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Simulating electron spin resonance (ESR) spectra directly from molecular dynamics simulations of a spin-
labeled protein necessitates a large number (hundreds or thousands) of relatively long (hundreds of nanoseconds)
trajectories. To meet this challenge, we explore the possibility of constructing accurate stochastic models of
the spin label dynamics from atomistic trajectories. A systematic, two-step procedure, based on the probabilistic
framework of hidden Markov models, is developed to build a discrete-time Markov chain process that faithfully
captures the internal spin label dynamics on time scales longer than about 150 ps. The constructed Markov
model is used both to gain insight into the long-lived conformations of the spin label and to generate the
stochastic trajectories required for the simulation of ESR spectra. The methodology is illustrated with an
application to the case of a spin-labeled poly alanine R helix in explicit solvent.

I. Introduction

Electron spin resonance (ESR) spectra are rich in information
that can be related to the structure and function of the spin-
labeled biomolecule. Nonetheless, inferring the molecular detail
from the spectra is difficult because of the complexity introduced
by the internal dynamics of the spectroscopic reporter. A
thorough understanding of the conformational freedom and
dynamics of the spin label, therefore, is highly desirable.

In a previous study,1 (Paper I from now on), we performed
molecular dynamics (MD) simulations of a fully solvated, poly
alanine R helix containing one spin-labeled cysteine residue at
its central position: the most commonly used side chain R1,
which results from linking the spin label MTSSL to a cysteine
through a disulfide bond. This system was chosen as an idealized
model of R1 at a solvent-exposed helix surface site in proteins.
Because of the relatively small size of the system, we were able
to simulate 18 independent trajectories, each extending for 100
ns. In spite of the reasonably long duration of the simulations,
each individual trajectory failed to exhaustively sample all the
conformations that were accessible to the spin label. As a result,
the times that the R1 was observed to spend in its various
conformations do not necessarily reflect the correct state
probabilities but likely depend on the starting conformations.
On the other hand, when taken together, the trajectories seemed
to explore a significant realm of conformational possibilities.
Even the disulfide torsion angle with an energy barrier of 7
kcal/mol2 was observed to make 10 transitions between its two
stable conformations. There are compelling reasons to believe
that the combined information from all the simulations ought
to provide a good estimate of the populations of the various
conformations and the rates of exchange between them. The

issue begs for a robust analysis method to extract this informa-
tion from a collection of MD trajectories.

An important ansatz to proceed with such an analysis is that
during its evolution, the spin-label side chain forgets its past
over some relatively short time scale. Mathematically, this
suggests that the R1 dynamics can be modeled as a stochastic
Markov jump process. The main idea is that many independent
trajectories can be used to estimate conditional (transition)
probabilities, even though each trajectory does not necessarily
reflect the correct equilibrium probabilities. To this end, the
detailed dynamics of the MD trajectories has to be mapped to
a discrete-state Markov jump model, the state-to-state transition
probability matrix (TPM) of which needs to be determined. The
equilibrium probabilities of the various states are then calculated
from the TPM rather than from the fraction of their occurrence
in the trajectories. Once its parameters have been properly
estimated, the so-constructed Markov model should allow for
the generation of arbitrarily long stochastic trajectories, which
can then be used to simulate ESR spectra in the time domain.

The outline of the paper is as follows: In Section II, we
analyze the dynamics of a spin system coupled to a classical
bath, where the latter is assumed to exchange rarely between a
number of discrete states and to equilibrate quickly inside each
of the states. A two-step procedure that aims to construct
Markov models with the desired separation of time scales from
the MD trajectories of a spin label is presented. In Section III,
Markov models with different numbers of states are built from
the MD trajectories of R1 at a poly alanine R helix. The resulting
models are used to elucidate the various time scales associated
with the internal spin-label dynamics and to study the confor-
mational changes that they correspond to. ESR spectra at three
different frequencies are simulated from the trajectories gener-
ated by these models and compared with spectra simulated
directly from the MD trajectories.1 The implications of the
results are discussed in Section IV, and our conclusions are given
in Section V. The Appendix contains additional technical details.
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II. Theory and Methods

A. ESR Spectra and Stochastic Dynamics. 1. Stochastic
LiouWille Equation Background. The stochastic Liouville
equation (SLE) introduced by Kubo3–5 describes the dynamics
of a quantal system coupled to a classical bath, where the
dynamics of the bath is modeled by a stochastic process. The
use of the SLE in the simulation of ESR spectra has been
pioneered by Freed and co-workers.6,7 A basic assumption of
SLE theories is that the classical degrees of freedom are not
influenced by the quantum dynamics. This approximation is
justified for most phenomena involving magnetic resonance of
electronic and nuclear spins.8–10 Although additional consider-
ations to the standard SLE are required to ensure relaxation of
the spins to thermal equilibrium,10 this issue will not be
considered here because the dephasing of the spins is the main
contributor to T2 relaxation phenomena that are our main
interest.

Consider a quantal system coupled to an N-state, continuous-
time Markov chain process. Let X(t) be a random variable
indicating the state of the chain at time t. The probabilities pi(t)
) P{X(t) ) i} to observe the chain in state i at time t form the
vector p(t) ) [pi(t)], the evolution of which is governed by the
Master equation

ṗj(t))∑
i)1

N

pi(t)Qij (1)

The dot indicates differentiation with respect to time. The matrix
Q ) [Qij], referred to as the rate matrix, is the generator of the
chain. Its off-diagonal entries are larger than or equal to zero.
For a conservative process, its diagonal elements are negative
and given as11

Qii )-∑
j*i

Qij (2)

and are directly related to the lifetime νi of each state,

νi )-1 ⁄ Qii (3)

The stationary probability distribution of the chain π is the left
eigenvector of Q with eigenvalue zero. For a system in thermal
equilibrium, π and Q are in detailed balance,

πiQij )πjQji (4)

This condition implies that Q can be transformed to a symmetric
form by a similarity transformation with the matrix D )
[(πi)1/2δij]; thus, all the eigenvalues of Q are real. When written
as -1/τi, the nonzero eigenvalues give the relaxation time scales
τi of the stochastic dynamics generated by Q. Note that τi * νi.

The density operator of the quantal system, |F(t)〉〉, written
as a Liouville space vector,12 obeys the Liouville-von Neumann
equation

|Ḟ(t) 〉 〉 )- iĽX(t)|F(t) 〉 〉 (5)

in which the dependence of the Liouvillian on the state of the
Markov chain is denoted as a subscript. (The inverted caret
indicates that the Liouvillian is a Liouville space operator, that
is, a superoperator.) The SLE for this coupled quantum-classical
system is an evolution equation for 3,4

|ui(t) 〉 〉 ) E{|F(t) 〉 〉 |X(t)) i} (6)

the expectation of the density matrix at time t given that
currently X(t) ) i. It reads3,4

|u̇j(t) 〉 〉 )- iĽj|uj(t) 〉 〉 + ∑
i

Qij|ui(t) 〉 〉 (7)

When X(0) is chosen from the equilibrium probability density
π, the initial condition of eq 7 is

|ui(0) 〉 〉 ) |F(0) 〉 〉 πi (8)

Notice that initially, |ui(t)〉〉 is separable in its classical and
quantum parts.

