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ABSTRACT: Restricted motions in proteins (e.g., N−H bond
dynamics) are studied effectively with NMR. By analogy with
restricted motions in liquid crystals (LC), the local ordering has
in the past been primarily represented by potentials comprising
the L = 2, |K| = 0, 2 spherical harmonics. However, probes
dissolved in LCs experience nonpolar ordering, often referred to
as alignment, while protein-anchored probes experience polar
ordering, often referred to as orientation. In this study we
investigate the role of local (site) symmetry in the context of the
polarity of the local ordering. We find that potentials comprising
the L = 1, |K| = 0, 1 spherical harmonics represent adequately
polar ordering. It is useful to characterize potential symmetry in
terms of the irreducible representations of D2h point group,
which is already implicit in the definition of the rotational
diffusion tensor. Thus, the relevant rhombic L = 1 potentials have B1u and B3u symmetry whereas the relevant rhombic L = 2
potentials have Ag symmetry. A comprehensive scheme where local potentials and corresponding probability density functions
(PDFs) are represented in Cartesian and spherical coordinates clarifies how they are affected by polar and nonpolar ordering.
The Cartesian coordinates are chosen so that the principal axis of polar axial PDF is pointing along the z-axis, whereas the
principal axis of the nonpolar axial PDF is pointing along ±z. Two-term axial potentials with 1 ≤ L ≤ 3 exhibit substantial
diversity; they are expected to be useful in NMR-relaxation-data-fitting. It is shown how potential coefficients are reflected in the
experimental order parameters. The comprehensive scheme representing local potentials and PDFs is exemplified for the L = 2
case using experimental data from 15N-labeled plexin-B1 and thioredoxin, 2H-, and 13C-labeled benzenehexa-n-alkanoates, and
nitroxide-labeled T4 lysozyme. Future prospects for improved ordering analysis based on combined atomistic and mesoscopic
approaches are delineated.

1. INTRODUCTION

Molecules may be characterized by 3D structures, and
dynamics which are often associated with motional rates. We
consider, for example, a rigid molecule reorienting in an
isotropic medium.1−3 Such motion may be represented by a 3D
diffusion tensor,3 whose principal values are a function of
molecular shape. However, when the molecule is reorienting in
an anisotropic medium, or parts of a flexible molecule are
reorienting in anisotropic local surroundings, the description of
the motion also has to include proper representation of the
local spatial constraints.4−7 The latter can be expressed in terms
of orienting potentials,4−7 which represent the local structures.
Orienting potentials are associated with the preferential
arrangement of the molecule in the surrounding local space,
and thus reflect the local geometric arrangement. In other
words, structure-related and geometry-related kinetic features
can be elucidated by studying motions that take place in
anisotropic environments.4−19

A class of restricted motions of particular interest is
intramolecular reorientation processes of segments of proteins

(more generally, biomacromolecules).10−19 Examples include
small moieties such as amide or methyl groups13−19 that
perform localized motions, as well as large loops or domains
that perform collective motions.17−19 These processes are
associated with the internal mobility/flexibility of the protein.
In this study we focus on structure-related and geometry-
related aspects of the local ordering in proteins in terms of their
respective symmetries.
Restricted motions are often treated within the scope of

atomistic molecular dynamics (MD) simulations. Usually this is
done by taking into account sets of relatively slow
coordinates.20−25 Using effective sampling and appropriate
analysis of MD trajectories, probability density functions
(PDFs) yielding approximate potentials of mean force
(PMFs) have been determined (e.g., ref 25). To our
knowledge, the more mesoscopic (collective) local features,
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such as explicit forms of local anisotropic potentials and local
molecular geometry associated with these potentials, as well as
effective local diffusion tensors, have not been provided by MD
methods.
On the other hand, mesoscopic models for treating restricted

motions are convenient for interpreting magnetic resonance
experiments.4−19 They encompass local order parameter and
PMFs in a straightforward manner.6,7 These stochastic
approaches utilize a tensorial representation of diffusion and
ordering. Using NMR or ESR spectroscopy as reporters of the
structural dynamics, one is able to determine the structure-
related principal values and the geometry-related orientations of
the local ordering and diffusion tensors.
The orienting potential, U(Ω), is typically given in

mesoscopic stochastic models by the expansion in the Wigner
rotation matrix elements, DMK

L (Ω)
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with u(Ω) and the coefficients cMK
L being dimensionless. The

Euler angles, Ω, describe the molecular orientation relative to
the director frame associated with the orienting surroundings.
This general expansion needs to be truncated at some value L =
Lmax before attempting to reproduce experimental data, thus
leaving just a few leading terms. However, the “quantum
numbers” M and K are just restricted to |M| ≤ L and |K| ≤ L,
which still yields too many cMK

L
fitting parameters for the

typically limited experimental data available. We thus need to
make sensible choices whereby a sufficiently reduced number of
parameters are used in the fitting process.
Let us first take a hint from the symmetry of the rotational

diffusion tensor, which is a second rank symmetric tensor
consistent with D2h point group symmetry. That is, however
complex the shape of a molecule, we are approximating its
diffusive properties in terms of D2h point group symmetry.
Thus, it seems reasonable that we impose similar effective point
group symmetry on the orientational potential of eq 1. Let us
examine what has been done in this context in the past.
Stochastic models for studying restricted motions of rigid

molecules dissolved in liquid crystalline (LC) media by ESR
and NMR have been developed in early work.4−6 The usual
assumption is the existence of a uniaxial LC director.
Consequently the “quantum number”, M, in eq 1 is zero,
yielding4−7
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In this case only the two polar angles, θ and φ, are needed to
describe the molecular orientation relative to the director
frame. This is a typical simplification, in that it requires just the
D0K

L (0, θ, φ) functions, which are proportional to the
corresponding spherical harmonics, YLK(θ, φ) (e.g., see ref 26).
In a simple sense, the ordering of a large solute probe

reorienting in a macroscopically aligned liquid crystal (LC)
solvent which exhibits inversion symmetry with respect to the
origin of the director frame may be taken as reflecting this
inversion symmetry. Such a scenario represents “nonpolar”
ordering. Potentials describing nonpolar ordering comprise
only the even-L terms of eq 2. This may be thought of as
preferential arrangement in the space of double-headed-arrows,
a setup often referred to as alignment.27,28 The leading terms

here are the functions D0K
2 with |K| = 0, 1, 2 (more generally, L

= 2, 4, 6, ···).
Envision a smaller probe residing in one leaflet of a lipid

bilayer. The local environment is most certainly polar, requiring
odd-L terms to be retained in eq 2. A similar requirement
would apply to a probe dissolved in a thermotropic liquid
crystal formed of polar molecules (unless the probe is much
larger than the liquid crystal molecule). One may think of polar
ordering as preferential arrangement in the space of single-
headed arrows, which is often referred to as orientation.27,28

