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In the past the Lanczos algorithm has proven to be a very useful tool
in the study of molecular dynamics. It enables efficient calculation
of the spectral densities which are essential in the interpretation of
spectroscopic or scattering experiments. In the present work, the use
of the Lanczos algorithm in the calculation of the spectral densities
is analyzed in a general fashion. Its application to problems
characterized by complex symmetric matrices, which are normally
encountered in the analysis of magnetic resonance experiments, is then
recovered as a particular case. After a discussion of the factors
influencing the convergence in the calculation of spectral densities,
the implementation of the Lanczos algorithm with non-orthogonal basis
functions is considered in relation to molecular systems having
hindered degrees of freedom,

INTRODUCTION

The direct observation of molecular motion in condensed phases is possible
only in so-called Molecular Dynamics (M.D.) “experiments", i.e. in computer
simulations of trajectories of systems of particles (of the order of hundreds or
thousands) to model macroscopic samples. Information about the molecular motion
in real systems, mostly obtained by means of spectroscopic or scattering techni-
ques, is instead very indirect. One is confined to the measurement of the
macroscopic response to some external, time-dependent, perturbing field.
According to linear response theory [1], the spectroscopic observation is
characterized by a particular spectral density, which is the Fourier-Laplace
transform of the time correlation function(s), for the dynamical variable(s)
probed in the specific experiment. Formally, the spectral densities are the
matrix eléments of the resolvent constructed from the time evolution operator,
r, appropriate for the system observed. By considering a proper basis set, the
resolvent can be written in terms of the matrix representation of r, and it can
be solved by numerical methods.

By means of spectroscopic techniques like:

- magnetic resonance (ESR and NMR)

- dielectric relaxation

- light scattering

- infrared and Raman spectroscopy

- incoherent neutron scattering

one can have access to spcific spectral densities and infer, from a postulate of
r, information about the translational, rotational, and conformational motion of
the molecules constituting the observed system.

The calculation of the spectral densities can be seen as a fundamental tool in
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the interpretation of spectral data, since it is a necessary step in relating
experimental measurements and theoretical models for r. This explains the need
for specific algorithms which should be efficient from the points of view of
both the speed of calculation and the size of the matrix that can be handled.
The development of sophisticated models of motion where the coupling among
several degrees of freedom is taken into account, constitutes a natural trend in
chemical physics that s required by improvements in experimental techniques
which lead to more detailed knowledge of the spectral densities. Corresponding-
1y, one must tackle calculations of spectral densities from larger matrix repre-
sentations, and the efficiency of the algorithm becomes critical in making pos-
sible the interpretation of spectral information.

The Lanczos algorithm [2-4] constitutes a natural choice as a method of calcula-
tion of the spectral densities, since the matrices normally encountered are very
sparse [5,6]. Indeed, the Lanczos algorithm is particularly suitable because it
produces a tridiagonal matrix, such that the continued fraction representation
of the spectral density is easily generated from the elements of this tridiagon-
al matrix. This allows for a direct calculation of the frequency dependence of
the spectral density without the need for the eigenvalues. Moreover the results
of the Lanczos algorithm can be related [7] to the continued fraction repre-
sentation of the spectral densitites derived by H. Mori [8], thereby connecting
a numerical method to the projective formalisms often used in statistical .
mechanics [9].

In the next section, the formal definitions of the quantities related to
spectral densities and spectra will be given, with particular emphasis on clas-
sical systems. After a brief discussion of the most common models of motion,
the results of linear response theory will be summarized. This will constitute
the framework for the subsequent analysis of the role played by the calculation
of spectral densities in the theoretical interpretation of spectroscopic data.

The numerical calculation of spectral densities by means of the Lanczos
algorithm will be the central topic of the third section. First, the method
will be fllustrated with self-adjoint, “symmetrized," time evolution operators.
Then the general case will be considered, showing how the coefficients of the
continued fraction representation are caiculated by numerical implementation of
the Lanczos algorithm. The performance of the algorithm will be discussed
specifically in connection with the convergence of the continued fraction solu-
tion. Particular emphasis will be given to the following result: the Lanczos
2lgorithm is more efficient in producing the overall shape of the spectral line-
shape than in computing the eigenvalues of the related matrix.

The final part of the third section will be devoted to a discussion of the
criteria for the choice of the basis functions necessary to generate the matrix
representation of the time evolution operator. Such a choice is an important
ingredient in actual calculations, and it must be carefully considered, case by
case, in order to minimize computational effort. Particular emphasis will be
given to problems characterized by strong confining potentials, for which a
large reduction of the size of the matrices can be achieved by means of non-
orthogonal basis functions. Therefore the implementation of the Lanczos
algorithm with non-orthogonal functions will also be presented.

In the summar{tsection, we shall point out some further applications of the

Lanczos algorithm to the study of the molecular dynamics, and we suggest where
further computational developments would be desirable.

SPECTRAL DENSITIES AND MOLECULAR MOTION

In this section, the correlation function formalism and the results of linear
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response theory will be summarized in order to present a clear definition of the
quantities to be computed by means of the Lanczos aTgorithm.

