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snl:HASTIC MOOELIKi OF MOLEx::ULA.R DYNAMICS- • 
Jack ff. Freed 

Baker lA.boratory of Chemistry 
Cornell University 

Ithaca, New York 14853/USA 

le oitline here a method, due • to Still.nB.n and Freed, 1 for the stoch&stic l!Odel­

ing ot the noo--Mukovian many-body features of diffusing molecules. We believe this 

approacit is a pu-ticularly useful ooe in that it introduces, in a transparent IIJlll­

ner, the basic physics of tbe releV&nt degrees o! treedan and their couplings, and 

it is oot restricted to linear transport laws. F\n"thel'Tl0re, the stochastic features 

ot the bath variables are introduced in a simple and physically transparent 

fashion. Also, this approach permits o:>nsideration o! either equilibrium or 

n~uilihriun dynamics in that the rrodeling allows tor physically i-elevant choice 

o! equilibrium er stationary-state, and it subjects the expressions to the ___ _ 

constraints of detailed balance rt th respect to this state. 

ID this 11ethod the set ot relevant dynamical variables is !irSt augmented w1. th 

stochastic bath variables which are assumed to obey simple M&rkovi.&nc laws. - The 

augmented set then represents a uul tidimensiona.l Mi!Lrkov process Mlich obeys. a 

stochastic IJ.~lle equa.ticn (SLE) that is, in general, inccmplete because it 

ignores tbe tacit reactioo ot the nclecule (i.e. the relevant dynamica·l -variables) en 

the bath variables. The back reactioo effects are incorporated into-. the model by 

adding terms to the SLE 'llihich are obtained by the constraints l'l!Quired for detailed 

balance. The resulting augrrented Fokker-Planck equa.tioo (AFPE) properly describes 

relaxation to thennal equilibrium, and, for the appropriate limiting· conditions, 

reduces to a classical Fokker-Planck equation. Augmented I.Angevin equations (ALE) 

nay readily be obtained :!ran the AFPE, and because of the COllStraint of detailed 

balance, they autanatically obey the tluctuation-dissip&ticn theorem-. 

Tbe AFPE, Totlich is in general complex, can t:e solved by rreans al l!Odern 

computaUonal algori thm.s. In pu-ticular, it has t:een shown in recent v.ork, 2 , 3 

that the I.anczos algorithm, It llbich is closely related to the IIl!thod of nanents, 5 is 

a powerful a.pp.roach. It is intriguing to note that the projecticn operator ot the 

method ot acments, Totlich can t:e applied as a mthemtical techn.ique in any Hilbert 

space, is closely related to the projectioo operator that Mori 6 introduced to obta.ln 

a continued fractioo representation of the generalized Langevin equatioa (GLE) tor 

linear pbysical laws. 3 

We C0DSider & set ot independent dynamical variables ~ whose equatioa ot 11Dtion 

nay te written as 

L • F(6;E(t),A) 
dt- - - -

(1) 

Where §(t) denotes a set of independent stochastic bath variables and: l.-is a· set ~ 

externally determined parameters such as tenpera ture. In general F( ~; §, ~) rray t:e a 
noo-linear !uncticn ot tbe variables. 'The stochastic process tor E is assumed to be 

stationary and Markovian with. an associated naster equation 
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~:,tl) • -r:P(:,t;l) 
cit -- - -: - -

(2) 

the SLE rray be: wr1 tten as 7 

¼A,:,t;l) • -(V4•F(A;:,.l) + _r-_.]P(A_,:_-,t;l_) 
cit - - - - - -

(3) 

Here 'l4 represents the divergence over the space spanned bY A and the first tenn on 

the rhs of Eq. (3) represents the Liouville equaticn fonn at Eq. (1). Also P(A,:, 

t;l) is the joint probability distribution in the c.anbined. set of variables: A and . . . -
... It should be enpbasized that Eq. (3) is incanplete in that the back-reacticn ef-

fects of ~ en the diffusion of g cb not appear in Fq. (2). Thus the stationa.ry 

solutiai at Eq. (3) Will, in general, Yield the correct Boltznann distri1:>11t1cn only 

in the limit of infinite temperature. Equivalently we rray say that the joint proba­

bility density of 4 and ; as defined by Eq. (3) does not relax to tberrral equilibri­

un. In order to obtain the physically correct stationary solution, additional tern,s 

which have been neglected in Eq. (3) need to t:e found. We note tb&t the SLE Will 

relax to thermal equilibrium i! we require. that it obey the principle of detailed 

balance. We therefore seek additional terns to Eq. (3) subject to the constraint 

that detailed ta.lance be obeyed. 