Now consider a probe reorienting in the anisotropic internal
space of a protein while anchored at it. The fact that the probe
is bonded to the protein implies a single-headed-arrow-type,
i.e., polar, ordering. We represent this scenario by taking the
local director to be uniaxial and polar. In this case eq 2, with
odd-L terms retained, should be used. The leading terms here
are D0K

1 with |K| = 0, 1 (more generally, L = 1, 3, 5,···).
Comparison of the polar and nonpolar scenarios then

clarifies the distinction between orientation (visualized as a
vector) and alignment (visualized as a symmetric tensor), as we
have defined them above. The respective potentials may then
be classified in terms of the irreducible representations of the
D2h point group.
The comparison between the polar and nonpolar cases and

their admixture is carried out within the scope of a
comprehensive scheme which includes potential shapes, and
forms of the associated PDFs, represented in both Cartesian
coordinate and spherical coordinate systems. For axial probes
(K = 0), the terms with L = 3 and L = 4 are also considered.
Unlike the LC director which is fixed in space (although

fluctuations do occur), a local director such as prevailing in
internally mobile proteins is itself tumbling in solution, being
defined in terms of the protein axes. This represents a two-body
(protein and probe) mesoscopic coupled-rotator problem.
Freed et al. solved this problem within the scope of the slowly
relaxing local structure (SRLS) approach.8 SRLS, and its limit
where the protein motion is frozen, the microscopic-order-
macroscopic-disorder (MOMD) approach,29 have been applied
extensively within the scope of ESR spectroscopy.10−12

Applications to model and biological membranes, complex
fluids, nitroxide-labeled proteins, and DNA fragments, and so
forth, have been reported.30,31 We have also applied SRLS
extensively to NMR relaxation in proteins dissolved in aqueous
solution.13−19 Recently we have applied MOMD to the analysis
of 2H NMR lineshapes from polycrystalline proteins experienc-
ing internal mobility.32,33 All of these approaches use potentials
expanded in the basis set of the D0K

L (0, θ, φ) functions. Thus,
the ordering-related analysis in this work is relevant to SRLS,
MOMD, and any other stochastic model for analyzing NMR
and ESR lineshapes and/or relaxation parameters in proteins
utilizing the D0K

L (0, θ, φ) functions (i.e., the spherical
harmonics) as basis sets for the expansion of the local potential.
We also describe ties to atomistic MD methods, as described
below.
In previous SRLS-based and MOMD-based studies the

potential typically included the leading even-L (L = 2)
terms.9,10,14−19,29,32,33 In a few cases the L = 4, K = 0, 2
terms were also included in the analysis.9 An axial potential
given by the L = 1, K = 0 term has been considered by
Polimeno and Freed in ref 8. It was found that using potentials
given by the L = 1, K = 0 term or the L = 2, K = 0 term yields
results for motional correlation functions that are similar in
nature (although the potential coefficients determined have
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different magnitudes) when, as in ESR or NMR, the effect of
the motion consists of averaging second-rank magnetic
tensors.8 In this study we also take into account the leading
axial and rhombic odd-L (L = 1, K = 0, 1) terms; this
constitutes a substantial enhancement (currently within the
scope of designing the local potential) of the SRLS and
MOMD potentials.
Given that order parameters rather than potential coefficients

are typically determined experimentally, we show how the latter
are reflected by the former. The comprehensive potential/
PDF/order parameter description delineated above is exempli-
fied for L = 2 potentials using previously determined order
parameters or potential coefficients from 15N-labeled plexin-B1
in solution,25,34 T4 lysozyme in solution,35 polycrystalline
thioredoxin,36 and discotic and solid phases of benzenehexa-n-
alkanoates (with n = 6 and 7).37

Our results are expected to be relevant to a broad range of
experiments. Liquid-crystal phases of phospholipids require
odd-L potentials for proper analysis of 31P spin relaxation.38

Rhombic polar order parameters have been invoked in the
context of twist-bend nematic phases.39 However, they have
been associated with the conical angle and the pitch of the
medium, rather than potentials formed of odd-L terms of eq 2.
Potentials given by the L = 1, K = 0 term have been used to
analyze dielectric relaxation of ferroelectric systems,40 to treat
electric-field-implied polar order,41 and interpret the orientation
of asymmetric paramagnetic molecules in strong magnetic
fields. To our knowledge, applications where the L = 1, |K| = 1
terms, or both L = 1 and L = 2 terms, were also included in the
expression for the potential, as required for nonaxial cases, have
not been reported.

2. THEORETICAL BACKGROUND
As pointed out above, we take the local director to be uniaxial.
Next we have to ensure that the potential is real; this requires
that cK

L = (−)K(c−KL )* (ref 9). The potential which is real is
given by

∑ ∑θ φ θ θ φ
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where j = 1 for odd-L and j = 0 for even-L, and cK±
L ≡ cK

L ± c−K
L .

Let us focus on the L = 2 potential and let us assume for
convenience, as is usually done, that the local ordering tensor
defined in terms of this potential is diagonal in the same
molecular frame as the diffusion tensor. The coefficients c0

2, c2±
2

≡ c2
2 ± c−2

2 are themselves irreducible tensor components. The
Cartesian tensor with components cij

2 = cji
2 is diagonal (i.e.,

Tr(cii
2) = 0) in the same frame as the local ordering tensor,42,43

with complete specification given by c0
2 and c2+

2 (for simplicity,
the plus sign in c2+

2 will be omitted below). The corresponding
D00

2 and (D02
2 + D0−2

2 ) terms in eq 3 have symmetry Ag in D2h
point group.
Nest we focus on the L = 1 potential. Three real potentials,

given by the spherical harmonic functions Y10, −−Y Y( )1
2 1 1 11

and +−i Y Y( )1
2 1 1 11 , may be defined. The respective

symmetries in the D2h point group are B1u, B3u, and B2u.
These functions are similar in character to the atomic orbitals
pz, px, and py, respectively.