We consider a system described by an ensemble of M classical stochastic vari-
ables z = (2,,2;,...,24); (the generalization to quantum system will be pre-
sented subsequently). The stationary state of the system is described by the
equilibrium distribution function Peq( z ), defined as the probability density
with respect to the infinitesimal vo?ume aMz = dz,dz,....dzy. The equili-
brium average of a dynamical variable described by the function A( z ) is then
calculation according to the following integral:

k=g d MEITED (2.1)

One can now introduce the Hilbert space ¢ constituted from the ensemble of
dynamical variables having well defined average values, and for which the
following formal definition of scalar product applies:

<Ay fa> = fd'za(2) Ay 2) (2.2)

The dynamics of the system is characterized by the time evolution operator r
which determines the behavior of the non-equilibrium distribution function

P( z; t):
a/at P( z ;t) = -rP( 2z ;t) (2.3)

Hereafter we shall consider only stationary Markovian processes [10]; that is we
assume that r does not depend explicitly on the time, and we take Peq to be
the unique stationary solution r:

TPoq = O (2.4)

For a given pair of dynamical variables A;( z ) and Ay( z ), the time correla-
tion function G(t) is defined in terms of the following dynamical average [11]:

G(t) = A [ 2 (t)] A,[ 2z (0)] (2.5)

which, from the formal solution of eq. (2.3), can be written explicitly as
follows:

G(t) = <Al'exp('rt)‘Pquz> (2.6)

The corresponding spectral density J(w), which is the Fourier-Laplace transform
of G(t), is written as: .

Jlw) = [5 dt exp(-iut) G(t) = <A|(iw+ £)"1|P A, (2.7)

The internal motion of a mobile group in a molecule can be taken as a model
system for illustrating the previous statistical concepts. The stochastic vari-

able is now represented by the angle g, which is the angle of rotation of the
mobile group around a fixed axis of the rigid part of the molecule. The equili-

brium distribution function is normally written as:

Peql0) = exp{-V(e)/kT}/ 2" do exp {-V(8)/kT} (2.8)

where V(e) is the mean potential acting on the mobile group.

It results from the interaction of the mobile group with the rigid part of the
molecule. There the minima of V(g) determine the stable conformations of the

system. See for example reference 12 for a parametric form of V(g) often used
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in the study of conformational dynamics of alkyl chains. The dynamics of the
internal rotor can be represented by different operators r, the choice depending
on the type of coupling with the thermal bath. A quite common model, Jjustified
on physical grounds when dealing with bulky mobile groups, is provided by the
diffusion operator, which, for the internal motion problem being used for
i1lustration, s written as follows:

r = -D(a/ae) Peqla/ae) PRl (2.9)

where D is the diffusion coefficient. Similar diffusion operators can be gener-
ated when dealing with the molecular translational and rotational motion and
their coupling [13,14]. A more general class of time evolution operators are
represented by the so-called Fokker-Planck equations, where the classical
streaming motion is taken into account by considering as stochastic variables
both the coordinates and the conjugate momenta [9,13,15,16]. Therefore, statis-
tical mechanics provides a hierarchy of models of motion, where the complexity
(i.e. the number of degrees of freedom explicitly taken into account) grows with
the level of generality and with the accuracg in representing the dynamical
features of the physical system (e.g. ref. 17).

Let us now briefly illustrate, in the context of classical systems, the linear
response theory which constitutes the general framework for the interpretation
of spectroscopic measurements [11]. Such experiments are characterized by the
presence of an external oscillating field, having strength Eol and frequency ,
which is coupled to a given dynamical variable B( z ) of thé s stem, yielding a
contribution to the total energy as B( z )I €o Icosut. The response of the
system to the external field is observed by measuring the macroscopic average of
a specified dynamical variable A( z ). Dielectric relaxation experiments, for
example, are characterized by an oscillating electric field E (t)= Eg coswt,
that interacts with the molecular dipoles y (t), which have a time-dependent
orientation as a consequence of the rotatfonal motion of the molecules. There-
fore B( z ) is given by I u |cosg, where the stochastic variable g is defined as
the angle between y and E,. 'The observed macroscopic variable s represented by
the polarization of the medium, in practice the average of the components of the
dipole moments along Eg, i.e. A( z )=B( z ).

By assuming that the external field acts as a small perturbation with respect to
the dynamical behavior of the isolated system, it is shown that the macroscopic
average of A( z ) oscillates around its equilibrium value A with the same fre-
quency w of the field, and that the intensity of these oscillations is propor-
tional to the field strength I Eo I according to the frequency dependent
susceptibility y(w) [1]. On the other hand, the susceptibility y(w) is inde-
pendent of the external perturbation, and it is determined by the dynamics of
the isolated system described by the time evolution operator r, according to the
following equation [1]: ’

x(w) = ~1d(u) + 6" &8 (2.10)

where J(w) is the spectral density that relates to the pair of dynamical
variables gA=A( z )-A and sB=B( z )-B. That fis:

Jlw) = <tA|(fw + ]| Peq 8> (2.11)