For a bath which is modeled by a continuous stochastic
process Y(t), the probability density p(y, t) is taken to satisfy a
Fokker-Planck equation13

∂tp(y, t))Gp(y, t) (9)

with stationary solution π(y). (∂t denotes partial derivative with
respect to t.) The differential operator G acts on the variable y.
In such cases, the SLE becomes3,4,10

∂t|u(y, t) 〉 〉 )- iĽ(y)|u(y, t) 〉 〉 + G|u(y, t) 〉 〉 (10)

with initial condition

|u(y, 0) 〉 〉 ) |F(0) 〉 〉 π(y) (11)

2. Eliminating the Fast Intrastate Dynamics. When different
components of the classical dynamics evolve on well separated
time scales, one can formally eliminate the fast dynamics.14 For
example, the dynamics of a given spin label can be viewed as
a superposition of fast intrastate dynamics Y in a given state X
) j and much slower exchanges between the states. Symboli-
cally, this can be written as15–17

Ẏ(t)) 1
∈ g(X(t), Y(t)), Ẋ(t)) f(X(t)) (12)

where ε is a small parameter and the functions f and g are O(1)
in ε. Clearly, for small ε, Y varies on a faster time scale than X.
In eq 12, it is assumed for simplicity that the exchanges do not
depend on the intrastate dynamics; thus, f is independent of Y.
Associated with this system of evolution equations is a
Fokker-Planck-Master equation

∂tpj(y, t)) 1
∈ Gjpj(y, t)+∑

i

pi(y, t)Qij (13)

for the joint probability density pi(y, t). The operator Gj acts
only on the variable y but depends on the state j of the Markov
chain. There is a different operator (with different diffusion
tensor and ordering potential, for example) for each j. Its exact
form is not important for the purposes of our discussion. It
suffices to say that π(y|j) that satisfies the condition

Gjπ(y|j)) 0 (14)

is the equilibrium probability density of Y for a given state j.
Coupling the classical processes in eq 12 to the quantal

dynamics (cf eq 5)

|Ḟ(t) 〉 〉 )- iĽX(t)(Y(t))|F(t) 〉 〉 (15)

one obtains the SLE

∂t|uj(y, t) 〉 〉 ) (-iĽj(y)+ 1
∈ Gj)|uj(y, t) 〉 〉 + ∑

i

Qij|ui(y, t) 〉 〉

(16)

with initial condition
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|ui(y, 0) 〉 〉 ) |F(0) 〉 〉 πi(y) (17)

Here, πi(y) is the joint equilibrium probability density corre-
sponding to eq 13. We look for a solution of the SLE in the
form17

|u 〉 〉 ) |u(0) 〉 〉 + ∈ |u(1) 〉 〉 + ∈ 2|u(2) 〉 〉 + ... (18)

with initial conditions

|ui
(0)(y, 0) 〉 〉 ) |ui(y, 0) 〉 〉

|ui
(k)(y, 0) 〉 〉 ) 0, kg 1 (19)

Substituting in eq 16 and collecting terms with equal power of
ε leads to the hierarchy of equations

∈ -1 : Gj|uj
(0)(y, t) 〉 〉 ) 0 (20a)

∈ 0 : Gj|uj
(1)(y, t) 〉 〉 ) (∂t + iĽj(y))|uj

(0)(y, t) 〉 〉 -

∑
i

Qij|ui
(0)(y, t) 〉 〉 , ... (20b)

The first equation implies that |uj
(0)(y, t)〉〉 is in the null space

of Gj. From eq 14, it follows that

|uj
(0)(y, t) 〉 〉 ) π(y|j)|hj(t) 〉 〉 (21)

where hj(t) is arbitrary. Let us define the operator17–19

Paj(y) ≡ π(y|j)∫ aj(y) dy (22)

which projects onto the null space of Gj by mapping a general
function of (j, y) into a function of j times π(y|j). With this, the
requirement that u(0) is in the null space of Gj translates into
Pu(0) ) u(0). It is not hard to see that GPj ) PjG ) 0. Acting
with P on both sides of the second equation in the hierarchy
gives

∂t|uj
(0)(y, t)〉〉 )-iPĽj(y)|uj

(0)(y, t)〉〉 +∑
i

Qij|ui
(0)(y, t)〉〉

(23)

By using eqs 21 and 22, the first term on the right-hand side of
the equality becomes

PĽj(y)|uj
(0)(y, t) 〉 〉 ) Ľj|uj

(0)(y, t) 〉 〉 (24)

where

Ľj ≡∫ Ľj(y)π(y|j) dy (25)

is the Liouvillian for state j averaged over the equilibrium
probability of the fast dynamics inside the state. The physical
implication is that the process Y relaxes to its equilibrium
distribution before X has time to change. As a result, eq 23
together with its initial condition can be viewed as the SLE
corresponding to the system of equations

Ẋ(t)) f(X(t)), |Ḟ(t) 〉 〉 )- iĽX(t)|F(t) 〉 〉 (26)

Thus, to the lowest order, one can replace the instantaneous
Liouvillian with its average over the current state of the Markov
chain. Below, we use this result in the simulation of ESR spectra
from the Markov models estimated from the MD trajectories.

B. Building Markov Chain Models from Trajectories. The
process of building a continuous-time discrete-state Markov
chain model of the slow dynamics of a biomolecule from MD
trajectories has been the object of numerous studies.20–27 First,
a set of observables, called order parameters, must be chosen

among the large collection of variables contained in the
trajectories. The selection of order parameters is a hard problem,
lacking a systematic and universally applicable solution, al-
though significant progress has been made in specific cases.28

Here, we assume that a choice based on physical insight about
the system is adequate. Second, the d-dimensional space of the
order parameters is divided into numerous, small cells (mi-
crostates). The division can be into either equally sized bins29–31

or any other irregular basis cells.21,26,32 The latter can either be
chosen by hand21 or determined by using some automated
strategy,26 such as the K-means (or K-medoid) clustering
algorithm.33 At this point, it is hoped that if the microstates are
chosen to be narrow enough, such that intrastate relaxation is
fast, the kinetics of jumping out of a microstate will be
approximately Markovian. A TPM can then be estimated by
counting the number of jumps into and out of a microstate.
Third, the estimated microstate TPM is used to lump the
microstates into several groups of kinetic significance (mac-
rostates). The resulting macrostates are intended to correspond
to the rarely exchanging, metastable conformations of the
biomolecule. The lumping step necessitates the identification
of the weakly coupled sub-blocks of the microstate TPM and
can be achieved in several different ways varying in computa-
tional demand.34–36 At the end, it is the Markovian kinetics of
the macrostates that constitutes a model of the slow dynamics
of the biological system.

1. Microstates. If the observed time series were generated
from a continuous-time Markov chain, one could easily estimate
the rate matrix by counting the number of i f j jumps and the
total time spent in state i. This is not possible when the
trajectories of the order parameters are coming from MD
simulations, because the short-time dynamics of the order
parameters are not necessarily Markovian. For one, MD
trajectories are inertial and non-Markovian over a time interval
of 1 ps. Furthermore, coupling to hidden degrees of freedom
not included explicitly in the set of order parameters may
indirectly introduce memory effects. As a result, the time series
of the order parameters may contain many spurious transitions
back and forth between states i and j before a real transition
occurs, leading to an unreliable estimate of Q from the MD
trajectories. A common remedy is to observe the system at long-
enough time intervals such that the dynamics is more likely to
appear memoryless from one observation to the next.20,21,23,26

This coarse graining in time of the evolution of the order
parameters comes at a price. By allowing for times τ between
two successive observations, one loses touch with the continu-
ous-time Markov process. Instead, what becomes accessible is
a family of discrete-time Markov chain processes, with TPMs
parametrized by the observation lag time τ:

P(τ)) exp(τQ) (27)

By denoting the integer time steps of these chains with a
subscript t (1eteT) and writing the random variable corre-
sponding to the state of the chain at time step t as Xt, one has

Pij(τ))P{Xt+1 ) j|Xt ) i} (28)

for the conditional probability of the chain to be in state j at
time step t + 1 given that it was in state i at time step t.
Therefore, for a given τ, P(τ) can be estimated from the
trajectory as

Pij(τ))
Nij

τ

∑ j
Nij

τ
(29)

where Nij
τ is the number of times Xt ) i and Xt+1 ) j along the

whole trajectory sampled at intervals τ. Because the family of
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matrices P(τ) are generated by the same matrix Q, they all share
the probability vector π as their left eigenvector with eigenvalue
λ0 ) 1 and inherit the condition of detailed balance:

πiPij(τ))πjPij(τ) (30)

The remaining eigenvalues λi(τ) of P(τ) are restricted by the
relation of P(τ) to Q to lie between 0 and 1. Each of them is
associated with a relaxation time scale τi, defined as the negative
of the inverse eigenvalue of Q, through

τi(τ))-τ ⁄ ln(λi(τ)), ig 1 (31)

as can be inferred from eq 27. In the case of Markovian
dynamics, the τi are independent of τ. The lifetimes νi,
introduced in terms of the rate matrix in eq 3, can be expressed
in terms of the diagonal entries of P(τ) as

νi(τ))∑
n)1

∞

(nτ)Pii
n-1(1-Pii)) τ ⁄ (1-Pii(τ)) (32)

where the sum is over the number of steps n of duration τ spent
in state i and represents the expected value of the time spent in
this state. (For the expansion in eq 32 to be sensible, the discrete
time step τ has to be much shorter than each of the lifetimes
νi.)