26 When the primary polar axis is

taken as the z-axis of the diffusion tensor, only the term Y10
survives in eq 3. When Y10 is linearly combined with

−−Y Y( )1
2 1 1 11 ( +−i Y Y( )1

2 1 1 11 ) with positive coefficients,

the primary polar axis is tilted in the zx (zy) plane (negative
coefficients change the sign/signs of the x, y, and/or z
coordinates). We choose Y10 linearly combined with

−−Y Y( )1
2 1 1 11 as polar orientational potential (i.e., we assume

that in the rhombic case the principal polar axis is tilted in the
|zx| plane rather than the |zy| plane). The plus sign in the

designation of the coefficient c1+
1 of −−Y Y( )1

2 1 1 11 will be

omitted below.
The relevant order parameters are thus:

θ= ⟨ ⟩ =S D L(0, , 0) 1, 2, 3, 4L L
0 00 (4a)

θ φ θ φ= ⟨ − ⟩−S D D( (0, , ) (0, , ))1
1

0 1
1

01
1

(4b)
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The normalized probability density function is given by
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∫
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The part of the Character Table of the D2h point group
relevant to this study is given in Table S1 of the Supporting
Information.26 It depicts the symmetry operations that
characterize the various potential functions considered.
As pointed out above, for probes with axial symmetry the

functions D00
1 (0, θ, 0), D00

2 (0, θ, 0), D00
3 (0, θ, 0), and

D00
4 (0, θ, 0), proportional to Y10, Y20, Y30, Y40, respectively,

are also considered; they are given in Table S2 of the
Supporting Information. The odd-L functions have B1u
symmetry whereas the even-L functions have Ag symmetry
(Tables S1 and S2 of the Supporting Information).

The real spherical harmonics Y10, −−Y Y( )1
2 1 1 11 ,

+−i Y Y( )1
2 1 1 11 , Y20 and +−Y Y( )1

2 2 2 22 are given in Table

S3 of the Supporting Information. Note that Y20 and

+−Y Y( )1
2 2 2 22 are similar in character to the atomic orbitals

dz2 and dx2−y2, respectively.
26 These symmetries are also helpful

in determining the nonzero matrix elements of the potential
terms in the Stochastic Liouville Equation (SLE) developed
within the scope of standard theoretical methods.
The polar and nonpolar scenarios are compared in the

following manner. 3D potential surfaces are generated as a
function of the spherical coordinates, θ and φ. In this
representation the value of the potential, u(θ, φ), is depicted
on the z-axis, and color-coding is used to illustrate variations.
3D surfaces of u are also shown in Cartesian coordinates, x =
sin θ cos φ |u|, y = sin θ sin φ |u| and z = cos θ |u|. In this
representation the value of the potential is given by the distance
from the origin of the coordinate frame to any point on the 3D
surface. Positive and negative values are colored red and blue,
respectively, by analogy with positive and negative phases of the
p-orbitals for the L = 1 case, and the dz2 and dx2−y2 orbitals for
the L = 2 case. Note, however, that “blue” potential values are
populated preferentially. The utility of the Cartesian
representation of the potential will be realized in cases of
compounded potential forms.
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P D F s a r e s h o w n i n b o t h C a r t e s i a n 4 4

(x = sin θ cos φ exp(−u), y = sin θ sin φ exp(−u), and
z = cos θ exp(−u)) and spherical coordinates (θ and φ).
Because of the PDF exponential functional dependence on u,
large positive potential values hardly contribute to the visual
display of the PDF. It is useful to examine simultaneously the
Cartesian representations of corresponding potential and PDF
pairs. The information provided by the four representations is
thus complementary.

3. RESULTS AND DISCUSSION
3.1. Axial Ordering (K = 0). Order Parameters. Let us

consider axially symmetric molecules described by potentials
comprising a single term. The L = 1 and K = 0 potential is u(θ)
= −c01 cos θ and the corresponding order parameter, S0

1, is given
by eq 4a. The L = 2 and K = 0 potential is u(θ) =
−c02[3/2 cos2θ − 1/2] and the order parameter, S0

2, is also given
by eq 4a.
Thus, in these simple cases the order parameter, S0

L, is
obtained from the corresponding potential coefficient, c0

L, in a
straightforward manner by solving eq 4a. However, in many
cases order parameters rather than potential coefficients are
obtained experimentally.36,37 It is of interest to derive c0

L from
S0
L, given that potential forms are substantially more sensitive to
details of the local ordering than order parameters (see below).
This can be accomplished by precalculating graphs of S0

L as a
function of c0

L, and using them subsequently to derive c0
L from

known S0
L values. Figure 1 shows such graphs for L = 1, 2, 3, 4,

with c0
L ranging from −30 to 30. The trigonometric expressions

underlying the potentials for L = 1−4 are given in Table S2 of
the Supporting Information.
For any given positive value of c0

L the extent of ordering
increases along the series S0

4, S0
3, S0

2, and S0
1, with S0

1 ≅ S0
2

somewhat larger than S0
3 ≅ S0

4. All of the order parameters
converge to 1 for large and positive values of c0

L. For large and
negative values of c0

L the order parameters S0
1 and S0

3 converge to
−1, S02 converges to −1/2, and S0

4 converges to −3/7. For any
given c0

L < 0 the extent of ordering increases along the series
|S0
4|, |S0

2|, |S0
3|, and |S0

1|. In the region −15 ≤ c0
L ≤ 0 all four order

parameters differ. For c0
L < 15 (very strong perpendicular

ordering), all four order parameters converge to their respective
lower limits.
Figure 1 is useful in cases where one seeks ascribing

appropriate single-term axial potentials to specific systems.
Potentials. The potential forms corresponding to L = 1, 2, 3

are shown in Figure 2A−C for c0
L = 10. Interestingly, the

potential with L = 3 and K = 0 exhibits two minima: one for θ =

0, and the other for θ = − −( )cos 1 1
5

(≅116.6°) (Figure 2C).