It is implicit that each spectroscopy corresponds to a specific choice for the
pair of dynamical variables A and B. It should be noted that the susceptibility
is a complex quantity, its real and imaginary parts being respectively related
to the in-phase and to the out-of-phase response of the system to the
oscillatory perturbation. Often one measures only one component, more precisely
the imaginary part, which in the following, will be identified with the observed
spectral lineshape I(u):
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I{w) = ~x"(w) = wRe{d(w)} (2.12)
Spectroscopic experiments: (o) Statistical mechanics:
o
measurement of I{w) as & |& >, | theoretical models
function of for 1
Figure 1

As sketched in Figure 1, the calculation of the spectral density is an essential
step in relating the experimental results to the theoretical model for the
dynamical behavior of the system. Only by a careful comparison of the frequency
dependence of the theoretical J(w) with the experimental data, is it possible to
obtain a full account of the effects of the molecular motion on the observed
spectra. Ideally, one would like to perform the “inverse transform”, viz. to
reconstruct the detailed form of r from a given experimental I(w). Unfortunate-
1y, I(w) supplies very limited and incomplete information. Instead one would
need all the correlation functions for a complete set of dynamical variables
which span the vector space implicit in eq. (2.2). .

More realistically one compares the theoretical and the experimental I{w) in
order to achieve the following two objectives:

i) the verification of the adequacy of the theoretical model r. In this con-
text one often compares the experimental results with the theoretical pro-
files of I{u) obtained with different models of motion in order to assess
which one is the most appropriate.

ii) The determination of the values of the transport coefficients, [such as the
diffusion coefficient D in eq. (2.9)], which enter as parameters in the
expression of r. A best fit between theoretical and experimental I{uw)
supplies the optimal estimate of these parameters.

In the most favorable situations, i.e. when the experimental spectrum I(w) is
known accurately over a wide range of frequencies, the calculation of the spec-
tral density provides detailed information on both the type of molecular dynam-
ics and the characteristic relaxation time associated with each elementary
motion,

The need for calculating spectral densities is clear in the context of standard
spectroscopies such as magnetic resonance or dielectric relaxation measure-
ments. The same conclusion also follows from the analysis of scattering experi-
ments. As an example, the differential cross section for incoherent neutron
scattering is proportional to the real part of the following spectral density
[18]:

Ju) = <exp( ~iq - r )|(lu*r)"}[Pgcexp( -iq v > (2.13)

where r is now the time evolution operator appropriate for the stochastic vari-
able r, the vector position of the scattering nucleus. The vector q and fu are
respectively the momentum and energy differences between incident and scattered
neutrons. :

Up to now we have considered classical stochastic variables. In the analysis of
experiments like magnetic resonane (NMR or ESR) it is necessary to deal with
quantum degrees of freedom, i.e. electronic and nuclear spin, and their inter-
action with the molecular orientational degrees of freedom specified by the
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Euler angles g = (a,B,8). The latter are usually taken as classical stochastic
variables for motions in condensed phases. In these cases the dynamics of the
system is usually described by the so-caiied stochastic Liouville operator
[19,20], written as:"

r =1, - (1/)H(a)” (2.14)

where rp is the stochastic time evolution operator for just the orientational
variables (e.g. the diffusion operator), and HXz[H, ] fs the

quantum-mechanical time propagator (superoperator). Note that the coupling
between the quantum and classical degrees of freedom, for example the modulation
of the energy of the quantum states induced by the rotational motfion, is
implicitly taken into account by the dependence of H upon the orientational
variable g. The correlation function in eq. (2.6) and the corresponding
spectral density of eq. (2.7), where A is now an operator on the quantum states,
are calculated with the previous stochastic Liouville operator r, after
redefining the scalar products as:

Cosoadz Tr Ida soee (2.15)

f.e. as a trace over the quantum states and integration over the classical
stochastic variables. .

For the sake of simplicity, in the next section we shall focus on classical
systems, such that the time evolution operator can easily be represented in a
basis of functions of the stochastic variables. However the numerical methods
we discuss can also be applied to problems described by the stochastic Liouville
operator of eq. (2.14) if a proper basis for the quantum degrees of freedom is
specifically considered [21].

CALCULATION OF SPECTRAL DENSITIES BY MEANS OF THE LANCZ0S ALGORITHM

In the analysis of the computational methods, it is conyenient to make reference
to the so-called “symmetrized” time evolution operator T defined as follows
[22].

T o= pgd/2 plf2 (3.1)

The spectral density of eq. (2.11) becomes:
1/2 5 sy=1ypl/2
) = Pgh? 6A|(iu + 1)71[PIA2 4B> (3.2)

The reasons which dictate such a transformation of ¢ are twofold. First of all,
when dealing with autocorrelation functions, i.e. A=B, the corresponding spec-
tral density is simply the dia?onal matrix element of the resolvent operator
with respect to the function P1/2 sA (1.e. right- -and lefthand vectors are
Hermitian conjugates). Most obfervables are related to the autocorrelation
functions as we previously pointed out, [e.g. eq. (2.13) or the discussion of
dielectric relaxation in the previous chapter]. Secondly this transformation on
P clarifies the symmetries of the time evolution operator. As an example, if r
is given by a diffusion operator such as eq. (2.9), its symmetrized form is
self-adjoint with respect to the definition eq. {2.2) of the scalar product.
This property is not, in general, shared by the symmetrized Fokker-Planck
operators or the stochastic Liouville operators. But for them it is possible to
generate complex symmetric matrix representations by a careful choice of the
?asis ;ugctions (6,21], and this will simplify the computational algorithm that
s needed.