After the time series of the discrete states are used to estimate
the P(τ) for several different values of τ, it is desirable to test
whether those TPMs are consistent with each other, that is,
whether they satisfy the Chapman-Kolmogorov property
P(τ)P(ν) ) P(τ + ν). A popular version of this test is to examine
the time scales τi(τ), implied by the eigenvalues λi(τ) as a
function of τ (eq 31), and check whether they are independent
of the lag time.20,21,23,26 The model passes the test if the τi do
not vary with τ. If the τi fluctuate for short lag times but then
level out for lag times longer than a certain τ/, the test basically
detects the minimum lag time needed for the dynamics to
become Markovian.

From the discussion so far, it might appear that having access
to the family of TPMs P(τ) instead of the generator Q does not
result in any loss of generality, because one can easily go back
and forth between the two by using eq 27. Indeed, when the
difference in τ is accounted for, as in eqs 31 and 32, all the
matrices P(τ) correspond to the same time scales τi or νi. In
almost every practical situation though, obtaining the generator
Q by inverting eq 27 is impossible. Oftentimes, the TPMs
estimated directly from the time series by using eq 29 have
negative and/or complex eigenvalues. Thus, taking their loga-
rithm to determine the eigenvalues of Q produces nonreal
numbers. The presence of complex eigenvalues is a sign that
P(τ) is not in detailed balance with its left eigenvector π. Two
ways of imposing detailed balance on a TPM estimated from
the raw data are discussed in Appendix 1. Even when the
eigenvalues are all positive, the matrix calculated to be Q by
inverting eq 27 very often ends up having negative off-diagonal
entries and does not constitute a legitimate generator. Direct
correspondence between a TPM P(τ) and a generator Q exists
in the limit of small τ, when terminating the expansion of eq
27 at first order in τ is justified37 (i.e., Q ≈ (P(τ) - 1)/τ).
Therefore, it is desirable that the time τ after which the dynamics
becomes Markovian is (much) shorter than all the relaxation
time scales τi implied by P(τ) or equivalently by Q. In Section
III, where we use P(τ) to generate trajectories of the Markov
jump process, we make sure that τ is smaller than the fastest
relaxation time scale of the chain.

2. Macrostates. Suppose that d order parameters have been
chosen successfully and that N discrete states have been defined
as non-overlapping regions in the space of order parameters.
For the projection of the MD trajectories onto these states to
yield Markovian dynamics when viewed at times spaced by τ,
the relaxation times due to the internal structure of the states
should be shorter than τ. This imposes the states to have a spatial
extent as small as possible. On the other hand, when the states
are excessively small, they tend to be visited rarely, making
the estimates of the transition probabilities rather poor. A
common way to deal with these two opposing limitations is to
first introduce many (e.g., hundreds of) microstates during the
discretization of the MD trajectories, which are then lumped
together into a smaller number of kinetically significant
macrostates.26,29,34,38 How to perform a lumping that captures
the slow dynamics of the system without having all the fast
detail is an open question,26,32 in spite of the considerable effort
in this direction.29,30,34,36,39,40

Diagramatically, the Markovian propagation of the mi-
crostates and their lumping into macrostates, can be represented
as follows:

p(0)f
P(τ)

p(τ)f
P(τ)

p(2τ)f
P(τ)

VH VH VH
p̃(0) p̃(τ) p̃(2τ)

(33)

Here, the horizontal arrows depict the propagation rule

p(t+ τ)) p(t)P(τ) (34)

of the microstate probability vector p(t), whereas the vertical
arrows summarize the relationship

p̃(t)) p(t)H (35)

between the macrostate probabilities p̃(t) and the microstate
probabilities. The matrix H ) [hia] is the operator of projection
(lumping). A general projection can allow for a given microstate
to belong to several different macrostates. The only requirement
is that the membership of any microstate to all the M macrostates
should sum to 1

∑
a)1

M

hia ) 1 for all i (36)

Given the microstate equilibrium distribution π and the projector
H, the macrostate equilibrium probabilites follow from eq 35.
In component form, we have

π̃a )∑
i)1

N

πihia (37)

It is useful to introduce the probability contribution of microstate
i to macrostate a as

wai )
πihia

π̃a
(38)

for which the normalization condition

∑
i)1

N

wai ) 1 for all a (39)

holds by construction. For a given a, wai is the intramacrostate
equilibrium distribution of the microstates. From eqs 38 and
39, one finds
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πi )∑ π̃a
a)1

M

wai (40)

This relation is the dual of eq 37, because it expresses π in
terms of π̃ and W ) [wai]. The duality can be depicted as
follows:

Starting from the quantities in one of the ellipses, the quantities
in the other ellipse are obtained by using the specified equations.

In refs 32 and 41, following the top arrow to go from π to π̃
was called restriction, whereas going in the opposite direction
was called interpolation. According to this nomenclature, H and
W are the operators of restriction and interpolation. The former
restricts any probability density over the microstates to a
probability density over the macrostates (eq 35), whereas the
latter interpolates a detailed probability density from a coarse-
grained one as

p(t)) p̃(t)W (41)

This naive way of building detail is based on the assumption
that the internal probability structure of a macrostate is always
in equilibrium. Note that, in general, restriction (eq 35) followed
by interpolation (eq 41) does not recover the starting microstate
probability vector

p(t)* p(t)HW) p(t)A (42)

The last equality defines the stochastic matrix A. Only the
microstate equilibrium probability is invariant under this opera-
tion, π ) πA. Because the action of A on an arbitrary vector
leads to a probability vector that is automatically equilibrated
inside each of the macrostates, A can be viewed as an operator
of intramacrostate equilibration.

In all the present variants of lumping the microstates into
macrostates, a membership array H is sought, such that the
macrostate TPM

P̃(τ))WP(τ)H (43)

captures the slow dynamics of the Markovian microstate
propagation as well as possible. Various algorithms for con-
structing sharp26,35 or fuzzy34,36 H from a given P have been
proposed. (Equation 43 reduces to the more familiar

P̃ab(τ))
∑
i∈a

∑
j∈b

πiPij(τ)

∑
i∈a

πi

(44)

when the elements of H are restricted to be only 0 or 1; that is,
macrostates are defined with sharp boundaries.) The lower
dimensional matrices P̃(τ) are then used to propagate directly
the macrostate probabilities in a Markovian fashion as

p̃(0)f
P̃(τ)

p̃(τ)f
P̃(τ)

p̃(2τ)f
P̃(τ)

(45)

As clearly demonstrated in refs 32 and 41, because of the
noncommuting nature of propagation and restriction, the ma-
trices P̃(τ) fail to generate Markovian dynamics in the space of
the macrostates. The problem is that a two-step microstate
propagation followed by lumping does not lead to the same

probability density as a lumping followed by a two-step
macrostate propagation. This is easily seen by using matrix
notation:

P̃(τ)P̃(τ))WP(τ)AP(τ)H*WP(τ)P(τ)H) P̃(2τ) (46)

The implication is that estimating P̃(τ) by using a given lag
time and squaring it is systematically different from P̃(2τ)
estimated with twice as long a lag time. From eq 46, it is clear
that by squaring P̃(τ), it is assumed that between two time steps
separated by τ, the microstates inside a macrostate reach their
local equilibrium (imposed by the matrix A). Thus, replacing
the detailed microstate dynamics by coarse-grained macrostate
propagation relies on the assumption that after a jump to a new
macrostate, the chain dwells inside the macrostate long enough
to sample its equilibrium distribution before exiting it. This is
achieved to a large degree by grouping microstates that exchange
fast into macrostates, which, on the other hand, are chosen to
be as weakly coupled as possible. In spite of that, occasionally,
short-lived visits into macrostates are possible. Their presence
leads to an artificially faster macrostate dynamics and is the
physical reason behind the inequality in eq 46. To distinguish
such brief visits from real transitions, we analyze the time series
of the order parameters with a hidden Markov model (HMM).

3. Using HMMs. HHMs have found widespread application
in areas as diverse as speech recognition,42 analysis of currents
from single ion channels,43,44 or other single-molecule data.45

In this section, we utilize the well-established methodology of
HMMs42 as a framework that aims to identify state boundaries
and interstate transitions probabilistically, by considering the
data as a time-ordered sequence of events.