Figure 2D−F shows examples of potentials comprising the L
= 1 and L = 2 (part D), L = 1 and L = 3 (part E), and L = 1, L =
2, and L = 3 terms (part F) spherical harmonics. All of the
coefficients are equal to 10, representing strong local
ordering.13−19 Figure 2 indicates that even within the scope
of axial symmetry diverse potential forms can be devised,
although the corresponding order parameters are quite similar
(Figure 1).
Let us focus on case E, where the potential is given by the L

= 1 and L = 3 spherical harmonics. The angle where the
minimum with θ ≠ 0 occurs (call it θmin) is given by the ratio R
≡ c0

1/c0
3 according to the expression

θ = +
−

− ⎡
⎣⎢

⎤
⎦⎥

R1
2

cos
4 9

15min
1

(6)

Thus, one can control θmin by varying the ratio R. The
requirement that the absolute value of the cosine function be
smaller than, or equal to, 1, implies that −6 ≤ R ≤ 1.5;
consequently 0° ≤ θmin ≤ 60°. We found empirically that the
range of 60° < θmin ≤ 70° (70° < θmin ≤ 90°) can be accessed
by combining the axial L = 1, L = 2, and L = 3 (L = 2 and L =
3) spherical harmonics.
Given the diversity in their forms, axial potentials of the kind

examined above are expected to be useful for analyzing (with
SRLS or other stochastic models) NMR relaxation in proteins.
We found previously that often one has to account for
structural asymmetry in order to obtain physically relevant
result.14−16 This can be accomplished in a straightforward
manner by allowing for rhombic potentials.14−16 However, the
respective data-fitting calculations are demanding. The
computation will become substantially more effective if
structural asymmetry is accounted for within the scope of
axial potentials by allowing for separate local ordering and local
diffusion frames.45−47 This strategy, although less straightfor-
ward than allowing for rhombic potentials, was found to be
appropriate. In refs 45−47 the potential comprises a single term
with L = 2, K = 0. The axial potentials considered above
comprise at least two terms. Using them in data-fitting might be
suitable, obviating the need to separate the local ordering and
local diffusion frames. Such a scenario is both effective and
economical.

PDFs. To gain further insight into multiterm axial potentials,
u(θ), we examine this scenario within the scope of the
associated PDFs given in Cartesian coordinates. The underlying
potentials are specified by the coefficients, c0

L, shown in rows
A−F of Table 1. All of these potentials are strong.
Figure 3A shows the PDF corresponding to the strong

potential u(θ) = −10 cos θ. For small values of θ, which
dominate the PDF one may approximate u(θ) by its Taylor
expansion around θ = 0. This yields u(θ) ≅ −10 × (1 − θ2/2),
which has been used in the past to describe wobble-in-a-cone.48

Thus, Figure 3A may be considered as representing the wobble-
in-a-cone PDF. Figure 3B shows the PDF corresponding to the
potential given by c0

1 = 30 and c0
3 = −5.1. Based on its shape, it

Figure 1. Order parameters, S0
L, shown as a function of potential

coefficients, c0
L, for L = 1, 2, 3, 4 and K = 0, calculated according to eqs

3 and 4a−d. The respective functional forms are given in Table S2 of
the Supporting Information.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.6b00524
J. Phys. Chem. B 2016, 120, 2886−2898

2889

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.6b00524/suppl_file/jp6b00524_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.6b00524/suppl_file/jp6b00524_si_002.pdf
http://dx.doi.org/10.1021/acs.jpcb.6b00524


may be considered as representing a generalized version of the
wobble-in-a-cone PDF.
The PDFs shown in Figure 3C−E (corresponding to the

potentials C−E in Table 1) are cone-shaped, with various
vertex angles and thicknesses. The vertex angle is given by θmax,
which is the same as θmin of the corresponding potential. θmax is
approximately 21°, 57°, and 72° for the PDFs of Figure 3C,D,E,
respectively (Table 1). A simple model for describing internal
motions is Woessner’s model, where the probe is confined to
reside on the infinitely thin surface of a cone with variable
vertex angle.49 The potentials underlying the PDFs shown in
Figure 3C−E represent generalizations of Woessner’s model.
The PDF shown in Figure 3B corresponds to θmax ≅ 7°; one
may consider the underlying potential as representing a
generalization of either wobble-in-a-cone48 or Woessner’s
model.49

Finally, the PDF of Figure 3F may be considered a
generalization of ideal perpendicular ordering, where the
probe is confined to lie in the xy plane of the local director
frame.
As pointed out above, the entire range of 0 ≤ θ ≤ 90° can be

accessed with appropriate combinations of the L = 1−3, K = 0
axial spherical harmonics.
Orientation versus Alignment. Figure 4 shows results for

polar and nonpolar scenarios, with large positive potential

coefficients representing strong parallel ordering, and large
negative potential coefficients representing strong perpendicu-
lar ordering. The polar case with strong parallel ordering is
shown in Figure 4A. It is represented by the potential u(θ) =
−10 cos θ. Part a shows the Cartesian representation of u

Figure 2. Axial potentials, u(θ), shown as a function of θ (we show 3D rather than 2D plots for easy comparison with rhombic potentials, u(θ,φ)).
The various potentials are defined by the coefficients c0

1 = 10 (A), c0
2 = 10 (B), c0

3 = 10 (C), c0
1 = 10 and c0

2 = 10 (D), c0
1 = 10 and c0

3 = 10 (E), and c0
1 =

10, c0
2 = 10, and c0

3 = 10 (F), and the functional forms given in Table S2 of the Supporting Information.

Table 1. Potential Coefficients, c0
L, Associated with the PDFs

of Figures 3A−F, and Angle θmax
a

L

1 2 3

Figure c0
1 c0

2 c0
3 θmax

3A 10.0 0.0 0.0 0.0
3B 30.0 0.0 −5.1 7.2
3C 30.0 0.0 −6.0 21.4
3D 7.0 0.0 −10.0 57.2
3E 0.0 −9.0 −10.0 72.4
3F 0.0 −10.0 0.0 90.0

aθmax: Angle between the z-axis of the director frame and the line
connecting the origin of this frame with the maximum PDF value.