We first consider the calculation of the spectral density under the simplifying
conditions that I is self-adjoint and that A=8. If As#B, then it is easy to show
that J(w) of eq. (3.2) can be decomposed as a linear combination of spectral
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densities associated with the autocorrelation functions for the dynamical vari-
ables A-B and A+B [6].

Once a suitable basis set of functions for the stochastic variables z has been
introduced, one can apply the Lanczos algorithm [2-4] to the matrix representa-
tion of I. Alternatively, the methodology, which is more general than just the
numerical algorithm, can be applied directly to the operator F, in order to pro-
duce an orthonormal set of functions ¢j ( z ). We shall follow the second
route because of its connection with the method of moments [23] and with the
projective schemes frequently used in statistical mechanics [9].

Given the relation eq. (3.2) for the spectral density, a natural choice for the
first element of the basis set is represented by the function Pi/Z A properly
normalized: a

01( 2 ) = PLLZ A/<oR|Pyq| 6RO1/2 (3.3)
The remaining functions QJ( z ) are generated iteratively according to the
following relation:

Breytney = (1-Py)Te, (3.4)

where gp+] is the real coefficient implicitly defined by the normalization
condition (i.e. <°n+1|¢n+1>=1)' and P is the projection operator on the

subspace spanned by functions¢;, ¢2s...» én’
n
P, = r |05><0j| (3.5)
J=1
It is easily demonstrated that T has a tridiagonal representation in the ¢-basis
(i.e. <¢jlf10j'> = 0 for lj-j'|>1) and that:
Bj - <¢j IT'Oj-1> (3.6)

Therefore, a three term recursive relation is obtained from eq. (3.4), written
as:

Bn+1¢n+1 = (I‘ - Gn)Qn - BI‘I ‘n-l (3.7)
where the aj‘s are the diagonal elements of r in the y-basis:
uj = <¢J,fl¢j> (3.8)

In the ¢-representation, the spectral density is written as:

dw) = |5A|2 [(im 1+7 )]1,1 (3.9)

coefficients aj and gj previously defined.

An elementary application of the theorem of matrix partitioning, allows one to
write down the frequency dependence of J(w) according to the following continued

fraction [24]:

1
Jw)/ J6A[ 2 =

(3.10)

Bzz

i + oy~
1
83?

fw + a3 -

fw+ ap -
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Therefore the application of the Lanczos algorithm to the abstract Hilbert space

in which I is defined, generates the continued fraction representation of the
sqectral density. The same result, apart from the identification of I with the
classical Liouville operator, has been derived by H. Mori in the context of the
dynamics of systems of interacting particles [8]. As matter of fact, the same
methodology, more specifically the recursive equation (3.4), is the foundatfon
of both the Lanczos algorithm and Mori's derivation [7]. It is interesting to
note that this connection between numerical methods and the formalisms of theo-
retical physics, can be extended further, by considering on the one hand the
block Lanczos algorithm [25], and on the other hand the projective scheme norm-
ally used for deriving a diffusion or Fokker-Planck equation from the classical
dynamics of an ensemble of interacting particles [9,13].

The relation specified by the continued fraction in eq. (3.10) s quite

general., Analytical calculation of the coefficients aj and gj from the

explicit operator form of f is in principle possible. Practically, however,
this can be pursued only for the first few coefficients. Therefore numerical
implementation of the recursive relation eq. (3.7) is essential in calculating
enough coefficients of the continued fraction for an accurate simulation of the
frequency dependence of J(w). In practice, one generates the matrix representa-
tion M of the symmetrized operator £ in a given basis set of orthonormal func-
tions f(z)z.-

Mik = <fy|t|fi> ‘ (3.11)

From eq. (3.7), the standard recursive relation of the Lanczos algorithm is
readily obtained in the following form:

Bn+1 xn+1 = ( M- ﬂnl ) xn - Bn xn_l (3-12)
with the column matrix x, containing the expansion coefficients of ¢n:
4 = 5 ( xn)j fj (3.13)

The standard computer implementation of the Lanczos algorithm [3,4] can then be
used for calculating the coefficients o and g3, and from those the
freq?ency)profile of J(w) according to the conginued fraction representation of
eq. (3.10).

\ti>,/ In order to complete this discussion we must deal with the calculation of the

, starting vector xy. Given eq, (3.3) for ¢;, one can obtain the ( x, )j of eq.
(3.13) by computing the scalar products <fj1¢,>. This direct approach has

been used frequently. However, it usually fequires numerical integrations which
can become unwieldy for several degrees of freedom. An alternative approach is
to consider the following expression [See eqs. (2.4) and (3.1)] [26]:

e e

Tim [sl-M]x=¢ (3.14)
s.,O"' 4 -
where x, is the vector representation of p1/2 and ¢ is-an arhjtrary ("ini-

Eiili)—xgg%sr. this follows because Pé/z §¢ the inique stationary—sotutton of
. One solves eq. (3.14) by matrix inYrsion techniques to obtain xg for the
imit of very small s. Then

(x)y =g <fsleAlf o0 %o ), (3.15)
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Eq. (3.15) is easy to evaluate, since we usually choose basis functions fj
that bear a simple relation to the §A (and §B) of interest.

