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ABSTRACT: Regularization is often utilized to elicit the desired physical results
from experimental data. The recent development of a denoising procedure yielding
about 2 orders of magnitude in improvement in SNR obviates the need for
regularization, which achieves a compromise between canceling effects of noise and
obtaining an estimate of the desired physical results. We show how singular value
decomposition (SVD) can be employed directly on the denoised data, using pulse
dipolar electron spin resonance experiments as an example. Such experiments are
useful in measuring distances and their distributions, P(r) between spin labels on
proteins. In noise-free model cases exact results are obtained, but even a small
amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We
develop criteria that precisely determine an optimum approximate solution, which
can readily be automated. This method is applicable to any signal that is currently
processed with regularization of its SVD analysis.

Many physical techniques require that the original
experimental signal be processed to yield the desired

results.1−6 In such cases, a regularization method, such as
Tikhonov regularization,7−11 is often employed to strike a
balance between canceling undesirable effects of noise in the
signal and providing a useful approximation to the desired
experimental results. The regularization is usually incorporated
with singular-value decomposition (SVD),7,12 which, however,
would be seriously noise-corrupted without regularization.
Here, we describe a new approach which does not depend on

the compromise of a regularization method, so it is able to yield
significantly more accurate results. We have previously
introduced a wavelet-based denoising method which provides
SNR improvement of about 2 orders of magnitude.13,14 Our
new SVD approach reported here benefits from such initial
denoising. We illustrate the method by applying it to pulse
dipolar ESR (PDS) experiments, which have in recent years
been shown to be important in determining distance
distributions and structures in many proteins.2,15−23 However,
it would be applicable to any signal that currently requires
regularization of its SVD analysis.
Our presentation consists of the following aspects: (1) We

first show how a careful analysis of the SVD solution yields the
exact result for noise-free models. (2) Then we show that even
very small amounts of noise (e.g., SNR ≈ 850) are sufficient to
corrupt this, but we develop a precise criterion to determine
which singular value contributions (SVCs) must be kept and
which discarded to obtain a useful solution. (3) However, even
such a solution typically contains spurious defects, requiring a
further refinement of the method that we call segmentation.
That is, for example, for PDS, one obtains a time-dependent
signal, S(t), from which a distance distribution P(r) is extracted.

It turns out, especially in the presence of finite noise, that the
SVD convergence properties are dependent on r, so that one
must apply our method in an r-dependent fashion. This may be
implemented in a practical manner in terms of a few segments
of r. (4) We find that this method leads to a highly accurate
P(r) without spurious peaks, limited only by the residual noise,
and it is more accurate than can be achieved using a
regularization approach even on the (mostly) denoised signal
(cf. Figures S9−S12).
The distance distribution between an ensemble of spin pairs

obtained from the PDS signal may be expressed as a Fredholm
Equation of the first kind as

∫ κ =r t P r r S t( , ) ( ) d ( )
R

R

min

max

(1)

where κ(r, t) is the kernel representing the dipolar interaction
of a spin-pair at a given r that has been integrated over all
possible orientations of r with respect to the large magnetic
field defining the lab frame; P(r) is the distance distribution
between the spin pairs; and S(t) is the dipolar signal. Equation
1 is discretized in matrix form as follows:

=KP S (2)

where K is an M × N matrix, with M the dimension of the
discrete values of S and N of P, and N ≤ M. The PDS
experiment measures the dipolar signal S(t). Solving eq 2 for P
is an ill-posed problem because the kernel matrix K is singular
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(or nearly so), that is, its rank k < M. Furthermore, S(t)
contains noise, increasing the challenge of obtaining a reliable
P(r).
Thus, as commented above, one usually resorts to

regularization or model fitting methods to obtain reasonable
results for P(r), and the method of Tikhonov regularization
(TIKR) is commonly used.7,9 However, it relies heavily on the
selection of the regularization parameter (λ), which yields a
compromise between a reliable fit to the data in a least-squares
sense and maintaining stability of the P(r).7,9,24 For a noisy
dipolar signal, the TIKR method compromises on resolution in
order to avoid an unstable P(r). Moreover, this procedure is
vulnerable to the appearance of spurious peaks and negative
values for P(r), due in part to noise in the dipolar signal.
Model fitting methods that are also used9,23,25−35 require, on

the other hand, a priori model functions to estimate P(r), which
may not accurately represent the actual distance distributions.
This becomes especially true if the P(r) is multimodal. Model
fitting methods, as well as TIKR, are frequently unable to
differentiate between intrinsically nonoverlapping peaks that are
significantly broadened by the needs of the methodology, as
well as by highly “dynamical” systems characterized by a broad
distance distribution when frozen.
We now describe our objective method (which can be easily

automated) based on SVD to resolve such matters. It yields
accurate distance distributions with high resolution and without
spurious peaks or negative P(r)’s, without resorting to
regularization or model fitting. The dipolar signal is first
denoised using our recently developed WavPDS method14

based on wavelet transforms.36 (Alternatively, a signal already
with high SNR, e.g., from signal averaging, could skip this first
step). This denoised signal is then directly converted into the
P(r) by our new SVD approach. This scheme is shown in
Scheme 1 and compared with the method using Tikhonov
regularization.