In a HMM, the states of the Markov chain are not directly
observed. What is observed is the d-dimensional vector of order
parameters Ot, which is modeled to be emitted when the chain
is in state i according to some probability density. For analytical
tractability, it is convenient to choose the probability density
for observing Ot ) y, when Xt ) i, as a multivariate Gaussian
with a mean vector µi and a covariance matrix Σi:

bi(y))P{Ot ) y|Xt ) i}

∝ �det Σi
-1

(2π)d
e-1⁄2(y - µi)T ·Σi

-1 · (y-µi) (47)

where υT indicates the transpose of υ. Given the sequence of
observations, O ) O1, O2,..., OT and the parameters of the
HMM, θ ) {p, P(τ), µi, Σi}, it is possible42 to calculate the
conditional probability

�ij(t))P{Xt ) i,Xt+1 ) j|O,θ} (48)

for the chain to be in state i at time step t and state j at time
step t + 1. This iterative procedure is presented in Appendix 2.
(The ith entry of the probability vector p that appeared in θ
corresponds to the probability of the chain to start in state i.)
With the help of �ij(t), it is straightforward to calculate the
expectation

E{Nij
τ |O, θ})∑

t)1

T-1

�ij(t) (49)

which can be used in eq 29 instead of Nij
τ to estimate P(τ). To

update the other parameters of the HMM, it is convenient to
consider the probability to be in state i at time t, given O and
θ:42
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γi(t))P{Xt ) i|O, θ})∑
j)1

N

�ij(t) (50)

With it, the parameters are updated as follows:42

pi ) γi(1), Pij(τ))
∑t)1

T-1�ij(t)

∑t)1
T-1γi(t)

(51)

and

µi
new )µi

old +µi, Σi
new )Σi -µiµi

T (52a)

where

µi ≡
∑ t)1

T
γi(t)(Ot -µi

old)

∑ t)1

T
γi(t)

(52b)

Σi ≡
∑ t)1

T
γi(t)(Ot -µi

old)(Ot -µi
old)T

∑ t)1

T
γi(t)

(52c)

These equations can be derived by using maximum likelihood
arguments.46,47 When the order parameters are angles, periodic
boundary conditions need to be imposed on the difference Ot

- µi
old.

The hidden Markov modeling strategy presented here shares
similarities with the K-means clustering: in both methods, the
number of desired states (clusters) is provided as an input; for
each cluster, a representative point (centroid in K-means and
µi in the HMM) is determined, and its members are assigned
in an iterative way; the assignment of membership relies on
the choice of a distance metric in the space of order parameters.
Nevertheless, crucial differences separate the two methods.
Clusters in the K-means clustering are identified by considering
only the geometric distances between the data points. Because
information about the temporal ordering of the data is completely
ignored, one can only hope that the resulting dynamics of
jumping from cluster to cluster will turn out to be Markovian.
States in the HMM strategy, on the other hand, are identified
by using both the geometric distances and the temporal ordering
of the data, having in mind the expected Markovian dynamics.
Needless to say, all those advantages come at the expense of
increased computational effort, which, considering the resources
demanded by the generation of the starting MD trajectories, is
well justified.

The HMM analysis can be easily extended to the lumping
step. To preserve the spatial resolution offered by the mi-
crostates, we retain the number of Gaussian basis functions by
using the same microstate emission probability densities as
before (eq 47). We look for M macrostates with Markovian
dynamics according to some probability matrix P̃(τ). No
dynamics are associated with the microstates. The emission
probability ba from each macrostate a is a mixture of the N
microstate components bi:

ba(y))∑
i)1

N

waibi(y), 1e aeM (53)

where wai is the probability contribution of i to a (eq 38). Thus,
we deal with a HMM in which the emission from each (hidden)
macrostate is a mixture of Gaussian components. The iterative
calculation of γa(t) (eq 51) and the update of the starting
probabilities and the transition matrix (eq 50) remain unchanged,
with the understanding that now, the indices stand for mac-
rostates. For the estimation of the microstate properties, it is
useful to introduce42

γai(t)) γa(t)
waibi(Ot)

ba(Ot)
and γi(t))∑

a)1

M

γai(t) (54)

The former is the probability of being in macrostate a at time
step t having generated Ot from microstate i. The latter is the
probability of emitting Ot at time t from a microstate i,
idependently of what the macrostate is. The contributions of
the microstates to the macrostates are updated as

wai )
∑
t)1

T
γai(t)

∑
t)1

T
γa(t)

(55)

whereas µi and Σi are calculated from eq 52.

III. Results

The methodology presented above is applied to a set of 18
MD trajectories of a spin-labeled, 15-residue, poly alanine R
helix. Details about those simulation were provided previously
in paper I and are only outlined in the following. The system
was fully solvated with 686 TIP3P waters and simulated by
using the CHARMM program.48 The resulting system of of 2247
atoms filled a tetragonal simulation box with starting side lengths
of 26.0, 26.0, and 34.0 Å. Periodic boundary conditions were
used. The electrostatics were treated with particle mesh Ewald
summation.49,50 Pressure and temperature pistons were used to
achieve an NpT ensemble at T ) 297 K and p ) 1 atm.51 To
prevent the unfolding of the helix in water, the first five and
the last five residues were harmonically restrained to their
starting positions with force constants of 0.5 kcal/mol/Å2. Each
of the 18 trajectories extended for 100 ns. Snapshots were saved
every 1 ps. All additional details about the simulations can be
found in paper I.1

A. Building the Markov chain models. The analysis of the
conformational dynamics of R1 at a poly alanine R helix,
presented in paper I, suggests that the five dihedrals of the spin
label represent a good set of order parameters to monitor its
dynamics. An alternative set of order parameters, which has
been used frequently to simulate the dynamics of spin labels
and calculate ESR spectra,52–54 is the Euler angles ΩMN that
parametrize the transformation of the helix-fixed coordinate
system M to the nitroxide-fixed system of axes. To compare
these two choices, we attempted the construction of two Markov
chain models: one using the spin-label dihedral angles and the
other using the Euler angles. The MD snapshots from each of
the 18 trajectories were first projected to the space of the order
parameters. The resulting points in five or three dimensions were
then clustered by using the K-means algorithm.33 The latter is
based on the definition of distance in the multidimensional space
of the order parameters. We chose an Euclidian distance metric
in the five dimensional space of the dihedral angles. The only
complication, related to the periodicity of the angles, was treated
by restricting the separation between two points in each of the
dimensions to be always in the range [-180°, 180°]. Because
selecting a distance metric in the space of the Euler angles is
not trivial, we chose to work with quaternions of unit length.
Such quaternions live on the surface of a four-dimensional unit
sphere for which the great circle arc between two points defines
a natural distance metric.55,56

When considering the multiplicity of its five linker dihedral
angles (	1, 3; 	2, 3; 	3, 2; 	4, 3; and 	5, 2), the spin label R1
potentially has 108 rotamers. To ensure the complete coverage
of all the rotamers, the K-means clustering algorithm was
initiated with 120 clusters. For the model using the dihedral
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angles as order parameters, 108 centroids were initialized at
the ideal, reference dihedral angles of each rotamer ((60°, 180°
for multiplicity of 3, (90° for multiplicity 2). The remaining
12 centroids were chosen randomly by generating random
numbers from a uniform distribution in the angular range
[-180°, 180°]. For the other model, the initial 120 centroids
were chosen to be uniformly distributed random unit quater-
nions.56 When the dihedral angles were used to build the
centroids, some of the initial centroids failed to have any
snapshots assigned to them. Such centroids were moved around
randomly before the next iteration. This was repeated until all
120 centroids acquired members. For the two choices of order
parameters, convergence was assumed when the average cen-
troid shift in one iteration was less than (10-5)° in the space of
the five dihedral angles and less than (10-4)° on the surface of
the four-dimensional unit sphere.

As a result of the clustering, the trajectories of the order
parameters were converted to time series of jumps between 120
discrete states. These were then used to construct TPMs for
values of τ ranging from 50 to 800 ps. The time scales τi,
implied by the non-negative eigenvalues of P(τ), were calculated
from eq 31. The slowest 22 time scales are shown in Figure 1
as a function of τ for the two models. The independence of the
relaxation times on the lag time is a signature of a good
Markovian model. Whereas the lines are more or less horizontal
in Figure 1a, they are significantly sloped in Figure 1b. More
importantly, according to the first model, the slowest dynamical
event occurs on a time scale of ∼70 ns, followed by two other
events on a time scale of ∼10 ns; these time scales are
completely missing in the second model.