The calculation of spectral densities from the recursive relation eq. (3.12) can
easily be generalized to operators P which are not self-adjoint, but which have
a complex symmetrix matrix representation M. In previous work tG], we have
shown that eq. (3.12) continues to hold, but with the column matrices Xp NOw

normalized without complex conjugation (i.e. the complex con ugation must be
removed from the definition of scalar product between arraysi. However, we now

wish to rederive this result in a more general context, by considering the cal-
culation of spectral densities for a general F. Moreover we also relax the pre-
viously assumed condition A=B. This general case is related to the implementa-
tion of the Lanczos algorithm to non-symmetric matrices, which leads to a
biorthonormal basis set [27, 28]. When we conside the functions ¢j that we
have introduced above, we would now have to recognize that for the non-self-
adjoint operator, their itgrative generation will now lead to a biorthonormal

set of functions ¢4 and ¢J :
Iy .
<¢j|¢ > =85 40 (3.16)

starting from the ¢, and 4! calculated from the right-hand and left-hand vectors
of the spectral density of eq. (3.2), according to the following relations:

¢1 = PLIZ 6A/<eB|P, | sR>1/2 (3.17a)

¢1 = PLAZ 6B/<EA|Pqq|6B>1/2 (3.17b)

Instead of eq. (3.4) we now have a generating equation for each type of basis
function:

By ¢y = (1 - P )Te, (3.18a)
* -
Brel "l STArS (3.18b)
where the projection operator P, is written as
n j -
Py = jEI l¢j><¢ ' (3.19)

and the complex coefficient gny) is determined by the normalization condition
<°"+1 én+12=1. It is easily shown that, in this new basis, f may again be
represented by a symmetric, but in general complex, tridiagonal matrix T with
coefficients g as off-diagonal elements. This leads to the following three-
term recursive relations:

Brartnsy = (T = ooy - 8.6, (3.202)
- * ne
8:+1 "= (- c;)o" - 84" ! (3.20b)
with
a, = <¢"|P|¢n> (3.21)
Since
Jw)/6A'6B = [(fo 1+ T )", (3.22)

the continued fraction which appears at the right hand side of eq. (3.10) can
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also be used for representing the frequency dependence of spectral densities
calculated with operators which are not self-adjoint.

An alternative form for J(w) is obtained from the solution of the eigenvalue
problem for T

TQ = Qa (3.23)

Reference 29 reports on a modification of the QR algorithm for complex symmetric
matrices which can be applied to this problem. The frequency dependence of J(y)
can then be explicitly written as follows:

w)/6R 68 = £ G /(1 + 3) (3.24)

However this relation is more useful in displaying how the eigenvalues of the
starting matrix enter into J(w) than for practical purposes. In fact it is con-
venient to calculate J(w) directly from the continued fraction without any
matrix diagonalization.

It should be emphasized that the existence of the continued fraction representa-
tion of the spectral density is not assured if it is generated by means of a
biorthonormal set of basis functions. It could happen, that the following
scalar product [cf. eqs. (3.18)] vanishes:

<(1-P)F¥"|(1-P )Fe,> = 0 (3.25)

so that the normalization of ."*1 and ¢p+] according to eq. (3.16) is no

longer possible. When the Lanczos method is used with a self-adjoint § for
generating orthogonal basis functions, a similar situation is found only if the
right hand side of eq. {3.4) vanishes. In this case the operator | is factored
with respect to the subspace spanned by functions 61+925--.>6n, and the
continued fraction truncated at the n-th term represents the spectral density
completely. Of course, with biorthonormal basis functions, it would also be
legitima;e ;o truncate the continued fraction at the n-th term if (l—Pn)r¢n

or (1-Pn )F 4", or both vanish. However their scalar product could vanish
simply because they are orthogonal, and in this case it would be impossible to
derive a continued fraction representation of the spectral density. The
spectral density of eq. (3.2) with <A Peq|5B>=0 constitutes an obvious

example of such a situation. Normally, in'the calculation of autocorrelation
functions relevant to spectroscopic observables, such anomalous behavior is not
found. It is however advisable to check the magnitude of the norm of the
function in the scalar product of eq. (3.25), when it equals zero.

As in the simple case treated at the beginning of this chapter, the coefficients
of the continued fraction are computed by the use of the recursive relations
egs. (3.20) with the ¢j's and ¢J's expanded in a given set of orthonormal

basis functions fy. Recalling the definition eq. (3.11) and eq. (3.13) for

Xn» the recursive relations may be written as follows:

Bn+i Xpep = (M- apl ) Xq = 85 %o (3.26a)
Bn+1* . (M- a:I ) & - g: -1 (3.26b)

waere X, is the column matrix constructed with the expansion coefficients of
¢", and:
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nt
a, = (xX)" M x (3.27)

(ht e =1 (3.28)

The computer implementation of these relations requires the storage of four
vectors, as well as two multiplications of a square matrix by a colum matrix at
each iteration. The computational effort is nearly doubled with respect to the
Lanczos algorithm with orthonormal basis functions. There is however an
important exception with complex symmetric matrices M if the starting vectors
are complex conjugate. That is, for n=1, we let:

x =" (3.29)