Figure 3. Axial probability densities, exp(−u), given in Cartesian
coordinates (x = sin θ cos φ exp(−u), y = sin θ sin φ exp(−u), z = cos
θ exp(−u)). The potentials, u, are defined by the coefficients c0

1 = 10
(A), c0

1 = 30 and c0
3 = −5.1 (B), c01 = 30 and c0

3 = −6.0 (C), c01 = 7 and c0
3

= −10.0 (D), c02 = −9.0 and c03 = −10.0 (E) and c02 = −10.0 (F), and the
functional forms given in Table S2 of the Supporting Information.
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which (as pointed out above) resembles the atomic orbital pz.
Part c shows the spherical-coordinate-representation of u with
minimum at θ = 0 maximum at θ = π. The PDF is shown in
Cartesian coordinates in part b. It is directed along +z, as
implied by c0

1 being positive. In addition, it is lobe-shaped as
compared to the sphere-shaped potential of Figure 4Aa,
because (as pointed out above) for large c0

1 > 0 potential
values that are positive virtually do not contribute to exp(−u),
while they contribute to |u|. The spherical-coordinate-
representation of the PDF appears in part d; it shows the
function values on the z-axis, and illustrates their variations.
The nonpolar case with strong parallel ordering is shown in

Figure 4B . I t i s represented by the potent i a l

θ θ= − −⎡⎣ ⎤⎦u( ) 10 cos3
2

2 1
2
. Part a shows its Cartesian-

coordinate-representation which resembles the atomic orbital
dz2.

26 Part c shows the spherical-coordinate-representation of
the potential with minima at θ = 0 and π, and maximum at θ =
π/2. The PDF is shown in Cartesian coordinates in part b. It
comprises two lobes disposed symmetrically along +z and −z.

They are thinner than the PDF lobe corresponding to L = 1
(Figure 4Ab), indicating reduced spatial distribution, as implied
by the functional form of nonpolar Y20 as compared to polar
Y10. The spherical-coordinate-representation of the PDF
appears in Figure 4Bd, illustrating the variations in PDF
magnitude; comparison with Figure 4Ad shows larger spatial
distribution in the L = 1 case.
The distinction between orientation, implied by L = 1 with

symmetry B1u, and alignment, implied by L = 2 with symmetry
Ag, is illustrated with particular clarity by the Cartesian PDFs
(Figure 4Ab and Bb): for L = 1 one has directionality (only
positive z-values are featured) whereas for L = 2 there is no
directionality (both positive and negative z-values are featured).
Figure 4C shows the results obtained for L = 1 and c0

1 = −10.
Rendering c0

1 negative implies conversion of z into −z for both
the Cartesian and the spherical coordinate representations.
Figure 4D shows the results obtained for L = 2 and c0

2 = −10.
Rendering c0

2 negative implies conversion of z into −z for the
spherical coordinate representations. For the Cartesian

Figure 4. 4-panel representations of the axial scenarios L = 1, K = 0 and c0
1 = 10 (part A, panels a−d); L = 2, K = 0 and c0

2 = 10 (part B, panels a−d);
L = 1, K = 0 and c0

1 = −10 (part C, panels a−d); and L = 2, K = 0 and c0
2 = −10 (part D, panels a−d). The potentials, u, are represented in Cartesian

coordinates in the panels denoted a, and in spherical coordinates in the panels denoted c. The probability density functions, exp(−u), are
represented in Cartesian coordinates in the panels denoted b, and in spherical coordinates in the panels denoted d.
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coordinate representations this change consists of u being
converted into −u.
3.2. Rhombic Ordering. Order Parameters. Axial

orienting potentials, u(θ) = −c0LD00
L (0, θ, 0), are defined by a

single potential coefficient, c0
L. The derivation of c0

L from S0
L,

based on precalculated profiles (Figure 1), is unambiguous. The

rhombic orienting potentials and the two-term axial orienting
potentials considered in this study are defined by two potential
coefficients, from which two order parameters are derived. It is
not obvious that two order parameters, e.g., S0

2 and S2
2,

correspond to a unique potential form, i.e., a unique pair of
potential coefficients c0

2 and c2
2.

Figure 5. Contour plots of the surfaces S0
1(c0

1, c1
1) and S1

1(c0
1, c1

1) (part A), S0
2(c0

2, c2
2) and S2

2(c0
2, c2

2) (part B), and S0
1(c0

1, c0
3) and S0

3(c0
1, c0

3) (part C), as a
function of the respective potential coefficients. The designations a−d represent the extreme values of the respective order parameters, for potential
coefficients varied in the (−20, 20) range.

Figure 6. 4-panel representations of the rhombic scenarios L = 1, K = 0, 1 and c0
1 = c1

1= 10 (part A, panels a−d); L = 2, K = 0, 2 and c0
2 = c2

2 = 10 (part
B, panels a−d); L = 1, K = 0, 1 and c0

1 = c1
1 = −10 (part C, panels a−d); and L = 2, K = 0, 2 and c0

2 = c2
2 = −10 (part D, panels a−d). The real spherical

harmonics forming the respective potentials are given in Table S3 of the Supporting Information.
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We examine this matter below for the following combina-
tions: c0

1 and c1
1 derived from S0

1 and S1
1; c0

2 and c2
2 derived from S0

2

and S2
2; and c0

1 and c0
3 derived from S0

1 and S0
3. The coefficients c0

1

and c1
1 have been varied from −20 to 20 in steps of 0.5. For each

point with coordinates (c0
1, c1

1) we calculated S0
1 and S1

1 according
to eq 3 with j = 1, and eqs 4a, 4b, and 5. This yielded the 3D
surfaces S0

1(c0
1, c1

1) and S1
1(c0

1, c1
1). Figure 5A displays the contours

of these surfaces in the c0
1/c1

1 plane. This procedure was also
carried out for c0

2 and c2
2 (using eq 3 with j = 0, and eqs 4a, 4c,

and 5) to obtain the surfaces S0
2(c0

2, c2
2) and S2

2(c0
2, c2

2) with
contours shown in Figure 5B. Finally, c0

1 and c0
3 yielded the

surfaces S0
1(c0

1, c0
3) and S0

3(c0
1, c0

3), with contours shown in Figure
5C.
It can be seen that if two “isolines” intersect they will do so

only once. Thus, if a solution exists, it is unique. The “isolines”
are very dense for c0

1 and c1
1 smaller than approximately 5 in

absolute value. This implies c0
1 and c1

1 being determined with
good certainty in this parameter range. The isolines become
much sparser for c0

1 and c1
1 of approximately |10|, and very sparse

for c0
1 and c1

1 larger than |10|. This implies c0
1 and c1

1 being
determined with reduced certainty when their absolute values
are large. Note that Figure 5A is symmetric with respect to both
the horizontal and vertical lines through the point (c0

1, c1
1) =

(0, 0). The designations a−d refer to the extreme values of |S0
1|

and |S1
1| in the (−20, 20) parameter range for c0

1 and c1
1. The

extreme limits of S0
1 are given in section 3.1; the extreme limit

of |S1
1| is √2.