In its basic form, the SVD of the “Kernel” matrix K can be
obtained as K = UΣVT so eq 2 can be rewritten as,7

Σ =U V P ST (3)

where U is anM × M column-orthogonal matrix, V is an N × N
column-orthogonal matrix, and Σ is an M × N diagonal matrix
containing the non-negative singular values, σi (where i = 1, 2,
...., N) in decreasing order.37

To obtain P, using the SVD in eq 3, one has

= Σ−P V U ST1 (4)

where Σ−1 represents the diagonal matrix containing the
reciprocal of the singular values. Then eq 4 can be rewritten in
discretized form as

∑ ∑= Σ
= =

−P V U S( )j
i

k

l

M

ji ii
T

il l
1 1

1

(5)

where j is the index representing distance r, l is the index
representing time t, and i is the index representing the singular
values. The sum is only over the k positive nonzero σi’s, where k
is the rank of K, whereas the N − k remaining σi’s should be
zero representing their linear dependence. Thus, one can, in
principle, completely characterize the solution P by an analysis

of the singular value contributions (SVCs):
σ

V U Sji
T

il l

i
in the sum of

eq 5, where Σ =
σ

−( )ii
1 1

i
, for the nonzero σi’s. However, in

practice, it is difficult to determine k for the ill-posed problem
even with a noise-free signal, due to computational round-off
noise, so that the (N − k) singular values are not precisely zero.
To obtain a good solution P, a metric is needed to determine
the cutoff value for the σi.
One such approach is simply to start with just the SVC from

the largest singular value (SV) in eq 5. Then sequentially add

Scheme 1. Block Diagram Showing the Determination of Distance Distributions from Pulsed Dipolar Spectroscopy Using (A)
Tikhonov Regularization and (B) the New Singular Value Decomposition Method
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the SVC’s from successively smaller SV’s while monitoring the
ith approximation to Pj given by eq 5. As one does this the P(r)

becomes better approximated. We illustrate this in Figure 1 for
the ideal cases of noise-free P(r) models of (1) unimodal and

Figure 1. Model Data: The exact solution using the SVD method; P(r) vs number of singular value contributions (SVCs). Unimodal Distance
Distribution: (A1) Noise-free dipolar signal. Comparison of model distribution with P(r) generated from (B1) fewer SVCs i = 3, σi = 8.04; (C1)
exact solution obtained for i = 83, σi = 4.8 × 10−6; (D1) more SVCs i = 85, σi = 10−9; (E1) Piccard plot of log10 (∑i|ui

TS/σi|
2) vs the number of

singular values from i = 1 to 200 starting from largest value; it shows the contributions of singular values that lead to stable and unstable distributions.
Bimodal Distance Distribution: (A2) noise-free dipolar signal. Comparison of model distribution with P(r) generated from (B2) fewer SVCs i = 3, σi
= 8.04; (C2) exact solution obtained for i = 82, σi = 5.1 × 10−5; (D2) more SVCs i = 84, σi = 10−7; (E2) Piccard plot of log10 (∑i|ui

TS/σi|
2) vs the

number of singular values from i = 1 to 200 starting from largest value; it shows the contributions of singular values that lead to stable and unstable
distributions.
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(2) bimodal distributions. Here A1 and A2 show their dipolar
signals in the time domain. The B1 and B2 compare the

approximations to P(r) after just 5 SVC’s to the model shown
in blue. The C1 and C2 show the P(r) when they have

Figure 2. Piccard plots of log10 (∑i|ui
TS/σi|

2) comparing noise-free and some noise (SNR = 850) cases for different distance segments. Case 1 is
unimodal and Case 2 is the bimodal model. (A) Piccard plots for noise-free vs some noise. (B) Comparison of distance (r) dependent Piccard plots
at 3.2 nm, 5 nm, and 8.1 nm for noise-free models. (C) Same as B, except for models with some noise. Comparison of distance (r) dependent
Piccard plots for noise-free vs some noise cases for (D) 3.2 nm, (E) 5 nm, and (F) 8.1 nm.
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converged to the exact result for i = 83 and 82, respectively,
whereas D1 and D2 show the divergent results for P(r) with
just two additional SVC’s. Thus, one method is to add SVC’s
sequentially and to the stop just before additional SVC’s lead to
diverging results. This is shown in more detail in the SI Figures
S4 and S6. In fact, these results are fully consistent with the
theorem12 stating the necessary and sufficient conditions for
obtaining the exact results by SVD, that is given in the SI and
illustrated in Figures S1 and S2.
There is a second approach to determining the cutoff value

for the SVC’s. This is based on the Piccard condition,7,38 which
requires that in order for eq 5 to have a solution, it is necessary
and sufficient that