Then it is easily shown fepm egs. (3.26) that eq. (3.29) will be valid for all
values of n, provided M=M'' . Therefore, only the recursive relation (3.26a)
needs to be explicitly computed, and the normalization condition eq. (3.28)
becomes:

X" x =1 (3.30)

This is equivalent to the implementation of equation (3.12) with a “Euclidean
form” of the scalar product, in spite of the complex number algebra for the
matrix operations. Equation 53.30) is equivalent to the pseudo-norm that we
have previously introduced [6]). It should be noted here that often problems
involving operators T which are not self-adjoint, such as the stochastic Liou-
ville operators considered in magnetic resonance experiments, can be described
?y co?plex symmetric matrices if the basis functions fy are properly chosen
6,21].

If the time evolution operator [ is not "symmetrized”, then it will not, in
general, be possible to represent it by a complex-symmetric matrix, for which
eq. (3.29) is true, and methods based upon biorthonormal spaces, as outlined
above, become essential. This approach has been discussed in detail by Wassam
[30].

Many aspects of the general analysis of the factors influencing the computer
performance of the (real symmetric) Lanczos algorithm [3,4] can also be applied
to our type of problem. In particular the sparsity of the matrix is crucial in
determining the efficiency of the method from both the point of view of computer
time and memory needed. Usually the matrix representations of the time evolu-
tion operators considered in the previous chapter have few. non-vanishing ele-
ments. Values around 10-20% are typical sparsities, but it can be as low as a
few percent. Moreover, in general, one finds that there is a decrease in the
relative number of non-zero elements when one increases the degrees of freedom
included in the time evolution operator F. In other words, the efficiency of
the Lanczos algorithm is enhanced in problems with large-size matrices.

It should be emphasized that the application of the Lanczos algorithm considered
here differs from its standard use in numerical analysis, in terms of the quant-
ity to be computed. Normally the Lanczos algorithm is considered in the frame-
work of the calculation of eigenvalues, while we need the spectral density as a
function of frequency, which is well described by the continued fraction eq.
(3.10), (but see Sect. IV). Correspondingly the convergence of the numerical
method must be considered in a different manner. In particular we must evaluate
how, by increasing the number of steps of the Lanczos algorithm, i.e. the number
of terms of the continued fraction, the spectral lineshape I{w) of eq. (2.12)
approaches ft converged form. In Figure 2 a typical ESR absorption spectrum is
displayed.
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Figure 2
ESR absorption spectrum of a paramagnetic spin probe. The magnetic and motional
parameters are the same as case I in Table I of reference 6.

In numerical analysis, the convergence of the Lanczos algorithm with respect to
the individual eigenvalues has been considered in detail [31,32]. We are not
aware of any general criterion for the convergence of the spectral density. We
have found it convenient to use the following phenomenological definition of re-
lative error E, for the spectral lineshape computed with n terms of the
continued fraction [6]:

E, = ]: Mlln(u)-l(u)llf:: duI(u)] (3.31)

Where I(w) is the converged spectral lineshape. We think this definition of

En is a useful one, because it is a measure of the overall difference between
In(w) and I{y,). Using this quantity, we can define the sufficient number of
steps ng, as the smallest n which assures an error E, less than the required
accuracy for the spectral lineshape. In general E, decreases with n, but it
may not be strictly monotonic (see reference 6 for some typical trends). For an
accuracy En = 10°*, ng 1s found to be much less than the dimension N of the
matrix &g]. For large size problems, ng is typically of the order of N/5 or
less. course this contributes to the overall efficiency of the Lanczos
algorithm by reducing the number of iterations.

In some problems the spectral density is dominated by only a few eigenvalues.
That is, in eq. (3.24) only a few of the weighting factors Q,k? are not
negligible. In these cases the Lanczos algorithm reproduces with comparable
accuracy the spectral lineshape and the dominant eigenvalues. There are other
situations, like the slow motional ESR spectrum displayed in Figure 2, where the
lineshape is a complicated function, which must be accounted for by a large col-
lection of eigenvalues. In such cases the Lanczos algorithm is more efficient
in reproducing the overall shape of I(w) than in computing the eigenvalues [6].
Figure 3 fllustrates this fact in displaying the computed eigenvalues of the ESR
problem considered in Fig. 2. The dots indicate the exact eigenvalues of the
starting matrix M which has a dimension equal to 42. The crosses represent the
16 eigenvalues of the tridiagonal matrix which approximate the lineshape to an
accuracy of 10%. From the Figure it is clear that there is no simple relation
between overall accuracy in the lineshape function and accuracy in the approxi-
mate eigenvalues. Most of them, fn fact,cannot be simply associated on a one-
to-one basis with particular exact eigenvalues. Even when this is possible, the
error in the approximate efgenvalues is far greater than the accuracy of 10-%
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Distribution of the exact {dots) and approximate ( A ) eigenvalues relative
to the ESR spectrum displayed in Figure 2.