From the analysis of the internal dynamics of R1 reported in
paper I, we know that the rarest dynamical event in this system
is the transition of the disulfide torsion angle 	3 between its
two energetically preferred values of (90°. The additional
analysis, presented below, confirms that the slowest relaxation
time in Figure 1a is associated with the flip of 	3. The absence
of a similar slow time scale in Figure 1b indicates that the
information regarding the state of 	3 is lost when the conforma-
tion of R1 is projected to the space of the Euler angles. On the
basis of this observation, we conclude that the Euler angles do
not constitute good order parameters for reporting the dynamics
of R1 on a poly alanine R helix and do not consider them further.

In Figure 1a, the time scales τi show relatively little
dependence on the lag time τ, indicating that the jump dynamics
among the K-means clusters are approximately Markovian.
Nevertheless, when plotted on a linear scale, some of the τi <
5 ns are seen to rise throughout the whole examined range of
τ without reaching a plateau (Figure 2a). A context-dependent
analysis is expected to alleviate this problem. A HMM with
120 microstates was constructed by analyzing the time series
of the five dihedral angles with a lag time τ ) 100 ps. The

probability densities for observing a certain combination of the
torsion angles, given the state of the Markov chain, were chosen
as in eq 47. The initial estimates of µi were taken to coincide
with the positions of the K-means centroids, determined in the
previous step. The starting covariance matrices Σi were also
calculated according to the membership assigned by the
K-means clustering. The parameters of the HMM were opti-
mized by using eqs 51 and 52. At the end of each iteration,
microstates with less than 100 snapshots assigned to them were
removed. Convergence was assumed when each of the entries
of the TPM changed by less than 10-3 in an iteration. After
convergence, the Viterbi algorithm42 was used to generate time
series of the hidden states, which were then used to estimate
TPMs for integer multiples of the lag time used in the
optimization. The time scales, τi < 5 ns, of the obtained TPMs
are shown in Figure 2b. Comparison with the same time scales
estimated directly from the K-means clustered trajectories
(Figure 2a) reveals that the time scales determined from the
HMM are less dependent on τ and attain their asymptotic values
at much shorter lag times.

In Table 1, we compare the slowest 14 time scales τi,
calculated by using P(τ) and determined at τ ) 100 ps, either
(i) directly by the HMM optimization (P) or (ii) from the
microstate trajectories generated with the Viterbi algorithm
(traj.). For all practical purposes, the two alternatives appear to
be basically identical. The presence of gaps between the
relaxation time scales τi implies the existence of relatively
weakly coupled sub-blocks in the Markov chain.30,34,36 From
the gaps in Figures 1a and 2b, it is clear that the conformational
dynamics of R1 can be understood as a hierarchy of Markov
chains with 2, 4, 6, 14, and so on number of macrostates. Which
one of those chains to choose depends on the desired temporal
resolution.

Figure 1. Time scales τi (1 e i e 22) of the two K-means-based
Markov models as a function of lag time τ. (a) Dihedral angles and (b)
quaternions (Euler angles) used as order parameters.

Figure 2. Time scales τi (4 e i e 22) of the transition matrices P(τ)
estimated from the time series produced by (a) the K-means clustering
and (b) the Viterbi algorithm after a HMM optimization with τ ) 100
ps. The five linker dihedral angles were used as order parameters.

TABLE 1: Time Scales τi (ns) for Models with 120, 6, and
14 States Calculated by Using τ ) 100 ps

N ) 120 M ) 6 M ) 14

i traj. P sharp P̃ sharp P̃

1 70.8 70.8 67.8 70.1 68.5 70.4
2 10.8 10.8 8.29 9.60 8.50 10.0
3 8.85 8.81 7.90 8.23 8.14 8.46
4 3.32 3.26 1.67 3.10 2.19 3.78
5 2.58 2.55 1.12 2.14 1.40 2.86
6 1.76 1.74 1.22 1.78
7 1.68 1.66 1.00 1.72
8 1.37 1.37 0.89 1.36
9 1.15 1.14 0.88 1.21
10 1.11 1.10 0.84 0.99
11 0.93 0.92 0.59 0.59
12 0.58 0.57 0.27 0.54
13 0.54 0.53 0.26 0.51
14 0.34 0.34
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Markov models with M ) 6, 14, 23, and 27 macrostates were
constructed. During the optimization, the microstate properties
µi and Σi were fixed and not allowed to change. The weights
wai, with which microstate i contributes to the macrostate a,
were optimized by using the iterative procedure presented in
Section II.B.3. Convergence was assumed when each of the
entries of the estimated TPM changed by less than 10-4 in an
iteration. The required initial weights were assigned according
to the lumping method of ref 35, which is extremely simple
from a computational point of view. It groups microstates
together in a macrostate by using sharp membership. wai was
intialized to 1 if a microstate i belonged to a macrostate a and
to 0.01 if it did not. These starting weights were normalized to
satisfy eq 39.

The time scales of the macrostate TPMs determined after the
convergence of the HMM procedure are shown in Table 1 for
the first two models (P̃). In addition, the time scales of the
transition matrices calculated from eq 44 from the sharp
clustering of ref 35 are also shown (sharp). Because this
clustering was used to initialize the weights wai, the difference
between the two sets of time scales is an indicator of the
improvement offered by the HMM versus the lumping with
sharp membership. For both M ) 6 and M ) 14, the
improvement is seen to be significant, allowing the models to
faithfully capture the slow dynamics of the detailed N ) 120
model.

B. Analysis of the Conformations. The hierarchical emer-
gence of Markov models with 2-, 4-, and 6-states is followed
in Table 2. As expected, the division of states in the 2-state
model is based on the value of 	3. The populations of the 	3 ≈
-90° and 	3 ≈ +90° macrostates are estimated to be 88% and
12%, respectively (first row of Table 2). The time scale
associated with the flip of the disulfide dihedral is determined
to be τ1 ≈ 70 ns. This is the slowest event in the internal
dynamics of the spin label R1, when it is situated at the middle
of a poly alanine R helix. Because this time scale is expected
to be largely determined by the dihedral energy barrier of 	3

(about 7 kcal/mol),2 the slow rate of exchange between the two
conformations of the disulfide torsion angle is most likely a
general characteristic of R1 at solvent-exposed sites in proteins.
In the 4-state model, each of the 	3 ≈ (90° states is itself split
in two: states with 	1 ≈ 60° are separate from the others. Such
conformations place the Sγ of the spin-label side chain in a
sterically unfavorable position against the backbone atoms of
the R helix. According to the 6-state model, the populations of
these states are barely a few percent (Table 2), in agreement
with the data for cysteine side chains on R helices, for which
	1 ≈ 60° is seen only 5% of the time.57 These conformations
of R1 are expected to be poorly populated at solvent-exposed
sites in R helices. The time scales τ1 (∼70 ns) and τ2 and τ3

(∼10 ns) indicate that the populations of the two 	3 conformers
and of the 	1 ≈ 60° conformations, as well as the rates of their
exchange, will be among the hardest to sample reliably in
atomistic MD simulations. Certainly, for R1 at a general solvent-
exposed site, there could be additional conformations which
might be equally hard to sample. The remaining time scales of
the internal R1 dynamics, according to the Markov models, are
faster than 4 ns. From Table 2, the slowest two of them (τ4 ≈
3.5 and τ5 ≈ 2.5 ns) appear to be related to conformations with
	2 ≈ 180° and 	3 ≈ -90°.

