sake of comparison, in Figure 17, we have also
represented the approximation eq A-6 forσ ) 0, and a very
good agreement is recovered, particularly in the linear regime.
It should be mentioned that approximation eq A-6 can be
justified under the assumption of a vanishing lateral tension on
the basis of an integral representation for the summation in eq
A-3. Indeed, for the coefficients eq A-4, the following limiting
behavior is found for largel

which can be exploited to convert the summation of eq A-3
into the integral form

where the boundariesx0 and xmax are adjustable parameters
required to achieve the numerical matching between eqs A-3
and A-9. By performing the change of variablesx f y ) x3t̂,
one obtains

whereE1(z) denotes the “exponential integral” function42

having the asymptotic limitsE1(z) = 0 for z . 1 andE1(z) =
-ln γ - ln z for z , 1, whereγ is the Euler number. Then, in

ts )
4ηR0

3

κ
(A-1)

nx(0)nx(t) )
kBT

12πκ
f( t̂) (A-2)

f( t̂) ) ∑
l)2

lmax

3bl e- t̂al (A-3)

al ) 4
τ̂l

)
4(l - 1)l(l + 1)(l + 2)(l2 + l + σ)

(2l + 1)(2l2 + 2l - 1)

bl )
l(l + 1)(2l + 1)

2(l + 2)(l - 1)(l2 + l + σ)
(A-4)

f( t̂) ) ln( t̂b/ t̂) (A-5)

Figure 17. Representation of the scaled correlation functionf(t̂) for
two values oflmax and two values ofσ: dashed line (lmax ) 3000,σ )
100), heavy continuous line (lmax ) 1000, σ ) 0), light continuous
line (lmax ) 3000,σ ) 0). For the latter case, the approximate form is
also depicted (dotted lines).

f( t̂) ){f (0) for t̂ e t̂a

ln( t̂b/ t̂) for t̂a e t̂ e t̂b

0 for t̂ g t̂b

(A-6)

ln t̂a ) ln t̂b - f (0) (A-7)

bl ∼ 1
l

al ∼ l3 (A-8)

f ( t̂) ) 3∫x0

xmax dx
e- t̂x3

x
(A-9)

f ( t̂) ) ∫x0
3t̂

xmax
3t̂

dy
e-y

y
) E1(x0

3t̂) - E1(xmax
3t̂) (A-10)

E1(z) ) ∫z

∞
du

e-u

u
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agreement with eq A-6, a vanishing value and a constant value
are recovered fort̂ . 1/x0

3 and for t̂ , 1/xmax
3, respectively,

while a linear behavior eq A-5 is found for 1/xmax
3 , t̂ ,

1/x0
3.

In summary, the behavior off (t̂) can be specified through
the scaled parameterst̂a and t̂b, which, once converted to real
time units by accounting forts in eq A-1, take on typical values
of a fraction of picoseconds and a few milliseconds by using
representative parameters of Table 2 for a vesicle system. Thus,
in the time scale of microseconds characterizing the mixing time
in the ELDOR experiments, we are allowed to use the linear
approximation eq A-5. Correspondingly, the correlation function
for the director fluctuations in quasispherical vesicles can be
represented as

wheretb ) tst̂b.
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