for the full spectrum (with the only exception being the eigenvalue having the
greatest imaginary part). We find therefore, that the Lanczos algorithm gener-
ates continued fractions which tend to optimize the overall shape of the
spectrum, rather than sets of eigenvalues. While at first such a statement
might appear contradictory, it is based on the fact that the spectral density is
usually dominated by the eigenvalues of small real part, and the Lanczos
algorithm is able to approximate them individually, or in providing an “average"
to a cluster of eigenvalues sufficient to represent the spectral density. A
qualitative justification of this behavior is implicit in the so-called method
of moments [23), since the subspaces generated by the Lanczos algorithm tend to
approximate the overall behavior of [ by reproducing its first moments with
respect to the starting vectors. :

We mention that in the types of problems we have been discussing, there have
almost never been significant effects due to round-off error, which, however, is
the main weakness of the Lanczos algorithm in the ‘calculation of eigenvalues.
Quatitatively, this can be related to the same fact that the spectral density
converges much sooner than the corresponding eigenvalues, so that the loss of
orthogonality is not yet significant. It is known, in fact, that spurious
eigenvaiues appear after a large enough number of Lanczos steps have been cal-
culated in order to obtain eigenvalues which are very close to their exact
values [32]. As noted above, this implies many more steps than are needed for
the convergence of the spectral densities. On the other hand, only a theory,
which is still lacking, that is specifically designed to analyze the convergence
of the spectral densities, could give a quantitative estimate of the effects of
the round-off error,

The last part of this chapter will be devoted to a discussion of the choice of
basis functions for representing the time evolution operator. First of all,
there is a truncation problem, since the functions fj( z ), which form a
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complete set to represent the Hilbert space associated with the functions of the
stochastic variables z, are in general infinite in number. In computer
calculations one can only handle finite matrices. Therefore one must truncate
the matrix M, i.e. one represents the operator f in a finite basis set of
functions f,, f,,..., fy, under the hypothesis that the remaining functions

lead to neg%igible contributions. The truncation of the basis set leads to in-
correct features in the spectral density, while the computer calculation could
become exceedingly unwieldy with a too large basis set. In the absence of theo-
retical estimates of the error in I(w) caused by the truncation, the convergence
must be verified directly from the computed results by comparing In(w) obtain-
ed with increasing values of N. This is in the same spirit as the analysis of
convergence with respect to the number of steps of the Lanczos algorithm. Again
we can use eq. (3.29§ as a measure of the truncation error. Clearly, as the
number of stochastic variables increases, the truncation problem becomes more
difficult and more time consuming.

Usually, in a given problem, one has a choice amongst different types of basis
functions. The best basis functions would be those which allow the most effi-
cient truncation, thus yielding the smallest matrix to be handled by means of
the Lanczos algorithm, There are no simple guidelines for such a choice, apart
from the obvious rule that all the symmetries of the time evolution operator
should be taken into account. (Other features in selecting a basis set include
the desirability to maximize the sparsity of the matrix and the ease of calcu-
lating the matrix elements). Only by experience with each particular class of
problems can one feel confident in selecting an optimal set of basis functions.

In some problems the desire for a minimal basis set suggests the use of non-
orthogonal functions. This is likely to happen when dealing with physical
systems characterized by mean potentials which confine the stochastic variables
z around some stable states or conformations. Correspondingly, small ampli-
tude motions around the stable states (librations) and transitions amongst dif-
ferent states become the relevant dynamical processes. This type of problem is
commonly encountered in such fields of research as chemical kinetics in con-
densed phases [33-352 or in the study of conformational dynamics of chain mole-
cules or polymers [36-38]. From an analysis of the asymptotic behaviour of the
solutions of the diffusion equatfon, it has been shown that such problems can be
fonven;ently solved with non-orthoganal basis functions of the following type
39-42]:

£30 2 )igy( 2 ) Pegl 2 )1/ @)

As long as one is able to mimic efficiently, by means of the functions gj, the
fundamental processes occurrin? in hindered systems, very few elements of such a
basis set are needed in the calculation of the spectral density. The role
played by the factor P!/2 18 eq. (3.32) should be emphasized, since it

allows one to express P1/25K%nd P1/248 of eq. (3.2) simply as linear
combinations of properl?qchosen fufiftions fj's. On the other hand, with
orthonormal basis functions one must expand P1/2 in a large set of functions,

as a consequence of its sharp distribution ar8ind the stablie state of the
system. (Alternatively one may introduce finite difference or finite element
methods to choose "localized" basis sets [43]).

Of course the implementation of the Lanczos algorithm must be changed when
passing from orthonormal to non-orthogonal basis functions. One may write the
matrix form for the spectral density eq. 53.2) by con§1der1ng the representation
of the operator T and of the functions Pé 2 A and P}/2 B in"such a non-
orthogonal basis. One quickly sees that®fhe calculat¥on of the spectral density
is now closely related to the generalized eigenvalue problem Ax=;Bx 28].
Alternatively, we can start with the recursive relation of eq.(3.7) [or eq.
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(3.18)] and implement them with non-orthogonal basis functions, in order to cal-
culate the coefficients of the tridiagonal matrix. We shall discuss in detail
this second route using the recursive relation eq. (3.7); f.e. for spectral
densities of eq. (3.2) characterized by A=B and a self-adjoint operator r. One
finds that the matrix recursive relation eq. (3.12) continues to hold if the
generic column matrix xn represents the expansion coefficients of g, on the
non-orthogonal basis set according to eq. (3.13), and if the matrix M is
implicitly defined by the following relation:

rfj -)_‘ijkfk (3.33)
One does need to modify the normalization condition and the calculation of
diagonal coefficients, according to the following relations:
yix =1 (3.34)

o, = yn" Mox (3.35)

where y, is an auxiliary column matrix calculated from the normalization
matrix §