Figure 5B shows the “isolines” of S0
2 and S2

2 as a function of c0
2

and c2
2. The parameter range where potential coefficients can be

determined with good certainty include relatively small values
of |c0

2| and |c2
2|, as in the L = 1 case. In addition, it also includes

large values of |c0
2| and |c2

2|, provided they are similar in
magnitude. Figure 5B is only symmetrical with respect to the
vertical line through the point (c0

2, c2
2) = (0, 0). The designations

a−d refer to the extreme values of |S0
2| and |S2

2| in the (−20, 20)
parameter range for c0

2 and c2
2. The extreme limits of S0

2 are given

in section 3.1; the extreme limit of |S2
2| is 3

2
Figure 5C shows “isolines” of S0

1 and S0
3 as a function of c0

1

and c0
3. Here the parameter ranges where potential coefficients

can be determined with good certainty include −5 ≤ c0
1 ≤ 5 and

−20 ≤ c0
3 ≤ 20. This figure is asymmetric. The designations

a−d refer to the extreme values of |S0
1| and |S0

3| in the −20, 20
parameter range for c0

1 and c0
3. The extreme limits of |S0

1| and |S0
3|

are given in section 3.1.
The information inherent in Figure 5 is important for

predicting the certainty of the results to be obtained from
scenarios with different symmetries.
Orientation vs Alignment. Figure 6 shows results for

rhombic polar and nonpolar scenarios represented by potential
coefficients c0

1 = c1
1 = 10 (part A) and c0

2 = c2
2 = 10 (part B). An

additional example, represented by polar-potential coefficients
c0
1 = 10, c1

1 = −10 (part C) and nonpolar-potential coefficients c02
= 10, c2

2 = −10 (part D), is provided.
Let us focus on Figure 6A, associated with the linear

combination of Y10 and −−Y Y( )1
2 1 1 11 with coefficients c0

1 = c1
1

= 10; the respective potential is given by u(θ, φ) = −10 cos θ −
10√2 sin θ cos φ. Figure 6B is associated with the linear

combination of Y20 and +−Y Y( )1
2 2 2 22 with coefficients c0

2 =

c 2
2 = 10; the respect ive potent ia l i s g iven by

θ φ θ θ φ= − − −( )u( , ) 10 cos 10 sin cos(2 )3
2

2 1
2

3
2

2 . T h e

4-panel representations illustrating these scenarios are shown
in Figures 6A and B, respectively.
The Cartesian L = 1 potential of Figure 6Aa has negative

values in the xyz quadrant and positive values in the
(−x)(−y)(−z) quadrant. Both this function and the Cartesian
PDF (Figure 6Ab) have the primary polar axis in the zx plane.
The spherical coordinate representation of the potential has
minimum, whereas the spherical coordinate representation of
the PDF has maximum, for θ = tan−1√2 ≅ 0.955 rad (≅54.7°)
and φ = 0 (Figures 6Ac and Ad).
The Cartesian L = 2 potential has negative values in a

relatively thin region centered at the zx plane (the coordinates
have both positive and negative values) with maximum |z|
exceeding maximum |x|, and positive values in lobe-shaped
regions along the y-axis (the coordinates have both positive and
negative values) (Figure 6Ba). The Cartesian PDF is aligned
preferentially along ±z and distributed in a relatively thin
regions centered at the zx plane (Figure 6Bb). The spherical
coordinate representation of the potential has minimum value
for θ = 0 and any φ, as well as θ = π and any φ; it has maximum
value for θ = φ = π/2; the spherical coordinate representation
of the PDF has reversed extrema (Figures 6Bc and Bd).
The difference between orientation and alignment is

demonstrated with particular clarity by the Cartesian
representation of the PDF (Figures 6Ab and Bb). Figure 6A
illustrates comprehensively a polar ordering scenario based on
one of the two lowest odd-L rhombic potentials. Figure 6B
illustrates comprehensively a nonpolar ordering scenario based
on the lowest even-L rhombic potential.
We examine now the rhombic ordering scenario represented

by the polar potential given by c0
1 = 10 and c1

1 = −10, shown in
Figure 6C. The Cartesian potential has negative values in the
(−x)yz quadrant and positive values in the x(−y)(−z)
quadrant (Figure 6Aa). Both this function and the Cartesian
PDF (Figure 6Cb) have the primary polar axis in the z(−x)
plane. Figure 6Ca can be obtained from Figure 6Aa, and Figure
6Cb from Figure 6Ab, by inversion with respect to the origin
followed by reflection with respect to the xy plane. The
spherical coordinate representations of the potential and the
PDF are shown in Figures 6Cc and Cd, respectively.
The rhombic ordering scenario represented by the nonpolar

potential given by c0
2 = 10 and c2

2 = −10 is shown in Figure 6D.
The Cartesian potential and PDF (Figures 6Da and Db) are
obtained from their counterparts in Figures 6Ba and Bb by a π/
2 clockwise rotation around z. The spherical coordinate
representations of the potential and the PDF are shown in
Figures 6Dc and Dd, respectively.
Figure S1 of the Supporting Information is analogous with

Figure 6 except that c0
1 = −10 and c1

1 = 10 in Figure S1A; c0
2 =

−10 and c22 = 10 in Figure S1B; c0
1 = −10 and c11 = −10 in Figure

S1C; c0
2 = −10 and c2

2 = −10 in Figure S1D.
Let us assume that a given protein site with largely known

site symmetry is subject to investigation. As shown above, well-
defined symmetry operations convert parts a−d of Figure 6A
(B) into the corresponding parts of Figures 6C, S1A and S1C
(6D, S1B and S1D). Thus, one can devise a potential form that
largely matches the known site symmetry. Further refinement
can then be carried out with analysis of NMR relaxation data.

3.3. Applications. To illustrate the generality of our
approach we select four essentially different examples. They
include 15N relaxation from a protein dissolved in aqueous
solution, 15N relaxation from a polycrystalline protein, ESR line
shape analysis from a nitroxide-labeled protein dissolved in
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aqueous solution, and 2H and 13C relaxation in one of the
phases of a medium-sized molecule exhibiting polymorphism in
the solid state.