It is convenient to incorporate 4 and ; into a new set of augmented dynamical 

variables q. 1be SLE rray then t:e written as 

.L P(q,t;l) • -r(q)P(q,t;l) (4) 
cit - - - - - -

If ~= contains cnly first and second derivative tenns, then r(q) is of the form of 

an AFPE: 

-r<q> - -f <k>• K. iq;l> + 1. f ~) K11c<q;l> cs> 
i "'ti -1. - - 2 i,k\6-ti~Qk - -

Where the Kt and K11c are drift and di.ffusion coefficients, respectively, and except 

for their time independence are otherwise quite general functions of q and l. r: 
• - - --

may in general a,otain higher order derivative tenns or t:e an integral. operator. 

This will canplicate the analysis below without adding any fundamentally new fea­

tures. Irreversible and reversible drift coefficients rray be :n!spectively de.fined __ 

by 

and 

Di(q;l) = .1 [Ki(q;l) +·c1Ki(q;A)] 
- 2 -- --

Ji(q;l) = .1 [K1(q;l) -ciK1(q;l)] 
-- 2 -- --

(6) 

(7) 

where g .,. {c,q1 cz, ••• , Ert<ii,l (8) 

and c1 • ±1 depending en whether 41 changes sign upon time reversal. The neces­

sary and sufficient conditions for detailed ta.lance Di_ are given by Haken as 9 

K11c(9-;~) • ci C](Kik(~ ;~) (911.) 

Di. - 1. r c1xik - - 1. r Ki.iJL C9b> 
2ic1Qk 2lc clQk 

and L /!J1 - J lL) • 0, (9c) 
i ~3qi i clq1 

whent t(g;~) is the generalized thennodynamic Potential defined by the stationary 
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solution of E'q. (4): 

Po(~;~)• Nexp(-t) (9d) 

With Na nornalization constant. The AFPE is obtained by adding (or rn::xii!ying) Ji 

and/or 01, term.5 to E'q. (5) so that Eqs. (9) are all ful:Ulled subject to a parti­

cular form for t(q;~) _whicb aust be determined by ~ysical considerations. Since by 

Eq. (9e) tbe choice of additional Ji is not unique, ~ysical considerations are 

also required here. In this n.nner, the back-reaction effects of A or : are impli­

citly included in r<g), and relaxaticn to thennal equilibriun is ensured. 

It is aow possible to generate the ALE fran the complete !(cp. 8 The ALE IIBY be 

wr1 tten for each dynamical variable q1 as 
• m 

<:i,t • k,t(Q,l.) + l g.tj(q,l.) tj(t) (10) 
• • j•l - • 

where tbe tJ(t) are independent Gaussian 6~rrelated random functions· wi.tfi 

< tj(t) > • 0 (lla) 

and < t1(t+THj(t) > • 6.tj4(T) (llb) 

k.t and g.tj a.re related to tbe drift and diffusion cx,efficients by 

K1(CJ;:> •k1(~::> +½ L (3g.tj/3qt)gtj (1211.) 
k,j 

and Kfk(q;l.) - l g.tj(q;l.)ikj(q,l.) (1.2b) 

In genera.i ~ mitr1:z K : CK.em) is synmetric. Usually K is also nonnegative defi­

nite. If K is oonnegative definite, then there exists a real synmetric nonnegative 

definite matrix G • (g111:) such tbat G2 • K. Then 

(13) 

• where ~6ij is ~ eigenvalue matri:z o! ~ and g is the corresponding eigenvector ma­

tri:z. Tben the K1(9;~) are obtained !ran Eq. (12a). 

