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STOCHASTIC MODELING OF MOLECULAR DYNAMICS® *

Jack H. Freed
Baker laboratory of Chemistry
Cornell University

Ithaca, New York 14853/USA

We cutline here a method, due to Stillman and I-‘reec!,1 for the stochastic model-
ing of the non-Markovian many-body features of diffusing molecules. We believe this
approech is a particularly useful cne in that it introduces, in a transparent man-
per, the basic physics of the relevant degrees of freedom and their couplings, and
it is not restricted to linear transport laws. FRurthermore, the stochastic features
of the bath variables are introduced in a simple and physically transparent
fashion. Also, this approach permits consideration of either equilibrium or
non-equilibriun dynamics in that the modeling allows far physically relevant choice
of' equilibrium ar stationary-state, and it subjects the expressions to the .
constraints of detailed balance with respect to this state. -

In this method the set of relevant dynamical variables is first augnented vith
stochastic bath variables which are assumed to obey simple Markovian- laws. - The
augrented set then represents a miltidimensional Markov process which obeys a
stochastic Liouville equaticn (SLE) that is, in general, incomplete because it
ignores the back reaction of the molecule (i.e. the relevant dynamical wvariables) on
the bath variables. The back reaction effects are incorporated into the model by
adding terms to the SLE which are obtained by the constraints required for detailed
balance. The resulting augmented Fokker-Planck equation (AFPE) properly describes
relaxation to thermal equilibrium, and, for the appropriate limiting- conditions,
reduces to a classical Fokker-Planck equation. Augmented lLangevin equations (ALE)
may readily be obtained from the AFPE, and because of the constraint of detailed
balance, they automatically obey the fluctuation-dissipation theorem.

The AFPE, which is in general complex, can be solved by means of modern
computational algorithms. In particular, it has been shown in recent work,Z:3
that the Lanczos algorithm," which is closely related to the method of moments,® is
a powerful approach. It is intriguing to note that the projection operatar of the
method of moments, which can be applied as a mathematical technique in any Hilbert
space, is closely related to the projection operator that Mori® introduced to obtain
a continved fracticn represenution of the generalized langevin equation (GLE) for
linear physical laws.?

We consider a set of independent dynam.cal va.ria.bles A whose equa.tion of motion
my be written as

d s = P(a;E(t),A —
da = F(8;3(t), 1) Y

where §(t) denotes a set of independent stochastic bath variables amt l.-is a set of
externally determined parameters such as temperature. In general F(4;Z,X) may be a
non-linear functicn of the variables. The stochastic process for 2 is assumed to be
stationary and Markovian with an associated master equation



3P(E,t0) = -I2P(Z,t50) (2)

the SLE may be written as’

3P(8,8,E50) = ~[TaeF(4i3.2) + [=]P(4,5,850) (3)

Here Y, represents the divergence over the space spanned by 4 and the first term on-
the rhs of Eq. (3) represents the Liouville equation form of Eq. (1). Also P(4,3,
£;1) is the joint probability distribution in the combined.set of variables: & and
3. It should be emphasized that Eq. (3) is incamplete in that the back-reaction ef-
fects of 4 on the diffusion of I do not appear in Eg. (2). Thus the stationary
solution of Eq. (3) will, in general, yield the correct Boltzmann distril;utim only
in the limit of infinite temperature. Equivalently we may say that the joint proba-
‘bility density of 4 and I as defined by Eq. (3) does not relax to thermal equilibri-
um. In order to obtain the physically correct stationary solution, additional terms
which have been neglected in Eq. (3) need to be found. We note that the SLE will
relax to thermal equilibrium if we require that it obey the principle of detailed
balance. We therefore seek additional terms to Eq. (3) subject to the constraint
that detailed balance be obeyed.

It is convenient to incorporate 4 and 3 into a new set or augmented dynamical
variables q- The SLE may then be written as

-g? P(q,t;1) = -[(qQ)P(q, t;}) (49)

It I:; contains only first and second derivative terms, then I(q) is of the form of
an AFPE:

[ = 53 . ) sA l 32 A
'(q) §“éﬁ’ K@) + 2 1%1: W)"m(‘!' ) (5

where the K; and Kjy are drift and diffusion coefficients, respectively, and except
for their time independence are otherwise quite general functions of q and A rs
may in general coantain higher order derivative terms ar bte an integral cper;tor.
This will complicate the analysis below without adding any fundamentally new fea-
tures. Irreversible and reversible drift coefficients may be respectively defined
by