15N Relaxation in Proteins in the Liquid State. We studied
previously with SRLS 15N spin relaxation of N−H bonds in
plexin-B1 in aqueous solution.25 The order parameters S0

2 and
S2
2 have been determined as the plateau values of time
correlation functions calculated from a 110 ns MD trajectory,
after eliminating the global motion. This is a commonly used
strategy, based on the assumption that large time scale
separation prevails between the global and local motions. Let
us denote these parameters as S0

2(MD) and S2
2(MD). The

potential coefficients c0
2 and c2

2 were obtained from S0
2(MD) and

S2
2(MD) by solving the set of nonlinear equations:25

− =S c c S( , ) (MD) 00
2

0
2

2
2

0
2

(7a)

− =S c c S( , ) (MD) 02
2

0
2

2
2

2
2

(7b)

Values of c0
2 = −3.56 and c2

2 = −3.47 were obtained in this
manner for the local potential of the N−H bond of Gln56. We
show the 4-panel representation for this residue (Figure 7A);
PDF contours instead of 3D surfaces are shown.
PDF contours we call “atomistic” have also been calculated in

ref 25 for Gln56 directly from the MD trajectory. Let us
compare them with the “mesoscopic” PDF contours associated
with the analytical potential with coefficients c0

2 = −3.56 and c2
2

= −3.47. Figure 8c shows the “atomistic” PDF contours;25

Figure 8d (which is the same as Figure 7Ad) shows the
“mesoscopic” PDF counterparts. Figure 8c is considerably more
asymmetric than Figure 8d. We show in Figure 7B the 4-panel
representation associated with the “enhanced mesoscopic”
potential given by c0

2 = −3.56, c22 = −3.47, c03 = 3.00, and c1
3 =

−5.00. The “enhanced mesoscopic” PDF contours (Figure
7Bd) are considerably more asymmetric than the “mesoscopic”
PDF contours (Figure 7Ad), and quite similar to the
“atomistic” PDF contours (Figure 8c).
Thus, one can improve mesoscopic PDF contours by

adjusting their forms so as to match the corresponding
atomistic PDF contours. This is accomplished by linearly

combining different spherical harmonics. The best-fit meso-
scopic potential underlying the best-fit mesoscopic PDF may be
considered a good approximation to the atomistic potential
implicit in the atomistic PDF. Enhanced mesoscopic potentials
obtained in this manner may be compared among sites,
providing new insights. Importantly, they may be used without
further adjustment in data-fitting schemes, reducing thereby the
number of parameters allowed to vary.
The following comments are in order. (1) One of the future

prospects of this work is to develop computational methods50

for extracting the best-fit mesoscopic PMF directly from the
MD-based PDF. In this process the form of the PMF will be
enhanced by adding spherical-harmonics-based terms system-
atically; error estimations on the potential coefficients will
emerge automatically. (2) In the context of protein dynamics
by NMR relaxation there are previous reports on MD-derived
PMFs used to interpret order parameters. For example, it was
shown that a parabolic PMF (given by − c0

2Y20 in the limit of
strong axial potential) applies to rapidly fluctuating N−H

Figure 7. 4-panel representation associated with the potential given by c0
2 = −3.56 and c2

2 = −3.47, obtained with SRLS analysis of 15N relaxation
from the N−H bond of Gln56 of plexin-B1 in solution25 (part A). 4-panel representation associated with the potential given by c0

2 = −3.56, c22 =
−3.47, c03 = 3.00, and c1

3 = −5.00 (part B).

Figure 8. PDF contour plots (in spherical coordinates, θ and φ) for
residue Gln56 of plexin-B1 calculated directly from the MD
trajectory25 (c). PDF contour plots for residue Gln56 of plexin-B1
corresponding to the potential with coefficients c0

2 = −3.56 and c2
2 =

−3.47, obtained with SRLS analysis of 15N relaxation25 (d). Part d is
the same as Figure 7Ad.
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bonds.51 However, this PMF would not apply to more general
cases, such as illustrated by Figure 8c. On the other hand, in our
approach the PMF may comprise even-L and/or odd-L
spherical harmonics of axial and/or rhombic symmetry; clearly,
this is a general approach.

15N Relaxation in Proteins in the Solid State. The authors
of ref 36 studied 15N spin relaxation in polycrystalline
thioredoxin. Assuming that the local motions are in the
extreme motional narrowing limit, the experimental powder
patterns have been interpreted in terms of effective partially
reduced rhombic 15N chemical shift anisotropy (CSA) tensors.
We calculated from the tensor components of Gly21 the
potential coefficients c0

2 = 1.71 and c2
2 = 4.21 using eqs 7a and

7b, and employed these values to generate the 4-panel
representation shown in Figure 9A.

It can be seen that the coefficients of the local potentials at
the N−H site of Gln56 of plexin-B1 in the liquid state (c0

2 =
3.56 and c2

2 = 3.47), and the N−H site of Gly21 of thioredoxin
in the solid state (c0

2 = 1.71 and c2
2 = 4.21), differ moderately in

their absolute values, substantially in the ratios c2
2/c0

2, and have
opposite signs. Thus, the main difference lies in the symmetry
of the potential.

Nitroxide Relaxation in T4L Lysozyme in Solution. In
Figure 9B we show the 4-panel representation for residue 72 of
T4 Lysozyme which has been mutated into cysteine and labeled
with a nitroxide.35 Liquid-state ESR lineshapes were analyzed
with SRLS. Two conformers have been detected at this site; we
show the results associated with conformer 2, for which a local
potential with c0

2 = 3.31 and c2
2 = −1.67 was determined at 25

°C.

Figure 9. 4-panel representation based on the potential given by c0
2 = 1.71 and c2

2 = 4.21, obtained from the order parameters of the N−H bond of
Gly21 of polycrystalline thioredoxin (part A). 4-panel representation based on the potential given by c0

2 = 3.31 and c2
2 = −1.67 obtained from SRLS-

based ESR line shape analysis of nitroxide-labeled T4 lysozyme at position 72, conformer 2 (part B).36

Figure 10. 4-panel representation associated with the potential given by c0
2 = 1.49 and c2

2 = 1.81 obtained from the order parameters of 2H-labeled β-
hydrogen of BHA7 in its discotic mesophase (part A). 4-panel representation associated with the potential given by c0