Sk * <fj'fk> (3.36)
and the array x, according to the equation:
Y, =S x (3.37)

The operations of the standard Lanczos algorithm are easily modified to the pre-
sent case [39,42]. In particular, during an iterative cycle one must store
th-ee arrays to represent the vectors x5, Xp-} and yn. By comparison with

the standard Lanczos algorithm, the stora?e needed is then increased by one
square matrix (S) and one array (yn), while the computational effort is
increased by the multiplication of a square matrix by a column matrix at each
step, because of the calculation of y, from eq. (3.37). Therefore, the use of
non-orthogonal basis functions is convenient only when it allows a considerable
reduction of the size of the matrices. This is generally the case in physical
problems characterized by strong hindering potentials [42].

Unlike the case with orthogonal functions, the effect of the truncation of the
basis to the first N elements cannot be carried out simply by neglecting the

elements of M outside the first NxN block. As a matter of fact, the use of a
finite basis set which defines an N-dime7siona1 subspace ¢j, is equivalent to

considering in eq. (3.2) the function Pé 2sA and the operator T projected onto
eN according to the following projector HN:

N .
= -1
Py & [£208 1)<t | (3.38)
Correspondingly, in the recursive relation eq. (3.7), one must substitute the
operator ', by its projected form F.
r's= PNrPN
and the matrix M is implicitly defined by the following equation:
PNrfj = E Mkjfk (3.40)
After substitution of the projection operator of eq. (3.38), one obtains:

s
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M=S-IR (3.41)

with R constructed with the matrix elements of T:
RJk = <fj’r’fk> (3.42)

We note that eq. (3.41) indicates that the calculation of M {is more complicated
than for the case of orthonormal basis sets. There are several methods for the
calculation of M. First M can be computed directly from eq. (3.41), but this
would require a large amount of computation time because of the inversion of S.
Secondly, as suggested by Jones and coworkers [44,45]; one can implement the
recursive relation (3.12) by calculating at each step the array S™3Rxn from
the solution of the linear system of equations with Rxp as known coeffi-
cients. Thirdly, in some diffusional problems, one can write rfj as a linear _
combination of basis functions by considering explicitly the operator form of p
[39,42]. Thus the elements of M are derfived by projecting out, according to
eq. (3.38), only those functions which do not belong to en [421.

SUMMARY

We have, in this review, outlined how the Lanczos al?orithm is capable of play-
ing a significant role in the calculation of spectral densities that arise in
the study of molecular dynamics. This 1s, in part, due to its computational
value and also to its close relationship to important theoretical methods in
statistical physics. We have pointed out that these problems can often be .
represented by complex symmetric matrices, and the generalization of the Lanczos
algorithm to such matrices has been generally successful. Further work is
clearly needed in establishing a better understanding of how the Lanczos algo-
rithm effectively projects out a useful representation of the spectral densities
with much less effort than is required to obtain a good set of eigenvalues.

As problems become more complicated, and the matrix representations become
larger, there is concern for carefui selection of basis vectors including
effective means of “pruning" out unnecessary basis vectors. Also, problems due
to accumulated round-off can become more serious. Thus efficient techniques for
partial re-orthogonalization may be called for [4].

In systems with strong trapping potentials, the use of non-orthogonal functions
looks promising. So far, however, the method has been tested on?y in cases
where the spectral densities can still be readily calculated with the use of
standard orthonormal basis functions [39,42], The application to challenging
problems dependent on several degrees of freedom requires a search for optimal
basis functions. Otherwise, the approach is straightforward apply.-

Although we have emphasized in this work the calculation of spectral densities,
what we have said here generalizes very nicely to the analysis of time domain
experiments on molecular dynamics. In the context of linear response theory,
the Fourier transform of the spectral density (or frequency spectrum) is just
the time correlation function (or time domain response). Thus, many modern
time-domain experiments may be described by first calculating the spectral
density by the above methods and then using FFT routines to obtain the
associated correlation functions. This equivalence again emphasizes the role of
the Lanczos algorithm in selecting out and approximately representing the
eigenvalues of small real part, i.e. the slowly decaying components, which
usually dominate the time-domain experiments.

There is, however, a special case of time domain experiments: viz. the spin echo
(and its optical analogues). These experiments may be thought of, to a first
approximation, as canceling out the effects of the imaginary parts of the eigen-
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values that contribute to the time domain response and thereby to provide great
sensitivity in the experiment to the real parts. Analysis of spin-echo spectro-
scopy by the Lanczos algorithm has met with some success [46,47], because, as
noted above, the eigenvalues of small real part tend to dominate the experiment-
al observations, and they are the ones that are at least roughly approximated by
the Lanczos algorithm. However, further computational developments along this
line would have to address how to obtain better estimates of these “smaller®
efgenvalues by improvements on the basic Lanczos technigque,
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