∑
σ

≡ |⟨ ⟩| < ∞ ≤ <
=

S u q k M[Piccard]
1

, , where
i

q

i
i

1
2

2

(6)

where ⟨S, ui⟩ is the inner product of the two vectors, and ui is
the ith column of the column-orthogonal matrix U. The Piccard
condition states that to obtain a desirable solution, eq 6 should
converge to a finite value, which is represented by less than ∞
sign. It also informs one when a particular solution begins to
diverge with the addition of further singular values. For the
noise-free examples, we are first addressing, we can expect q = k
is satisfactory but q > k is not. This is shown in Figure 1, E1 and
E2, which show that the (log of the) Piccard sum diverges at
the number of SVC’s exactly where the P(r) approximations
become distorted. Thus, one can use the cutoff value of i as that
just before the Piccard plot diverges.
If only a small amount of noise is added (we use a nominal

value of SNR = 850, which is consistent with our denoising
capabilities14), then the necessary and sufficient conditions of
the theorem are no longer satisfied, as also illustrated in Figures
S1 and S2; so the SVD can only be used to obtain a best fit in a
least-squares sense.12 Also, in the presence of even such modest
noise not only must one cut off the sum of SVC’s in eq 5
sooner, but additionally there is no longer a precise cutoff for
the SVC’s as shown in the Piccard plots of Figures 2 A1 and
A2; there is a blurring of this cutoff as is illustrated further in
plots of P(r) vs added SVC’s shown in Figures S5 and S7 for
SNR = 850.
We have found that this is due to the fact that a good choice

of cutoff becomes dependent upon the value of r, and this is
illustrated in Figure 2 for Piccard plots done separately for r =
3.2, 5, and 8.1 nm. For a noise-free signal, in Figure 2, B1 and
B2, one can see that different values of r diverge at about the
same singular value cutoff or have already converged and
remain so, (e.g., r = 3.2). However, there is a change once noise
is present. Then each r value diverges at different singular value
cut-offs (cf. Figure 2 C1 and C2) in addition to the fact that the
cut-offs occur sooner as a function of i than in the noise-free
case (cf. Figure 2, E1, E2, F1, and F2). In Figure 2, D1 and D2
at 3.2 nm, the Piccard plot for a noisy dipolar signal diverges at
σi = 0.2, whereas for the noise-free signal it remains converged.
It can also be seen from Figure 2, that shorter distances diverge
sooner than longer distances. Scheme 2 shows the block
diagram of the SVD based approach using different SVCs for
different rj values, such that q → qj. If this fact is ignored,
spurious peaks and other defects will arise as illustrated in the
SI (Figures S9−S12 and below).

Therefore, in principle, one needs to construct the Pj for each
rj value separately using eq 5. Equation 5 can thus be rewritten
to represent this approach as

∑ ∑= Σ
= =

−P V U S( )j
l

M

i

q j

ji ii
T

il l
1 1

( )
1

(7)

However, more practically one can use just 3 or 4 segments
of r as illustrated in Figures 3D and S8. Within each of these
segments, the Piccard expression diverges just after the correct
qj is reached as shown in Figures S13−S20. In a few cases, some
r values in a segment do not yet diverge at this cutoff (Figures
S14 and S18), but they have reached their converged value such
that the contribution of the subsequent (q + 1)th singular value
is negligible. The singular value cutoff is usually taken at the
first r value of the segment that diverges. Remaining r values,
although not yet diverged, have typically achieved their
convergence (see flat lines in Figures S14 and S18). It is this
property that enables the segmentation approach. Of course,
one can further divide that segment into two or more segments
and select their respective singular value cut-offs, but we find it
is unnecessary. In some cases, especially at short distances for
which P(r) = 0 (e.g., Figures S13 and S17), divergence occurs
after only a very few SVCs. We have noticed that the presence
of noise in the dipolar signal severely affects the short distances
where P(r) = 0. One can see in the insets to Figures S13 and
S17 that the Piccard plot in the segment diverges from just the
first SVC to the second SVC. In Figure S13, the Piccard plots
further diverge at later SVC. This subsequent divergence clearly
is not important.
To obtain appropriate segmentation and singular value cutoff

for each segment, one first performs the sum of eq 5 starting
from the largest singular value with the whole distribution taken
as a single segment. SVCs are sequentially added in the order of
decreasing singular values until the ith SVC yields an unstable
approximation to P(r) for a given region of r. That region of r
becomes the first segment with no further SVCs needed. SVCs
are then added for the remaining r region(s) until another
region of r become unstable. This process is repeated until
convergence for all the regions of r is achieved. This SVC
approach leads to a good approximation of P(r) without
spurious peaks.