Di(a;d) = % [Ki(q;2) +'¢1K1(§;§)] O
and  Jy(q;)) = 12~ (Ri(a:n) -€4K4(q;)] » €
where <i= fe,qy €2/ - s60dn} 8

and ej = t1 depending on whether qj changes sign upon time reversal. The neces-
sary and sufficient conditions for detailed btelance Dy are given by Haken as®

Kik(Q:d) = €5 eKie(q;)) (%)
- l a—K.i_-k_ . - l 39 *
% -3 hae T T3k e | ()
and § (304 .y 22 \a.,, (%)

{\%i 13q
where ¢(q;1) is the generalized thermodynamic potential defined by the stationary
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solution of Eq. (4):

Po(q;2) = Nexp(-9) . (sd)
with N a normalization constant. The AFPE is obtained by adding (or modifying) Jj
and/or Dj terms to Eg. (5) so that Egs. (9) are all fulfilled subject to a parti-
cular form for 9(q;A) which must be determined by physical considerations. Since by
Eq. (Sc) the choice of additional Jy is not unique, physical considerations are
also required here. In this manner, the back-reaction effects of A ar :=. are impli-
citly included in I'(g), and relaxation to thermal equilibrium is ensured.

It is pow possible to generate the ALE from the complete f(g).s The ALE my be
written for each dynamical variable q; as

’ m
e = Ey(@d) + 1 g15(2D) £5(0) S Qo)
where the £j(t) are independent Gaussian $—correlated hmdom functions-with
< EJ(t) >=0 (11a)
and < Eg(t+T)E5(T) > = 8446(T) - - (11b) -
kg and g¢4 are related to the drift and diffusion coefficlents by .
Re(@id) = ko(@id) + 1 T (3gey/208Ky (1)
x,3 :
and  Kye(Qi3) = ] 8e5(2:2)8k5(3,2) - (12b)

In general the mtriz K = (Kgp) is symmetric. Usually K is also nonnegative defi-
nite. If l.( is nonnegative definite, then there exists a real symmetric nonnegative
definite matrix G = (ggy) Such that G2 = K. Then

6 = v x))M 5440 (13)

- vhere K38y is the eigenvalue matrix of K and U is the corresponding en.genvector ma—
trix. Then the x,(g,x) are obtained from Eq. (122). :

The method may be illustrated by a planar model of torque rlv.xctua:.ti.ons.1 Let
Y, Y, and I be the angular arientation, angular momentum and moment of inertia of
the rotator respectively, while T(Y.;.t) is the fluctuating part of the torque and
N(y) is the mean-field torque. The Liouville equation for this stochastic process
is just: .
F R = o[ s U (T YL 8 R -9

corresponding to the first term on the rhs of Eq. (3). A simple but useful form for
modeling the stochastic properties of T(Y,7.t) is to set it equal to IV ng'.t(v-o)

wvhere f(vy—) 1is periodic in (v—4), and regard the angle ¢(t) corresponding to the
direction that minimizes the torque acting on the rotator as stochastic. If we

choose a simple diffusional model in ¢ we may write:
) - =122 _
e P9.t) = -1, ‘3‘;: P(4,t) (15)

corresponding to Eq. (2). Egqs. (14) and (15) may then be combined as in Eg. (3), to
give the SLE for P(Y,Y,¢,t). This SLE is incomplete because it is found to violate
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Eq. (Sc) when we let the equilibrium Eq. (Sd) be a Boltzmnn distribution in Y and a
Boltzmann distribution in the mean potential Uy(Y), where N(y) = %7 Un(Y)e That is

o(v,Y) = IY?/2KT + Uy(v) /KT (16)

One readily finds that we may correct this by introducing a reversible drift term
related to the fluctuation in ¢ of form J, = AL Va(1-4)7 where 2(1=4) = 3o g(14)-
This is the back-reaction of the rotator on the bu.th variable ¢. 'I'nen the cunp_lgf_e_w
AFPE operator corresponding to Eqs. (4) and (5) becomes: :
v - .a ~1 3 - ] 9 3 - 132

PO = g ¢ N - AT vecy "2+ Wy v ar4) - iy an
For the simpler form of Eq. (18) with N(Y) = O, the spectral densities:

J(w) = L Re<dY|[tu+r]-}|Pel™> © (18)

(real part of the Fourier transform of the auto-correlation function
<@ 1Y(t)g*iv10) ) were found to reduce to- the Brownian form in the limit of large
r;l. For slower torque diffusion rates more complicated behavior was observed. In
particular, for smll « the spectral density approaches the form j(w) = tg/(1l+
cw?tg?) with € > 1, where tg is the Brownian rotational diffusion correlation time.
Such a form has been found useful in the interpretation of molecular dynamics Stu-
dies by ESRY™!2 and MR!? methods. Care muist be taken, however, in interpreting
3D results in terms of planar models because of periodicity effects.