The method may be illustrated by a planar model of torque fluctuations. 1 Let 

Y, Y, and I be the angular orientation, angular 11D11entum and l!Dllent of inertia of 

the rotator respectively, while T(Y,l,t) is the fluctuating part of the torque and 

N(l) is the rrean-field torque. The Liouville equation for this stochaStic process 

is just: 

a • ("a 1a • ] • - P(y,y,t) • - l- + I- .... (N(l)+T(l,l,t) P(l,l,t) 
at ay ~ 

( 14) 

correspondi.Jlg to tbe first tenn en the ms of F.q. (3). A simple rut useful fonn for 

modeling the stochastic properties of T(Y,Y,t) is to set it equal to rv&!(r-+> 
I 

where f(l-+) is periodic ill (Y-.), and regard the angle ♦(t) corresponding to the 
di.recticn tbat minimizes the torque acting en the rotator as stochaStic. I! v.e 
choose a simple diffusional rn::xiel in ♦ ~ nay write: 

¼t- P( ♦ ,t) • -T.-
1 ::2 PC.♦ ,t) (15) 

corresponding to F.q. (2). F.qs. (14) and (15) may then be combined as in __ Eq. (3), to 

g1 ve the SLE for P(y , y, ♦, t). This SLE is incomplete because it is found to violate 
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F.q. {9c) lihen we let the equilibrium F.q. {9d) te a BoltZll'BM distribution in Y and a 

Boltznann distribution in the mean potential Urf{Y), v.tlere N{y) • °iy Urf{y). That is 

{16) 

Qie read.Uy .ti.eds that Ill! ll'BY CX>rrect this by introducing a reversible drift tenn 

related to the fluctuation in ♦ of fonn J♦ ,. 4'r Vg{Y➔ )Y vmere f{!-.> • iy- g{r➔ >• 
This is the tack-reaction of the rotator en the ta.th variable ♦• Then. the ocmplete 

AFPE operator correspond~ to F.qs. {4) and {5) becomes: 

r{Y,Y, ♦) • Yiv + x- 1N{y~ + IF Vf{Y-♦~ + r4;, v~ g{y➔) - T'ilr__ {17) 
Y ay ay w-, . a♦ 2 

Far the simpler fonn of F.q. { 18) with N{ Y) ,. 0, the spectral deosi ties: 

j{w) • ~ Re4YI (iw+r]- 11Pc,eh> {18) 

{real i:art of the Foorier transfonn of the auto-oorrelation function 

<e-iy(t)e+iy{oY>) were found to reduce to· the Brownian fonn 1n the limit of large 

Tf1 • For slower torque diffusion rates 110re complicated tehavior was observed. In 

particular, for snall III the spectral. density approaches the form j{111) • Taf{l+ 

cw2
Ta

2) with c > 1, vmere TR is the Brownian rotational diffusion CX>rrelation time. 

Such a fonn has teen found useful in the interpretation of 110lecular dYnamics stu­

dies by ·ESR9- 12 and l'Ml 13 nethods. Care llllSt te taken, however, in interpreting 

3D results 1n ternis of planar IIDdels tecause of periodicity effects. 

When, bowever, the equilibritm of F.q. 9d is takea to the instantaneous valtE of 

the potential, i.e. 

t{y, Y , ♦) • Iy2 /'2l<r + UT(Y➔ )/kT {19) 

Where Ur(Y➔) ,. mi Vg{Y➔) and Ill! have let N{Y)""° for simplicity, then cne finds 

that Eq. {9b) is oot obeyed. Qie readily finds that we llllSt introduce the irrever­

sible drift coefficient: D+ • T'i 1T{Y-♦ )/kT, so that the ~ operator is now: 

rcr,Y, ♦) • 1!.. + x- 1TCr-♦ ).!... - r 1/a2 
+ ~ T(Y-♦)\ {20) 

ay ay +~ a+ kTj 

'Ibis fonn will ~ reduce to the Brownian !onn 1n any limit, since the fluctuating 

torques <b ~ lead t:o friction. The equivalent AlE corresponding to F.qs. 17 and 20 

l!JILY be found in the paper of Stilluan and Freed. 1 It was suggested that F.qs. {16) 

and (17) apply to more rapidly fluctuating torques, While F.qs~ {19) and {20) apply 

to t:orque ccmponents fluctuating at a rate slower than the 110tion of the planar ro­

tator. 1' 9' lo, lit This latter case has teen called the slowly-relaxing local struc­

ture {SL.RS) IIDdel, lO, lit and it has teen useful 1n analyzing nagnetic resonance re­

laxation studies en 110lecules in liquid crystals and IIDdel ffl!lllbranes. Appropriate 