In Table 3 we show the populations of the 14-state model.
To facilitate the presentation, the probabilites of the macrostates
have been renormalized on the basis of the 	3 conformation to
which they belong. The projection of the centroids µi to the
	1-	2 and 	5-	4 planes, for microstates the membership to a
given macrostate of which is larger than 0.8, are shown in Figure
3. The microstates in a given macrostate are much more similar
in terms of their 	1 and 	2 dihedrals than in terms of 	4 and 	5.
Even though localized, the projections of the macrostates on
the 	1-	2 plane are somewhat irregular and, especially in the
	2 direction, extend well beyond the ideal positions ((60 and
180°) expected for a torsion angle with a multiplicity of 3. A
few microstate centroids have 	2 ≈ (120°, which would
constitute barriers for the ideal dihedral. In Figure 4, we show
the R1 conformations corresponding to some of the µis from
Figure 3. The major source of intramacrostate disorder is seen
to be related to the last two dihedrals of the spin-label side chain.
At the same time, one of the shown microstates in macrostate
2 has a different 	1 value from the others. Because the 14-state
model lumps together conformations with exchange time faster
than 0.5 ns (τ13 ≈ 0.5 ns in Table 1), this indicates that it is

TABLE 2: Characterization of the Markov Models with 2-,
4-, and 6-States in Terms of the Dihedral Angle
Conformationsa

2: 	3 -90° (88.1%) +90° (11.9%)

4: 	1 -60°, 180° +60° -60°, 180° +60°

	2 180° -60°, +60°

6: Ib II III IV V VI
νa (ns) 2.4 6.1 5.2 9.8 55 8.7
π̃a (%) 6.0 43.6 37.0 1.5 11.4 0.5

a The lifetimes of the states from eq 32 are in bold. b This
macrostate contains two microstates (the two black points in Figure
3a,b), which have very similar values for all the five dihedrals, µi ≈
(-170, -160, -95, -75, -100°).

Figure 3. Positions of the 120 mean vectors µi projected to the 	1-	2

and 	5-	4 planes (colored according to the scheme in Table 3).

TABLE 3: Populations (%) and Lifetimes (ns) of the
14-State Markov Model, Normalized Separately for
Conformations with �3 ≈ -90° (states 1-7) and �3 ≈ 90°
(states 8-14)a

state # 1 2 3/ 4/ 5 6 7 tot.

popul. 26.8 49.0 0.9 0.8 6.8 9.3 6.4 100.0
lifetime 3.8 5.9 1.3 1.0 1.4 2.4 2.6

state # 8 9 10/ 11/ 12/ 13 14 tot.

popul. 34.1 34.0 0.1 0.4 3.6 14.1 13.7 100.0
lifetime 2.4 1.3 1.1 0.7 3.6 1.7 0.8

color b red green blue purple cyan yellow black

a The states with 	1 ≈ 60° are indicated with a star. b Used in
Figures 3 and 4.
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possible to have rather fast flips of 	1. The TPMs of the 6- and
14-state models are shown in Figure 5. The states on the left-
hand side correspond to 	3 ≈ -90°, and those on the right-
hand side correspond to 	3≈90°. Bidirectional transitions
between the two sets of conformations involve macrostates 2
and 9 (cf. Figure 4). A unidirectional transition is seen to connect
macrostate 13 to 6. The states with 	1 ≈ 60° are also observed
to be connected to the others through one-way transitions. One-
way transitions in the probability matrix are due to the limited
sampling from the finite length MD trajectories.

C. Multifrequency ESR Spectra. Here, we aim to compare
spectra simulated by using the stochastic jump trajectories
according to the motional model

L98
rotational diffusion

M98
Markov chain

N (56)

with spectra simulated directly from the MD trajectories
according to.

L98
rotational diffusion

M98
MD trajectories

N (57)

In these diagrams, N is the coordinate system attached to the
spin label, M is the coordinate frame attached to the helix, and
L is the stationary laboratory-fixed frame. Rotational Brownian
diffusion of M with respect to L, with a diffusion coefficient D
) 18 × 106 s-1, is introduced to represent the tumbling in
solution of a small soluble protein like T4 Lysozyme. The

dynamics of the spin label with respect to the helix is accounted
for by the trajectories of either the Markov models or the MD
simulations. One deficiency of the MD simulations, which is
also propagated to the Markov models constructed from them,
is related to the fact that the viscosity of the TIP3P water model
used in the MD simulations is roughly 2.8 times smaller than
the viscosity of water.58,59 As a result, the motion of the solvent-
exposed spin label is not sufficiently damped down by the lack
of viscous drag, and the dynamical transitions occur on a time
scale that is too fast. Addressing this problem thoroughly would
require an extensive reparameterization of the force field, which
goes beyond the scope of the present effort. However, to enable
a qualitative assessment of the method, it is of interest to have
the simulated dynamical transitions on time scales that approach
those of the experiments. By following a simple argument valid
for diffusive systems, in the calculation of ESR spectra, the time
axis of both the MD simulations and the estimated Markov
models was stretched by a factor of 2.5 to correct for the this
faster solvent dynamics. One may expect this simple empirical
scaling procedure to be qualitatively valid for solvent-exposed
moieties. The details of the numerical propagation of the quantal
dynamics and the stochastic rotational diffusion were given
elsewhere.60 Below, we summarize the values of the various
integration parameters.

When spectra were simulated for the model (eq 57), the
numerical propagation of the quantal spin dynamics and the
rotational diffusion was carried with a time step ∆t. The choice
of the time step was based on the requirement that replacing a
spin Hamiltonain varying over a time window by an average
Hamiltonian is formally justified. This condition leads to
different values of ∆t for different strengths of the magnetic
field (Table 4).60 Average magnetic tensors were calculated from
the MD trajectories for successive time intervals of duration
∆t. Because the MD snapshots were saved every 1 ps () 2.5
ps after the stretch of the time axis), time-averaged magnetic
tensors were calculated by averaging over avgN successive
snapshots (Table 4). By following paper I, the quantum
integration was initialized at time intervals separated by 2 ns
along each of the MD trajectories, which corresponds to lagN
number of ∆t steps. The columns sphN and TL

-1 in Table 4 list,
respectively, the number of spherical grid points used for the
initial conditions of the isotropic diffusion and the Lorentzian
broadening introduced in the calculation of the spectra. The
magnetic tensors were taken to be

gN ) diag(2.00809, 2.00585, 2.00202)

AN ) diag(6.2, 4.3, 36.9) Gauss (58)

in agreement with the values used in paper I.
When spectra were simulated with the Markov model (eq

56), the time intervals ∆t of Table 4 were used as indicators of
the minimal temporal resolution that the model was expected
to provide. The (approximate) number of required macrostates
was determined by examining the eigenvalues of the N ) 120
microstate model. Three such values, corresponding to time

Figure 4. Spin label conformations corresponding to the microstate
centroids µi, which have πi > 1.2% and belong to macrostates with π̃a

> 6.0% (according to the renormalized probabilities in Table 3). The
macrostates are numbered and colored by following the convention of
Table 3. (a) 	3 ≈ -90° conformations and (b) 	3 ≈ 90° conformations.

Figure 5. Hierarchical structure of the TPM for the 6-state (dashed
boxes) and 14-state (circles) models. The correspondence between the
states (from Tables 2 and 3) is as follows: I ) {7}, II ) {2}, III )
{1, 5, 6}, IV ) {3, 4}, V ) {8, 9, 13, 14}, and VI ) {10, 11, 12}.
Intramacrostate transitions for the 6-state model are indicated with block
arrows and correspond to larger transition probabilities. The directions
of the arrows indicate the directions of the transitions observed in the
trajectories.

TABLE 4: Parameters used in the simulation of the ESR
spectra from the MD and the Markov chain trajectories.

field (T) ∆t (ns) avgN lagN sphN TL
-1 (G) M

0.33 2.0 800 1 400a 0.8 14
3.40 0.5 200 4 3200b 1.2 23
6.09 0.4 160 5 6400b 2.2 27

a Twice as many points were used with the Markov trajectories.
b Four times more points were used with the Markov trajectories.
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scales slower than 0.8, 0.2, and 0.16 ns (after accounting for
the 2.5 scaling of the time axis), are listed in the last column of
Table 4. For all the models, trajectories were generated with
the macrostate transition matrix P̃(τ) estimated at τ ) 100 ps
() 250 ps after scaling by 2.5). This time step was used to
integrate the stochastic dynamics model (i.e., to generate the
Markov jump and the rotational diffusion trajectories) and to
propagate the quantum dynamics. Note that this time step is
smaller than all the ∆ts given in Table 4 and thus is appropriate
for the simulation of ESR spectra for any of the three field
strengths. A total of 200 independent Markov jump trajectories
were simulated per spherical grid point.