When, however, the equilibrium of Eq. 9d is taken to the instantaneous value of
the potential, i.e.

8(Y,¥,4) = I¥*/2KT + Ug(Y-4)/KT (19) -
where Up(y—$) = /KTT Vg(Y-¢) and we have let N(Y)=0 for simplicity, then one finds
that Eg. (9b) is mot cbeyed. One readily finds that we must introduce the irrever-
sible drift coefficient: Dy = v3'T(Y-4)/KT, SO that the AFPE operator is now:

2 .3 T

POY,Y.4) = v; + I-‘T(H)— 6’ + z—‘g‘—)) (20)
'I‘his form will pot reduce to the Brownian form in any limit, since the fluctuating
torques do not lead to friction. The equivalent ALE corresponding to Egs. 17 and 20
may be found in the paper of Stillman and Freed.! It was suggested that Eqs. (16)
and (17) apply to more rapidly fluctuating torques, while Egs. (19) and (20) apply
to torque components fluctuating at a rate slower than the motion of the planar ro-
tator.! 9 10/ 1% g latter case has been called the slowly-relaxing local struc-
ture (SLRS) model, %" and it has been useful in analyzing megnetic resonance re-
laxation studies cn molecules in liquid crystals and model membranes. Appropriate
3D forms are given elsewhere. !, 1*

We now address a method of solution of the AFPE, Egs. (4) and (5) appropriate
for the general non-linear case (Eqs. 17 and 20 are non-linear), It is frequently
oonvenient to symnetrize" [ by the similarity transformation:

2 Po(a:A) FIPo(g, 1) : . (21)
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Then any correlation function can be written as:?

g(t) = T(D)1(0) = «t|e~TtR[> = <rpfle=TE[tPo%> (22)
where f(t) = £(4(t)). Therefore the correlation functions can be obtained once the
eigenvalue problem for l: is solved. One may first expand the Hilbert space of the
variables q in a2 complete ortbo—norma.l basis set so chosen that l' is a complex-
svmmetric matrix. One chooses f.Po z |2) as the starting vector and forms the
(E‘)ﬂlz) = ,zk+1>:tor k=0 to n-1. Then by Schmidt crthonormalization the linearly
independent vectors 'zkﬂ) are transformed into an n-dimensional basis set repre-
sented by ,k) for k=1 to n. One obtains the recursion relation characteristic of
the lanczos algorithm 124

B [l> = (T = o1 ) [k=1> = Be1)k-2>
vhere ay = <k[ ,k) - <k|r,,|x> and By = o:lr’k-n - <k|l'n|k-1). Here Iy is
the n dimensional approximation of T in the space spanned by the n [k>'s. (Tnat is,
ve uny regard Tp=P,['P, vhere P, is the operator that projects any vector in
the full Hilbert space onto the n-dimensional sub-space.) In the ,k) representation
. Fp is tri-diagonal (i.e. T,) with kB diagonal element given by o and
off-diagonal elements given by 8y. Then the nth approximation to the spectral
density function of Eg. 22 is )

$4(0) = Ref] ¢ % (t)dr = Re(¢||[1wl+ T ]-|L) (23)

where ,1) is the starting vector in the [k) representation. In this form j (w) can
be calculated as a continued fraction, or alternatively T, can be diagonalized by
standard methods. The Lanczos tri-diagonalization is extremely efficient for compu-
tations.>: Furthermore, by means of lLanczos methods for (caomplex) non-Symmetric ma-
trices cme can work directly with the unsymmetrized AFPE operator, I, in Eq. 2.

The abowe examples Aillustra.te some of the applications of owr AFPE approach.
We believe that this method has application for Stochastic molecular dynamics calcu-
lations.!® In fact, our approach appears to us to be even more convenient than the
present use aof generalized langivin equations (GLE), gecause the ALE mave time-inde-
pendent coefficlents rather than the memory kernels of the GLE, and also non-linear
. couplings are easily included in either the AFPE ar the ALE. The absence of memory
kernels is due to the fact that the set of relevent variables has been extended to
- the required level to make this possible; i.e. the remaining "bath" variables are
truly "irrelevant.” The Mori® concept of a heirarchy of memory functions in which
one couples to increasingly faster variables, would have its analogue in the present
method. Thus, one would construct a Markov process for the fastest variables, cou—
pling in via the SLE the set of next fastest variables. This, in turn, would serve
as the more general Markov process to which the next set of slower variables couple,
etc. In this manner, cane would go "up the chain” in model building. Lastly, we be-
lieve, our method offers the appeal of a direct approach to stochastic modeling such
that the physical assumptions being made are quite transparent. .
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