3D forms are given elsewhere. 1, lit 

We rx>w address a rrethod of solution of the _AFPE, Eqs. {4) and {5) appropriate 

for the general non-linear case {F.qs. 17 and 20 are non-linear,. It is frequently 

CX>nvenient to "synrnetrize" r by the similarity transfonna tion: 
- -1i ·~ r i P0 (g;l) l'P0 {9,l) (21) 
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'nlen any correlation !unction can te written as: 2 

g(t) = t*(t)!(o) • <tle-rtp0 jt> • <!Pb"fe-rtjtPo¼> (22) 

where !(t) • !(4,(t)). '!_bere!ore the correlaticn !unctions can te obtained once the 

eigenvalue problem !or r is solved! Cne nay !1rst expand the Hilbert space o! the 

variables q 1n a canplete ortho-nonnal. basis set so chosen that r is a canplex­

~tric ~trix. Cne chooSeS jtP0 ~> = jz> as the starting vector and !onr1S the 

cr>0 1z> : jzk+1>for ~ to n--1. Then by Scbmidt orthonornalization the linearly 

independent vectors jztt+1> are tra.ns!onned into an n-dimensional ta.sis set repre­

sented by jk> !or k-1 to n. Cne obtains the recursion relation ch&racteristic o! 

the I.anczos algorithm:2-lt 

skjk> • <.r - CJJt-1 !) lk-1> - Bk-1)k-2) 

Where ak - <klrlk> - <klrnjk> and Bk - <kjrjk-1> - <klI'nlk-1>. Here I'n is 

tbe n din:ensional approx:inll. tion of r 1n the space spanned by the n jk> 's. (That is, 

we nay regard I'n•Pni'Pn Ylbere Pn is the operator that projects any vector in 

the :tul.l Hilbert space cnto the n-di.mensional sli:rspace.) In the lk> representation 

fn is tri~iagonal (i.e. '!n> with kth diagonal element given by ate and 

o!!-diagon&l elements given by Bk• Then the nth approxiaw.tion t.o the spectral 

density :tunction at Fq. 22 is 

J,n,C,.,) = Ref; e-ica,tgn(t)dt • Re{< I j (iw 1 + !
0
]-1 jl>} (23) 

were 11> is the starting vector 1n the jk> representation. In this form jn(w) can 

be calculated as a ooatinued traction, or alternatively Tu can te diagonalized by 

standard methods. The I.anczos tri~iagonalization is extremely e!!icient !or compu­

tations.:, F\Jrthel'll1)re, by means of Lanczos methods !or (canplex) non-synmetric ma­

trices cne can 110rk directly with the unsymnetrized AFPE c.perator, r. in Fq. 22. 

'lbe &bow examples illustrate sore of the applications of our AFPE a.pproach. 

We telieve that this nethod has application !or Stochastic 110lecular dynamics ca.lcu­

latioas. 15 In !act, our approacil appears t.o us t.o te even more convenient than the 

present use at generalized l.&ngivin equations (GLE), tecause the ALE have time-inde-, 
pendent coe!!icients rather than the memo:r;r kernels of the GLE, aIXi also non-linear 

couplings are easily included in e1 ther the AFPE or the ALE. The absence at rrerory 

kernels is due t.o the !act that the set of relevent variables has been extended to 

the required level t.o nake this possible; i.e. the renaining ''bath" variables a.re 

truly "irrelevant." The Mori 6 concept of a heirarchy o! memory !unctions 1n which 

one couples t.o increasingly !aster variables, 'MJUld ha.ve its analogue in the present 

metim. Thus, one would construct a Markov process for the !astest variables, cou­

pling in via the SLE the set of nert fastest vii,riables. This, in turn, "MJUld serve 

as the 11DJ:e general Markov process to which the next set of. slower variables couple, 

etc. In this nanner, aie 'OU!d go ''up the c.b&in" in l!Dde 1 building. Lastly , we te­

lieve, our metha:I otters the appeal of a direct approach t.o stochastic rrodeling such 

that the physical ~tions teing l!Bde are quite transparent. 
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