2 = 1.28 and c2
2 = 2.68, obtained

from the order parameters of 13C-labeled carbonyl of BHA6 in phase I (part B).
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This case illustrates yet another type of local potential with
magnitude similar to, but symmetry different from, the local
potentials at the N−H sites of Gln56 of plexin-B1 in solution
and Gly21 of thioredoxin in the solid state.
NMR Relaxation in Benzenehexa-n-alkanoates. Our last

example is related to restricted motion in the discotic
mesophase of benzenehexa-7-alkanoate, and in phase I of
benzenehexa-6-alkanoate. Having been determined to be in
their extreme motional narrowing limit, these motions give rise
to partially averaged rhombic powder spectra.37 We converted
the axial and rhombic components of these tensors into the
order parameters S0

2 and S2
2, calculated c0

2 and c2
2 using eqs 7a

and 7b,25 and generated the 4-panel representations shown in
Figure 10.
In part A we show results obtained for the potential with c0

2 =
1.49 and c2

2 = 1.81, associated with 2H relaxation from the β-
hydrogen of benzenehexa-7-alkanoate (BHA7) in its discotic
mesophase. In part B we show results obtained for the potential
with c0

2 = 1.28 and c2
2 = 2.68, associated with 13C relaxation from

the 13C-labeled carbonyl of benzenehexa-7-alkanoate (BHA7)
in phase I. Once again, we detect local potentials which differ
moderately in magnitude, but quite a bit in symmetry, from the
other local potentials discussed above.
Both Gln56 of plexin-B1 and Gly21 of thioredoxin are rather

flexible residues. The nitroxide of T4 lysozyme is attached to
the protein through a long flexible tether. The side-chains of
the benzenehexa-n-alkanoates, which have been labeled with 2H
or 13C, are flexible moieties. In accordance, our examples are
associated with medium-strength local potentials. N−H sites in
proteins residing in well-structured regions of the polypeptide
were found to be associated with strong local potentials.14−16

On the other hand, side-chain methyl sites in proteins were
found to be associated with weak local potentials.14−16

Although the strength of the local potentials in our examples
might not be typical of many protein N−H and methyl sites,
the diversity in symmetry is likely to be general in nature.
Further studies in this context are required.
We show in Table 2 the experimental order parameters S0

2

and S2
2 associated with the five examples considered, and the

corresponding potential coefficients. We also show the Saupe
order parameters Sxx, Syy, and Szz, related to S0

2 and S2
2 as

= + −S S S( 3/2 )/2xx 2
2

0
2

(8a)

= − +S S S( 3/2 )/2yy 2
2

0
2

(8b)

=S Szz 0
2

(8c)

Table 2, together with the 4-panel representations illustrated
in Figures 7, 9, and 10, constitute an insightful and

comprehensive description of the local spatial restrictions at
mobile sites of molecules, in particular, proteins.
Let us focus on the Cartesian potential and PDF

representations shown in Figures 7Aa, 9Aa,Ba, and 10Aa,Ba.
The potentials and PDFs shown in Figures 9Aa and 10Ba are
similar given that both coefficients are positive and the ratio
c2
2/c0

2 is comparable: 2.46 in Figure 9Aa and 2.09 in Figure 10Ba.
The potential in Figure 10Aa also has positive coefficients but
c2
2/c0

2 = 1.21; hence its shape is different. This illustrates the
sensitivity of potential and PDF shapes to the relative
magnitudes of c0

2 and c2
2.

The signs of c0
2 and c2

2 are also important factors in
determining potential and PDF shapes. Let us focus on the
spherical coordinate representations of the potentials (figures
with the designation “c”). Figure 7Ac, where both coefficients
are negative, shows two potential wells. Figure 9Ac, where c0

2 is
positive and c2

2 is negative, shows two potential barriers. Figure
9Bc, where both coefficients are positive, shows three potential
barriers.

4. CONCLUSIONS

Potentials consisting of linear combinations of the L = 1

spherical harmonics Y10 and −−Y Y( )1
2 1 1 11 provide a useful

description of polar local ordering at mobile sites in proteins.
Comparison was made with corresponding nonpolar L = 2
potentials consisting of linear combinations of the spherical
harmonics Y20 and (Y22 + Y2−2).
The shapes of the L = 1 and L = 2 potentials and associated

PDFs differ substantially. The orientational polarity of L = 1
potentials is reflected particularly well by the Cartesian
coordinate representations of the PDF. Thus, for positive
(negative) potential coefficients the primary polar axis points in
a direction in the zx (z(−x)) plane determined by their
magnitudes. By contrast, the L = 2 PDFs have their main
symmetry axis pointing symmetrically along +z and −z.
A representation where potentials and probability density

functions are shown in both Cartesian and spherical coordinate
systems provides an extensive characterization of the local
ordering.
Substantial diversity was detected among potentials obtained

as linear combinations of L = 1, L = 2, and/or L = 3, and K = 0,
spherical harmonics. Being multiterm axial functions, these
potentials are expected to help in devising economical and
computationally effective data-fitting schemes for NMR
relaxation analysis in proteins.
The representation specified above was applied to potential

coefficients c0
2 and c2

2 from fits to several different experimental
systems. For the examples considered we found similarity in
potential strength and diversity in potential symmetry.

Table 2. Potential Coefficients and Corresponding Order Parameters in Irreducible Tensor Notation (S0
2 and S2

2) and in Saupe
Tensor Notation (Sxx, Syy, Szz) (eqs 3, 4, 5, and 8)a

ref no. c0
2 c2

2 S0
2 S2

2 Sxx Syy Szz

25 −3.56 −3.47 −0.416 −1.00 −0.404 0.820 −0.416
35 3.31 −1.67 0.576 −0.151 −0.380 −0.196 0.576
36 1.71 4.21 −0.161 0.821 0.583 −0.422 −0.161
37 1.49 1.81 0.171 0.409 0.165 −0.336 0.171
37 1.28 2.68 −0.020 0.632 0.397 −0.377 −0.020

aThe data shown are associated with N−H relaxation of Gln56 of plexin-B1;25 ESR relaxation of the nitroxide-labeled residue 72 of T4 lysozyme;35

N−H relaxation of Gly21 of thioredoxin;36 2H relaxation of the β-deuterium in the discotic mesophase of BHA6 (penultimate row); and 13C carbon
relaxation of the 13C-labeled carbonyl of BHA6 in phase I (last row).37
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A method whereby experimental mesoscopic PDFs can be
improved by using their atomistic counterparts as a benchmark
is proposed. The underlying best-fit mesoscopic potentials may
then be considered as good approximations to the atomistic
potentials implicit in the atomistic PDFs.
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