A direct comparison between the two motional models (eqs
56 and 57) is encumbered because of the differences in the
relative populations of the states as determined from the MD
trajectories and from the Markov model. The populations of
the two 	3 conformations, for example, are present in a 2:1 ratio
in the MD trajectories, as discussed in paper I, whereas the
6-state model gives a ratio of 88:12 (Table 2). The latter number
takes into account not only the total time spent in each state
(2:1), which for nonergodic trajectories is heavily determined
by the initial conditions, but also the ratio of the number of
observed p f m and m f p transitions (4:1). To circumvent
this complication, we simulate and compare spectra for con-
formations with 	3 ≈ -90 and 90° separately. On the basis of
the time scales in Table 1, we expect the sampling inside each
of these two conformations to be approximately ergodic.

Recently, multifrequency spectra at 9.5, 95, and 170 GHz
(0.33, 3.4, and 6.09 T) have been reported for R1 at position
131 in T4 Lysozyme.61 Motivated by this study, we compare
spectra simulated by using the Markov state trajectories and
the MD trajectories for the three field strengths (Figure 6).
Spectra from models with number of states estimated to be
sufficient for a given field strength (column M in Table 4) lie

along the diagonal running from the upper left corner to the
lower right corner of Figure 6. These are seen to be essentially
identical to the spectra below the diagonal for all the three field
strengths, indicating convergence with respect to the number
of Markov states. In comparison, the spectra above the diagonal
(from models with less states than necessary) exhibit sharper
features. The presence of such sharp features is a well-known
effect in simulations based on average Hamiltonians (also called
effective Hamiltonian).62,63 For all fields, the agreement between
the spectra simulated by using the MD and the Markov
trajectories is rather good for the 	3 ≈ -90° conformations (top
spectra in each plot). The spectra of the 	3 ≈90° conformations
(at the bottom of each plot), on the other hand, show systematic
differences: at all fields, the spectra simulated by using the
Markov chain dynamics exhibit sharper features than the
corresponding spectra simulated by using the MD trajectories.
This is an indication that modeling the dynamics of the 	3 ≈
90° conformers with the model suffers from the average
Hamiltonian effect.

IV. Discussion

A systematic method for constructing Markov chain models
from the MD trajectories of the side chain R1, by using the
values of its dihedral angles as order parameters, was presented.
Starting from numerous clusters, determined by the K-means
clustering algorithm, we gradually proceeded to construct
Markov models with reduced number of states. At every stage,
we formulated the problem as an inference of a HMM and relied
on the probabilistic framework developed for such models.42

The states of the constructed Markov models were examined
to gain an insight into the metastable conformations of R1 on
a poly alanine R helix. Stochastic trajectories were generated
by using the estimated TPMs and used to simulate ESR spectra
at three different field strengths.

Figure 6. Comparison of multifrequency spectra simulated directly by using the MD trajectories (black lines) and the stochastic trajectories generated
by using M-state Markov models (colored lines). Spectra simulated from the 	3 ≈ -90° and 	3 ≈ 90° sub-blocks of the full TPM are shown at the
top (blue) and bottom (red) of each plot.
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The motivation to use HMMs came from the work of
Horenko et al.,64–66 in which a HMM with overdamped, diffusive
dynamics inside each of the hidden states was developed. As
mentioned before, a TPM estimated by pure counting (according
to eq 29) exhibits apparent memory at short lag times, which
results from counting short-lived excursions across macrostate
boundaries as genuine transitions. This effect is significantly
reduced if such excursions are identified and treated accordingly
by using a HMM, as demonstrated in the context of R1 on a
poly alanine R helix (Figure 2). Certainly, the extent to which
sharp macrostate boundaries and their fast recrossings are a
problem depends on the time-scale separation between the
intramacrostate equilibration and intermacrostate dynamics.

A. Euler Angles. In a number of previous studies, MD
trajectories of R1 have been used to construct stochastic models
of its dynamics by relying on the Euler angles Ω to report on the
orientation of the nitroxide-fixed frame N with respect to the
macromolecular frame M.52–54 In this approach, the MD trajectories
are first used to estimate the potential of mean force U(Ω); then,
diffusive Brownian dynamics (BD) trajectories propagated on U(Ω)
are used to calculate ESR spectra. In refs 52 and 53, U(Ω) was
calculated by partioning the Euler angle space into bins of width
3.6° along each of the three angles and estimating the probability
histogram from the MD snapshots. In ref 54, U(Ω) was assumed
to depend only on two out of the three Euler angles, which allowed
for its expansion in terms of spherical harmonics.

The unrealistically fast dynamics in Figure 1b, when compared
with Figure 1a, indicates that by monitoring only the values of the
Euler angles, one is insensitive (blind) to the state of the disulfide
torsion angle 	3. When the regions of Ω accessible to the two
conformations of 	3 overlap, an algorithm in which the propagation
is based solely on the current values of the Euler angles is unable
to recognize this process as a rare transition. In such cases, it is
not legitimate to build a memoryless BD model based on a single
effective energy surface U(Ω) because the true dynamics depend
on additional degrees of freedom which are not explicitly accounted
for. It is possible that for restricted spin labels, for which certain
values of Ω are accessible only from unique structural conforma-
tions, the dynamics projected onto the Euler angles could provide
a faithful representation of the internal spin-label dynamics. For
R1 at solvent-exposed helix surface sites, however, our results
suggest that the Euler angles are not good order parameters to
characterize its internal dynamics. From that perspective, the
potential of mean force U(Ω), even though accessible computa-
tionally, is largely irrelevant for the dynamics of R1 at such sites.

B. Rotameric Dynamics of R1. In Figure 4, we saw that
the intermacrostate disorder was mainly due to variation in the
values of the last two dihedrals 	4 and 	5. At first glance, this
might look as a support of the 	4/	5 model, proposed to
rationalize the internal dynamics of R1 relevant for the ESR
spectra.63,67 According to the model, the transitions of 	1, 	2,
and 	3 are too slow to be dynamically relevant for the ESR
spectra. Thus, the deviation of the spectral line shape from the
rigid limit is mainly due to transitions of 	4 and 	5. The time
scales presented in Table 1 and the characterization of the states
in Table 2 suggest that only the time scale associated with the
	3 transition falls in the rigid limit, whereas all the others are
on the order of 10 ns or faster. Hence, the segmental motion of
all the dihedrals, except 	3, has the potential to contribute to
the deviation of the spectrum away from the rigid limit.

The Markov chain analysis of the R1 conformations and their
time scales of mixing identified the exchange between the states
with different values of 	3 and the populations of the states with
	1 ≈ 60° as the hardest to sample reliably in free MD

simulations. (Additional slow events are not ruled out for R1
at solvent-exposed sites in proteins.) In spite of the sampling
problem that these events pose, they do not hinder the simulation
of ESR spectra. As already pointed out in paper I, because of
the rather slow exchange rate of the two 	3 conformers, the
decay of the magnetization from each of them can be added
linearly to obtain a spectrum for all frequencies including, and
beyond, 9 GHz. Thus, their relative populations can be left as
a free parameter of mixing and determined by fitting the
simulated spectrum to an experimental one. In addition, even
though the exact populations of the 	1 ≈ 60° conformations
and their rates of exchange might be largely uncertain, their
influence on the spectra is probably insignificant because the
populations are expected to be rather small in absolute terms
for R1 at solvent-exposed sites on R helices.

C. Average Hamiltonian. In the simulation of the ESR
spectra, only the average values of the magnetic tensors in a given
macrostate were used, based on the result of Section II.A sum-
marized by eq 26. This equation is valid to zeroth order in the
expansion parameter ε. Another term, proportional to the integral
of the correlation function of the Liouvilliansthe famous relaxation
operator in the Redfield theory of relaxationsappears when the
analysis is carried to higher order.68,69 In ref 70, for example, the
relaxation operator was calculated by assuming overdamped
torsional oscillations of R1. In principle, this term can also be
included in the time domain propagation of the spin dynamics
performed in this paper. There is a significant difference, though,
between the average Liouvillian in eq 26 and the relaxation
operator. Whereas the former corresponds to an average Hamil-
tonian in the Hilbert space of the problem, the latter necessitates
the quantal propagation to be carried in Liouville space. As we
have previously demonstrated,60 propagating the density matrix in
the Hilbert space is advantageous from a computational point of
view. Therefore, to avoid using the relaxation operator, we
introduce a large number of macrostates to ensure that dynamics
on the fast time scales is explicitly accounted for.