Scheme 2. Block Diagram Showing Generation of
Probability Values at Each Distance Measurementa

aFor practical analyses, it is sufficient to consider just 3 or 4 ranges (cf.
Figures 3 and S8.
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Alternatively, one can study the Piccard plot using eq 6 to
identify segments and to obtain singular value cut-offs for each
segment. In the Piccard plot, segments represented by the
regions of r will collectively diverge at different SVCs,
informing about the number of segments needed. A singular
value cutoff for each of the segments can then be independently
calculated by adding the SVC’s for the jth segment to locate the
onset of divergences occurring at qj + 1, thereby giving the
correct qj for each segment. This approach is the more
convenient and lends itself to automation in programming.
We tested the new SVD method on model data as well as

experimental data from ref 14 and compared it with the TIKR
method as well as with TIKR followed by the maximum
entropy method (MEM)8 (see Figures S9−S12). The MEM
method improves the fit and removes the negative values of
P(r). For the model cases, we used both a unimodal and
bimodal Gaussian distribution with peaks respectively at 4 nm,
and 4 nm and 5 nm, each having a standard deviation of 0.3 nm
(see Figures S9−S10). For the bimodal case, the height of the
first peak is taken as 80% of the second peak. The evolution
time for both unimodal and bimodal dipolar signal is 5 μs. The
initial SNR of 30 and 10, respectively, was generated using
white Gaussian noise, but we just show the denoised version.
For experimental cases, we used unimodal and bimodal

distributions (Figure S11 and Figure S12, respectively)

generated from a T4 lysozyme (T4L) system. The sample for
the unimodal distribution was spin-labeled with T4L mutant
44C/135C at 63 μM concentration. Signal was acquired for 112
and 14 min to obtain different SNRs. The sample for the
bimodal distribution was spin-labeled with T4L mutant 8C/
44C and 44C/135C at 44 μM and 47 μM concentration,
respectively. For different SNRs, signal averaging of 48 and 8
min was carried out. The dipolar signal was obtained from
double electron−electron resonance (DEER) experiments at
17.3 GHz. For further details about the experiment, see ref 14.
Figures S9 to S12 show the successful application of the SVD
method.
The WavPDS method was used to first denoise the model

and experimental dipolar signals to obtain high SNR (see Table
S1). One sees in this table that the SNRs of all the examples we
used range from 488 to 3333. In all these cases, despite the very
large SNRs, the segmentation method described above was
necessary.
In Figure 4 we illustrate a challenging experimental case,

where before denoising the SNR = 3.8, whereas after denoising
it becomes 488. We also show in this figure (as well as in
Figures S9−S12) that the standard TIKR+MEM of the
denoised signal yields to spurious peaks, which, however, are
nonexistent with the SVD method proposed here. Spurious
peaks at short distances occur because the distribution has

Figure 3. Reconstruction of distance distribution for noise-free model data and noisy model data (SNR ≈ 850) using the new SVD method. (A)
Model dipolar signal; (B) model dipolar signal with added noise (see added noise in red plot); (C) singular value cutoff at each distance (nm) for the
model dipolar signal; (D) singular value cutoff at each distance (nm) for the model dipolar signal with added noise; and (E) Distance distribution
reconstructed from the model dipolar signal and model dipolar signal with noise using the singular value cut-offs shown in C and D, respectively.
Note that the added noise is so small that A and B still appear identical, but convergence to the virtually identical final results requires segmentation
in the latter case.
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diverged (become unstable) at those r values, whereas spurious
peaks at long distances occur because the distribution has not
converged yet at those r values. The TIKR and TIKR+MEM
methods have a single singular value cutoff for all r values,
which results in these spurious peaks. The new SVD method
overcomes the problem by selecting different singular value cut-
offs (Piccard plots: Figures S21 and S22). Also, shown in Figure
4 is the fact that before denoising, neither the TIKR+MEM, nor
the new SVD method yield satisfactory results.
In summary, convergence of a SVD solution requires one to

include all the “relevant” SVC’s, and to exclude those that are
inappropriate, and this must be performed in an r-dependent
fashion to obtain optimum P(r)’s. We have described such a
method in this Letter.
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