The multifrequency spectra of the 	3 ≈ -90° conformations
of R1 in Figure 6 demonstrate that the proposed strategy can
perform perfectly well. The 	3 ≈ 90° spectra, on the other hand,
indicate that the temporal resolution provided by the 27-state
Markov model (down to about 160 ps) is not sufficient to resolve
the relevant dynamics of those conformations of R1. At the same
time, it is not advisable to increase the number of macrostates
in the model, because for time scales faster than τ ≈ 100 ps, a
Markov model of the dynamics is seen not to be appropriate
(Figure 2). The spectral line shapes in Figure 6 and the analysis
of paper I indicate that the R1 conformations with 	3 ≈ 90° are
more disordered and mobile than the 	3 ≈ -90° conformers.
Spin labels located at the surfaces of proteins are expected to
be more immobilized than the spin label of the present study
because of the larger protein surface accessible for specific and/
or nonspecific interactions. The formalism developed in this
paper is therefore applicable to such spin labels.

V. Conclusion

Markov chain models constructed from MD trajectories of
the spin label dynamics hold the potential of bridging the gap
between atomistic MD simulations of solvated spin-labeled
proteins and their experimental ESR spectra. They provide a
rigorous probabilistic framework for utilizing the information
from many, independent MD trajectories toward a single,
coherent model of the spin-label dynamics. Not using the MD
trajectories directly for the simulation of the spectra removes
the burden imposed by the slow decay of the transverse
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magnetization on the duration of a single dynamical trajectory.
Using the MD trajectories to estimate conditional transition
probabilities makes it possible to use many (tens or hundreds)
relatively short (tens of nanoseconds) simulations. Calculating
realistic ESR spectra in quantitative agreement with experiment
from atomistic MD simulations of a spin-labeled protein, is
therefore expected to become feasible in the near future. The
framework developed in this paper is being applied to the
dynamics of R1 at solvent-exposed sites in T4 Lysozyme,71 and
has culminated in excellent agreement with multifrequency ESR
experiments for the very first time.72
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Appendix 1

How To Impose Detailed Balance

When a TPM is estimated directly from the time series by using
eq 29, it can have negative or/and complex eigenvalues. The
presence of complex eigenvalues is a sign that P is not in
detailed balance with its left eigenvector π. A legitimate TPM,
in detailed balance with its equilibrium probability vector, can
be constructed from any symmetric matrix with non-negative
entries. Let S be such a matrix. Its row sums are

si ≡∑
j

Sij (A1)

Then,

Pij )
Sij

si
and πi )

si

∑
i

si

(A2)

are in detailed balance. This observation forms the basis of two
different strategies for imposing detailed balance on transition
matrices estimated from the data. In the first one, the available
MD trajectories are analyzed both forward and backward in time,
thus counting a forward jf i transition also as a backward jf
i transition. With this understanding, the forward-backward (T)
transition count matrix becomes

NTij
τ ) (Nij

τ +Nji
τ) ⁄ 2 (A3)

which is symmetric by construction. Therefore, the matrix P5(τ)
built from it by row normalization is automatically in detailed
balance with its equilibrium eigenvector π5. In the second
alternative,23 P(τ) is built from the forward counts only
according to eq 29. Then, its stationary eigenvector π is
calculated. Because the forward transition count matrix is not
necessarily symmetric, P(τ) and π need not be in detailed
balance. They are used to build the symmetric matrix

Sij ) (πiPij +πjPji) ⁄ 2 (A4)

from which new P5(τ) and π5, in detailed balance with each other,
are formed according to eq A2.

In each of these two ways, the information present in the
transition count matrix is utilized in a qualitatively different
fashion. For concreteness, let us consider a two-state Markov
model. Suppose that the simulated trajectories of the model
result in

Nτ ) (200 5
3 800 ) (A5)

for some lag time τ. This means that the total time spent in
each state is 200 and 800 steps. Also, the trajectories contain
five 1 f 2 and three 2 f 1 transitions. By following the first
procedure, we build the forward-backward count matrix

NTτ ) (200 4
4 800 ) (A6)

for which P512 ≈ 4/200 and P521 ≈ 4/800. The equilibrium
probabilities for the two states follow from the detailed balance
condition, eq 30. For their ratio, one finds

πT1 ⁄ πT2 )PT21 ⁄ PT12 ≈ 4 ⁄ 800
4 ⁄ 200

) 1 ⁄ 4 (A7)

In the second case, P512 ≈ 5/200 and P521 ≈ 3/800. The detailed
balance condition gives

πT1 ⁄ πT2 )PT21 ⁄ PT12 ≈ 3 ⁄ 800
5 ⁄ 200

) 3 ⁄ 20 (A8)

which agrees with what is obtained from constructing

S) (120 3
3 800 ) (A9)

by using eq A4 and calculating πb from eq A2. Clearly, the two
ways of imposing detailed balance lead to drastically different
equilibrium probabilities.

More careful examination of the two procedures reveals the
source of the difference. Symmetrizing Nτ according to eq A3
makes sure that the number of i f j and j f i transitions are
the same, without changing the diagonal terms. Because the
number of transitions typically is much smaller than the numbers
along the diagonal, such symmetrization basically implies that
the ratio of the equilibrium probabilities will be dominated by
the ratio of the diagonal elements, as was the case in eq A7.
The ratio of the diagonal terms simply reflects the frequencies
of observing the chain in each of its states over all of the
available trajectories. For nonergodic trajectories, these frequen-
cies do not correspond to the thermodynamic Boltzmann weights
of the states but are dominated by the state in which the
trajectories were started. When only forward transitions are
counted, the number of i f j and j f i transitions are not
necessarily equal. In this case, the ratio of the equilibrium
probabilities implied by the TPM depends not only on the ratio
of the diagonal terms but also on the ratio of the observed
transitions, as seen in eq A8. From this example, it becomes
clear that the forward-backward counting scheme of eq A3
presupposes that the available trajectories are ergodic and visit
the states of the chain according to the equilibrium probabilities.
When only relatively short trajectories are available, which is
the situation that we deal with, the forward-only counting
scheme uses the scarce but valuable information present in the
off diagonal elements of Nτ together with the total times spent
in each state (the diagonal elements) to estimate a more
meaningful equilibrium probability vector.

Markov Models for ESR Spectra Simulation J. Phys. Chem. B, Vol. 112, No. 35, 2008 11025



Appendix 2

Details about the HMM Estimation

Let

Ot:s )Ot, Ot+1, ..., Os-1,Os, 1e t < se T (A10)

denote the sequence of observations from time step t to time
step s and O ) O1: T indicate the entire sequence of observations.
The forward variables

Ri(t))P{Xt)i,O1:t|θ} (A11)

correspond to the conditional probability of observing the
sequence of observations up to time t and being in state i at
time t, given the parameters of the model. They can be calculated
efficiently as

Ri(1)) pibi(O1)

Rj(t)) ∑
i)1

N
Ri(t- 1)Pijbj(Ot), 1 < te T (A12)

The backward variables


i(t))P{Ot+1:T|Xt ) i, θ} (A13)

are the conditional probabilities of observing the sequence Ot+1:T

given the parameters of the model and that the (hidden) state at
time t is i. They can also be calculated recursively as


i(T)) 1


i(t))∑
j)1

N

Pijbj(Ot+1)
j(t+ 1), T > tg 1 (A14)

Once the forward and backward variables are known, it is easy
to calculate the conditional probability of observing the whole
sequence of observations O, given the parameters of the model:

P{O|θ})∑
i)1

N

Ri(T))∑
i)1

N

Ri(t)
i(t) (A15)

The last equality holds for any 1 e t e T. Also, γi(t) and �ij(t),
defined in eqs 50 and 48, respectively, can be calculated as

γi(t))
Ri(t)
i(t)

P{O|θ}
(A16)

and

�ij(t))
Ri(t)Pijbj(Ot+1)
j(t+ 1)

P{O|θ}
(A17)

Once the parameters of the model are optimized, one can
find the best state sequence X1X2...XT corresponding to the
observation sequence O. This is achieved by using the following
three-step procedure known as the Viterbi algorithm:42

{ δi(1)) pibi(O1)
ψi(1)) 0 (A18a)

{ δj(t))maxi{δi(t- 1)Pijbj(Ot)}
ψj(t)) argmaxi{δj(t- 1)Pij}, 1 < te T (A18b)

{ XT ) argmaxi{δi(T)}
Xt )ψXt+1

(t+ 1), T > tg 1 (A18c)
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